Taints the non-acquire RMW's store address with the load part
[oota-llvm.git] / lib / CodeGen / GlobalMerge.cpp
1 //===-- GlobalMerge.cpp - Internal globals merging  -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // This pass merges globals with internal linkage into one. This way all the
10 // globals which were merged into a biggest one can be addressed using offsets
11 // from the same base pointer (no need for separate base pointer for each of the
12 // global). Such a transformation can significantly reduce the register pressure
13 // when many globals are involved.
14 //
15 // For example, consider the code which touches several global variables at
16 // once:
17 //
18 // static int foo[N], bar[N], baz[N];
19 //
20 // for (i = 0; i < N; ++i) {
21 //    foo[i] = bar[i] * baz[i];
22 // }
23 //
24 //  On ARM the addresses of 3 arrays should be kept in the registers, thus
25 //  this code has quite large register pressure (loop body):
26 //
27 //  ldr     r1, [r5], #4
28 //  ldr     r2, [r6], #4
29 //  mul     r1, r2, r1
30 //  str     r1, [r0], #4
31 //
32 //  Pass converts the code to something like:
33 //
34 //  static struct {
35 //    int foo[N];
36 //    int bar[N];
37 //    int baz[N];
38 //  } merged;
39 //
40 //  for (i = 0; i < N; ++i) {
41 //    merged.foo[i] = merged.bar[i] * merged.baz[i];
42 //  }
43 //
44 //  and in ARM code this becomes:
45 //
46 //  ldr     r0, [r5, #40]
47 //  ldr     r1, [r5, #80]
48 //  mul     r0, r1, r0
49 //  str     r0, [r5], #4
50 //
51 //  note that we saved 2 registers here almostly "for free".
52 //
53 // However, merging globals can have tradeoffs:
54 // - it confuses debuggers, tools, and users
55 // - it makes linker optimizations less useful (order files, LOHs, ...)
56 // - it forces usage of indexed addressing (which isn't necessarily "free")
57 // - it can increase register pressure when the uses are disparate enough.
58 // 
59 // We use heuristics to discover the best global grouping we can (cf cl::opts).
60 // ===---------------------------------------------------------------------===//
61
62 #include "llvm/Transforms/Scalar.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/SmallBitVector.h"
65 #include "llvm/ADT/SmallPtrSet.h"
66 #include "llvm/ADT/Statistic.h"
67 #include "llvm/CodeGen/Passes.h"
68 #include "llvm/IR/Attributes.h"
69 #include "llvm/IR/Constants.h"
70 #include "llvm/IR/DataLayout.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GlobalVariable.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/Intrinsics.h"
76 #include "llvm/IR/Module.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Debug.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include "llvm/Target/TargetLowering.h"
82 #include "llvm/Target/TargetLoweringObjectFile.h"
83 #include "llvm/Target/TargetSubtargetInfo.h"
84 #include <algorithm>
85 using namespace llvm;
86
87 #define DEBUG_TYPE "global-merge"
88
89 // FIXME: This is only useful as a last-resort way to disable the pass.
90 static cl::opt<bool>
91 EnableGlobalMerge("enable-global-merge", cl::Hidden,
92                   cl::desc("Enable the global merge pass"),
93                   cl::init(true));
94
95 static cl::opt<bool> GlobalMergeGroupByUse(
96     "global-merge-group-by-use", cl::Hidden,
97     cl::desc("Improve global merge pass to look at uses"), cl::init(true));
98
99 static cl::opt<bool> GlobalMergeIgnoreSingleUse(
100     "global-merge-ignore-single-use", cl::Hidden,
101     cl::desc("Improve global merge pass to ignore globals only used alone"),
102     cl::init(true));
103
104 static cl::opt<bool>
105 EnableGlobalMergeOnConst("global-merge-on-const", cl::Hidden,
106                          cl::desc("Enable global merge pass on constants"),
107                          cl::init(false));
108
109 // FIXME: this could be a transitional option, and we probably need to remove
110 // it if only we are sure this optimization could always benefit all targets.
