20e31d1a102e0a85f143362e74f8118ad48e219d
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Bitcode/BitstreamWriter.h"
18 #include "llvm/Bitcode/LLVMBitCodes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/InlineAsm.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/UseListOrder.h"
27 #include "llvm/IR/ValueSymbolTable.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/Program.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <cctype>
34 #include <map>
35 using namespace llvm;
36
37 /// These are manifest constants used by the bitcode writer. They do not need to
38 /// be kept in sync with the reader, but need to be consistent within this file.
39 enum {
40   // VALUE_SYMTAB_BLOCK abbrev id's.
41   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
42   VST_ENTRY_7_ABBREV,
43   VST_ENTRY_6_ABBREV,
44   VST_BBENTRY_6_ABBREV,
45
46   // CONSTANTS_BLOCK abbrev id's.
47   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
48   CONSTANTS_INTEGER_ABBREV,
49   CONSTANTS_CE_CAST_Abbrev,
50   CONSTANTS_NULL_Abbrev,
51
52   // FUNCTION_BLOCK abbrev id's.
53   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
54   FUNCTION_INST_BINOP_ABBREV,
55   FUNCTION_INST_BINOP_FLAGS_ABBREV,
56   FUNCTION_INST_CAST_ABBREV,
57   FUNCTION_INST_RET_VOID_ABBREV,
58   FUNCTION_INST_RET_VAL_ABBREV,
59   FUNCTION_INST_UNREACHABLE_ABBREV,
60   FUNCTION_INST_GEP_ABBREV,
61 };
62
63 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
64   switch (Opcode) {
65   default: llvm_unreachable("Unknown cast instruction!");
66   case Instruction::Trunc   : return bitc::CAST_TRUNC;
67   case Instruction::ZExt    : return bitc::CAST_ZEXT;
68   case Instruction::SExt    : return bitc::CAST_SEXT;
69   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
70   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
71   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
72   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
73   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
74   case Instruction::FPExt   : return bitc::CAST_FPEXT;
75   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
76   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
77   case Instruction::BitCast : return bitc::CAST_BITCAST;
78   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
79   }
80 }
81
82 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
83   switch (Opcode) {
84   default: llvm_unreachable("Unknown binary instruction!");
85   case Instruction::Add:
86   case Instruction::FAdd: return bitc::BINOP_ADD;
87   case Instruction::Sub:
88   case Instruction::FSub: return bitc::BINOP_SUB;
89   case Instruction::Mul:
90   case Instruction::FMul: return bitc::BINOP_MUL;
91   case Instruction::UDiv: return bitc::BINOP_UDIV;
92   case Instruction::FDiv:
93   case Instruction::SDiv: return bitc::BINOP_SDIV;
94   case Instruction::URem: return bitc::BINOP_UREM;
95   case Instruction::FRem:
96   case Instruction::SRem: return bitc::BINOP_SREM;
97   case Instruction::Shl:  return bitc::BINOP_SHL;
98   case Instruction::LShr: return bitc::BINOP_LSHR;
99   case Instruction::AShr: return bitc::BINOP_ASHR;
100   case Instruction::And:  return bitc::BINOP_AND;
101   case Instruction::Or:   return bitc::BINOP_OR;
102   case Instruction::Xor:  return bitc::BINOP_XOR;
103   }
104 }
105
106 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
107   switch (Op) {
108   default: llvm_unreachable("Unknown RMW operation!");
109   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
110   case AtomicRMWInst::Add: return bitc::RMW_ADD;
111   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
112   case AtomicRMWInst::And: return bitc::RMW_AND;
113   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
114   case AtomicRMWInst::Or: return bitc::RMW_OR;
115   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
116   case AtomicRMWInst::Max: return bitc::RMW_MAX;
117   case AtomicRMWInst::Min: return bitc::RMW_MIN;
118   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
119   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
120   }
121 }
122
123 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
124   switch (Ordering) {
125   case NotAtomic: return bitc::ORDERING_NOTATOMIC;
126   case Unordered: return bitc::ORDERING_UNORDERED;
127   case Monotonic: return bitc::ORDERING_MONOTONIC;
128   case Acquire: return bitc::ORDERING_ACQUIRE;
129   case Release: return bitc::ORDERING_RELEASE;
130   case AcquireRelease: return bitc::ORDERING_ACQREL;
131   case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
132   }
133   llvm_unreachable("Invalid ordering");
134 }
135
136 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
137   switch (SynchScope) {
138   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
139   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
140   }
141   llvm_unreachable("Invalid synch scope");
142 }
143
144 static void WriteStringRecord(unsigned Code, StringRef Str,
145                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
146   SmallVector<unsigned, 64> Vals;
147
148   // Code: [strchar x N]
149   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
150     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
151       AbbrevToUse = 0;
152     Vals.push_back(Str[i]);
153   }
154
155   // Emit the finished record.
