Add in the first iteration of support for llvm/clang/lldb to allow variable per addre...
[oota-llvm.git] / lib / CodeGen / AsmPrinter / DwarfException.cpp
1 //===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing DWARF exception info into asm files.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "DwarfException.h"
15 #include "llvm/Module.h"
16 #include "llvm/CodeGen/AsmPrinter.h"
17 #include "llvm/CodeGen/MachineModuleInfo.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/MC/MCAsmInfo.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCExpr.h"
23 #include "llvm/MC/MCSection.h"
24 #include "llvm/MC/MCStreamer.h"
25 #include "llvm/MC/MCSymbol.h"
26 #include "llvm/Target/Mangler.h"
27 #include "llvm/DataLayout.h"
28 #include "llvm/Target/TargetFrameLowering.h"
29 #include "llvm/Target/TargetLoweringObjectFile.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include "llvm/Target/TargetOptions.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include "llvm/Support/Dwarf.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/FormattedStream.h"
36 #include "llvm/ADT/SmallString.h"
37 #include "llvm/ADT/StringExtras.h"
38 #include "llvm/ADT/Twine.h"
39 using namespace llvm;
40
41 DwarfException::DwarfException(AsmPrinter *A)
42   : Asm(A), MMI(Asm->MMI) {}
43
44 DwarfException::~DwarfException() {}
45
46 /// SharedTypeIds - How many leading type ids two landing pads have in common.
47 unsigned DwarfException::SharedTypeIds(const LandingPadInfo *L,
48                                        const LandingPadInfo *R) {
49   const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
50   unsigned LSize = LIds.size(), RSize = RIds.size();
51   unsigned MinSize = LSize < RSize ? LSize : RSize;
52   unsigned Count = 0;
53
54   for (; Count != MinSize; ++Count)
55     if (LIds[Count] != RIds[Count])
56       return Count;
57
58   return Count;
59 }
60
61 /// PadLT - Order landing pads lexicographically by type id.
62 bool DwarfException::PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
63   const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
64   unsigned LSize = LIds.size(), RSize = RIds.size();
65   unsigned MinSize = LSize < RSize ? LSize : RSize;
66
67   for (unsigned i = 0; i != MinSize; ++i)
68     if (LIds[i] != RIds[i])
69       return LIds[i] < RIds[i];
70
71   return LSize < RSize;
72 }
73
74 /// ComputeActionsTable - Compute the actions table and gather the first action
75 /// index for each landing pad site.
76 unsigned DwarfException::
77 ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
78                     SmallVectorImpl<ActionEntry> &Actions,
79                     SmallVectorImpl<unsigned> &FirstActions) {
80
81   // The action table follows the call-site table in the LSDA. The individual
82   // records are of two types:
83   //
84   //   * Catch clause
85   //   * Exception specification
86   //
87   // The two record kinds have the same format, with only small differences.
88   // They are distinguished by the "switch value" field: Catch clauses
89   // (TypeInfos) have strictly positive switch values, and exception
90   // specifications (FilterIds) have strictly negative switch values. Value 0
91   // indicates a catch-all clause.
92   //
93   // Negative type IDs index into FilterIds. Positive type IDs index into
94   // TypeInfos.  The value written for a positive type ID is just the type ID
95   // itself.  For a negative type ID, however, the value written is the
96   // (negative) byte offset of the corresponding FilterIds entry.  The byte
97   // offset is usually equal to the type ID (because the FilterIds entries are
98   // written using a variable width encoding, which outputs one byte per entry
99   // as long as the value written is not too large) but can differ.  This kind
100   // of complication does not occur for positive type IDs because type infos are
101   // output using a fixed width encoding.  FilterOffsets[i] holds the byte
102   // offset corresponding to FilterIds[i].
