Fold a loop for array processing in ComputeLinearIndex
[oota-llvm.git] / lib / CodeGen / Analysis.cpp
1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines several CodeGen-specific LLVM IR analysis utilities.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/SelectionDAG.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Target/TargetLowering.h"
28 #include "llvm/Target/TargetSubtargetInfo.h"
29 #include "llvm/Transforms/Utils/GlobalStatus.h"
30
31 using namespace llvm;
32
33 /// Compute the linearized index of a member in a nested aggregate/struct/array
34 /// by recursing and accumulating CurIndex as long as there are indices in the
35 /// index list.
36 unsigned llvm::ComputeLinearIndex(Type *Ty,
37                                   const unsigned *Indices,
38                                   const unsigned *IndicesEnd,
39                                   unsigned CurIndex) {
40   // Base case: We're done.
41   if (Indices && Indices == IndicesEnd)
42     return CurIndex;
43
44   // Given a struct type, recursively traverse the elements.
45   if (StructType *STy = dyn_cast<StructType>(Ty)) {
46     for (StructType::element_iterator EB = STy->element_begin(),
47                                       EI = EB,
48                                       EE = STy->element_end();
49         EI != EE; ++EI) {
50       if (Indices && *Indices == unsigned(EI - EB))
51         return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
52       CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex);
53     }
54     return CurIndex;
55   }
56   // Given an array type, recursively traverse the elements.
57   else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
58     Type *EltTy = ATy->getElementType();
59     unsigned NumElts = ATy->getNumElements();
60     // Compute the Linear offset when jumping one element of the array
61     unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
62     if (Indices && *Indices < NumElts) {
63       // If the indice is inside the array, compute the index to the requested
64       // elt and recurse inside the element with the end of the indices list
65       CurIndex += EltLinearOffset* *Indices;
66       return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
67     }
68     // Out of bound? Assert instead?
69     CurIndex += EltLinearOffset*NumElts;
70     return CurIndex;
71   }
72   // We haven't found the type we're looking for, so keep searching.
73   return CurIndex + 1;
74 }
75
76 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
77 /// EVTs that represent all the individual underlying
78 /// non-aggregate types that comprise it.
79 ///
80 /// If Offsets is non-null, it points to a vector to be filled in
81 /// with the in-memory offsets of each of the individual values.
82 ///
83 void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty,
84                            SmallVectorImpl<EVT> &ValueVTs,
85                            SmallVectorImpl<uint64_t> *Offsets,
86                            uint64_t StartingOffset) {
87   // Given a struct type, recursively traverse the elements.
88   if (StructType *STy = dyn_cast<StructType>(Ty)) {
89     const StructLayout *SL = TLI.getDataLayout()->getStructLayout(STy);
90     for (StructType::element_iterator EB = STy->element_begin(),
91                                       EI = EB,
92                                       EE = STy->element_end();
93          EI != EE; ++EI)
94       ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
95                       StartingOffset + SL->getElementOffset(EI - EB));
96     return;
97   }
98   // Given an array type, recursively traverse the elements.
99   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
100     Type *EltTy = ATy->getElementType();
101     uint64_t EltSize = TLI.getDataLayout()->getTypeAllocSize(EltTy);
102     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
103       ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
104                       StartingOffset + i * EltSize);
105     return;
106   }
107   // Interpret void as zero return values.
108   if (Ty->isVoidTy())
109     return;
110   // Base case: we can get an EVT for this LLVM IR type.
111   ValueVTs.push_back(TLI.getValueType(Ty));
112   if (Offsets)
113     Offsets->push_back(StartingOffset);
114 }
115
116 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
117 GlobalValue *llvm::ExtractTypeInfo(Value *V) {
118   V = V->stripPointerCasts();
119   GlobalValue *GV = dyn_cast<GlobalValue>(V);
120   GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
121
122   if (Var && Var->getName() == "llvm.eh.catch.all.value") {
123     assert(Var->hasInitializer() &&
124            "The EH catch-all value must have an initializer");
125     Value *Init = Var->getInitializer();
126     GV = dyn_cast<GlobalValue>(Init);
127     if (!GV) V = cast<ConstantPointerNull>(Init);
128   }
129
130   assert((GV || isa<ConstantPointerNull>(V)) &&
131          "TypeInfo must be a global variable or NULL");
132   return GV;
133 }
134
135 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
136 /// processed uses a memory 'm' constraint.
137 bool
138 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
139                                 const TargetLowering &TLI) {
140   for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
141     InlineAsm::ConstraintInfo &CI = CInfos[i];
142     for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
143       TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
144       if (CType == TargetLowering::C_Memory)
145         return true;
146     }
147
148     // Indirect operand accesses access memory.
