Bitcode: Use unsigned char to record MDStrings
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Bitcode/BitstreamWriter.h"
18 #include "llvm/Bitcode/LLVMBitCodes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/InlineAsm.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/IR/UseListOrder.h"
26 #include "llvm/IR/ValueSymbolTable.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/Program.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <cctype>
33 #include <map>
34 using namespace llvm;
35
36 /// These are manifest constants used by the bitcode writer. They do not need to
37 /// be kept in sync with the reader, but need to be consistent within this file.
38 enum {
39   // VALUE_SYMTAB_BLOCK abbrev id's.
40   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
41   VST_ENTRY_7_ABBREV,
42   VST_ENTRY_6_ABBREV,
43   VST_BBENTRY_6_ABBREV,
44
45   // CONSTANTS_BLOCK abbrev id's.
46   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
47   CONSTANTS_INTEGER_ABBREV,
48   CONSTANTS_CE_CAST_Abbrev,
49   CONSTANTS_NULL_Abbrev,
50
51   // FUNCTION_BLOCK abbrev id's.
52   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
53   FUNCTION_INST_BINOP_ABBREV,
54   FUNCTION_INST_BINOP_FLAGS_ABBREV,
55   FUNCTION_INST_CAST_ABBREV,
56   FUNCTION_INST_RET_VOID_ABBREV,
57   FUNCTION_INST_RET_VAL_ABBREV,
58   FUNCTION_INST_UNREACHABLE_ABBREV
59 };
60
61 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
62   switch (Opcode) {
63   default: llvm_unreachable("Unknown cast instruction!");
64   case Instruction::Trunc   : return bitc::CAST_TRUNC;
65   case Instruction::ZExt    : return bitc::CAST_ZEXT;
66   case Instruction::SExt    : return bitc::CAST_SEXT;
67   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
68   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
69   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
70   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
71   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
72   case Instruction::FPExt   : return bitc::CAST_FPEXT;
73   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
74   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
75   case Instruction::BitCast : return bitc::CAST_BITCAST;
76   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
77   }
78 }
79
80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
81   switch (Opcode) {
82   default: llvm_unreachable("Unknown binary instruction!");
83   case Instruction::Add:
84   case Instruction::FAdd: return bitc::BINOP_ADD;
85   case Instruction::Sub:
86   case Instruction::FSub: return bitc::BINOP_SUB;
87   case Instruction::Mul:
88   case Instruction::FMul: return bitc::BINOP_MUL;
89   case Instruction::UDiv: return bitc::BINOP_UDIV;
90   case Instruction::FDiv:
91   case Instruction::SDiv: return bitc::BINOP_SDIV;
92   case Instruction::URem: return bitc::BINOP_UREM;
93   case Instruction::FRem:
94   case Instruction::SRem: return bitc::BINOP_SREM;
95   case Instruction::Shl:  return bitc::BINOP_SHL;
96   case Instruction::LShr: return bitc::BINOP_LSHR;
97   case Instruction::AShr: return bitc::BINOP_ASHR;
98   case Instruction::And:  return bitc::BINOP_AND;
99   case Instruction::Or:   return bitc::BINOP_OR;
100   case Instruction::Xor:  return bitc::BINOP_XOR;
101   }
102 }
103
104 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
105   switch (Op) {
106   default: llvm_unreachable("Unknown RMW operation!");
107   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
108   case AtomicRMWInst::Add: return bitc::RMW_ADD;
109   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
110   case AtomicRMWInst::And: return bitc::RMW_AND;
111   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
112   case AtomicRMWInst::Or: return bitc::RMW_OR;
113   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
114   case AtomicRMWInst::Max: return bitc::RMW_MAX;
115   case AtomicRMWInst::Min: return bitc::RMW_MIN;
116   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
117   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
118   }
119 }
120
121 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
122   switch (Ordering) {
123   case NotAtomic: return bitc::ORDERING_NOTATOMIC;
124   case Unordered: return bitc::ORDERING_UNORDERED;
125   case Monotonic: return bitc::ORDERING_MONOTONIC;
126   case Acquire: return bitc::ORDERING_ACQUIRE;
127   case Release: return bitc::ORDERING_RELEASE;
128   case AcquireRelease: return bitc::ORDERING_ACQREL;
129   case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
130   }
131   llvm_unreachable("Invalid ordering");
132 }
133
134 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
135   switch (SynchScope) {
136   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
137   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
138   }
139   llvm_unreachable("Invalid synch scope");
140 }
141
142 static void WriteStringRecord(unsigned Code, StringRef Str,
143                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
144   SmallVector<unsigned, 64> Vals;
145
146   // Code: [strchar x N]
147   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
148     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
149       AbbrevToUse = 0;
150     Vals.push_back(Str[i]);
151   }
152
153   // Emit the finished record.
154   Stream.EmitRecord(Code, Vals, AbbrevToUse);
155 }
156
157 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
158   switch (Kind) {
159   case Attribute::Alignment:
160     return bitc::ATTR_KIND_ALIGNMENT;
161   case Attribute::AlwaysInline:
162     return bitc::ATTR_KIND_ALWAYS_INLINE;
163   case Attribute::Builtin:
164     return bitc::ATTR_KIND_BUILTIN;
165   case Attribute::ByVal:
166     return bitc::ATTR_KIND_BY_VAL;
167   case Attribute::InAlloca:
168     return bitc::ATTR_KIND_IN_ALLOCA;
169   case Attribute::Cold:
170     return bitc::ATTR_KIND_COLD;
171   case Attribute::InlineHint:
172     return bitc::ATTR_KIND_INLINE_HINT;
173   case Attribute::InReg:
174     return bitc::ATTR_KIND_IN_REG;
175   case Attribute::JumpTable:
176     return bitc::ATTR_KIND_JUMP_TABLE;
177   case Attribute::MinSize:
178     return bitc::ATTR_KIND_MIN_SIZE;
179   case Attribute::Naked:
180     return bitc::ATTR_KIND_NAKED;
181   case Attribute::Nest:
182     return bitc::ATTR_KIND_NEST;
183   case Attribute::NoAlias:
184     return bitc::ATTR_KIND_NO_ALIAS;
185   case Attribute::NoBuiltin:
186     return bitc::ATTR_KIND_NO_BUILTIN;
187   case Attribute::NoCapture:
188     return bitc::ATTR_KIND_NO_CAPTURE;
189   case Attribute::NoDuplicate:
190     return bitc::ATTR_KIND_NO_DUPLICATE;
191   case Attribute::NoImplicitFloat:
192     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
193   case Attribute::NoInline:
194     return bitc::ATTR_KIND_NO_INLINE;
195   case Attribute::NonLazyBind:
196     return bitc::ATTR_KIND_NON_LAZY_BIND;
197   case Attribute::NonNull:
198     return bitc::ATTR_KIND_NON_NULL;
199   case Attribute::Dereferenceable:
200     return bitc::ATTR_KIND_DEREFERENCEABLE;
201   case Attribute::NoRedZone:
202     return bitc::ATTR_KIND_NO_RED_ZONE;
203   case Attribute::NoReturn:
204     return bitc::ATTR_KIND_NO_RETURN;
205   case Attribute::NoUnwind:
206     return bitc::ATTR_KIND_NO_UNWIND;
207   case Attribute::OptimizeForSize:
208     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
209   case Attribute::OptimizeNone:
210     return bitc::ATTR_KIND_OPTIMIZE_NONE;
211   case Attribute::ReadNone:
212     return bitc::ATTR_KIND_READ_NONE;
213   case Attribute::ReadOnly:
214     return bitc::ATTR_KIND_READ_ONLY;
215   case Attribute::Returned:
216     return bitc::ATTR_KIND_RETURNED;
217   case Attribute::ReturnsTwice:
218     return bitc::ATTR_KIND_RETURNS_TWICE;
219   case Attribute::SExt:
220     return bitc::ATTR_KIND_S_EXT;
221   case Attribute::StackAlignment:
222     return bitc::ATTR_KIND_STACK_ALIGNMENT;
223   case Attribute::StackProtect:
224     return bitc::ATTR_KIND_STACK_PROTECT;
225   case Attribute::StackProtectReq:
226     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
227   case Attribute::StackProtectStrong:
228     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
229   case Attribute::StructRet:
230     return bitc::ATTR_KIND_STRUCT_RET;
231   case Attribute::SanitizeAddress:
232     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
233   case Attribute::SanitizeThread:
234     return bitc::ATTR_KIND_SANITIZE_THREAD;
235   case Attribute::SanitizeMemory:
236     return bitc::ATTR_KIND_SANITIZE_MEMORY;
237   case Attribute::UWTable:
238     return bitc::ATTR_KIND_UW_TABLE;
239   case Attribute::ZExt:
240     return bitc::ATTR_KIND_Z_EXT;
241   case Attribute::EndAttrKinds:
242     llvm_unreachable("Can not encode end-attribute kinds marker.");
243   case Attribute::None:
244     llvm_unreachable("Can not encode none-attribute.");
245   }
246
247   llvm_unreachable("Trying to encode unknown attribute");
248 }
249
250 static void WriteAttributeGroupTable(const ValueEnumerator &VE,
251                                      BitstreamWriter &Stream) {
252   const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
253   if (AttrGrps.empty()) return;
254
255   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
256
257   SmallVector<uint64_t, 64> Record;
258   for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
259     AttributeSet AS = AttrGrps[i];
260     for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
261       AttributeSet A = AS.getSlotAttributes(i);
262
263       Record.push_back(VE.getAttributeGroupID(A));
264       Record.push_back(AS.getSlotIndex(i));
265
266       for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
267            I != E; ++I) {
268         Attribute Attr = *I;
269         if (Attr.isEnumAttribute()) {
270           Record.push_back(0);
271           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
272         } else if (Attr.isIntAttribute()) {
273           Record.push_back(1);
274           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
275           Record.push_back(Attr.getValueAsInt());
276         } else {
277           StringRef Kind = Attr.getKindAsString();
278           StringRef Val = Attr.getValueAsString();
279
280           Record.push_back(Val.empty() ? 3 : 4);
281           Record.append(Kind.begin(), Kind.end());
282           Record.push_back(0);
283           if (!Val.empty()) {
284             Record.append(Val.begin(), Val.end());
285             Record.push_back(0);
286           }
287         }
288       }
289
290       Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
291       Record.clear();
292     }
293   }
294
295   Stream.ExitBlock();
296 }
297
298 static void WriteAttributeTable(const ValueEnumerator &VE,
299                                 BitstreamWriter &Stream) {
300   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
301   if (Attrs.empty()) return;
302
303   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
304
305   SmallVector<uint64_t, 64> Record;
306   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
307     const AttributeSet &A = Attrs[i];
308     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
309       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
310
311     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
312     Record.clear();
313   }
314
315   Stream.ExitBlock();
316 }
317
318 /// WriteTypeTable - Write out the type table for a module.