103
104   const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
105   SmallVector<int, 16> FilterOffsets;
106   FilterOffsets.reserve(FilterIds.size());
107   int Offset = -1;
108
109   for (std::vector<unsigned>::const_iterator
110          I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
111     FilterOffsets.push_back(Offset);
112     Offset -= MCAsmInfo::getULEB128Size(*I);
113   }
114
115   FirstActions.reserve(LandingPads.size());
116
117   int FirstAction = 0;
118   unsigned SizeActions = 0;
119   const LandingPadInfo *PrevLPI = 0;
120
121   for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
122          I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
123     const LandingPadInfo *LPI = *I;
124     const std::vector<int> &TypeIds = LPI->TypeIds;
125     unsigned NumShared = PrevLPI ? SharedTypeIds(LPI, PrevLPI) : 0;
126     unsigned SizeSiteActions = 0;
127
128     if (NumShared < TypeIds.size()) {
129       unsigned SizeAction = 0;
130       unsigned PrevAction = (unsigned)-1;
131
132       if (NumShared) {
133         unsigned SizePrevIds = PrevLPI->TypeIds.size();
134         assert(Actions.size());
135         PrevAction = Actions.size() - 1;
136         SizeAction =
137           MCAsmInfo::getSLEB128Size(Actions[PrevAction].NextAction) +
138           MCAsmInfo::getSLEB128Size(Actions[PrevAction].ValueForTypeID);
139
140         for (unsigned j = NumShared; j != SizePrevIds; ++j) {
141           assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
142           SizeAction -=
143             MCAsmInfo::getSLEB128Size(Actions[PrevAction].ValueForTypeID);
144           SizeAction += -Actions[PrevAction].NextAction;
145           PrevAction = Actions[PrevAction].Previous;
146         }
147       }
148
149       // Compute the actions.
150       for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
151         int TypeID = TypeIds[J];
152         assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
153         int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
154         unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
155
156         int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
157         SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
158         SizeSiteActions += SizeAction;
159
160         ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
161         Actions.push_back(Action);
162         PrevAction = Actions.size() - 1;
163       }
164
165       // Record the first action of the landing pad site.
166       FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
167     } // else identical - re-use previous FirstAction
168
169     // Information used when created the call-site table. The action record
170     // field of the call site record is the offset of the first associated
171     // action record, relative to the start of the actions table. This value is
172     // biased by 1 (1 indicating the start of the actions table), and 0
173     // indicates that there are no actions.
174     FirstActions.push_back(FirstAction);
175
176     // Compute this sites contribution to size.
177     SizeActions += SizeSiteActions;
178
179     PrevLPI = LPI;
180   }
181
182   return SizeActions;
183 }
184
185 /// CallToNoUnwindFunction - Return `true' if this is a call to a function
186 /// marked `nounwind'. Return `false' otherwise.
187 bool DwarfException::CallToNoUnwindFunction(const MachineInstr *MI) {
188   assert(MI->isCall() && "This should be a call instruction!");
189
190   bool MarkedNoUnwind = false;
191   bool SawFunc = false;
192
193   for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
194     const MachineOperand &MO = MI->getOperand(I);
195
196     if (!MO.isGlobal()) continue;
197
198     const Function *F = dyn_cast<Function>(MO.getGlobal());
199     if (F == 0) continue;
200
201     if (SawFunc) {
202       // Be conservative. If we have more than one function operand for this
203       // call, then we can't make the assumption that it's the callee and
204       // not a parameter to the call.
205       //
206       // FIXME: Determine if there's a way to say that `F' is the callee or
207       // parameter.
208       MarkedNoUnwind = false;
209       break;
210     }
211
212     MarkedNoUnwind = F->doesNotThrow();
213     SawFunc = true;
214   }
215
216   return MarkedNoUnwind;
217 }
218
219 /// ComputeCallSiteTable - Compute the call-site table.  The entry for an invoke
220 /// has a try-range containing the call, a non-zero landing pad, and an
221 /// appropriate action.  The entry for an ordinary call has a try-range
222 /// containing the call and zero for the landing pad and the action.  Calls
223 /// marked 'nounwind' have no entry and must not be contained in the try-range
224 /// of any entry - they form gaps in the table.  Entries must be ordered by
225 /// try-range address.