149     if (CI.isIndirect)
150       return true;
151   }
152
153   return false;
154 }
155
156 /// getFCmpCondCode - Return the ISD condition code corresponding to
157 /// the given LLVM IR floating-point condition code.  This includes
158 /// consideration of global floating-point math flags.
159 ///
160 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
161   switch (Pred) {
162   case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
163   case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
164   case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
165   case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
166   case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
167   case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
168   case FCmpInst::FCMP_ONE:   return ISD::SETONE;
169   case FCmpInst::FCMP_ORD:   return ISD::SETO;
170   case FCmpInst::FCMP_UNO:   return ISD::SETUO;
171   case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
172   case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
173   case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
174   case FCmpInst::FCMP_ULT:   return ISD::SETULT;
175   case FCmpInst::FCMP_ULE:   return ISD::SETULE;
176   case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
177   case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
178   default: llvm_unreachable("Invalid FCmp predicate opcode!");
179   }
180 }
181
182 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
183   switch (CC) {
184     case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
185     case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
186     case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
187     case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
188     case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
189     case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
190     default: return CC;
191   }
192 }
193
194 /// getICmpCondCode - Return the ISD condition code corresponding to
195 /// the given LLVM IR integer condition code.
196 ///
197 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
198   switch (Pred) {
199   case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
200   case ICmpInst::ICMP_NE:  return ISD::SETNE;
201   case ICmpInst::ICMP_SLE: return ISD::SETLE;
202   case ICmpInst::ICMP_ULE: return ISD::SETULE;
203   case ICmpInst::ICMP_SGE: return ISD::SETGE;
204   case ICmpInst::ICMP_UGE: return ISD::SETUGE;
205   case ICmpInst::ICMP_SLT: return ISD::SETLT;
206   case ICmpInst::ICMP_ULT: return ISD::SETULT;
207   case ICmpInst::ICMP_SGT: return ISD::SETGT;
208   case ICmpInst::ICMP_UGT: return ISD::SETUGT;
209   default:
210     llvm_unreachable("Invalid ICmp predicate opcode!");
211   }
212 }
213
214 static bool isNoopBitcast(Type *T1, Type *T2,
215                           const TargetLoweringBase& TLI) {
216   return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
217          (isa<VectorType>(T1) && isa<VectorType>(T2) &&
218           TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
219 }
220
221 /// Look through operations that will be free to find the earliest source of
222 /// this value.
223 ///
224 /// @param ValLoc If V has aggegate type, we will be interested in a particular
225 /// scalar component. This records its address; the reverse of this list gives a
226 /// sequence of indices appropriate for an extractvalue to locate the important
227 /// value. This value is updated during the function and on exit will indicate
228 /// similar information for the Value returned.
229 ///
230 /// @param DataBits If this function looks through truncate instructions, this
231 /// will record the smallest size attained.
232 static const Value *getNoopInput(const Value *V,
233                                  SmallVectorImpl<unsigned> &ValLoc,
234                                  unsigned &DataBits,
235                                  const TargetLoweringBase &TLI) {
236   while (true) {
237     // Try to look through V1; if V1 is not an instruction, it can't be looked
238     // through.
239     const Instruction *I = dyn_cast<Instruction>(V);
240     if (!I || I->getNumOperands() == 0) return V;
241     const Value *NoopInput = nullptr;
242
243     Value *Op = I->getOperand(0);
244     if (isa<BitCastInst>(I)) {
245       // Look through truly no-op bitcasts.
246       if (isNoopBitcast(Op->getType(), I->getType(), TLI))
247         NoopInput = Op;
248     } else if (isa<GetElementPtrInst>(I)) {
249       // Look through getelementptr
250       if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
251         NoopInput = Op;
252     } else if (isa<IntToPtrInst>(I)) {
253       // Look through inttoptr.
254       // Make sure this isn't a truncating or extending cast.  We could
255       // support this eventually, but don't bother for now.
256       if (!isa<VectorType>(I->getType()) &&
257           TLI.getPointerTy().getSizeInBits() ==
258           cast<IntegerType>(Op->getType())->getBitWidth())
259         NoopInput = Op;
260     } else if (isa<PtrToIntInst>(I)) {
261       // Look through ptrtoint.
262       // Make sure this isn't a truncating or extending cast.  We could
263       // support this eventually, but don't bother for now.