319 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
320   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
321
322   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
323   SmallVector<uint64_t, 64> TypeVals;
324
325   uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
326
327   // Abbrev for TYPE_CODE_POINTER.
328   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
329   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
330   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
331   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
332   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
333
334   // Abbrev for TYPE_CODE_FUNCTION.
335   Abbv = new BitCodeAbbrev();
336   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
337   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
338   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
339   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
340
341   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
342
343   // Abbrev for TYPE_CODE_STRUCT_ANON.
344   Abbv = new BitCodeAbbrev();
345   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
346   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
347   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
348   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
349
350   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
351
352   // Abbrev for TYPE_CODE_STRUCT_NAME.
353   Abbv = new BitCodeAbbrev();
354   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
355   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
356   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
357   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
358
359   // Abbrev for TYPE_CODE_STRUCT_NAMED.
360   Abbv = new BitCodeAbbrev();
361   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
362   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
363   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
364   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
365
366   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
367
368   // Abbrev for TYPE_CODE_ARRAY.
369   Abbv = new BitCodeAbbrev();
370   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
371   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
372   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
373
374   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
375
376   // Emit an entry count so the reader can reserve space.
377   TypeVals.push_back(TypeList.size());
378   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
379   TypeVals.clear();
380
381   // Loop over all of the types, emitting each in turn.
382   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
383     Type *T = TypeList[i];
384     int AbbrevToUse = 0;
385     unsigned Code = 0;
386
387     switch (T->getTypeID()) {
388     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
389     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
390     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
391     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
392     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
393     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
394     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
395     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
396     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
397     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
398     case Type::IntegerTyID:
399       // INTEGER: [width]
400       Code = bitc::TYPE_CODE_INTEGER;
401       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
402       break;
403     case Type::PointerTyID: {
404       PointerType *PTy = cast<PointerType>(T);
405       // POINTER: [pointee type, address space]
406       Code = bitc::TYPE_CODE_POINTER;
407       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
408       unsigned AddressSpace = PTy->getAddressSpace();
409       TypeVals.push_back(AddressSpace);
410       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
411       break;
412     }
413     case Type::FunctionTyID: {
414       FunctionType *FT = cast<FunctionType>(T);
415       // FUNCTION: [isvararg, retty, paramty x N]
416       Code = bitc::TYPE_CODE_FUNCTION;
417       TypeVals.push_back(FT->isVarArg());
418       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
419       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
420         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
421       AbbrevToUse = FunctionAbbrev;
422       break;
423     }
424     case Type::StructTyID: {
425       StructType *ST = cast<StructType>(T);
426       // STRUCT: [ispacked, eltty x N]
427       TypeVals.push_back(ST->isPacked());
428       // Output all of the element types.
429       for (StructType::element_iterator I = ST->element_begin(),
430            E = ST->element_end(); I != E; ++I)
431         TypeVals.push_back(VE.getTypeID(*I));
432
433       if (ST->isLiteral()) {
434         Code = bitc::TYPE_CODE_STRUCT_ANON;
435         AbbrevToUse = StructAnonAbbrev;
436       } else {
437         if (ST->isOpaque()) {
438           Code = bitc::TYPE_CODE_OPAQUE;
439         } else {
440           Code = bitc::TYPE_CODE_STRUCT_NAMED;
441           AbbrevToUse = StructNamedAbbrev;
442         }
443
444         // Emit the name if it is present.
445         if (!ST->getName().empty())
446           WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
447                             StructNameAbbrev, Stream);
448       }
449       break;
450     }
451     case Type::ArrayTyID: {
452       ArrayType *AT = cast<ArrayType>(T);
453       // ARRAY: [numelts, eltty]
454       Code = bitc::TYPE_CODE_ARRAY;
455       TypeVals.push_back(AT->getNumElements());
456       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
457       AbbrevToUse = ArrayAbbrev;
458       break;
459     }
460     case Type::VectorTyID: {
461       VectorType *VT = cast<VectorType>(T);
462       // VECTOR [numelts, eltty]
463       Code = bitc::TYPE_CODE_VECTOR;
464       TypeVals.push_back(VT->getNumElements());
465       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
466       break;
467     }
468     }
469
470     // Emit the finished record.
471     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
472     TypeVals.clear();
473   }
474
475   Stream.ExitBlock();
476 }
477
478 static unsigned getEncodedLinkage(const GlobalValue &GV) {
479   switch (GV.getLinkage()) {
480   case GlobalValue::ExternalLinkage:                 return 0;
481   case GlobalValue::WeakAnyLinkage:                  return 1;
482   case GlobalValue::AppendingLinkage:                return 2;
483   case GlobalValue::InternalLinkage:                 return 3;
484   case GlobalValue::LinkOnceAnyLinkage:              return 4;
485   case GlobalValue::ExternalWeakLinkage:             return 7;
486   case GlobalValue::CommonLinkage:                   return 8;
487   case GlobalValue::PrivateLinkage:                  return 9;
488   case GlobalValue::WeakODRLinkage:                  return 10;
489   case GlobalValue::LinkOnceODRLinkage:              return 11;
490   case GlobalValue::AvailableExternallyLinkage:      return 12;
491   }
492   llvm_unreachable("Invalid linkage");
493 }
494
495 static unsigned getEncodedVisibility(const GlobalValue &GV) {
496   switch (GV.getVisibility()) {
497   case GlobalValue::DefaultVisibility:   return 0;
498   case GlobalValue::HiddenVisibility:    return 1;
499   case GlobalValue::ProtectedVisibility: return 2;
500   }
501   llvm_unreachable("Invalid visibility");
502 }
503
504 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
505   switch (GV.getDLLStorageClass()) {
506   case GlobalValue::DefaultStorageClass:   return 0;
507   case GlobalValue::DLLImportStorageClass: return 1;
508   case GlobalValue::DLLExportStorageClass: return 2;
509   }
510   llvm_unreachable("Invalid DLL storage class");
511 }
512
513 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
514   switch (GV.getThreadLocalMode()) {
515     case GlobalVariable::NotThreadLocal:         return 0;
516     case GlobalVariable::GeneralDynamicTLSModel: return 1;
517     case GlobalVariable::LocalDynamicTLSModel:   return 2;
518     case GlobalVariable::InitialExecTLSModel:    return 3;
519     case GlobalVariable::LocalExecTLSModel:      return 4;
520   }
521   llvm_unreachable("Invalid TLS model");
522 }
523
524 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
525   switch (C.getSelectionKind()) {
526   case Comdat::Any:
527     return bitc::COMDAT_SELECTION_KIND_ANY;
528   case Comdat::ExactMatch:
529     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
530   case Comdat::Largest:
531     return bitc::COMDAT_SELECTION_KIND_LARGEST;
532   case Comdat::NoDuplicates:
533     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
534   case Comdat::SameSize:
535     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
536   }
537   llvm_unreachable("Invalid selection kind");
538 }
539
540 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
541   SmallVector<uint8_t, 64> Vals;
542   for (const Comdat *C : VE.getComdats()) {
543     // COMDAT: [selection_kind, name]
544     Vals.push_back(getEncodedComdatSelectionKind(*C));
545     Vals.push_back(C->getName().size());
546     for (char Chr : C->getName())
547       Vals.push_back((unsigned char)Chr);
548     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
549     Vals.clear();
550   }
551 }
552
553 // Emit top-level description of module, including target triple, inline asm,
554 // descriptors for global variables, and function prototype info.