156   Stream.EmitRecord(Code, Vals, AbbrevToUse);
157 }
158
159 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
160   switch (Kind) {
161   case Attribute::Alignment:
162     return bitc::ATTR_KIND_ALIGNMENT;
163   case Attribute::AlwaysInline:
164     return bitc::ATTR_KIND_ALWAYS_INLINE;
165   case Attribute::ArgMemOnly:
166     return bitc::ATTR_KIND_ARGMEMONLY;
167   case Attribute::Builtin:
168     return bitc::ATTR_KIND_BUILTIN;
169   case Attribute::ByVal:
170     return bitc::ATTR_KIND_BY_VAL;
171   case Attribute::Convergent:
172     return bitc::ATTR_KIND_CONVERGENT;
173   case Attribute::InAlloca:
174     return bitc::ATTR_KIND_IN_ALLOCA;
175   case Attribute::Cold:
176     return bitc::ATTR_KIND_COLD;
177   case Attribute::InlineHint:
178     return bitc::ATTR_KIND_INLINE_HINT;
179   case Attribute::InReg:
180     return bitc::ATTR_KIND_IN_REG;
181   case Attribute::JumpTable:
182     return bitc::ATTR_KIND_JUMP_TABLE;
183   case Attribute::MinSize:
184     return bitc::ATTR_KIND_MIN_SIZE;
185   case Attribute::Naked:
186     return bitc::ATTR_KIND_NAKED;
187   case Attribute::Nest:
188     return bitc::ATTR_KIND_NEST;
189   case Attribute::NoAlias:
190     return bitc::ATTR_KIND_NO_ALIAS;
191   case Attribute::NoBuiltin:
192     return bitc::ATTR_KIND_NO_BUILTIN;
193   case Attribute::NoCapture:
194     return bitc::ATTR_KIND_NO_CAPTURE;
195   case Attribute::NoDuplicate:
196     return bitc::ATTR_KIND_NO_DUPLICATE;
197   case Attribute::NoImplicitFloat:
198     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
199   case Attribute::NoInline:
200     return bitc::ATTR_KIND_NO_INLINE;
201   case Attribute::NonLazyBind:
202     return bitc::ATTR_KIND_NON_LAZY_BIND;
203   case Attribute::NonNull:
204     return bitc::ATTR_KIND_NON_NULL;
205   case Attribute::Dereferenceable:
206     return bitc::ATTR_KIND_DEREFERENCEABLE;
207   case Attribute::DereferenceableOrNull:
208     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
209   case Attribute::NoRedZone:
210     return bitc::ATTR_KIND_NO_RED_ZONE;
211   case Attribute::NoReturn:
212     return bitc::ATTR_KIND_NO_RETURN;
213   case Attribute::NoUnwind:
214     return bitc::ATTR_KIND_NO_UNWIND;
215   case Attribute::OptimizeForSize:
216     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
217   case Attribute::OptimizeNone:
218     return bitc::ATTR_KIND_OPTIMIZE_NONE;
219   case Attribute::ReadNone:
220     return bitc::ATTR_KIND_READ_NONE;
221   case Attribute::ReadOnly:
222     return bitc::ATTR_KIND_READ_ONLY;
223   case Attribute::Returned:
224     return bitc::ATTR_KIND_RETURNED;
225   case Attribute::ReturnsTwice:
226     return bitc::ATTR_KIND_RETURNS_TWICE;
227   case Attribute::SExt:
228     return bitc::ATTR_KIND_S_EXT;
229   case Attribute::StackAlignment:
230     return bitc::ATTR_KIND_STACK_ALIGNMENT;
231   case Attribute::StackProtect:
232     return bitc::ATTR_KIND_STACK_PROTECT;
233   case Attribute::StackProtectReq:
234     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
235   case Attribute::StackProtectStrong:
236     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
237   case Attribute::SafeStack:
238     return bitc::ATTR_KIND_SAFESTACK;
239   case Attribute::StructRet:
240     return bitc::ATTR_KIND_STRUCT_RET;
241   case Attribute::SanitizeAddress:
242     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
243   case Attribute::SanitizeThread:
244     return bitc::ATTR_KIND_SANITIZE_THREAD;
245   case Attribute::SanitizeMemory:
246     return bitc::ATTR_KIND_SANITIZE_MEMORY;
247   case Attribute::UWTable:
248     return bitc::ATTR_KIND_UW_TABLE;
249   case Attribute::ZExt:
250     return bitc::ATTR_KIND_Z_EXT;
251   case Attribute::EndAttrKinds:
252     llvm_unreachable("Can not encode end-attribute kinds marker.");
253   case Attribute::None:
254     llvm_unreachable("Can not encode none-attribute.");
255   }
256
257   llvm_unreachable("Trying to encode unknown attribute");
258 }
259
260 static void WriteAttributeGroupTable(const ValueEnumerator &VE,
261                                      BitstreamWriter &Stream) {
262   const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
263   if (AttrGrps.empty()) return;
264
265   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
266
267   SmallVector<uint64_t, 64> Record;
268   for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
269     AttributeSet AS = AttrGrps[i];
270     for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
271       AttributeSet A = AS.getSlotAttributes(i);
272
273       Record.push_back(VE.getAttributeGroupID(A));
274       Record.push_back(AS.getSlotIndex(i));
275
276       for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
277            I != E; ++I) {
278         Attribute Attr = *I;
279         if (Attr.isEnumAttribute()) {
280           Record.push_back(0);
281           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
282         } else if (Attr.isIntAttribute()) {
283           Record.push_back(1);
284           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
285           Record.push_back(Attr.getValueAsInt());
286         } else {
287           StringRef Kind = Attr.getKindAsString();
288           StringRef Val = Attr.getValueAsString();
289
290           Record.push_back(Val.empty() ? 3 : 4);
291           Record.append(Kind.begin(), Kind.end());
292           Record.push_back(0);
293           if (!Val.empty()) {
294             Record.append(Val.begin(), Val.end());
295             Record.push_back(0);
296           }
297         }
298       }
299
300       Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
301       Record.clear();
302     }
303   }
304
305   Stream.ExitBlock();
306 }
307
308 static void WriteAttributeTable(const ValueEnumerator &VE,
309                                 BitstreamWriter &Stream) {
310   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
311   if (Attrs.empty()) return;
312
313   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
314
315   SmallVector<uint64_t, 64> Record;
316   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
317     const AttributeSet &A = Attrs[i];
318     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
319       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
320
321     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
322     Record.clear();
323   }
324
325   Stream.ExitBlock();
326 }
327
328 /// WriteTypeTable - Write out the type table for a module.
329 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
330   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
331
332   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
333   SmallVector<uint64_t, 64> TypeVals;
334
335   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
336
337   // Abbrev for TYPE_CODE_POINTER.
338   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
339   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
340   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
341   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
342   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
343
344   // Abbrev for TYPE_CODE_FUNCTION.
345   Abbv = new BitCodeAbbrev();
346   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
347   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
348   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
349   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
350
351   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
352
353   // Abbrev for TYPE_CODE_STRUCT_ANON.
354   Abbv = new BitCodeAbbrev();
355   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
356   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
357   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
358   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
359
360   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
361
362   // Abbrev for TYPE_CODE_STRUCT_NAME.