111 static cl::opt<cl::boolOrDefault>
112 EnableGlobalMergeOnExternal("global-merge-on-external", cl::Hidden,
113      cl::desc("Enable global merge pass on external linkage"));
114
115 STATISTIC(NumMerged, "Number of globals merged");
116 namespace {
117   class GlobalMerge : public FunctionPass {
118     const TargetMachine *TM;
119     // FIXME: Infer the maximum possible offset depending on the actual users
120     // (these max offsets are different for the users inside Thumb or ARM
121     // functions), see the code that passes in the offset in the ARM backend
122     // for more information.
123     unsigned MaxOffset;
124
125     /// Whether we should try to optimize for size only.
126     /// Currently, this applies a dead simple heuristic: only consider globals
127     /// used in minsize functions for merging.
128     /// FIXME: This could learn about optsize, and be used in the cost model.
129     bool OnlyOptimizeForSize;
130
131     /// Whether we should merge global variables that have external linkage.
132     bool MergeExternalGlobals;
133
134     bool doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
135                  Module &M, bool isConst, unsigned AddrSpace) const;
136     /// \brief Merge everything in \p Globals for which the corresponding bit
137     /// in \p GlobalSet is set.
138     bool doMerge(const SmallVectorImpl<GlobalVariable *> &Globals,
139                  const BitVector &GlobalSet, Module &M, bool isConst,
140                  unsigned AddrSpace) const;
141
142     /// \brief Check if the given variable has been identified as must keep
143     /// \pre setMustKeepGlobalVariables must have been called on the Module that
144     ///      contains GV
145     bool isMustKeepGlobalVariable(const GlobalVariable *GV) const {
146       return MustKeepGlobalVariables.count(GV);
147     }
148
149     /// Collect every variables marked as "used" or used in a landing pad
150     /// instruction for this Module.
151     void setMustKeepGlobalVariables(Module &M);
152
153     /// Collect every variables marked as "used"
154     void collectUsedGlobalVariables(Module &M);
155
156     /// Keep track of the GlobalVariable that must not be merged away
157     SmallPtrSet<const GlobalVariable *, 16> MustKeepGlobalVariables;
158
159   public:
160     static char ID;             // Pass identification, replacement for typeid.
161     explicit GlobalMerge(const TargetMachine *TM = nullptr,
162                          unsigned MaximalOffset = 0,
163                          bool OnlyOptimizeForSize = false,
164                          bool MergeExternalGlobals = false)
165         : FunctionPass(ID), TM(TM), MaxOffset(MaximalOffset),
166           OnlyOptimizeForSize(OnlyOptimizeForSize),
167           MergeExternalGlobals(MergeExternalGlobals) {
168       initializeGlobalMergePass(*PassRegistry::getPassRegistry());
169     }
170
171     bool doInitialization(Module &M) override;
172     bool runOnFunction(Function &F) override;
173     bool doFinalization(Module &M) override;
174
175     const char *getPassName() const override {
176       return "Merge internal globals";
177     }
178
179     void getAnalysisUsage(AnalysisUsage &AU) const override {
180       AU.setPreservesCFG();
181       FunctionPass::getAnalysisUsage(AU);
182     }
183   };
184 } // end anonymous namespace
185
186 char GlobalMerge::ID = 0;
187 INITIALIZE_PASS_BEGIN(GlobalMerge, "global-merge", "Merge global variables",
188                       false, false)
189 INITIALIZE_PASS_END(GlobalMerge, "global-merge", "Merge global variables",
190                     false, false)
191
192 bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
193                           Module &M, bool isConst, unsigned AddrSpace) const {
194   auto &DL = M.getDataLayout();
195   // FIXME: Find better heuristics
196   std::stable_sort(Globals.begin(), Globals.end(),
197                    [&DL](const GlobalVariable *GV1, const GlobalVariable *GV2) {
198                      return DL.getTypeAllocSize(GV1->getValueType()) <
199                             DL.getTypeAllocSize(GV2->getValueType());
200                    });
201
202   // If we want to just blindly group all globals together, do so.