226 void DwarfException::
227 ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
228                      const RangeMapType &PadMap,
229                      const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
230                      const SmallVectorImpl<unsigned> &FirstActions) {
231   // The end label of the previous invoke or nounwind try-range.
232   MCSymbol *LastLabel = 0;
233
234   // Whether there is a potentially throwing instruction (currently this means
235   // an ordinary call) between the end of the previous try-range and now.
236   bool SawPotentiallyThrowing = false;
237
238   // Whether the last CallSite entry was for an invoke.
239   bool PreviousIsInvoke = false;
240
241   // Visit all instructions in order of address.
242   for (MachineFunction::const_iterator I = Asm->MF->begin(), E = Asm->MF->end();
243        I != E; ++I) {
244     for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
245          MI != E; ++MI) {
246       if (!MI->isLabel()) {
247         if (MI->isCall())
248           SawPotentiallyThrowing |= !CallToNoUnwindFunction(MI);
249         continue;
250       }
251
252       // End of the previous try-range?
253       MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol();
254       if (BeginLabel == LastLabel)
255         SawPotentiallyThrowing = false;
256
257       // Beginning of a new try-range?
258       RangeMapType::const_iterator L = PadMap.find(BeginLabel);
259       if (L == PadMap.end())
260         // Nope, it was just some random label.
261         continue;
262
263       const PadRange &P = L->second;
264       const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
265       assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
266              "Inconsistent landing pad map!");
267
268       // For Dwarf exception handling (SjLj handling doesn't use this). If some
269       // instruction between the previous try-range and this one may throw,
270       // create a call-site entry with no landing pad for the region between the
271       // try-ranges.
272       if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) {
273         CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 };
274         CallSites.push_back(Site);
275         PreviousIsInvoke = false;
276       }
277
278       LastLabel = LandingPad->EndLabels[P.RangeIndex];
279       assert(BeginLabel && LastLabel && "Invalid landing pad!");
280
281       if (!LandingPad->LandingPadLabel) {
282         // Create a gap.
283         PreviousIsInvoke = false;
284       } else {
285         // This try-range is for an invoke.
286         CallSiteEntry Site = {
287           BeginLabel,
288           LastLabel,
289           LandingPad->LandingPadLabel,
290           FirstActions[P.PadIndex]
291         };
292
293         // Try to merge with the previous call-site. SJLJ doesn't do this
294         if (PreviousIsInvoke && Asm->MAI->isExceptionHandlingDwarf()) {
295           CallSiteEntry &Prev = CallSites.back();
296           if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
297             // Extend the range of the previous entry.
298             Prev.EndLabel = Site.EndLabel;
299             continue;
300           }
301         }
302
303         // Otherwise, create a new call-site.
304         if (Asm->MAI->isExceptionHandlingDwarf())
305           CallSites.push_back(Site);
306         else {
307           // SjLj EH must maintain the call sites in the order assigned
308           // to them by the SjLjPrepare pass.
309           unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel);
310           if (CallSites.size() < SiteNo)
311             CallSites.resize(SiteNo);
312           CallSites[SiteNo - 1] = Site;
313         }
314         PreviousIsInvoke = true;
315       }
316     }
317   }
318
319   // If some instruction between the previous try-range and the end of the
320   // function may throw, create a call-site entry with no landing pad for the
321   // region following the try-range.
322   if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) {
323     CallSiteEntry Site = { LastLabel, 0, 0, 0 };
324     CallSites.push_back(Site);
325   }
326 }
327
328 /// EmitExceptionTable - Emit landing pads and actions.
329 ///
330 /// The general organization of the table is complex, but the basic concepts are
331 /// easy.  First there is a header which describes the location and organization
332 /// of the three components that follow.
333 ///
334 ///  1. The landing pad site information describes the range of code covered by
335 ///     the try.  In our case it's an accumulation of the ranges covered by the
336 ///     invokes in the try.  There is also a reference to the landing pad that
337 ///     handles the exception once processed.  Finally an index into the actions
338 ///     table.