363   Abbv = new BitCodeAbbrev();
364   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
365   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
366   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
367   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
368
369   // Abbrev for TYPE_CODE_STRUCT_NAMED.
370   Abbv = new BitCodeAbbrev();
371   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
372   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
373   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
374   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
375
376   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
377
378   // Abbrev for TYPE_CODE_ARRAY.
379   Abbv = new BitCodeAbbrev();
380   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
381   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
382   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
383
384   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
385
386   // Emit an entry count so the reader can reserve space.
387   TypeVals.push_back(TypeList.size());
388   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
389   TypeVals.clear();
390
391   // Loop over all of the types, emitting each in turn.
392   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
393     Type *T = TypeList[i];
394     int AbbrevToUse = 0;
395     unsigned Code = 0;
396
397     switch (T->getTypeID()) {
398     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
399     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
400     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
401     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
402     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
403     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
404     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
405     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
406     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
407     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
408     case Type::IntegerTyID:
409       // INTEGER: [width]
410       Code = bitc::TYPE_CODE_INTEGER;
411       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
412       break;
413     case Type::PointerTyID: {
414       PointerType *PTy = cast<PointerType>(T);
415       // POINTER: [pointee type, address space]
416       Code = bitc::TYPE_CODE_POINTER;
417       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
418       unsigned AddressSpace = PTy->getAddressSpace();
419       TypeVals.push_back(AddressSpace);
420       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
421       break;
422     }
423     case Type::FunctionTyID: {
424       FunctionType *FT = cast<FunctionType>(T);
425       // FUNCTION: [isvararg, retty, paramty x N]
426       Code = bitc::TYPE_CODE_FUNCTION;
427       TypeVals.push_back(FT->isVarArg());
428       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
429       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
430         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
431       AbbrevToUse = FunctionAbbrev;
432       break;
433     }
434     case Type::StructTyID: {
435       StructType *ST = cast<StructType>(T);
436       // STRUCT: [ispacked, eltty x N]
437       TypeVals.push_back(ST->isPacked());
438       // Output all of the element types.
439       for (StructType::element_iterator I = ST->element_begin(),
440            E = ST->element_end(); I != E; ++I)
441         TypeVals.push_back(VE.getTypeID(*I));
442
443       if (ST->isLiteral()) {
444         Code = bitc::TYPE_CODE_STRUCT_ANON;
445         AbbrevToUse = StructAnonAbbrev;
446       } else {
447         if (ST->isOpaque()) {
448           Code = bitc::TYPE_CODE_OPAQUE;
449         } else {
450           Code = bitc::TYPE_CODE_STRUCT_NAMED;
451           AbbrevToUse = StructNamedAbbrev;
452         }
453
454         // Emit the name if it is present.
455         if (!ST->getName().empty())
456           WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
457                             StructNameAbbrev, Stream);
458       }
459       break;
460     }
461     case Type::ArrayTyID: {
462       ArrayType *AT = cast<ArrayType>(T);
463       // ARRAY: [numelts, eltty]
464       Code = bitc::TYPE_CODE_ARRAY;
465       TypeVals.push_back(AT->getNumElements());
466       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
467       AbbrevToUse = ArrayAbbrev;
468       break;
469     }
470     case Type::VectorTyID: {
471       VectorType *VT = cast<VectorType>(T);
472       // VECTOR [numelts, eltty]
473       Code = bitc::TYPE_CODE_VECTOR;
474       TypeVals.push_back(VT->getNumElements());
475       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
476       break;
477     }
478     }
479
480     // Emit the finished record.
481     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
482     TypeVals.clear();
483   }
484
485   Stream.ExitBlock();
486 }
487
488 static unsigned getEncodedLinkage(const GlobalValue &GV) {
489   switch (GV.getLinkage()) {
490   case GlobalValue::ExternalLinkage:
491     return 0;
492   case GlobalValue::WeakAnyLinkage:
493     return 16;
494   case GlobalValue::AppendingLinkage:
495     return 2;
496   case GlobalValue::InternalLinkage:
497     return 3;
498   case GlobalValue::LinkOnceAnyLinkage:
499     return 18;
500   case GlobalValue::ExternalWeakLinkage:
501     return 7;
502   case GlobalValue::CommonLinkage:
503     return 8;
504   case GlobalValue::PrivateLinkage:
505     return 9;
506   case GlobalValue::WeakODRLinkage:
507     return 17;
508   case GlobalValue::LinkOnceODRLinkage:
509     return 19;
510   case GlobalValue::AvailableExternallyLinkage:
511     return 12;
512   }
513   llvm_unreachable("Invalid linkage");
514 }
515
516 static unsigned getEncodedVisibility(const GlobalValue &GV) {
517   switch (GV.getVisibility()) {
518   case GlobalValue::DefaultVisibility:   return 0;
519   case GlobalValue::HiddenVisibility:    return 1;
520   case GlobalValue::ProtectedVisibility: return 2;
521   }
522   llvm_unreachable("Invalid visibility");
523 }
524
525 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
526   switch (GV.getDLLStorageClass()) {
527   case GlobalValue::DefaultStorageClass:   return 0;
528   case GlobalValue::DLLImportStorageClass: return 1;
529   case GlobalValue::DLLExportStorageClass: return 2;
530   }
531   llvm_unreachable("Invalid DLL storage class");
532 }
533
534 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
535   switch (GV.getThreadLocalMode()) {
536     case GlobalVariable::NotThreadLocal:         return 0;
537     case GlobalVariable::GeneralDynamicTLSModel: return 1;
538     case GlobalVariable::LocalDynamicTLSModel:   return 2;
539     case GlobalVariable::InitialExecTLSModel:    return 3;
540     case GlobalVariable::LocalExecTLSModel:      return 4;
541   }
542   llvm_unreachable("Invalid TLS model");
543 }
544
545 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
546   switch (C.getSelectionKind()) {
547   case Comdat::Any:
548     return bitc::COMDAT_SELECTION_KIND_ANY;
549   case Comdat::ExactMatch:
550     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
551   case Comdat::Largest:
552     return bitc::COMDAT_SELECTION_KIND_LARGEST;
553   case Comdat::NoDuplicates:
554     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
555   case Comdat::SameSize:
556     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
557   }
558   llvm_unreachable("Invalid selection kind");
559 }
560
561 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
562   SmallVector<uint16_t, 64> Vals;
563   for (const Comdat *C : VE.getComdats()) {
564     // COMDAT: [selection_kind, name]
565     Vals.push_back(getEncodedComdatSelectionKind(*C));
566     size_t Size = C->getName().size();
567     assert(isUInt<16>(Size));
568     Vals.push_back(Size);
569     for (char Chr : C->getName())
570       Vals.push_back((unsigned char)Chr);
571     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
572     Vals.clear();
573   }
574 }
575
576 // Emit top-level description of module, including target triple, inline asm,
577 // descriptors for global variables, and function prototype info.