203   if (!GlobalMergeGroupByUse) {
204     BitVector AllGlobals(Globals.size());
205     AllGlobals.set();
206     return doMerge(Globals, AllGlobals, M, isConst, AddrSpace);
207   }
208
209   // If we want to be smarter, look at all uses of each global, to try to
210   // discover all sets of globals used together, and how many times each of
211   // these sets occurred.
212   //
213   // Keep this reasonably efficient, by having an append-only list of all sets
214   // discovered so far (UsedGlobalSet), and mapping each "together-ness" unit of
215   // code (currently, a Function) to the set of globals seen so far that are
216   // used together in that unit (GlobalUsesByFunction).
217   //
218   // When we look at the Nth global, we now that any new set is either:
219   // - the singleton set {N}, containing this global only, or
220   // - the union of {N} and a previously-discovered set, containing some
221   //   combination of the previous N-1 globals.
222   // Using that knowledge, when looking at the Nth global, we can keep:
223   // - a reference to the singleton set {N} (CurGVOnlySetIdx)
224   // - a list mapping each previous set to its union with {N} (EncounteredUGS),
225   //   if it actually occurs.
226
227   // We keep track of the sets of globals used together "close enough".
228   struct UsedGlobalSet {
229     UsedGlobalSet(size_t Size) : Globals(Size), UsageCount(1) {}
230     BitVector Globals;
231     unsigned UsageCount;
232   };
233
234   // Each set is unique in UsedGlobalSets.
235   std::vector<UsedGlobalSet> UsedGlobalSets;
236
237   // Avoid repeating the create-global-set pattern.
238   auto CreateGlobalSet = [&]() -> UsedGlobalSet & {
239     UsedGlobalSets.emplace_back(Globals.size());
240     return UsedGlobalSets.back();
241   };
242
243   // The first set is the empty set.
244   CreateGlobalSet().UsageCount = 0;
245
246   // We define "close enough" to be "in the same function".
247   // FIXME: Grouping uses by function is way too aggressive, so we should have
248   // a better metric for distance between uses.
249   // The obvious alternative would be to group by BasicBlock, but that's in
250   // turn too conservative..
251   // Anything in between wouldn't be trivial to compute, so just stick with
252   // per-function grouping.
253
254   // The value type is an index into UsedGlobalSets.
255   // The default (0) conveniently points to the empty set.
256   DenseMap<Function *, size_t /*UsedGlobalSetIdx*/> GlobalUsesByFunction;
257
258   // Now, look at each merge-eligible global in turn.
259
260   // Keep track of the sets we already encountered to which we added the
261   // current global.
262   // Each element matches the same-index element in UsedGlobalSets.
263   // This lets us efficiently tell whether a set has already been expanded to
264   // include the current global.
265   std::vector<size_t> EncounteredUGS;
266
267   for (size_t GI = 0, GE = Globals.size(); GI != GE; ++GI) {
268     GlobalVariable *GV = Globals[GI];
269
270     // Reset the encountered sets for this global...
271     std::fill(EncounteredUGS.begin(), EncounteredUGS.end(), 0);
272     // ...and grow it in case we created new sets for the previous global.
273     EncounteredUGS.resize(UsedGlobalSets.size());
274
275     // We might need to create a set that only consists of the current global.
276     // Keep track of its index into UsedGlobalSets.
277     size_t CurGVOnlySetIdx = 0;
278
279     // For each global, look at all its Uses.
280     for (auto &U : GV->uses()) {
281       // This Use might be a ConstantExpr.  We're interested in Instruction
282       // users, so look through ConstantExpr...
283       Use *UI, *UE;
284       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
285         if (CE->use_empty())
286           continue;
287         UI = &*CE->use_begin();
288         UE = nullptr;
289       } else if (isa<Instruction>(U.getUser())) {
290         UI = &U;
291         UE = UI->getNext();
292       } else {
293         continue;
294       }
295
296       // ...to iterate on all the instruction users of the global.
297       // Note that we iterate on Uses and not on Users to be able to getNext().
298       for (; UI != UE; UI = UI->getNext()) {
299         Instruction *I = dyn_cast<Instruction>(UI->getUser());
300         if (!I)
301           continue;
302
303         Function *ParentFn = I->getParent()->getParent();
304
305         // If we're only optimizing for size, ignore non-minsize functions.