555 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
556                             BitstreamWriter &Stream) {
557   // Emit various pieces of data attached to a module.
558   if (!M->getTargetTriple().empty())
559     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
560                       0/*TODO*/, Stream);
561   const std::string &DL = M->getDataLayoutStr();
562   if (!DL.empty())
563     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
564   if (!M->getModuleInlineAsm().empty())
565     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
566                       0/*TODO*/, Stream);
567
568   // Emit information about sections and GC, computing how many there are. Also
569   // compute the maximum alignment value.
570   std::map<std::string, unsigned> SectionMap;
571   std::map<std::string, unsigned> GCMap;
572   unsigned MaxAlignment = 0;
573   unsigned MaxGlobalType = 0;
574   for (const GlobalValue &GV : M->globals()) {
575     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
576     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType()));
577     if (GV.hasSection()) {
578       // Give section names unique ID's.
579       unsigned &Entry = SectionMap[GV.getSection()];
580       if (!Entry) {
581         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
582                           0/*TODO*/, Stream);
583         Entry = SectionMap.size();
584       }
585     }
586   }
587   for (const Function &F : *M) {
588     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
589     if (F.hasSection()) {
590       // Give section names unique ID's.
591       unsigned &Entry = SectionMap[F.getSection()];
592       if (!Entry) {
593         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
594                           0/*TODO*/, Stream);
595         Entry = SectionMap.size();
596       }
597     }
598     if (F.hasGC()) {
599       // Same for GC names.
600       unsigned &Entry = GCMap[F.getGC()];
601       if (!Entry) {
602         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
603                           0/*TODO*/, Stream);
604         Entry = GCMap.size();
605       }
606     }
607   }
608
609   // Emit abbrev for globals, now that we know # sections and max alignment.
610   unsigned SimpleGVarAbbrev = 0;
611   if (!M->global_empty()) {
612     // Add an abbrev for common globals with no visibility or thread localness.
613     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
614     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
615     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
616                               Log2_32_Ceil(MaxGlobalType+1)));
617     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
618     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
619     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
620     if (MaxAlignment == 0)                                      // Alignment.
621       Abbv->Add(BitCodeAbbrevOp(0));
622     else {
623       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
624       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
625                                Log2_32_Ceil(MaxEncAlignment+1)));
626     }
627     if (SectionMap.empty())                                    // Section.
628       Abbv->Add(BitCodeAbbrevOp(0));
629     else
630       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
631                                Log2_32_Ceil(SectionMap.size()+1)));
632     // Don't bother emitting vis + thread local.
633     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
634   }
635
636   // Emit the global variable information.
637   SmallVector<unsigned, 64> Vals;
638   for (const GlobalVariable &GV : M->globals()) {
639     unsigned AbbrevToUse = 0;
640
641     // GLOBALVAR: [type, isconst, initid,
642     //             linkage, alignment, section, visibility, threadlocal,
643     //             unnamed_addr, externally_initialized, dllstorageclass]
644     Vals.push_back(VE.getTypeID(GV.getType()));
645     Vals.push_back(GV.isConstant());
646     Vals.push_back(GV.isDeclaration() ? 0 :
647                    (VE.getValueID(GV.getInitializer()) + 1));
648     Vals.push_back(getEncodedLinkage(GV));
649     Vals.push_back(Log2_32(GV.getAlignment())+1);
650     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
651     if (GV.isThreadLocal() ||
652         GV.getVisibility() != GlobalValue::DefaultVisibility ||
653         GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
654         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
655         GV.hasComdat()) {
656       Vals.push_back(getEncodedVisibility(GV));
657       Vals.push_back(getEncodedThreadLocalMode(GV));
658       Vals.push_back(GV.hasUnnamedAddr());
659       Vals.push_back(GV.isExternallyInitialized());
660       Vals.push_back(getEncodedDLLStorageClass(GV));
661       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
662     } else {
663       AbbrevToUse = SimpleGVarAbbrev;
664     }
665
666     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
667     Vals.clear();
668   }
669
670   // Emit the function proto information.
671   for (const Function &F : *M) {
672     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
673     //             section, visibility, gc, unnamed_addr, prologuedata,
674     //             dllstorageclass, comdat, prefixdata]
675     Vals.push_back(VE.getTypeID(F.getType()));
676     Vals.push_back(F.getCallingConv());
677     Vals.push_back(F.isDeclaration());
678     Vals.push_back(getEncodedLinkage(F));
679     Vals.push_back(VE.getAttributeID(F.getAttributes()));
680     Vals.push_back(Log2_32(F.getAlignment())+1);
681     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
682     Vals.push_back(getEncodedVisibility(F));
683     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
684     Vals.push_back(F.hasUnnamedAddr());
685     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
686                                        : 0);
687     Vals.push_back(getEncodedDLLStorageClass(F));
688     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
689     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
690                                      : 0);
691
692     unsigned AbbrevToUse = 0;
693     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
694     Vals.clear();
695   }
696
697   // Emit the alias information.
698   for (const GlobalAlias &A : M->aliases()) {
699     // ALIAS: [alias type, aliasee val#, linkage, visibility]
700     Vals.push_back(VE.getTypeID(A.getType()));
701     Vals.push_back(VE.getValueID(A.getAliasee()));
702     Vals.push_back(getEncodedLinkage(A));
703     Vals.push_back(getEncodedVisibility(A));
704     Vals.push_back(getEncodedDLLStorageClass(A));
705     Vals.push_back(getEncodedThreadLocalMode(A));
706     Vals.push_back(A.hasUnnamedAddr());
707     unsigned AbbrevToUse = 0;
708     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
709     Vals.clear();
710   }
711 }
712
713 static uint64_t GetOptimizationFlags(const Value *V) {
714   uint64_t Flags = 0;
715
716   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
717     if (OBO->hasNoSignedWrap())
718       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
719     if (OBO->hasNoUnsignedWrap())
720       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
721   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
722     if (PEO->isExact())
723       Flags |= 1 << bitc::PEO_EXACT;
724   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
725     if (FPMO->hasUnsafeAlgebra())
726       Flags |= FastMathFlags::UnsafeAlgebra;
727     if (FPMO->hasNoNaNs())
728       Flags |= FastMathFlags::NoNaNs;
729     if (FPMO->hasNoInfs())
730       Flags |= FastMathFlags::NoInfs;
731     if (FPMO->hasNoSignedZeros())
732       Flags |= FastMathFlags::NoSignedZeros;
733     if (FPMO->hasAllowReciprocal())
734       Flags |= FastMathFlags::AllowReciprocal;
735   }
736
737   return Flags;
738 }
739
740 static void WriteValueAsMetadata(const ValueAsMetadata *MD,
741                                  const ValueEnumerator &VE,
742                                  BitstreamWriter &Stream,
743                                  SmallVectorImpl<uint64_t> &Record) {
744   // Mimic an MDNode with a value as one operand.