578 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
579                             BitstreamWriter &Stream) {
580   // Emit various pieces of data attached to a module.
581   if (!M->getTargetTriple().empty())
582     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
583                       0/*TODO*/, Stream);
584   const std::string &DL = M->getDataLayoutStr();
585   if (!DL.empty())
586     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
587   if (!M->getModuleInlineAsm().empty())
588     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
589                       0/*TODO*/, Stream);
590
591   // Emit information about sections and GC, computing how many there are. Also
592   // compute the maximum alignment value.
593   std::map<std::string, unsigned> SectionMap;
594   std::map<std::string, unsigned> GCMap;
595   unsigned MaxAlignment = 0;
596   unsigned MaxGlobalType = 0;
597   for (const GlobalValue &GV : M->globals()) {
598     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
599     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
600     if (GV.hasSection()) {
601       // Give section names unique ID's.
602       unsigned &Entry = SectionMap[GV.getSection()];
603       if (!Entry) {
604         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
605                           0/*TODO*/, Stream);
606         Entry = SectionMap.size();
607       }
608     }
609   }
610   for (const Function &F : *M) {
611     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
612     if (F.hasSection()) {
613       // Give section names unique ID's.
614       unsigned &Entry = SectionMap[F.getSection()];
615       if (!Entry) {
616         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
617                           0/*TODO*/, Stream);
618         Entry = SectionMap.size();
619       }
620     }
621     if (F.hasGC()) {
622       // Same for GC names.
623       unsigned &Entry = GCMap[F.getGC()];
624       if (!Entry) {
625         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
626                           0/*TODO*/, Stream);
627         Entry = GCMap.size();
628       }
629     }
630   }
631
632   // Emit abbrev for globals, now that we know # sections and max alignment.
633   unsigned SimpleGVarAbbrev = 0;
634   if (!M->global_empty()) {
635     // Add an abbrev for common globals with no visibility or thread localness.
636     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
637     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
638     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
639                               Log2_32_Ceil(MaxGlobalType+1)));
640     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
641                                                            //| explicitType << 1
642                                                            //| constant
643     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
644     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
645     if (MaxAlignment == 0)                                 // Alignment.
646       Abbv->Add(BitCodeAbbrevOp(0));
647     else {
648       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
649       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
650                                Log2_32_Ceil(MaxEncAlignment+1)));
651     }
652     if (SectionMap.empty())                                    // Section.
653       Abbv->Add(BitCodeAbbrevOp(0));
654     else
655       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
656                                Log2_32_Ceil(SectionMap.size()+1)));
657     // Don't bother emitting vis + thread local.
658     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
659   }
660
661   // Emit the global variable information.
662   SmallVector<unsigned, 64> Vals;
663   for (const GlobalVariable &GV : M->globals()) {
664     unsigned AbbrevToUse = 0;
665
666     // GLOBALVAR: [type, isconst, initid,
667     //             linkage, alignment, section, visibility, threadlocal,
668     //             unnamed_addr, externally_initialized, dllstorageclass,
669     //             comdat]
670     Vals.push_back(VE.getTypeID(GV.getValueType()));
671     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
672     Vals.push_back(GV.isDeclaration() ? 0 :
673                    (VE.getValueID(GV.getInitializer()) + 1));
674     Vals.push_back(getEncodedLinkage(GV));
675     Vals.push_back(Log2_32(GV.getAlignment())+1);
676     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
677     if (GV.isThreadLocal() ||
678         GV.getVisibility() != GlobalValue::DefaultVisibility ||
679         GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
680         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
681         GV.hasComdat()) {
682       Vals.push_back(getEncodedVisibility(GV));
683       Vals.push_back(getEncodedThreadLocalMode(GV));
684       Vals.push_back(GV.hasUnnamedAddr());
685       Vals.push_back(GV.isExternallyInitialized());
686       Vals.push_back(getEncodedDLLStorageClass(GV));
687       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
688     } else {
689       AbbrevToUse = SimpleGVarAbbrev;
690     }
691
692     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
693     Vals.clear();
694   }
695
696   // Emit the function proto information.
697   for (const Function &F : *M) {
698     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
699     //             section, visibility, gc, unnamed_addr, prologuedata,
700     //             dllstorageclass, comdat, prefixdata, personalityfn]
701     Vals.push_back(VE.getTypeID(F.getFunctionType()));
702     Vals.push_back(F.getCallingConv());
703     Vals.push_back(F.isDeclaration());
704     Vals.push_back(getEncodedLinkage(F));
705     Vals.push_back(VE.getAttributeID(F.getAttributes()));
706     Vals.push_back(Log2_32(F.getAlignment())+1);
707     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
708     Vals.push_back(getEncodedVisibility(F));
709     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
710     Vals.push_back(F.hasUnnamedAddr());
711     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
712                                        : 0);
713     Vals.push_back(getEncodedDLLStorageClass(F));
714     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
715     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
716                                      : 0);
717     Vals.push_back(
718         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
719
720     unsigned AbbrevToUse = 0;
721     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
722     Vals.clear();
723   }
724
725   // Emit the alias information.