339 ///  2. The action table, in our case, is composed of pairs of type IDs and next
340 ///     action offset.  Starting with the action index from the landing pad
341 ///     site, each type ID is checked for a match to the current exception.  If
342 ///     it matches then the exception and type id are passed on to the landing
343 ///     pad.  Otherwise the next action is looked up.  This chain is terminated
344 ///     with a next action of zero.  If no type id is found then the frame is
345 ///     unwound and handling continues.
346 ///  3. Type ID table contains references to all the C++ typeinfo for all
347 ///     catches in the function.  This tables is reverse indexed base 1.
348 void DwarfException::EmitExceptionTable() {
349   const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
350   const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
351   const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
352
353   // Sort the landing pads in order of their type ids.  This is used to fold
354   // duplicate actions.
355   SmallVector<const LandingPadInfo *, 64> LandingPads;
356   LandingPads.reserve(PadInfos.size());
357
358   for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
359     LandingPads.push_back(&PadInfos[i]);
360
361   std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
362
363   // Compute the actions table and gather the first action index for each
364   // landing pad site.
365   SmallVector<ActionEntry, 32> Actions;
366   SmallVector<unsigned, 64> FirstActions;
367   unsigned SizeActions=ComputeActionsTable(LandingPads, Actions, FirstActions);
368
369   // Invokes and nounwind calls have entries in PadMap (due to being bracketed
370   // by try-range labels when lowered).  Ordinary calls do not, so appropriate
371   // try-ranges for them need be deduced when using DWARF exception handling.
372   RangeMapType PadMap;
373   for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
374     const LandingPadInfo *LandingPad = LandingPads[i];
375     for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
376       MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
377       assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
378       PadRange P = { i, j };
379       PadMap[BeginLabel] = P;
380     }
381   }
382
383   // Compute the call-site table.
384   SmallVector<CallSiteEntry, 64> CallSites;
385   ComputeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions);
386
387   // Final tallies.
388
389   // Call sites.
390   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
391   bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true;
392
393   unsigned CallSiteTableLength;
394   if (IsSJLJ)
395     CallSiteTableLength = 0;
396   else {
397     unsigned SiteStartSize  = 4; // dwarf::DW_EH_PE_udata4
398     unsigned SiteLengthSize = 4; // dwarf::DW_EH_PE_udata4
399     unsigned LandingPadSize = 4; // dwarf::DW_EH_PE_udata4
400     CallSiteTableLength =
401       CallSites.size() * (SiteStartSize + SiteLengthSize + LandingPadSize);
402   }
403
404   for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
405     CallSiteTableLength += MCAsmInfo::getULEB128Size(CallSites[i].Action);
406     if (IsSJLJ)
407       CallSiteTableLength += MCAsmInfo::getULEB128Size(i);
408   }
409
410   // Type infos.
411   const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
412   unsigned TTypeEncoding;
413   unsigned TypeFormatSize;
414
415   if (!HaveTTData) {
416     // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
417     // that we're omitting that bit.
418     TTypeEncoding = dwarf::DW_EH_PE_omit;
419     // dwarf::DW_EH_PE_absptr
420     TypeFormatSize = Asm->getDataLayout().getPointerSize(0);
421   } else {
422     // Okay, we have actual filters or typeinfos to emit.  As such, we need to
423     // pick a type encoding for them.  We're about to emit a list of pointers to
424     // typeinfo objects at the end of the LSDA.  However, unless we're in static
425     // mode, this reference will require a relocation by the dynamic linker.
426     //
427     // Because of this, we have a couple of options:
428     //
429     //   1) If we are in -static mode, we can always use an absolute reference
430     //      from the LSDA, because the static linker will resolve it.
431     //
432     //   2) Otherwise, if the LSDA section is writable, we can output the direct
433     //      reference to the typeinfo and allow the dynamic linker to relocate
434     //      it.  Since it is in a writable section, the dynamic linker won't
435     //      have a problem.