306         if (OnlyOptimizeForSize && !ParentFn->optForMinSize())
307           continue;
308
309         size_t UGSIdx = GlobalUsesByFunction[ParentFn];
310
311         // If this is the first global the basic block uses, map it to the set
312         // consisting of this global only.
313         if (!UGSIdx) {
314           // If that set doesn't exist yet, create it.
315           if (!CurGVOnlySetIdx) {
316             CurGVOnlySetIdx = UsedGlobalSets.size();
317             CreateGlobalSet().Globals.set(GI);
318           } else {
319             ++UsedGlobalSets[CurGVOnlySetIdx].UsageCount;
320           }
321
322           GlobalUsesByFunction[ParentFn] = CurGVOnlySetIdx;
323           continue;
324         }
325
326         // If we already encountered this BB, just increment the counter.
327         if (UsedGlobalSets[UGSIdx].Globals.test(GI)) {
328           ++UsedGlobalSets[UGSIdx].UsageCount;
329           continue;
330         }
331
332         // If not, the previous set wasn't actually used in this function.
333         --UsedGlobalSets[UGSIdx].UsageCount;
334
335         // If we already expanded the previous set to include this global, just
336         // reuse that expanded set.
337         if (size_t ExpandedIdx = EncounteredUGS[UGSIdx]) {
338           ++UsedGlobalSets[ExpandedIdx].UsageCount;
339           GlobalUsesByFunction[ParentFn] = ExpandedIdx;
340           continue;
341         }
342
343         // If not, create a new set consisting of the union of the previous set
344         // and this global.  Mark it as encountered, so we can reuse it later.
345         GlobalUsesByFunction[ParentFn] = EncounteredUGS[UGSIdx] =
346             UsedGlobalSets.size();
347
348         UsedGlobalSet &NewUGS = CreateGlobalSet();
349         NewUGS.Globals.set(GI);
350         NewUGS.Globals |= UsedGlobalSets[UGSIdx].Globals;
351       }
352     }
353   }
354
355   // Now we found a bunch of sets of globals used together.  We accumulated
356   // the number of times we encountered the sets (i.e., the number of blocks
357   // that use that exact set of globals).
358   //
359   // Multiply that by the size of the set to give us a crude profitability
360   // metric.
361   std::sort(UsedGlobalSets.begin(), UsedGlobalSets.end(),
362             [](const UsedGlobalSet &UGS1, const UsedGlobalSet &UGS2) {
363               return UGS1.Globals.count() * UGS1.UsageCount <
364                      UGS2.Globals.count() * UGS2.UsageCount;
365             });
366
367   // We can choose to merge all globals together, but ignore globals never used
368   // with another global.  This catches the obviously non-profitable cases of
369   // having a single global, but is aggressive enough for any other case.
370   if (GlobalMergeIgnoreSingleUse) {
371     BitVector AllGlobals(Globals.size());
372     for (size_t i = 0, e = UsedGlobalSets.size(); i != e; ++i) {
373       const UsedGlobalSet &UGS = UsedGlobalSets[e - i - 1];
374       if (UGS.UsageCount == 0)
375         continue;
376       if (UGS.Globals.count() > 1)
377         AllGlobals |= UGS.Globals;
378     }
379     return doMerge(Globals, AllGlobals, M, isConst, AddrSpace);
380   }
381
382   // Starting from the sets with the best (=biggest) profitability, find a
383   // good combination.
384   // The ideal (and expensive) solution can only be found by trying all
385   // combinations, looking for the one with the best profitability.
386   // Don't be smart about it, and just pick the first compatible combination,
387   // starting with the sets with the best profitability.
388   BitVector PickedGlobals(Globals.size());
389   bool Changed = false;
390
391   for (size_t i = 0, e = UsedGlobalSets.size(); i != e; ++i) {
392     const UsedGlobalSet &UGS = UsedGlobalSets[e - i - 1];
393     if (UGS.UsageCount == 0)
394       continue;
395     if (PickedGlobals.anyCommon(UGS.Globals))
396       continue;
397     PickedGlobals |= UGS.Globals;
398     // If the set only contains one global, there's no point in merging.