264       if (!isa<VectorType>(I->getType()) &&
265           TLI.getPointerTy().getSizeInBits() ==
266           cast<IntegerType>(I->getType())->getBitWidth())
267         NoopInput = Op;
268     } else if (isa<TruncInst>(I) &&
269                TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
270       DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits());
271       NoopInput = Op;
272     } else if (isa<CallInst>(I)) {
273       // Look through call (skipping callee)
274       for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 1;
275            i != e; ++i) {
276         unsigned attrInd = i - I->op_begin() + 1;
277         if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
278             isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
279           NoopInput = *i;
280           break;
281         }
282       }
283     } else if (isa<InvokeInst>(I)) {
284       // Look through invoke (skipping BB, BB, Callee)
285       for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 3;
286            i != e; ++i) {
287         unsigned attrInd = i - I->op_begin() + 1;
288         if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
289             isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
290           NoopInput = *i;
291           break;
292         }
293       }
294     } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
295       // Value may come from either the aggregate or the scalar
296       ArrayRef<unsigned> InsertLoc = IVI->getIndices();
297       if (std::equal(InsertLoc.rbegin(), InsertLoc.rend(),
298                      ValLoc.rbegin())) {
299         // The type being inserted is a nested sub-type of the aggregate; we
300         // have to remove those initial indices to get the location we're
301         // interested in for the operand.
302         ValLoc.resize(ValLoc.size() - InsertLoc.size());
303         NoopInput = IVI->getInsertedValueOperand();
304       } else {
305         // The struct we're inserting into has the value we're interested in, no
306         // change of address.
307         NoopInput = Op;
308       }
309     } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
310       // The part we're interested in will inevitably be some sub-section of the
311       // previous aggregate. Combine the two paths to obtain the true address of
312       // our element.
313       ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
314       std::copy(ExtractLoc.rbegin(), ExtractLoc.rend(),
315                 std::back_inserter(ValLoc));
316       NoopInput = Op;
317     }
318     // Terminate if we couldn't find anything to look through.
319     if (!NoopInput)
320       return V;
321
322     V = NoopInput;
323   }
324 }
325
326 /// Return true if this scalar return value only has bits discarded on its path
327 /// from the "tail call" to the "ret". This includes the obvious noop
328 /// instructions handled by getNoopInput above as well as free truncations (or
329 /// extensions prior to the call).
330 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
331                                  SmallVectorImpl<unsigned> &RetIndices,
332                                  SmallVectorImpl<unsigned> &CallIndices,
333                                  bool AllowDifferingSizes,
334                                  const TargetLoweringBase &TLI) {
335
336   // Trace the sub-value needed by the return value as far back up the graph as
337   // possible, in the hope that it will intersect with the value produced by the
338   // call. In the simple case with no "returned" attribute, the hope is actually
339   // that we end up back at the tail call instruction itself.
340   unsigned BitsRequired = UINT_MAX;
341   RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI);
342
343   // If this slot in the value returned is undef, it doesn't matter what the
344   // call puts there, it'll be fine.
345   if (isa<UndefValue>(RetVal))
346     return true;
347
348   // Now do a similar search up through the graph to find where the value
349   // actually returned by the "tail call" comes from. In the simple case without
350   // a "returned" attribute, the search will be blocked immediately and the loop
351   // a Noop.
352   unsigned BitsProvided = UINT_MAX;
353   CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI);
354
355   // There's no hope if we can't actually trace them to (the same part of!) the
356   // same value.
357   if (CallVal != RetVal || CallIndices != RetIndices)
358     return false;
359
360   // However, intervening truncates may have made the call non-tail. Make sure
361   // all the bits that are needed by the "ret" have been provided by the "tail
362   // call". FIXME: with sufficiently cunning bit-tracking, we could look through
363   // extensions too.
364   if (BitsProvided < BitsRequired ||
365       (!AllowDifferingSizes && BitsProvided != BitsRequired))
366     return false;
367
368   return true;
369 }
370
371 /// For an aggregate type, determine whether a given index is within bounds or
372 /// not.
373 static bool indexReallyValid(CompositeType *T, unsigned Idx) {
374   if (ArrayType *AT = dyn_cast<ArrayType>(T))
375     return Idx < AT->getNumElements();
376
377   return Idx < cast<StructType>(T)->getNumElements();
378 }
379
380 /// Move the given iterators to the next leaf type in depth first traversal.
381 ///
382 /// Performs a depth-first traversal of the type as specified by its arguments,
383 /// stopping at the next leaf node (which may be a legitimate scalar type or an
384 /// empty struct or array).