436     //
437     //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
438     //      we need to use some form of indirection.  For example, on Darwin,
439     //      we can output a statically-relocatable reference to a dyld stub. The
440     //      offset to the stub is constant, but the contents are in a section
441     //      that is updated by the dynamic linker.  This is easy enough, but we
442     //      need to tell the personality function of the unwinder to indirect
443     //      through the dyld stub.
444     //
445     // FIXME: When (3) is actually implemented, we'll have to emit the stubs
446     // somewhere.  This predicate should be moved to a shared location that is
447     // in target-independent code.
448     //
449     TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
450     TypeFormatSize = Asm->GetSizeOfEncodedValue(TTypeEncoding);
451   }
452
453   // Begin the exception table.
454   // Sometimes we want not to emit the data into separate section (e.g. ARM
455   // EHABI). In this case LSDASection will be NULL.
456   if (LSDASection)
457     Asm->OutStreamer.SwitchSection(LSDASection);
458   Asm->EmitAlignment(2);
459
460   // Emit the LSDA.
461   MCSymbol *GCCETSym =
462     Asm->OutContext.GetOrCreateSymbol(Twine("GCC_except_table")+
463                                       Twine(Asm->getFunctionNumber()));
464   Asm->OutStreamer.EmitLabel(GCCETSym);
465   Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("exception",
466                                                 Asm->getFunctionNumber()));
467
468   if (IsSJLJ)
469     Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("_LSDA_",
470                                                   Asm->getFunctionNumber()));
471
472   // Emit the LSDA header.
473   Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
474   Asm->EmitEncodingByte(TTypeEncoding, "@TType");
475
476   // The type infos need to be aligned. GCC does this by inserting padding just
477   // before the type infos. However, this changes the size of the exception
478   // table, so you need to take this into account when you output the exception
479   // table size. However, the size is output using a variable length encoding.
480   // So by increasing the size by inserting padding, you may increase the number
481   // of bytes used for writing the size. If it increases, say by one byte, then
482   // you now need to output one less byte of padding to get the type infos
483   // aligned. However this decreases the size of the exception table. This
484   // changes the value you have to output for the exception table size. Due to
485   // the variable length encoding, the number of bytes used for writing the
486   // length may decrease. If so, you then have to increase the amount of
487   // padding. And so on. If you look carefully at the GCC code you will see that
488   // it indeed does this in a loop, going on and on until the values stabilize.
489   // We chose another solution: don't output padding inside the table like GCC
490   // does, instead output it before the table.
491   unsigned SizeTypes = TypeInfos.size() * TypeFormatSize;
492   unsigned CallSiteTableLengthSize =
493     MCAsmInfo::getULEB128Size(CallSiteTableLength);
494   unsigned TTypeBaseOffset =
495     sizeof(int8_t) +                            // Call site format
496     CallSiteTableLengthSize +                   // Call site table length size
497     CallSiteTableLength +                       // Call site table length
498     SizeActions +                               // Actions size
499     SizeTypes;
500   unsigned TTypeBaseOffsetSize = MCAsmInfo::getULEB128Size(TTypeBaseOffset);
501   unsigned TotalSize =
502     sizeof(int8_t) +                            // LPStart format
503     sizeof(int8_t) +                            // TType format
504     (HaveTTData ? TTypeBaseOffsetSize : 0) +    // TType base offset size
505     TTypeBaseOffset;                            // TType base offset
506   unsigned SizeAlign = (4 - TotalSize) & 3;
507
508   if (HaveTTData) {
509     // Account for any extra padding that will be added to the call site table
510     // length.
511     Asm->EmitULEB128(TTypeBaseOffset, "@TType base offset", SizeAlign);
512     SizeAlign = 0;
513   }
514
515   bool VerboseAsm = Asm->OutStreamer.isVerboseAsm();
516
517   // SjLj Exception handling
518   if (IsSJLJ) {
519     Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
520
521     // Add extra padding if it wasn't added to the TType base offset.
522     Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
523
524     // Emit the landing pad site information.
525     unsigned idx = 0;
526     for (SmallVectorImpl<CallSiteEntry>::const_iterator
527          I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
528       const CallSiteEntry &S = *I;
529
530       // Offset of the landing pad, counted in 16-byte bundles relative to the
531       // @LPStart address.