726   for (const GlobalAlias &A : M->aliases()) {
727     // ALIAS: [alias type, aliasee val#, linkage, visibility]
728     Vals.push_back(VE.getTypeID(A.getType()));
729     Vals.push_back(VE.getValueID(A.getAliasee()));
730     Vals.push_back(getEncodedLinkage(A));
731     Vals.push_back(getEncodedVisibility(A));
732     Vals.push_back(getEncodedDLLStorageClass(A));
733     Vals.push_back(getEncodedThreadLocalMode(A));
734     Vals.push_back(A.hasUnnamedAddr());
735     unsigned AbbrevToUse = 0;
736     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
737     Vals.clear();
738   }
739 }
740
741 static uint64_t GetOptimizationFlags(const Value *V) {
742   uint64_t Flags = 0;
743
744   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
745     if (OBO->hasNoSignedWrap())
746       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
747     if (OBO->hasNoUnsignedWrap())
748       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
749   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
750     if (PEO->isExact())
751       Flags |= 1 << bitc::PEO_EXACT;
752   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
753     if (FPMO->hasUnsafeAlgebra())
754       Flags |= FastMathFlags::UnsafeAlgebra;
755     if (FPMO->hasNoNaNs())
756       Flags |= FastMathFlags::NoNaNs;
757     if (FPMO->hasNoInfs())
758       Flags |= FastMathFlags::NoInfs;
759     if (FPMO->hasNoSignedZeros())
760       Flags |= FastMathFlags::NoSignedZeros;
761     if (FPMO->hasAllowReciprocal())
762       Flags |= FastMathFlags::AllowReciprocal;
763   }
764
765   return Flags;
766 }
767
768 static void WriteValueAsMetadata(const ValueAsMetadata *MD,
769                                  const ValueEnumerator &VE,
770                                  BitstreamWriter &Stream,
771                                  SmallVectorImpl<uint64_t> &Record) {
772   // Mimic an MDNode with a value as one operand.
773   Value *V = MD->getValue();
774   Record.push_back(VE.getTypeID(V->getType()));
775   Record.push_back(VE.getValueID(V));
776   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
777   Record.clear();
778 }
779
780 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE,
781                          BitstreamWriter &Stream,
782                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
783   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
784     Metadata *MD = N->getOperand(i);
785     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
786            "Unexpected function-local metadata");
787     Record.push_back(VE.getMetadataOrNullID(MD));
788   }
789   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
790                                     : bitc::METADATA_NODE,
791                     Record, Abbrev);
792   Record.clear();
793 }
794
795 static void WriteDILocation(const DILocation *N, const ValueEnumerator &VE,
796                             BitstreamWriter &Stream,
797                             SmallVectorImpl<uint64_t> &Record,
798                             unsigned Abbrev) {
799   Record.push_back(N->isDistinct());
800   Record.push_back(N->getLine());
801   Record.push_back(N->getColumn());
802   Record.push_back(VE.getMetadataID(N->getScope()));
803   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
804
805   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
806   Record.clear();
807 }
808
809 static void WriteGenericDINode(const GenericDINode *N,
810                                const ValueEnumerator &VE,
811                                BitstreamWriter &Stream,
812                                SmallVectorImpl<uint64_t> &Record,
813                                unsigned Abbrev) {
814   Record.push_back(N->isDistinct());
815   Record.push_back(N->getTag());
816   Record.push_back(0); // Per-tag version field; unused for now.
817
818   for (auto &I : N->operands())
819     Record.push_back(VE.getMetadataOrNullID(I));
820
821   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
822   Record.clear();
823 }
824
825 static uint64_t rotateSign(int64_t I) {
826   uint64_t U = I;
827   return I < 0 ? ~(U << 1) : U << 1;
828 }
829
830 static void WriteDISubrange(const DISubrange *N, const ValueEnumerator &,
831                             BitstreamWriter &Stream,
832                             SmallVectorImpl<uint64_t> &Record,
833                             unsigned Abbrev) {
834   Record.push_back(N->isDistinct());
835   Record.push_back(N->getCount());
836   Record.push_back(rotateSign(N->getLowerBound()));
837
838   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
839   Record.clear();
840 }
841
842 static void WriteDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE,
843                               BitstreamWriter &Stream,
844                               SmallVectorImpl<uint64_t> &Record,
845                               unsigned Abbrev) {
846   Record.push_back(N->isDistinct());
847   Record.push_back(rotateSign(N->getValue()));
848   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
849
850   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
851   Record.clear();
852 }
853
854 static void WriteDIBasicType(const DIBasicType *N, const ValueEnumerator &VE,
855                              BitstreamWriter &Stream,
856                              SmallVectorImpl<uint64_t> &Record,
857                              unsigned Abbrev) {
858   Record.push_back(N->isDistinct());
859   Record.push_back(N->getTag());
860   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
861   Record.push_back(N->getSizeInBits());
862   Record.push_back(N->getAlignInBits());
863   Record.push_back(N->getEncoding());
864
865   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
866   Record.clear();
867 }
868
869 static void WriteDIDerivedType(const DIDerivedType *N,
870                                const ValueEnumerator &VE,
871                                BitstreamWriter &Stream,
872                                SmallVectorImpl<uint64_t> &Record,
873                                unsigned Abbrev) {
874   Record.push_back(N->isDistinct());
875   Record.push_back(N->getTag());
876   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
877   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
878   Record.push_back(N->getLine());
879   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
880   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
881   Record.push_back(N->getSizeInBits());
882   Record.push_back(N->getAlignInBits());
883   Record.push_back(N->getOffsetInBits());
884   Record.push_back(N->getFlags());
885   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
886
887   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
888   Record.clear();
889 }
890
891 static void WriteDICompositeType(const DICompositeType *N,
892                                  const ValueEnumerator &VE,
893                                  BitstreamWriter &Stream,
894                                  SmallVectorImpl<uint64_t> &Record,
895                                  unsigned Abbrev) {
896   Record.push_back(N->isDistinct());
897   Record.push_back(N->getTag());
898   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
899   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
900   Record.push_back(N->getLine());
901   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
902   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
903   Record.push_back(N->getSizeInBits());
904   Record.push_back(N->getAlignInBits());
905   Record.push_back(N->getOffsetInBits());
906   Record.push_back(N->getFlags());
907   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
908   Record.push_back(N->getRuntimeLang());
909   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
910   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
911   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