399     // Ignore the global for inclusion in other sets though, so keep it in
400     // PickedGlobals.
401     if (UGS.Globals.count() < 2)
402       continue;
403     Changed |= doMerge(Globals, UGS.Globals, M, isConst, AddrSpace);
404   }
405
406   return Changed;
407 }
408
409 bool GlobalMerge::doMerge(const SmallVectorImpl<GlobalVariable *> &Globals,
410                           const BitVector &GlobalSet, Module &M, bool isConst,
411                           unsigned AddrSpace) const {
412   assert(Globals.size() > 1);
413
414   Type *Int32Ty = Type::getInt32Ty(M.getContext());
415   auto &DL = M.getDataLayout();
416
417   DEBUG(dbgs() << " Trying to merge set, starts with #"
418                << GlobalSet.find_first() << "\n");
419
420   ssize_t i = GlobalSet.find_first();
421   while (i != -1) {
422     ssize_t j = 0;
423     uint64_t MergedSize = 0;
424     std::vector<Type*> Tys;
425     std::vector<Constant*> Inits;
426
427     for (j = i; j != -1; j = GlobalSet.find_next(j)) {
428       Type *Ty = Globals[j]->getValueType();
429       MergedSize += DL.getTypeAllocSize(Ty);
430       if (MergedSize > MaxOffset) {
431         break;
432       }
433       Tys.push_back(Ty);
434       Inits.push_back(Globals[j]->getInitializer());
435     }
436
437     StructType *MergedTy = StructType::get(M.getContext(), Tys);
438     Constant *MergedInit = ConstantStruct::get(MergedTy, Inits);
439
440     GlobalVariable *MergedGV = new GlobalVariable(
441         M, MergedTy, isConst, GlobalValue::PrivateLinkage, MergedInit,
442         "_MergedGlobals", nullptr, GlobalVariable::NotThreadLocal, AddrSpace);
443
444     for (ssize_t k = i, idx = 0; k != j; k = GlobalSet.find_next(k), ++idx) {
445       GlobalValue::LinkageTypes Linkage = Globals[k]->getLinkage();
446       std::string Name = Globals[k]->getName();
447
448       Constant *Idx[2] = {
449         ConstantInt::get(Int32Ty, 0),
450         ConstantInt::get(Int32Ty, idx),
451       };
452       Constant *GEP =
453           ConstantExpr::getInBoundsGetElementPtr(MergedTy, MergedGV, Idx);
454       Globals[k]->replaceAllUsesWith(GEP);
455       Globals[k]->eraseFromParent();
456
457       // When the linkage is not internal we must emit an alias for the original
458       // variable name as it may be accessed from another object. On non-Mach-O
459       // we can also emit an alias for internal linkage as it's safe to do so.
460       // It's not safe on Mach-O as the alias (and thus the portion of the
461       // MergedGlobals variable) may be dead stripped at link time.
462       if (Linkage != GlobalValue::InternalLinkage ||
463           !TM->getTargetTriple().isOSBinFormatMachO()) {
464         GlobalAlias::create(Tys[idx], AddrSpace, Linkage, Name, GEP, &M);
465       }
466
467       NumMerged++;
468     }
469     i = j;
470   }
471
472   return true;
473 }
474
475 void GlobalMerge::collectUsedGlobalVariables(Module &M) {
476   // Extract global variables from llvm.used array
477   const GlobalVariable *GV = M.getGlobalVariable("llvm.used");
478   if (!GV || !GV->hasInitializer()) return;
479
480   // Should be an array of 'i8*'.