745   Value *V = MD->getValue();
746   Record.push_back(VE.getTypeID(V->getType()));
747   Record.push_back(VE.getValueID(V));
748   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
749   Record.clear();
750 }
751
752 static void WriteMDNode(const MDNode *N,
753                         const ValueEnumerator &VE,
754                         BitstreamWriter &Stream,
755                         SmallVectorImpl<uint64_t> &Record) {
756   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
757     Metadata *MD = N->getOperand(i);
758     if (!MD) {
759       Record.push_back(0);
760       continue;
761     }
762     assert(!isa<LocalAsMetadata>(MD) && "Unexpected function-local metadata");
763     Record.push_back(VE.getMetadataID(MD) + 1);
764   }
765   Stream.EmitRecord(bitc::METADATA_NODE, Record);
766   Record.clear();
767 }
768
769 static void WriteModuleMetadata(const Module *M,
770                                 const ValueEnumerator &VE,
771                                 BitstreamWriter &Stream) {
772   const auto &MDs = VE.getMDs();
773   bool StartedMetadataBlock = false;
774   unsigned MDSAbbrev = 0;
775   SmallVector<uint64_t, 64> Record;
776   for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
777     if (const MDNode *N = dyn_cast<MDNode>(MDs[i])) {
778       if (!StartedMetadataBlock) {
779         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
780         StartedMetadataBlock = true;
781       }
782       WriteMDNode(N, VE, Stream, Record);
783     } else if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MDs[i])) {
784       if (!StartedMetadataBlock) {
785         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
786         StartedMetadataBlock = true;
787       }
788       WriteValueAsMetadata(MDC, VE, Stream, Record);
789     } else if (const MDString *MDS = dyn_cast<MDString>(MDs[i])) {
790       if (!StartedMetadataBlock) {
791         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
792
793         // Abbrev for METADATA_STRING.
794         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
795         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
796         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
797         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
798         MDSAbbrev = Stream.EmitAbbrev(Abbv);
799         StartedMetadataBlock = true;
800       }
801
802       // Code: [strchar x N]
803       Record.append(MDS->bytes_begin(), MDS->bytes_end());
804
805       // Emit the finished record.
806       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
807       Record.clear();
808     }
809   }
810
811   // Write named metadata.
812   for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
813        E = M->named_metadata_end(); I != E; ++I) {
814     const NamedMDNode *NMD = I;
815     if (!StartedMetadataBlock)  {
816       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
817       StartedMetadataBlock = true;
818     }
819
820     // Write name.
821     StringRef Str = NMD->getName();
822     for (unsigned i = 0, e = Str.size(); i != e; ++i)
823       Record.push_back(Str[i]);
824     Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
825     Record.clear();
826
827     // Write named metadata operands.
828     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
829       Record.push_back(VE.getMetadataID(NMD->getOperand(i)));
830     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
831     Record.clear();
832   }
833
834   if (StartedMetadataBlock)
835     Stream.ExitBlock();
836 }
837
838 static void WriteFunctionLocalMetadata(const Function &F,
839                                        const ValueEnumerator &VE,
840                                        BitstreamWriter &Stream) {
841   bool StartedMetadataBlock = false;
842   SmallVector<uint64_t, 64> Record;
843   const SmallVectorImpl<const LocalAsMetadata *> &MDs =
844       VE.getFunctionLocalMDs();
845   for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
846     assert(MDs[i] && "Expected valid function-local metadata");
847     if (!StartedMetadataBlock) {
848       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
849       StartedMetadataBlock = true;
850     }
851     WriteValueAsMetadata(MDs[i], VE, Stream, Record);
852   }
853
854   if (StartedMetadataBlock)
855     Stream.ExitBlock();
856 }
857
858 static void WriteMetadataAttachment(const Function &F,
859                                     const ValueEnumerator &VE,
860                                     BitstreamWriter &Stream) {
861   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
862
863   SmallVector<uint64_t, 64> Record;
864
865   // Write metadata attachments
866   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
867   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
868
869   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
870     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
871          I != E; ++I) {
872       MDs.clear();
873       I->getAllMetadataOtherThanDebugLoc(MDs);
874
875       // If no metadata, ignore instruction.
876       if (MDs.empty()) continue;
877
878       Record.push_back(VE.getInstructionID(I));
879
880       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
881         Record.push_back(MDs[i].first);
882         Record.push_back(VE.getMetadataID(MDs[i].second));
883       }
884       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
885       Record.clear();
886     }
887
888   Stream.ExitBlock();
889 }
890
891 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
892   SmallVector<uint64_t, 64> Record;
893
894   // Write metadata kinds
895   // METADATA_KIND - [n x [id, name]]
896   SmallVector<StringRef, 8> Names;
897   M->getMDKindNames(Names);
898
899   if (Names.empty()) return;
900
901   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
902
903   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
904     Record.push_back(MDKindID);
905     StringRef KName = Names[MDKindID];
906     Record.append(KName.begin(), KName.end());
907
908     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
909     Record.clear();
910   }
911
912   Stream.ExitBlock();
913 }
914
915 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
916   if ((int64_t)V >= 0)
917     Vals.push_back(V << 1);
918   else
919     Vals.push_back((-V << 1) | 1);
920 }
921
922 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
923                            const ValueEnumerator &VE,
924                            BitstreamWriter &Stream, bool isGlobal) {
925   if (FirstVal == LastVal) return;
926
927   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
928
929   unsigned AggregateAbbrev = 0;
930   unsigned String8Abbrev = 0;
931   unsigned CString7Abbrev = 0;
932   unsigned CString6Abbrev = 0;
933   // If this is a constant pool for the module, emit module-specific abbrevs.
934   if (isGlobal) {
935     // Abbrev for CST_CODE_AGGREGATE.
936     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
937     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
938     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
939     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
940     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
941
942     // Abbrev for CST_CODE_STRING.
943     Abbv = new BitCodeAbbrev();
944     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
945     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
946     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
947     String8Abbrev = Stream.EmitAbbrev(Abbv);
948     // Abbrev for CST_CODE_CSTRING.
949     Abbv = new BitCodeAbbrev();
950     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
951     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
952     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
953     CString7Abbrev = Stream.EmitAbbrev(Abbv);
954     // Abbrev for CST_CODE_CSTRING.
955     Abbv = new BitCodeAbbrev();
956     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
957     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
958     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
959     CString6Abbrev = Stream.EmitAbbrev(Abbv);
960   }
961
962   SmallVector<uint64_t, 64> Record;
963
964   const ValueEnumerator::ValueList &Vals = VE.getValues();
965   Type *LastTy = nullptr;
966   for (unsigned i = FirstVal; i != LastVal; ++i) {
967     const Value *V = Vals[i].first;
968     // If we need to switch types, do so now.
969     if (V->getType() != LastTy) {
970       LastTy = V->getType();
971       Record.push_back(VE.getTypeID(LastTy));
972       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
973                         CONSTANTS_SETTYPE_ABBREV);
974       Record.clear();
975     }
976
977     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
978       Record.push_back(unsigned(IA->hasSideEffects()) |
979                        unsigned(IA->isAlignStack()) << 1 |
980                        unsigned(IA->getDialect()&1) << 2);
981
982       // Add the asm string.
983       const std::string &AsmStr = IA->getAsmString();
984       Record.push_back(AsmStr.size());
985       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
986         Record.push_back(AsmStr[i]);
987
988       // Add the constraint string.
989       const std::string &ConstraintStr = IA->getConstraintString();
990       Record.push_back(ConstraintStr.size());
991       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
992         Record.push_back(ConstraintStr[i]);
993       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
994       Record.clear();
995       continue;
996     }
997     const Constant *C = cast<Constant>(V);
998     unsigned Code = -1U;
999     unsigned AbbrevToUse = 0;
1000     if (C->isNullValue()) {
1001       Code = bitc::CST_CODE_NULL;
1002     } else if (isa<UndefValue>(C)) {
1003       Code = bitc::CST_CODE_UNDEF;
1004     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1005       if (IV->getBitWidth() <= 64) {
1006         uint64_t V = IV->getSExtValue();
1007         emitSignedInt64(Record, V);
1008         Code = bitc::CST_CODE_INTEGER;
1009         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
1010       } else {                             // Wide integers, > 64 bits in size.
1011         // We have an arbitrary precision integer value to write whose
1012         // bit width is > 64. However, in canonical unsigned integer
1013         // format it is likely that the high bits are going to be zero.
1014         // So, we only write the number of active words.