912
913   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
914   Record.clear();
915 }
916
917 static void WriteDISubroutineType(const DISubroutineType *N,
918                                   const ValueEnumerator &VE,
919                                   BitstreamWriter &Stream,
920                                   SmallVectorImpl<uint64_t> &Record,
921                                   unsigned Abbrev) {
922   Record.push_back(N->isDistinct());
923   Record.push_back(N->getFlags());
924   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
925
926   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
927   Record.clear();
928 }
929
930 static void WriteDIFile(const DIFile *N, const ValueEnumerator &VE,
931                         BitstreamWriter &Stream,
932                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
933   Record.push_back(N->isDistinct());
934   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
935   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
936
937   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
938   Record.clear();
939 }
940
941 static void WriteDICompileUnit(const DICompileUnit *N,
942                                const ValueEnumerator &VE,
943                                BitstreamWriter &Stream,
944                                SmallVectorImpl<uint64_t> &Record,
945                                unsigned Abbrev) {
946   Record.push_back(N->isDistinct());
947   Record.push_back(N->getSourceLanguage());
948   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
949   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
950   Record.push_back(N->isOptimized());
951   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
952   Record.push_back(N->getRuntimeVersion());
953   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
954   Record.push_back(N->getEmissionKind());
955   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
956   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
957   Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get()));
958   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
959   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
960   Record.push_back(N->getDWOId());
961
962   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
963   Record.clear();
964 }
965
966 static void WriteDISubprogram(const DISubprogram *N, const ValueEnumerator &VE,
967                               BitstreamWriter &Stream,
968                               SmallVectorImpl<uint64_t> &Record,
969                               unsigned Abbrev) {
970   Record.push_back(N->isDistinct());
971   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
972   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
973   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
974   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
975   Record.push_back(N->getLine());
976   Record.push_back(VE.getMetadataOrNullID(N->getType()));
977   Record.push_back(N->isLocalToUnit());
978   Record.push_back(N->isDefinition());
979   Record.push_back(N->getScopeLine());
980   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
981   Record.push_back(N->getVirtuality());
982   Record.push_back(N->getVirtualIndex());
983   Record.push_back(N->getFlags());
984   Record.push_back(N->isOptimized());
985   Record.push_back(VE.getMetadataOrNullID(N->getRawFunction()));
986   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
987   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
988   Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
989
990   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
991   Record.clear();
992 }
993
994 static void WriteDILexicalBlock(const DILexicalBlock *N,
995                                 const ValueEnumerator &VE,
996                                 BitstreamWriter &Stream,
997                                 SmallVectorImpl<uint64_t> &Record,
998                                 unsigned Abbrev) {
999   Record.push_back(N->isDistinct());
1000   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1001   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1002   Record.push_back(N->getLine());
1003   Record.push_back(N->getColumn());
1004
1005   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1006   Record.clear();
1007 }
1008
1009 static void WriteDILexicalBlockFile(const DILexicalBlockFile *N,
1010                                     const ValueEnumerator &VE,
1011                                     BitstreamWriter &Stream,
1012                                     SmallVectorImpl<uint64_t> &Record,
1013                                     unsigned Abbrev) {
1014   Record.push_back(N->isDistinct());
1015   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1016   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1017   Record.push_back(N->getDiscriminator());
1018
1019   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1020   Record.clear();
1021 }
1022
1023 static void WriteDINamespace(const DINamespace *N, const ValueEnumerator &VE,
1024                              BitstreamWriter &Stream,
1025                              SmallVectorImpl<uint64_t> &Record,
1026                              unsigned Abbrev) {
1027   Record.push_back(N->isDistinct());
1028   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1029   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1030   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1031   Record.push_back(N->getLine());
1032
1033   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1034   Record.clear();
1035 }
1036
1037 static void WriteDIModule(const DIModule *N, const ValueEnumerator &VE,
1038                           BitstreamWriter &Stream,
1039                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
1040   Record.push_back(N->isDistinct());
1041   for (auto &I : N->operands())
1042     Record.push_back(VE.getMetadataOrNullID(I));
1043
1044   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1045   Record.clear();
1046 }
1047
1048 static void WriteDITemplateTypeParameter(const DITemplateTypeParameter *N,
1049                                          const ValueEnumerator &VE,
1050                                          BitstreamWriter &Stream,
1051                                          SmallVectorImpl<uint64_t> &Record,
1052                                          unsigned Abbrev) {
1053   Record.push_back(N->isDistinct());
1054   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1055   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1056
1057   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1058   Record.clear();
1059 }
1060
1061 static void WriteDITemplateValueParameter(const DITemplateValueParameter *N,
1062                                           const ValueEnumerator &VE,
1063                                           BitstreamWriter &Stream,
1064                                           SmallVectorImpl<uint64_t> &Record,
1065                                           unsigned Abbrev) {
1066   Record.push_back(N->isDistinct());
1067   Record.push_back(N->getTag());
1068   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1069   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1070   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1071
1072   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1073   Record.clear();
1074 }
1075
1076 static void WriteDIGlobalVariable(const DIGlobalVariable *N,
1077                                   const ValueEnumerator &VE,
1078                                   BitstreamWriter &Stream,
1079                                   SmallVectorImpl<uint64_t> &Record,
1080                                   unsigned Abbrev) {
1081   Record.push_back(N->isDistinct());