481   const ConstantArray *InitList = cast<ConstantArray>(GV->getInitializer());
482
483   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
484     if (const GlobalVariable *G =
485         dyn_cast<GlobalVariable>(InitList->getOperand(i)->stripPointerCasts()))
486       MustKeepGlobalVariables.insert(G);
487 }
488
489 void GlobalMerge::setMustKeepGlobalVariables(Module &M) {
490   collectUsedGlobalVariables(M);
491
492   for (Module::iterator IFn = M.begin(), IEndFn = M.end(); IFn != IEndFn;
493        ++IFn) {
494     for (Function::iterator IBB = IFn->begin(), IEndBB = IFn->end();
495          IBB != IEndBB; ++IBB) {
496       // Follow the invoke link to find the landing pad instruction
497       const InvokeInst *II = dyn_cast<InvokeInst>(IBB->getTerminator());
498       if (!II) continue;
499
500       const LandingPadInst *LPInst = II->getUnwindDest()->getLandingPadInst();
501       // Look for globals in the clauses of the landing pad instruction
502       for (unsigned Idx = 0, NumClauses = LPInst->getNumClauses();
503            Idx != NumClauses; ++Idx)
504         if (const GlobalVariable *GV =
505             dyn_cast<GlobalVariable>(LPInst->getClause(Idx)
506                                      ->stripPointerCasts()))
507           MustKeepGlobalVariables.insert(GV);
508     }
509   }
510 }
511
512 bool GlobalMerge::doInitialization(Module &M) {
513   if (!EnableGlobalMerge)
514     return false;
515
516   auto &DL = M.getDataLayout();
517   DenseMap<unsigned, SmallVector<GlobalVariable*, 16> > Globals, ConstGlobals,
518                                                         BSSGlobals;
519   bool Changed = false;
520   setMustKeepGlobalVariables(M);
521
522   // Grab all non-const globals.
523   for (auto &GV : M.globals()) {
524     // Merge is safe for "normal" internal or external globals only
525     if (GV.isDeclaration() || GV.isThreadLocal() || GV.hasSection())
526       continue;
527
528     if (!(MergeExternalGlobals && GV.hasExternalLinkage()) &&
529         !GV.hasInternalLinkage())
530       continue;
531
532     PointerType *PT = dyn_cast<PointerType>(GV.getType());
533     assert(PT && "Global variable is not a pointer!");
534
535     unsigned AddressSpace = PT->getAddressSpace();
536
537     // Ignore fancy-aligned globals for now.
538     unsigned Alignment = DL.getPreferredAlignment(&GV);
539     Type *Ty = GV.getValueType();
540     if (Alignment > DL.getABITypeAlignment(Ty))
541       continue;
542
543     // Ignore all 'special' globals.
544     if (GV.getName().startswith("llvm.") ||
545         GV.getName().startswith(".llvm."))
546       continue;
547
548     // Ignore all "required" globals:
549     if (isMustKeepGlobalVariable(&GV))
550       continue;
551
552     if (DL.getTypeAllocSize(Ty) < MaxOffset) {
553       if (TargetLoweringObjectFile::getKindForGlobal(&GV, *TM).isBSSLocal())
554         BSSGlobals[AddressSpace].push_back(&GV);
555       else if (GV.isConstant())
556         ConstGlobals[AddressSpace].push_back(&GV);
557       else
558         Globals[AddressSpace].push_back(&GV);
559     }
560   }
561
562   for (auto &P : Globals)
563     if (P.second.size() > 1)
564       Changed |= doMerge(P.second, M, false, P.first);
565
566   for (auto &P : BSSGlobals)
567     if (P.second.size() > 1)
568       Changed |= doMerge(P.second, M, false, P.first);
569
570   if (EnableGlobalMergeOnConst)
571     for (auto &P : ConstGlobals)
572       if (P.second.size() > 1)
573         Changed |= doMerge(P.second, M, true, P.first);
574
575   return Changed;
576 }
577
578 bool GlobalMerge::runOnFunction(Function &F) {
579   return false;
580 }
581
582 bool GlobalMerge::doFinalization(Module &M) {
583   MustKeepGlobalVariables.clear();
584   return false;
585 }
586
587 Pass *llvm::createGlobalMergePass(const TargetMachine *TM, unsigned Offset,
588                                   bool OnlyOptimizeForSize,
589                                   bool MergeExternalByDefault) {
590   bool MergeExternal = (EnableGlobalMergeOnExternal == cl::BOU_UNSET) ?
591     MergeExternalByDefault : (EnableGlobalMergeOnExternal == cl::BOU_TRUE);
592   return new GlobalMerge(TM, Offset, OnlyOptimizeForSize, MergeExternal);
593 }