1015         unsigned NWords = IV->getValue().getActiveWords();
1016         const uint64_t *RawWords = IV->getValue().getRawData();
1017         for (unsigned i = 0; i != NWords; ++i) {
1018           emitSignedInt64(Record, RawWords[i]);
1019         }
1020         Code = bitc::CST_CODE_WIDE_INTEGER;
1021       }
1022     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1023       Code = bitc::CST_CODE_FLOAT;
1024       Type *Ty = CFP->getType();
1025       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
1026         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
1027       } else if (Ty->isX86_FP80Ty()) {
1028         // api needed to prevent premature destruction
1029         // bits are not in the same order as a normal i80 APInt, compensate.
1030         APInt api = CFP->getValueAPF().bitcastToAPInt();
1031         const uint64_t *p = api.getRawData();
1032         Record.push_back((p[1] << 48) | (p[0] >> 16));
1033         Record.push_back(p[0] & 0xffffLL);
1034       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
1035         APInt api = CFP->getValueAPF().bitcastToAPInt();
1036         const uint64_t *p = api.getRawData();
1037         Record.push_back(p[0]);
1038         Record.push_back(p[1]);
1039       } else {
1040         assert (0 && "Unknown FP type!");
1041       }
1042     } else if (isa<ConstantDataSequential>(C) &&
1043                cast<ConstantDataSequential>(C)->isString()) {
1044       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
1045       // Emit constant strings specially.
1046       unsigned NumElts = Str->getNumElements();
1047       // If this is a null-terminated string, use the denser CSTRING encoding.
1048       if (Str->isCString()) {
1049         Code = bitc::CST_CODE_CSTRING;
1050         --NumElts;  // Don't encode the null, which isn't allowed by char6.
1051       } else {
1052         Code = bitc::CST_CODE_STRING;
1053         AbbrevToUse = String8Abbrev;
1054       }
1055       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
1056       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
1057       for (unsigned i = 0; i != NumElts; ++i) {
1058         unsigned char V = Str->getElementAsInteger(i);
1059         Record.push_back(V);
1060         isCStr7 &= (V & 128) == 0;
1061         if (isCStrChar6)
1062           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
1063       }
1064
1065       if (isCStrChar6)
1066         AbbrevToUse = CString6Abbrev;
1067       else if (isCStr7)
1068         AbbrevToUse = CString7Abbrev;
1069     } else if (const ConstantDataSequential *CDS =
1070                   dyn_cast<ConstantDataSequential>(C)) {
1071       Code = bitc::CST_CODE_DATA;
1072       Type *EltTy = CDS->getType()->getElementType();
1073       if (isa<IntegerType>(EltTy)) {
1074         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
1075           Record.push_back(CDS->getElementAsInteger(i));
1076       } else if (EltTy->isFloatTy()) {
1077         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1078           union { float F; uint32_t I; };
1079           F = CDS->getElementAsFloat(i);
1080           Record.push_back(I);
1081         }
1082       } else {
1083         assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
1084         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1085           union { double F; uint64_t I; };
1086           F = CDS->getElementAsDouble(i);
1087           Record.push_back(I);
1088         }
1089       }
1090     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
1091                isa<ConstantVector>(C)) {
1092       Code = bitc::CST_CODE_AGGREGATE;
1093       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
1094         Record.push_back(VE.getValueID(C->getOperand(i)));
1095       AbbrevToUse = AggregateAbbrev;
1096     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1097       switch (CE->getOpcode()) {
1098       default:
1099         if (Instruction::isCast(CE->getOpcode())) {
1100           Code = bitc::CST_CODE_CE_CAST;
1101           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
1102           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1103           Record.push_back(VE.getValueID(C->getOperand(0)));
1104           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
1105         } else {
1106           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
1107           Code = bitc::CST_CODE_CE_BINOP;
1108           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
1109           Record.push_back(VE.getValueID(C->getOperand(0)));
1110           Record.push_back(VE.getValueID(C->getOperand(1)));
1111           uint64_t Flags = GetOptimizationFlags(CE);
1112           if (Flags != 0)
1113             Record.push_back(Flags);
1114         }
1115         break;
1116       case Instruction::GetElementPtr:
1117         Code = bitc::CST_CODE_CE_GEP;
1118         if (cast<GEPOperator>(C)->isInBounds())
1119           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
1120         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
1121           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
1122           Record.push_back(VE.getValueID(C->getOperand(i)));
1123         }
1124         break;
1125       case Instruction::Select:
1126         Code = bitc::CST_CODE_CE_SELECT;
1127         Record.push_back(VE.getValueID(C->getOperand(0)));
1128         Record.push_back(VE.getValueID(C->getOperand(1)));
1129         Record.push_back(VE.getValueID(C->getOperand(2)));
1130         break;
1131       case Instruction::ExtractElement:
1132         Code = bitc::CST_CODE_CE_EXTRACTELT;
1133         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1134         Record.push_back(VE.getValueID(C->getOperand(0)));
1135         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
1136         Record.push_back(VE.getValueID(C->getOperand(1)));
1137         break;
1138       case Instruction::InsertElement:
1139         Code = bitc::CST_CODE_CE_INSERTELT;
1140         Record.push_back(VE.getValueID(C->getOperand(0)));
1141         Record.push_back(VE.getValueID(C->getOperand(1)));
1142         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
1143         Record.push_back(VE.getValueID(C->getOperand(2)));
1144         break;
1145       case Instruction::ShuffleVector:
1146         // If the return type and argument types are the same, this is a
1147         // standard shufflevector instruction.  If the types are different,
1148         // then the shuffle is widening or truncating the input vectors, and
1149         // the argument type must also be encoded.
1150         if (C->getType() == C->getOperand(0)->getType()) {
1151           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
1152         } else {
1153           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
1154           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1155         }
1156         Record.push_back(VE.getValueID(C->getOperand(0)));
1157         Record.push_back(VE.getValueID(C->getOperand(1)));
1158         Record.push_back(VE.getValueID(C->getOperand(2)));
1159         break;
1160       case Instruction::ICmp:
1161       case Instruction::FCmp:
1162         Code = bitc::CST_CODE_CE_CMP;
1163         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1164         Record.push_back(VE.getValueID(C->getOperand(0)));
1165         Record.push_back(VE.getValueID(C->getOperand(1)));
1166         Record.push_back(CE->getPredicate());
1167         break;
1168       }
1169     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1170       Code = bitc::CST_CODE_BLOCKADDRESS;
1171       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1172       Record.push_back(VE.getValueID(BA->getFunction()));
1173       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1174     } else {
1175 #ifndef NDEBUG
1176       C->dump();
1177 #endif
1178       llvm_unreachable("Unknown constant!");
1179     }
1180     Stream.EmitRecord(Code, Record, AbbrevToUse);
1181     Record.clear();
1182   }
1183
1184   Stream.ExitBlock();
1185 }
1186
1187 static void WriteModuleConstants(const ValueEnumerator &VE,
1188                                  BitstreamWriter &Stream) {
1189   const ValueEnumerator::ValueList &Vals = VE.getValues();
1190
1191   // Find the first constant to emit, which is the first non-globalvalue value.
1192   // We know globalvalues have been emitted by WriteModuleInfo.
1193   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1194     if (!isa<GlobalValue>(Vals[i].first)) {
1195       WriteConstants(i, Vals.size(), VE, Stream, true);
1196       return;
1197     }
1198   }
1199 }
1200
1201 /// PushValueAndType - The file has to encode both the value and type id for
1202 /// many values, because we need to know what type to create for forward
1203 /// references.  However, most operands are not forward references, so this type
1204 /// field is not needed.
1205 ///
1206 /// This function adds V's value ID to Vals.  If the value ID is higher than the
1207 /// instruction ID, then it is a forward reference, and it also includes the
1208 /// type ID.  The value ID that is written is encoded relative to the InstID.
1209 static bool PushValueAndType(const Value *V, unsigned InstID,
1210                              SmallVectorImpl<unsigned> &Vals,
1211                              ValueEnumerator &VE) {
1212   unsigned ValID = VE.getValueID(V);
1213   // Make encoding relative to the InstID.
1214   Vals.push_back(InstID - ValID);
1215   if (ValID >= InstID) {
1216     Vals.push_back(VE.getTypeID(V->getType()));
1217     return true;
1218   }
1219   return false;
1220 }
1221
1222 /// pushValue - Like PushValueAndType, but where the type of the value is
1223 /// omitted (perhaps it was already encoded in an earlier operand).