1082   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1083   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1084   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1085   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1086   Record.push_back(N->getLine());
1087   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1088   Record.push_back(N->isLocalToUnit());
1089   Record.push_back(N->isDefinition());
1090   Record.push_back(VE.getMetadataOrNullID(N->getRawVariable()));
1091   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1092
1093   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1094   Record.clear();
1095 }
1096
1097 static void WriteDILocalVariable(const DILocalVariable *N,
1098                                  const ValueEnumerator &VE,
1099                                  BitstreamWriter &Stream,
1100                                  SmallVectorImpl<uint64_t> &Record,
1101                                  unsigned Abbrev) {
1102   Record.push_back(N->isDistinct());
1103   Record.push_back(N->getTag());
1104   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1105   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1106   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1107   Record.push_back(N->getLine());
1108   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1109   Record.push_back(N->getArg());
1110   Record.push_back(N->getFlags());
1111
1112   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1113   Record.clear();
1114 }
1115
1116 static void WriteDIExpression(const DIExpression *N, const ValueEnumerator &,
1117                               BitstreamWriter &Stream,
1118                               SmallVectorImpl<uint64_t> &Record,
1119                               unsigned Abbrev) {
1120   Record.reserve(N->getElements().size() + 1);
1121
1122   Record.push_back(N->isDistinct());
1123   Record.append(N->elements_begin(), N->elements_end());
1124
1125   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1126   Record.clear();
1127 }
1128
1129 static void WriteDIObjCProperty(const DIObjCProperty *N,
1130                                 const ValueEnumerator &VE,
1131                                 BitstreamWriter &Stream,
1132                                 SmallVectorImpl<uint64_t> &Record,
1133                                 unsigned Abbrev) {
1134   Record.push_back(N->isDistinct());
1135   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1136   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1137   Record.push_back(N->getLine());
1138   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1139   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1140   Record.push_back(N->getAttributes());
1141   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1142
1143   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1144   Record.clear();
1145 }
1146
1147 static void WriteDIImportedEntity(const DIImportedEntity *N,
1148                                   const ValueEnumerator &VE,
1149                                   BitstreamWriter &Stream,
1150                                   SmallVectorImpl<uint64_t> &Record,
1151                                   unsigned Abbrev) {
1152   Record.push_back(N->isDistinct());
1153   Record.push_back(N->getTag());
1154   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1155   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1156   Record.push_back(N->getLine());
1157   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1158
1159   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1160   Record.clear();
1161 }
1162
1163 static void WriteModuleMetadata(const Module *M,
1164                                 const ValueEnumerator &VE,
1165                                 BitstreamWriter &Stream) {
1166   const auto &MDs = VE.getMDs();
1167   if (MDs.empty() && M->named_metadata_empty())
1168     return;
1169
1170   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1171
1172   unsigned MDSAbbrev = 0;
1173   if (VE.hasMDString()) {
1174     // Abbrev for METADATA_STRING.
1175     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1176     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
1177     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1178     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1179     MDSAbbrev = Stream.EmitAbbrev(Abbv);
1180   }
1181
1182   // Initialize MDNode abbreviations.
1183 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1184 #include "llvm/IR/Metadata.def"
1185
1186   if (VE.hasDILocation()) {
1187     // Abbrev for METADATA_LOCATION.
1188     //
1189     // Assume the column is usually under 128, and always output the inlined-at
1190     // location (it's never more expensive than building an array size 1).
1191     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1192     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1193     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1194     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1195     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1196     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1197     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1198     DILocationAbbrev = Stream.EmitAbbrev(Abbv);
1199   }
1200
1201   if (VE.hasGenericDINode()) {
1202     // Abbrev for METADATA_GENERIC_DEBUG.
1203     //
1204     // Assume the column is usually under 128, and always output the inlined-at
1205     // location (it's never more expensive than building an array size 1).
1206     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1207     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1208     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1209     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1210     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1211     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1212     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1213     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1214     GenericDINodeAbbrev = Stream.EmitAbbrev(Abbv);
1215   }
1216
1217   unsigned NameAbbrev = 0;
1218   if (!M->named_metadata_empty()) {
1219     // Abbrev for METADATA_NAME.
1220     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1221     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1222     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1223     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1224     NameAbbrev = Stream.EmitAbbrev(Abbv);
1225   }
1226
1227   SmallVector<uint64_t, 64> Record;
1228   for (const Metadata *MD : MDs) {
1229     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1230       assert(N->isResolved() && "Expected forward references to be resolved");
1231
1232       switch (N->getMetadataID()) {
1233       default:
1234         llvm_unreachable("Invalid MDNode subclass");
1235 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1236   case Metadata::CLASS##Kind:                                                  \
1237     Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev);           \
1238     continue;
1239 #include "llvm/IR/Metadata.def"
1240       }
1241     }
1242     if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
1243       WriteValueAsMetadata(MDC, VE, Stream, Record);
1244       continue;
1245     }
1246     const MDString *MDS = cast<MDString>(MD);
1247     // Code: [strchar x N]
1248     Record.append(MDS->bytes_begin(), MDS->bytes_end());
1249
1250     // Emit the finished record.
1251     Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
1252     Record.clear();
1253   }
1254
1255   // Write named metadata.
1256   for (const NamedMDNode &NMD : M->named_metadata()) {
1257     // Write name.
1258     StringRef Str = NMD.getName();
1259     Record.append(Str.bytes_begin(), Str.bytes_end());
1260     Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
1261     Record.clear();
1262
1263     // Write named metadata operands.