532       if (VerboseAsm) {
533         Asm->OutStreamer.AddComment(">> Call Site " + Twine(idx) + " <<");
534         Asm->OutStreamer.AddComment("  On exception at call site "+Twine(idx));
535       }
536       Asm->EmitULEB128(idx);
537
538       // Offset of the first associated action record, relative to the start of
539       // the action table. This value is biased by 1 (1 indicates the start of
540       // the action table), and 0 indicates that there are no actions.
541       if (VerboseAsm) {
542         if (S.Action == 0)
543           Asm->OutStreamer.AddComment("  Action: cleanup");
544         else
545           Asm->OutStreamer.AddComment("  Action: " +
546                                       Twine((S.Action - 1) / 2 + 1));
547       }
548       Asm->EmitULEB128(S.Action);
549     }
550   } else {
551     // DWARF Exception handling
552     assert(Asm->MAI->isExceptionHandlingDwarf());
553
554     // The call-site table is a list of all call sites that may throw an
555     // exception (including C++ 'throw' statements) in the procedure
556     // fragment. It immediately follows the LSDA header. Each entry indicates,
557     // for a given call, the first corresponding action record and corresponding
558     // landing pad.
559     //
560     // The table begins with the number of bytes, stored as an LEB128
561     // compressed, unsigned integer. The records immediately follow the record
562     // count. They are sorted in increasing call-site address. Each record
563     // indicates:
564     //
565     //   * The position of the call-site.
566     //   * The position of the landing pad.
567     //   * The first action record for that call site.
568     //
569     // A missing entry in the call-site table indicates that a call is not
570     // supposed to throw.
571
572     // Emit the landing pad call site table.
573     Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
574
575     // Add extra padding if it wasn't added to the TType base offset.
576     Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
577
578     unsigned Entry = 0;
579     for (SmallVectorImpl<CallSiteEntry>::const_iterator
580          I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
581       const CallSiteEntry &S = *I;
582
583       MCSymbol *EHFuncBeginSym =
584         Asm->GetTempSymbol("eh_func_begin", Asm->getFunctionNumber());
585
586       MCSymbol *BeginLabel = S.BeginLabel;
587       if (BeginLabel == 0)
588         BeginLabel = EHFuncBeginSym;
589       MCSymbol *EndLabel = S.EndLabel;
590       if (EndLabel == 0)
591         EndLabel = Asm->GetTempSymbol("eh_func_end", Asm->getFunctionNumber());
592
593
594       // Offset of the call site relative to the previous call site, counted in
595       // number of 16-byte bundles. The first call site is counted relative to
596       // the start of the procedure fragment.
597       if (VerboseAsm)
598         Asm->OutStreamer.AddComment(">> Call Site " + Twine(++Entry) + " <<");
599       Asm->EmitLabelDifference(BeginLabel, EHFuncBeginSym, 4);
600       if (VerboseAsm)
601         Asm->OutStreamer.AddComment(Twine("  Call between ") +
602                                     BeginLabel->getName() + " and " +
603                                     EndLabel->getName());
604       Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
605
606       // Offset of the landing pad, counted in 16-byte bundles relative to the
607       // @LPStart address.
608       if (!S.PadLabel) {
609         if (VerboseAsm)
610           Asm->OutStreamer.AddComment("    has no landing pad");
611         Asm->OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/);
612       } else {
613         if (VerboseAsm)
614           Asm->OutStreamer.AddComment(Twine("    jumps to ") +
615                                       S.PadLabel->getName());
616         Asm->EmitLabelDifference(S.PadLabel, EHFuncBeginSym, 4);
617       }
618
619       // Offset of the first associated action record, relative to the start of
620       // the action table. This value is biased by 1 (1 indicates the start of
621       // the action table), and 0 indicates that there are no actions.