1224 static void pushValue(const Value *V, unsigned InstID,
1225                       SmallVectorImpl<unsigned> &Vals,
1226                       ValueEnumerator &VE) {
1227   unsigned ValID = VE.getValueID(V);
1228   Vals.push_back(InstID - ValID);
1229 }
1230
1231 static void pushValueSigned(const Value *V, unsigned InstID,
1232                             SmallVectorImpl<uint64_t> &Vals,
1233                             ValueEnumerator &VE) {
1234   unsigned ValID = VE.getValueID(V);
1235   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
1236   emitSignedInt64(Vals, diff);
1237 }
1238
1239 /// WriteInstruction - Emit an instruction to the specified stream.
1240 static void WriteInstruction(const Instruction &I, unsigned InstID,
1241                              ValueEnumerator &VE, BitstreamWriter &Stream,
1242                              SmallVectorImpl<unsigned> &Vals) {
1243   unsigned Code = 0;
1244   unsigned AbbrevToUse = 0;
1245   VE.setInstructionID(&I);
1246   switch (I.getOpcode()) {
1247   default:
1248     if (Instruction::isCast(I.getOpcode())) {
1249       Code = bitc::FUNC_CODE_INST_CAST;
1250       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1251         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1252       Vals.push_back(VE.getTypeID(I.getType()));
1253       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1254     } else {
1255       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1256       Code = bitc::FUNC_CODE_INST_BINOP;
1257       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1258         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1259       pushValue(I.getOperand(1), InstID, Vals, VE);
1260       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1261       uint64_t Flags = GetOptimizationFlags(&I);
1262       if (Flags != 0) {
1263         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1264           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1265         Vals.push_back(Flags);
1266       }
1267     }
1268     break;
1269
1270   case Instruction::GetElementPtr:
1271     Code = bitc::FUNC_CODE_INST_GEP;
1272     if (cast<GEPOperator>(&I)->isInBounds())
1273       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1274     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1275       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1276     break;
1277   case Instruction::ExtractValue: {
1278     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1279     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1280     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1281     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1282       Vals.push_back(*i);
1283     break;
1284   }
1285   case Instruction::InsertValue: {
1286     Code = bitc::FUNC_CODE_INST_INSERTVAL;
1287     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1288     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1289     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1290     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1291       Vals.push_back(*i);
1292     break;
1293   }
1294   case Instruction::Select:
1295     Code = bitc::FUNC_CODE_INST_VSELECT;
1296     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1297     pushValue(I.getOperand(2), InstID, Vals, VE);
1298     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1299     break;
1300   case Instruction::ExtractElement:
1301     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1302     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1303     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1304     break;
1305   case Instruction::InsertElement:
1306     Code = bitc::FUNC_CODE_INST_INSERTELT;
1307     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1308     pushValue(I.getOperand(1), InstID, Vals, VE);
1309     PushValueAndType(I.getOperand(2), InstID, Vals, VE);
1310     break;
1311   case Instruction::ShuffleVector:
1312     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1313     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1314     pushValue(I.getOperand(1), InstID, Vals, VE);
1315     pushValue(I.getOperand(2), InstID, Vals, VE);
1316     break;
1317   case Instruction::ICmp:
1318   case Instruction::FCmp:
1319     // compare returning Int1Ty or vector of Int1Ty
1320     Code = bitc::FUNC_CODE_INST_CMP2;
1321     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1322     pushValue(I.getOperand(1), InstID, Vals, VE);
1323     Vals.push_back(cast<CmpInst>(I).getPredicate());
1324     break;
1325
1326   case Instruction::Ret:
1327     {
1328       Code = bitc::FUNC_CODE_INST_RET;
1329       unsigned NumOperands = I.getNumOperands();
1330       if (NumOperands == 0)
1331         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1332       else if (NumOperands == 1) {
1333         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1334           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1335       } else {
1336         for (unsigned i = 0, e = NumOperands; i != e; ++i)
1337           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1338       }
1339     }
1340     break;
1341   case Instruction::Br:
1342     {
1343       Code = bitc::FUNC_CODE_INST_BR;
1344       const BranchInst &II = cast<BranchInst>(I);
1345       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1346       if (II.isConditional()) {
1347         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1348         pushValue(II.getCondition(), InstID, Vals, VE);
1349       }
1350     }
1351     break;
1352   case Instruction::Switch:
1353     {
1354       Code = bitc::FUNC_CODE_INST_SWITCH;
1355       const SwitchInst &SI = cast<SwitchInst>(I);
1356       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1357       pushValue(SI.getCondition(), InstID, Vals, VE);
1358       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1359       for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1360            i != e; ++i) {
1361         Vals.push_back(VE.getValueID(i.getCaseValue()));
1362         Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1363       }
1364     }
1365     break;
1366   case Instruction::IndirectBr:
1367     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1368     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1369     // Encode the address operand as relative, but not the basic blocks.
1370     pushValue(I.getOperand(0), InstID, Vals, VE);
1371     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
1372       Vals.push_back(VE.getValueID(I.getOperand(i)));
1373     break;
1374
1375   case Instruction::Invoke: {
1376     const InvokeInst *II = cast<InvokeInst>(&I);
1377     const Value *Callee(II->getCalledValue());
1378     PointerType *PTy = cast<PointerType>(Callee->getType());
1379     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1380     Code = bitc::FUNC_CODE_INST_INVOKE;
1381
1382     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1383     Vals.push_back(II->getCallingConv());
1384     Vals.push_back(VE.getValueID(II->getNormalDest()));
1385     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1386     PushValueAndType(Callee, InstID, Vals, VE);
1387
1388     // Emit value #'s for the fixed parameters.
1389     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1390       pushValue(I.getOperand(i), InstID, Vals, VE);  // fixed param.
1391
1392     // Emit type/value pairs for varargs params.
1393     if (FTy->isVarArg()) {
1394       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1395            i != e; ++i)
1396         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1397     }
1398     break;
1399   }
1400   case Instruction::Resume:
1401     Code = bitc::FUNC_CODE_INST_RESUME;
1402     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1403     break;
1404   case Instruction::Unreachable:
1405     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1406     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1407     break;
1408
1409   case Instruction::PHI: {
1410     const PHINode &PN = cast<PHINode>(I);
1411     Code = bitc::FUNC_CODE_INST_PHI;
1412     // With the newer instruction encoding, forward references could give
1413     // negative valued IDs.  This is most common for PHIs, so we use
1414     // signed VBRs.
1415     SmallVector<uint64_t, 128> Vals64;
1416     Vals64.push_back(VE.getTypeID(PN.getType()));
1417     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1418       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
1419       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1420     }
1421     // Emit a Vals64 vector and exit.
1422     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
1423     Vals64.clear();
1424     return;
1425   }
1426
1427   case Instruction::LandingPad: {
1428     const LandingPadInst &LP = cast<LandingPadInst>(I);
1429     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1430     Vals.push_back(VE.getTypeID(LP.getType()));
1431     PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1432     Vals.push_back(LP.isCleanup());
1433     Vals.push_back(LP.getNumClauses());
1434     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1435       if (LP.isCatch(I))
1436         Vals.push_back(LandingPadInst::Catch);
1437       else
1438         Vals.push_back(LandingPadInst::Filter);
1439       PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1440     }
1441     break;
1442   }
1443
1444   case Instruction::Alloca: {
1445     Code = bitc::FUNC_CODE_INST_ALLOCA;
1446     Vals.push_back(VE.getTypeID(I.getType()));
1447     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1448     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1449     const AllocaInst &AI = cast<AllocaInst>(I);
1450     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
1451     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
1452            "not enough bits for maximum alignment");
1453     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
1454     AlignRecord |= AI.isUsedWithInAlloca() << 5;
1455     Vals.push_back(AlignRecord);
1456     break;
1457   }
1458
1459   case Instruction::Load:
1460     if (cast<LoadInst>(I).isAtomic()) {
1461       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1462       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1463     } else {
1464       Code = bitc::FUNC_CODE_INST_LOAD;
1465       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1466         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1467     }
1468     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1469     Vals.push_back(cast<LoadInst>(I).isVolatile());
1470     if (cast<LoadInst>(I).isAtomic()) {
1471       Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1472       Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1473     }
1474     break;
1475   case Instruction::Store:
1476     if (cast<StoreInst>(I).isAtomic())
1477       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1478     else
1479       Code = bitc::FUNC_CODE_INST_STORE;
1480     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1481     pushValue(I.getOperand(0), InstID, Vals, VE);         // val.
1482     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1483     Vals.push_back(cast<StoreInst>(I).isVolatile());
1484     if (cast<StoreInst>(I).isAtomic()) {
1485       Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1486       Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1487     }
1488     break;
1489   case Instruction::AtomicCmpXchg:
1490     Code = bitc::FUNC_CODE_INST_CMPXCHG;
1491     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1492     pushValue(I.getOperand(1), InstID, Vals, VE);         // cmp.