385 ///
386 /// @param SubTypes List of the partial components making up the type from
387 /// outermost to innermost non-empty aggregate. The element currently
388 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
389 ///
390 /// @param Path Set of extractvalue indices leading from the outermost type
391 /// (SubTypes[0]) to the leaf node currently represented.
392 ///
393 /// @returns true if a new type was found, false otherwise. Calling this
394 /// function again on a finished iterator will repeatedly return
395 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
396 /// aggregate or a non-aggregate
397 static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
398                                   SmallVectorImpl<unsigned> &Path) {
399   // First march back up the tree until we can successfully increment one of the
400   // coordinates in Path.
401   while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
402     Path.pop_back();
403     SubTypes.pop_back();
404   }
405
406   // If we reached the top, then the iterator is done.
407   if (Path.empty())
408     return false;
409
410   // We know there's *some* valid leaf now, so march back down the tree picking
411   // out the left-most element at each node.
412   ++Path.back();
413   Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back());
414   while (DeeperType->isAggregateType()) {
415     CompositeType *CT = cast<CompositeType>(DeeperType);
416     if (!indexReallyValid(CT, 0))
417       return true;
418
419     SubTypes.push_back(CT);
420     Path.push_back(0);
421
422     DeeperType = CT->getTypeAtIndex(0U);
423   }
424
425   return true;
426 }
427
428 /// Find the first non-empty, scalar-like type in Next and setup the iterator
429 /// components.
430 ///
431 /// Assuming Next is an aggregate of some kind, this function will traverse the
432 /// tree from left to right (i.e. depth-first) looking for the first
433 /// non-aggregate type which will play a role in function return.
434 ///
435 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
436 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
437 /// i32 in that type.
438 static bool firstRealType(Type *Next,
439                           SmallVectorImpl<CompositeType *> &SubTypes,
440                           SmallVectorImpl<unsigned> &Path) {
441   // First initialise the iterator components to the first "leaf" node
442   // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
443   // despite nominally being an aggregate).
444   while (Next->isAggregateType() &&
445          indexReallyValid(cast<CompositeType>(Next), 0)) {
446     SubTypes.push_back(cast<CompositeType>(Next));
447     Path.push_back(0);
448     Next = cast<CompositeType>(Next)->getTypeAtIndex(0U);
449   }
450
451   // If there's no Path now, Next was originally scalar already (or empty
452   // leaf). We're done.
453   if (Path.empty())
454     return true;
455
456   // Otherwise, use normal iteration to keep looking through the tree until we
457   // find a non-aggregate type.
458   while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) {
459     if (!advanceToNextLeafType(SubTypes, Path))
460       return false;
461   }
462
463   return true;
464 }
465
466 /// Set the iterator data-structures to the next non-empty, non-aggregate
467 /// subtype.
468 static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
469                          SmallVectorImpl<unsigned> &Path) {
470   do {
471     if (!advanceToNextLeafType(SubTypes, Path))
472       return false;
473
474     assert(!Path.empty() && "found a leaf but didn't set the path?");
475   } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType());
476
477   return true;
478 }
479
480
481 /// Test if the given instruction is in a position to be optimized
482 /// with a tail-call. This roughly means that it's in a block with
483 /// a return and there's nothing that needs to be scheduled
484 /// between it and the return.
485 ///
486 /// This function only tests target-independent requirements.
487 bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) {
488   const Instruction *I = CS.getInstruction();
489   const BasicBlock *ExitBB = I->getParent();
490   const TerminatorInst *Term = ExitBB->getTerminator();
491   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
492
493   // The block must end in a return statement or unreachable.
494   //
495   // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
496   // an unreachable, for now. The way tailcall optimization is currently
497   // implemented means it will add an epilogue followed by a jump. That is
498   // not profitable. Also, if the callee is a special function (e.g.
499   // longjmp on x86), it can end up causing miscompilation that has not
500   // been fully understood.
501   if (!Ret &&
502       (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term)))
503     return false;
504
505   // If I will have a chain, make sure no other instruction that will have a
506   // chain interposes between I and the return.
507   if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
508       !isSafeToSpeculativelyExecute(I))
509     for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
510       if (&*BBI == I)
511         break;
512       // Debug info intrinsics do not get in the way of tail call optimization.
513       if (isa<DbgInfoIntrinsic>(BBI))
514         continue;
515       if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
516           !isSafeToSpeculativelyExecute(BBI))
517         return false;
518     }
519
520   return returnTypeIsEligibleForTailCall(
521       ExitBB->getParent(), I, Ret, *TM.getSubtargetImpl()->getTargetLowering());
522 }
523
524 bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
525                                            const Instruction *I,
526                                            const ReturnInst *Ret,
527                                            const TargetLoweringBase &TLI) {
528   // If the block ends with a void return or unreachable, it doesn't matter
529   // what the call's return type is.