622       if (VerboseAsm) {
623         if (S.Action == 0)
624           Asm->OutStreamer.AddComment("  On action: cleanup");
625         else
626           Asm->OutStreamer.AddComment("  On action: " +
627                                       Twine((S.Action - 1) / 2 + 1));
628       }
629       Asm->EmitULEB128(S.Action);
630     }
631   }
632
633   // Emit the Action Table.
634   int Entry = 0;
635   for (SmallVectorImpl<ActionEntry>::const_iterator
636          I = Actions.begin(), E = Actions.end(); I != E; ++I) {
637     const ActionEntry &Action = *I;
638
639     if (VerboseAsm) {
640       // Emit comments that decode the action table.
641       Asm->OutStreamer.AddComment(">> Action Record " + Twine(++Entry) + " <<");
642     }
643
644     // Type Filter
645     //
646     //   Used by the runtime to match the type of the thrown exception to the
647     //   type of the catch clauses or the types in the exception specification.
648     if (VerboseAsm) {
649       if (Action.ValueForTypeID > 0)
650         Asm->OutStreamer.AddComment("  Catch TypeInfo " +
651                                     Twine(Action.ValueForTypeID));
652       else if (Action.ValueForTypeID < 0)
653         Asm->OutStreamer.AddComment("  Filter TypeInfo " +
654                                     Twine(Action.ValueForTypeID));
655       else
656         Asm->OutStreamer.AddComment("  Cleanup");
657     }
658     Asm->EmitSLEB128(Action.ValueForTypeID);
659
660     // Action Record
661     //
662     //   Self-relative signed displacement in bytes of the next action record,
663     //   or 0 if there is no next action record.
664     if (VerboseAsm) {
665       if (Action.NextAction == 0) {
666         Asm->OutStreamer.AddComment("  No further actions");
667       } else {
668         unsigned NextAction = Entry + (Action.NextAction + 1) / 2;
669         Asm->OutStreamer.AddComment("  Continue to action "+Twine(NextAction));
670       }
671     }
672     Asm->EmitSLEB128(Action.NextAction);
673   }
674
675   // Emit the Catch TypeInfos.
676   if (VerboseAsm && !TypeInfos.empty()) {
677     Asm->OutStreamer.AddComment(">> Catch TypeInfos <<");
678     Asm->OutStreamer.AddBlankLine();
679     Entry = TypeInfos.size();
680   }
681
682   for (std::vector<const GlobalVariable *>::const_reverse_iterator
683          I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
684     const GlobalVariable *GV = *I;
685     if (VerboseAsm)
686       Asm->OutStreamer.AddComment("TypeInfo " + Twine(Entry--));
687     if (GV)
688       Asm->EmitReference(GV, TTypeEncoding);
689     else
690       Asm->OutStreamer.EmitIntValue(0,Asm->GetSizeOfEncodedValue(TTypeEncoding),
691                                     0);
692   }
693
694   // Emit the Exception Specifications.
695   if (VerboseAsm && !FilterIds.empty()) {
696     Asm->OutStreamer.AddComment(">> Filter TypeInfos <<");
697     Asm->OutStreamer.AddBlankLine();
698     Entry = 0;
699   }
700   for (std::vector<unsigned>::const_iterator
701          I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
702     unsigned TypeID = *I;
703     if (VerboseAsm) {
704       --Entry;
705       if (TypeID != 0)
706         Asm->OutStreamer.AddComment("FilterInfo " + Twine(Entry));
707     }
708
709     Asm->EmitULEB128(TypeID);
710   }
711
712   Asm->EmitAlignment(2);
713 }
714
715 /// EndModule - Emit all exception information that should come after the
716 /// content.
717 void DwarfException::EndModule() {
718   llvm_unreachable("Should be implemented");
719 }
720
721 /// BeginFunction - Gather pre-function exception information. Assumes it's
722 /// being emitted immediately after the function entry point.
723 void DwarfException::BeginFunction(const MachineFunction *MF) {
724   llvm_unreachable("Should be implemented");
725 }
726
727 /// EndFunction - Gather and emit post-function exception information.
728 ///
729 void DwarfException::EndFunction() {
730   llvm_unreachable("Should be implemented");
731 }