1493     pushValue(I.getOperand(2), InstID, Vals, VE);         // newval.
1494     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1495     Vals.push_back(GetEncodedOrdering(
1496                      cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
1497     Vals.push_back(GetEncodedSynchScope(
1498                      cast<AtomicCmpXchgInst>(I).getSynchScope()));
1499     Vals.push_back(GetEncodedOrdering(
1500                      cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
1501     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
1502     break;
1503   case Instruction::AtomicRMW:
1504     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1505     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1506     pushValue(I.getOperand(1), InstID, Vals, VE);         // val.
1507     Vals.push_back(GetEncodedRMWOperation(
1508                      cast<AtomicRMWInst>(I).getOperation()));
1509     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1510     Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1511     Vals.push_back(GetEncodedSynchScope(
1512                      cast<AtomicRMWInst>(I).getSynchScope()));
1513     break;
1514   case Instruction::Fence:
1515     Code = bitc::FUNC_CODE_INST_FENCE;
1516     Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1517     Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1518     break;
1519   case Instruction::Call: {
1520     const CallInst &CI = cast<CallInst>(I);
1521     PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1522     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1523
1524     Code = bitc::FUNC_CODE_INST_CALL;
1525
1526     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1527     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
1528                    unsigned(CI.isMustTailCall()) << 14);
1529     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1530
1531     // Emit value #'s for the fixed parameters.
1532     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
1533       // Check for labels (can happen with asm labels).
1534       if (FTy->getParamType(i)->isLabelTy())
1535         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
1536       else
1537         pushValue(CI.getArgOperand(i), InstID, Vals, VE);  // fixed param.
1538     }
1539
1540     // Emit type/value pairs for varargs params.
1541     if (FTy->isVarArg()) {
1542       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1543            i != e; ++i)
1544         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1545     }
1546     break;
1547   }
1548   case Instruction::VAArg:
1549     Code = bitc::FUNC_CODE_INST_VAARG;
1550     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1551     pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
1552     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1553     break;
1554   }
1555
1556   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1557   Vals.clear();
1558 }
1559
1560 // Emit names for globals/functions etc.
1561 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1562                                   const ValueEnumerator &VE,
1563                                   BitstreamWriter &Stream) {
1564   if (VST.empty()) return;
1565   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1566
1567   // FIXME: Set up the abbrev, we know how many values there are!
1568   // FIXME: We know if the type names can use 7-bit ascii.
1569   SmallVector<unsigned, 64> NameVals;
1570
1571   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1572        SI != SE; ++SI) {
1573
1574     const ValueName &Name = *SI;
1575
1576     // Figure out the encoding to use for the name.
1577     bool is7Bit = true;
1578     bool isChar6 = true;
1579     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1580          C != E; ++C) {
1581       if (isChar6)
1582         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1583       if ((unsigned char)*C & 128) {
1584         is7Bit = false;
1585         break;  // don't bother scanning the rest.
1586       }
1587     }
1588
1589     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1590
1591     // VST_ENTRY:   [valueid, namechar x N]
1592     // VST_BBENTRY: [bbid, namechar x N]
1593     unsigned Code;
1594     if (isa<BasicBlock>(SI->getValue())) {
1595       Code = bitc::VST_CODE_BBENTRY;
1596       if (isChar6)
1597         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1598     } else {
1599       Code = bitc::VST_CODE_ENTRY;
1600       if (isChar6)
1601         AbbrevToUse = VST_ENTRY_6_ABBREV;
1602       else if (is7Bit)
1603         AbbrevToUse = VST_ENTRY_7_ABBREV;
1604     }
1605
1606     NameVals.push_back(VE.getValueID(SI->getValue()));
1607     for (const char *P = Name.getKeyData(),
1608          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1609       NameVals.push_back((unsigned char)*P);
1610
1611     // Emit the finished record.
1612     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1613     NameVals.clear();
1614   }
1615   Stream.ExitBlock();
1616 }
1617
1618 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
1619                          BitstreamWriter &Stream) {
1620   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
1621   unsigned Code;
1622   if (isa<BasicBlock>(Order.V))
1623     Code = bitc::USELIST_CODE_BB;
1624   else
1625     Code = bitc::USELIST_CODE_DEFAULT;
1626
1627   SmallVector<uint64_t, 64> Record;
1628   for (unsigned I : Order.Shuffle)
1629     Record.push_back(I);
1630   Record.push_back(VE.getValueID(Order.V));
1631   Stream.EmitRecord(Code, Record);
1632 }
1633
1634 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
1635                               BitstreamWriter &Stream) {
1636   auto hasMore = [&]() {
1637     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
1638   };
1639   if (!hasMore())
1640     // Nothing to do.
1641     return;
1642
1643   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
1644   while (hasMore()) {
1645     WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
1646     VE.UseListOrders.pop_back();
1647   }
1648   Stream.ExitBlock();
1649 }
1650
1651 /// WriteFunction - Emit a function body to the module stream.
1652 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1653                           BitstreamWriter &Stream) {
1654   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1655   VE.incorporateFunction(F);
1656
1657   SmallVector<unsigned, 64> Vals;
1658
1659   // Emit the number of basic blocks, so the reader can create them ahead of
1660   // time.
1661   Vals.push_back(VE.getBasicBlocks().size());
1662   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1663   Vals.clear();
1664
1665   // If there are function-local constants, emit them now.
1666   unsigned CstStart, CstEnd;
1667   VE.getFunctionConstantRange(CstStart, CstEnd);
1668   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1669
1670   // If there is function-local metadata, emit it now.
1671   WriteFunctionLocalMetadata(F, VE, Stream);
1672
1673   // Keep a running idea of what the instruction ID is.
1674   unsigned InstID = CstEnd;
1675
1676   bool NeedsMetadataAttachment = false;
1677
1678   DebugLoc LastDL;
1679
1680   // Finally, emit all the instructions, in order.
1681   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1682     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1683          I != E; ++I) {
1684       WriteInstruction(*I, InstID, VE, Stream, Vals);
1685
1686       if (!I->getType()->isVoidTy())
1687         ++InstID;
1688
1689       // If the instruction has metadata, write a metadata attachment later.
1690       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1691
1692       // If the instruction has a debug location, emit it.
1693       DebugLoc DL = I->getDebugLoc();
1694       if (DL.isUnknown()) {
1695         // nothing todo.
1696       } else if (DL == LastDL) {
1697         // Just repeat the same debug loc as last time.
1698         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1699       } else {
1700         MDNode *Scope, *IA;
1701         DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1702         assert(Scope && "Expected valid scope");
1703
1704         Vals.push_back(DL.getLine());
1705         Vals.push_back(DL.getCol());
1706         Vals.push_back(Scope ? VE.getMetadataID(Scope) + 1 : 0);
1707         Vals.push_back(IA ? VE.getMetadataID(IA) + 1 : 0);
1708         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1709         Vals.clear();
1710
1711         LastDL = DL;
1712       }
1713     }
1714
1715   // Emit names for all the instructions etc.
1716   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1717
1718   if (NeedsMetadataAttachment)
1719     WriteMetadataAttachment(F, VE, Stream);
1720   if (shouldPreserveBitcodeUseListOrder())
1721     WriteUseListBlock(&F, VE, Stream);
1722   VE.purgeFunction();
1723   Stream.ExitBlock();
1724 }
1725
1726 // Emit blockinfo, which defines the standard abbreviations etc.
1727 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1728   // We only want to emit block info records for blocks that have multiple
1729   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
1730   // Other blocks can define their abbrevs inline.
1731   Stream.EnterBlockInfoBlock(2);
1732
1733   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1734     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1735     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1736     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1737     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1738     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1739     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1740                                    Abbv) != VST_ENTRY_8_ABBREV)
1741       llvm_unreachable("Unexpected abbrev ordering!");
1742   }
1743
1744   { // 7-bit fixed width VST_ENTRY strings.
1745     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1746     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1747     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1748     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1749     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1750     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1751                                    Abbv) != VST_ENTRY_7_ABBREV)
1752       llvm_unreachable("Unexpected abbrev ordering!");
1753   }
1754   { // 6-bit char6 VST_ENTRY strings.
1755     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1756     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1757     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1758     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1759     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1760     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1761                                    Abbv) != VST_ENTRY_6_ABBREV)
1762       llvm_unreachable("Unexpected abbrev ordering!");
1763   }
1764   { // 6-bit char6 VST_BBENTRY strings.