530   if (!Ret || Ret->getNumOperands() == 0) return true;
531
532   // If the return value is undef, it doesn't matter what the call's
533   // return type is.
534   if (isa<UndefValue>(Ret->getOperand(0))) return true;
535
536   // Make sure the attributes attached to each return are compatible.
537   AttrBuilder CallerAttrs(F->getAttributes(),
538                           AttributeSet::ReturnIndex);
539   AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
540                           AttributeSet::ReturnIndex);
541
542   // Noalias is completely benign as far as calling convention goes, it
543   // shouldn't affect whether the call is a tail call.
544   CallerAttrs = CallerAttrs.removeAttribute(Attribute::NoAlias);
545   CalleeAttrs = CalleeAttrs.removeAttribute(Attribute::NoAlias);
546
547   bool AllowDifferingSizes = true;
548   if (CallerAttrs.contains(Attribute::ZExt)) {
549     if (!CalleeAttrs.contains(Attribute::ZExt))
550       return false;
551
552     AllowDifferingSizes = false;
553     CallerAttrs.removeAttribute(Attribute::ZExt);
554     CalleeAttrs.removeAttribute(Attribute::ZExt);
555   } else if (CallerAttrs.contains(Attribute::SExt)) {
556     if (!CalleeAttrs.contains(Attribute::SExt))
557       return false;
558
559     AllowDifferingSizes = false;
560     CallerAttrs.removeAttribute(Attribute::SExt);
561     CalleeAttrs.removeAttribute(Attribute::SExt);
562   }
563
564   // If they're still different, there's some facet we don't understand
565   // (currently only "inreg", but in future who knows). It may be OK but the
566   // only safe option is to reject the tail call.
567   if (CallerAttrs != CalleeAttrs)
568     return false;
569
570   const Value *RetVal = Ret->getOperand(0), *CallVal = I;
571   SmallVector<unsigned, 4> RetPath, CallPath;
572   SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes;
573
574   bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
575   bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
576
577   // Nothing's actually returned, it doesn't matter what the callee put there
578   // it's a valid tail call.
579   if (RetEmpty)
580     return true;
581
582   // Iterate pairwise through each of the value types making up the tail call
583   // and the corresponding return. For each one we want to know whether it's
584   // essentially going directly from the tail call to the ret, via operations
585   // that end up not generating any code.
586   //
587   // We allow a certain amount of covariance here. For example it's permitted
588   // for the tail call to define more bits than the ret actually cares about
589   // (e.g. via a truncate).
590   do {
591     if (CallEmpty) {
592       // We've exhausted the values produced by the tail call instruction, the
593       // rest are essentially undef. The type doesn't really matter, but we need
594       // *something*.
595       Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back());
596       CallVal = UndefValue::get(SlotType);
597     }
598
599     // The manipulations performed when we're looking through an insertvalue or
600     // an extractvalue would happen at the front of the RetPath list, so since
601     // we have to copy it anyway it's more efficient to create a reversed copy.
602     using std::copy;
603     SmallVector<unsigned, 4> TmpRetPath, TmpCallPath;
604     copy(RetPath.rbegin(), RetPath.rend(), std::back_inserter(TmpRetPath));
605     copy(CallPath.rbegin(), CallPath.rend(), std::back_inserter(TmpCallPath));
606
607     // Finally, we can check whether the value produced by the tail call at this
608     // index is compatible with the value we return.
609     if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
610                               AllowDifferingSizes, TLI))
611       return false;
612
613     CallEmpty  = !nextRealType(CallSubTypes, CallPath);
614   } while(nextRealType(RetSubTypes, RetPath));
615
616   return true;
617 }
618
619 bool llvm::canBeOmittedFromSymbolTable(const GlobalValue *GV) {
620   if (!GV->hasLinkOnceODRLinkage())
621     return false;
622
623   if (GV->hasUnnamedAddr())
624     return true;
625
626   // If it is a non constant variable, it needs to be uniqued across shared
627   // objects.
628   if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) {
629     if (!Var->isConstant())
630       return false;
631   }
632
633   // An alias can point to a variable. We could try to resolve the alias to
634   // decide, but for now just don't hide them.
635   if (isa<GlobalAlias>(GV))
636     return false;
637
638   GlobalStatus GS;
639   if (GlobalStatus::analyzeGlobal(GV, GS))
640     return false;
641
642   return !GS.IsCompared;
643 }