1765     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1766     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1767     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1768     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1769     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1770     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1771                                    Abbv) != VST_BBENTRY_6_ABBREV)
1772       llvm_unreachable("Unexpected abbrev ordering!");
1773   }
1774
1775
1776
1777   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1778     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1779     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1780     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1781                               Log2_32_Ceil(VE.getTypes().size()+1)));
1782     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1783                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1784       llvm_unreachable("Unexpected abbrev ordering!");
1785   }
1786
1787   { // INTEGER abbrev for CONSTANTS_BLOCK.
1788     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1789     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1790     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1791     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1792                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1793       llvm_unreachable("Unexpected abbrev ordering!");
1794   }
1795
1796   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1797     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1798     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1799     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1800     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1801                               Log2_32_Ceil(VE.getTypes().size()+1)));
1802     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1803
1804     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1805                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1806       llvm_unreachable("Unexpected abbrev ordering!");
1807   }
1808   { // NULL abbrev for CONSTANTS_BLOCK.
1809     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1810     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1811     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1812                                    Abbv) != CONSTANTS_NULL_Abbrev)
1813       llvm_unreachable("Unexpected abbrev ordering!");
1814   }
1815
1816   // FIXME: This should only use space for first class types!
1817
1818   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1819     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1820     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1821     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1822     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1823     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1824     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1825                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1826       llvm_unreachable("Unexpected abbrev ordering!");
1827   }
1828   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1829     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1830     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1831     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1832     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1833     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1834     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1835                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1836       llvm_unreachable("Unexpected abbrev ordering!");
1837   }
1838   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1839     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1840     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1841     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1842     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1843     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1844     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1845     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1846                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1847       llvm_unreachable("Unexpected abbrev ordering!");
1848   }
1849   { // INST_CAST abbrev for FUNCTION_BLOCK.
1850     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1851     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1852     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1853     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1854                               Log2_32_Ceil(VE.getTypes().size()+1)));
1855     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1856     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1857                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1858       llvm_unreachable("Unexpected abbrev ordering!");
1859   }
1860
1861   { // INST_RET abbrev for FUNCTION_BLOCK.
1862     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1863     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1864     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1865                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1866       llvm_unreachable("Unexpected abbrev ordering!");
1867   }
1868   { // INST_RET abbrev for FUNCTION_BLOCK.
1869     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1870     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1871     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1872     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1873                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1874       llvm_unreachable("Unexpected abbrev ordering!");
1875   }
1876   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1877     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1878     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1879     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1880                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1881       llvm_unreachable("Unexpected abbrev ordering!");
1882   }
1883
1884   Stream.ExitBlock();
1885 }
1886
1887 /// WriteModule - Emit the specified module to the bitstream.
1888 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1889   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1890
1891   SmallVector<unsigned, 1> Vals;
1892   unsigned CurVersion = 1;
1893   Vals.push_back(CurVersion);
1894   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1895
1896   // Analyze the module, enumerating globals, functions, etc.
1897   ValueEnumerator VE(*M);
1898
1899   // Emit blockinfo, which defines the standard abbreviations etc.
1900   WriteBlockInfo(VE, Stream);
1901
1902   // Emit information about attribute groups.
1903   WriteAttributeGroupTable(VE, Stream);
1904
1905   // Emit information about parameter attributes.
1906   WriteAttributeTable(VE, Stream);
1907
1908   // Emit information describing all of the types in the module.
1909   WriteTypeTable(VE, Stream);
1910
1911   writeComdats(VE, Stream);
1912
1913   // Emit top-level description of module, including target triple, inline asm,
1914   // descriptors for global variables, and function prototype info.
1915   WriteModuleInfo(M, VE, Stream);
1916
1917   // Emit constants.
1918   WriteModuleConstants(VE, Stream);
1919
1920   // Emit metadata.
1921   WriteModuleMetadata(M, VE, Stream);
1922
1923   // Emit metadata.
1924   WriteModuleMetadataStore(M, Stream);
1925
1926   // Emit names for globals/functions etc.
1927   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1928
1929   // Emit module-level use-lists.
1930   if (shouldPreserveBitcodeUseListOrder())
1931     WriteUseListBlock(nullptr, VE, Stream);
1932
1933   // Emit function bodies.
1934   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1935     if (!F->isDeclaration())
1936       WriteFunction(*F, VE, Stream);
1937
1938   Stream.ExitBlock();
1939 }
1940
1941 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1942 /// header and trailer to make it compatible with the system archiver.  To do
1943 /// this we emit the following header, and then emit a trailer that pads the
1944 /// file out to be a multiple of 16 bytes.
1945 ///
1946 /// struct bc_header {
1947 ///   uint32_t Magic;         // 0x0B17C0DE
1948 ///   uint32_t Version;       // Version, currently always 0.
1949 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1950 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1951 ///   uint32_t CPUType;       // CPU specifier.
1952 ///   ... potentially more later ...
1953 /// };
1954 enum {
1955   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1956   DarwinBCHeaderSize = 5*4
1957 };
1958
1959 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
1960                                uint32_t &Position) {
1961   Buffer[Position + 0] = (unsigned char) (Value >>  0);
1962   Buffer[Position + 1] = (unsigned char) (Value >>  8);
1963   Buffer[Position + 2] = (unsigned char) (Value >> 16);
1964   Buffer[Position + 3] = (unsigned char) (Value >> 24);
1965   Position += 4;
1966 }
1967
1968 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
1969                                          const Triple &TT) {
1970   unsigned CPUType = ~0U;
1971
1972   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1973   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1974   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
1975   // specific constants here because they are implicitly part of the Darwin ABI.
1976   enum {
1977     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1978     DARWIN_CPU_TYPE_X86        = 7,
1979     DARWIN_CPU_TYPE_ARM        = 12,
1980     DARWIN_CPU_TYPE_POWERPC    = 18
1981   };
1982
1983   Triple::ArchType Arch = TT.getArch();
1984   if (Arch == Triple::x86_64)
1985     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1986   else if (Arch == Triple::x86)
1987     CPUType = DARWIN_CPU_TYPE_X86;
1988   else if (Arch == Triple::ppc)
1989     CPUType = DARWIN_CPU_TYPE_POWERPC;
1990   else if (Arch == Triple::ppc64)
1991     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1992   else if (Arch == Triple::arm || Arch == Triple::thumb)
1993     CPUType = DARWIN_CPU_TYPE_ARM;
1994
1995   // Traditional Bitcode starts after header.
1996   assert(Buffer.size() >= DarwinBCHeaderSize &&
1997          "Expected header size to be reserved");
1998   unsigned BCOffset = DarwinBCHeaderSize;
1999   unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
2000
2001   // Write the magic and version.
2002   unsigned Position = 0;
2003   WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
2004   WriteInt32ToBuffer(0          , Buffer, Position); // Version.
2005   WriteInt32ToBuffer(BCOffset   , Buffer, Position);
2006   WriteInt32ToBuffer(BCSize     , Buffer, Position);
2007   WriteInt32ToBuffer(CPUType    , Buffer, Position);
2008
2009   // If the file is not a multiple of 16 bytes, insert dummy padding.
2010   while (Buffer.size() & 15)
2011     Buffer.push_back(0);
2012 }
2013
2014 /// WriteBitcodeToFile - Write the specified module to the specified output
2015 /// stream.
2016 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
2017   SmallVector<char, 0> Buffer;
2018   Buffer.reserve(256*1024);
2019
2020   // If this is darwin or another generic macho target, reserve space for the
2021   // header.
2022   Triple TT(M->getTargetTriple());
2023   if (TT.isOSDarwin())
2024     Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
2025
2026   // Emit the module into the buffer.
2027   {
2028     BitstreamWriter Stream(Buffer);
2029
2030     // Emit the file header.
2031     Stream.Emit((unsigned)'B', 8);
2032     Stream.Emit((unsigned)'C', 8);
2033     Stream.Emit(0x0, 4);
2034     Stream.Emit(0xC, 4);
2035     Stream.Emit(0xE, 4);
2036     Stream.Emit(0xD, 4);
2037
2038     // Emit the module.
2039     WriteModule(M, Stream);
2040   }
2041
2042   if (TT.isOSDarwin())
2043     EmitDarwinBCHeaderAndTrailer(Buffer, TT);
2044
2045   // Write the generated bitstream to "Out".
2046   Out.write((char*)&Buffer.front(), Buffer.size());
2047 }