1264     for (const MDNode *N : NMD.operands())
1265       Record.push_back(VE.getMetadataID(N));
1266     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1267     Record.clear();
1268   }
1269
1270   Stream.ExitBlock();
1271 }
1272
1273 static void WriteFunctionLocalMetadata(const Function &F,
1274                                        const ValueEnumerator &VE,
1275                                        BitstreamWriter &Stream) {
1276   bool StartedMetadataBlock = false;
1277   SmallVector<uint64_t, 64> Record;
1278   const SmallVectorImpl<const LocalAsMetadata *> &MDs =
1279       VE.getFunctionLocalMDs();
1280   for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1281     assert(MDs[i] && "Expected valid function-local metadata");
1282     if (!StartedMetadataBlock) {
1283       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1284       StartedMetadataBlock = true;
1285     }
1286     WriteValueAsMetadata(MDs[i], VE, Stream, Record);
1287   }
1288
1289   if (StartedMetadataBlock)
1290     Stream.ExitBlock();
1291 }
1292
1293 static void WriteMetadataAttachment(const Function &F,
1294                                     const ValueEnumerator &VE,
1295                                     BitstreamWriter &Stream) {
1296   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1297
1298   SmallVector<uint64_t, 64> Record;
1299
1300   // Write metadata attachments
1301   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1302   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1303   F.getAllMetadata(MDs);
1304   if (!MDs.empty()) {
1305     for (const auto &I : MDs) {
1306       Record.push_back(I.first);
1307       Record.push_back(VE.getMetadataID(I.second));
1308     }
1309     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1310     Record.clear();
1311   }
1312
1313   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1314     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1315          I != E; ++I) {
1316       MDs.clear();
1317       I->getAllMetadataOtherThanDebugLoc(MDs);
1318
1319       // If no metadata, ignore instruction.
1320       if (MDs.empty()) continue;
1321
1322       Record.push_back(VE.getInstructionID(I));
1323
1324       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1325         Record.push_back(MDs[i].first);
1326         Record.push_back(VE.getMetadataID(MDs[i].second));
1327       }
1328       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1329       Record.clear();
1330     }
1331
1332   Stream.ExitBlock();
1333 }
1334
1335 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
1336   SmallVector<uint64_t, 64> Record;
1337
1338   // Write metadata kinds
1339   // METADATA_KIND - [n x [id, name]]
1340   SmallVector<StringRef, 8> Names;
1341   M->getMDKindNames(Names);
1342
1343   if (Names.empty()) return;
1344
1345   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1346
1347   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1348     Record.push_back(MDKindID);
1349     StringRef KName = Names[MDKindID];
1350     Record.append(KName.begin(), KName.end());
1351
1352     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1353     Record.clear();
1354   }
1355
1356   Stream.ExitBlock();
1357 }
1358
1359 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1360   if ((int64_t)V >= 0)
1361     Vals.push_back(V << 1);
1362   else
1363     Vals.push_back((-V << 1) | 1);
1364 }
1365
1366 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
1367                            const ValueEnumerator &VE,
1368                            BitstreamWriter &Stream, bool isGlobal) {
1369   if (FirstVal == LastVal) return;
1370
1371   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1372
1373   unsigned AggregateAbbrev = 0;
1374   unsigned String8Abbrev = 0;
1375   unsigned CString7Abbrev = 0;
1376   unsigned CString6Abbrev = 0;
1377   // If this is a constant pool for the module, emit module-specific abbrevs.
1378   if (isGlobal) {
1379     // Abbrev for CST_CODE_AGGREGATE.
1380     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1381     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1382     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1383     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
1384     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
1385
1386     // Abbrev for CST_CODE_STRING.
1387     Abbv = new BitCodeAbbrev();
1388     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1389     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1390     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1391     String8Abbrev = Stream.EmitAbbrev(Abbv);
1392     // Abbrev for CST_CODE_CSTRING.
1393     Abbv = new BitCodeAbbrev();
1394     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1395     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1396     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1397     CString7Abbrev = Stream.EmitAbbrev(Abbv);
1398     // Abbrev for CST_CODE_CSTRING.
1399     Abbv = new BitCodeAbbrev();
1400     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1401     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1402     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1403     CString6Abbrev = Stream.EmitAbbrev(Abbv);
1404   }
1405
1406   SmallVector<uint64_t, 64> Record;
1407
1408   const ValueEnumerator::ValueList &Vals = VE.getValues();
1409   Type *LastTy = nullptr;
1410   for (unsigned i = FirstVal; i != LastVal; ++i) {
1411     const Value *V = Vals[i].first;
1412     // If we need to switch types, do so now.
1413     if (V->getType() != LastTy) {
1414       LastTy = V->getType();
1415       Record.push_back(VE.getTypeID(LastTy));
1416       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1417                         CONSTANTS_SETTYPE_ABBREV);
1418       Record.clear();
1419     }
1420
1421     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1422       Record.push_back(unsigned(IA->hasSideEffects()) |
1423                        unsigned(IA->isAlignStack()) << 1 |
1424                        unsigned(IA->getDialect()&1) << 2);
1425
1426       // Add the asm string.
1427       const std::string &AsmStr = IA->getAsmString();
1428       Record.push_back(AsmStr.size());
1429       Record.append(AsmStr.begin(), AsmStr.end());
1430
1431       // Add the constraint string.
1432       const std::string &ConstraintStr = IA->getConstraintString();
1433       Record.push_back(ConstraintStr.size());
1434       Record.append(ConstraintStr.begin(), ConstraintStr.end());
1435       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1436       Record.clear();
1437       continue;
1438     }
1439     const Constant *C = cast<Constant>(V);
1440     unsigned Code = -1U;
1441     unsigned AbbrevToUse = 0;
1442     if (C->isNullValue()) {
1443       Code = bitc::CST_CODE_NULL;
1444     } else if (isa<UndefValue>(C)) {
1445       Code = bitc::CST_CODE_UNDEF;
1446     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1447       if (IV->getBitWidth() <= 64) {
1448         uint64_t V = IV->getSExtValue();
1449         emitSignedInt64(Record, V);
1450         Code = bitc::CST_CODE_INTEGER;
1451         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
1452       } else {                             // Wide integers, > 64 bits in size.
1453         // We have an arbitrary precision integer value to write whose
1454         // bit width is > 64. However, in canonical unsigned integer
1455         // format it is likely that the high bits are going to be zero.
1456         // So, we only write the number of active words.
1457         unsigned NWords = IV->getValue().getActiveWords();
1458         const uint64_t *RawWords = IV->getValue().getRawData();
1459         for (unsigned i = 0; i != NWords; ++i) {
1460           emitSignedInt64(Record, RawWords[i]);
1461         }
1462         Code = bitc::CST_CODE_WIDE_INTEGER;
1463       }
1464     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1465       Code = bitc::CST_CODE_FLOAT;
1466       Type *Ty = CFP->getType();
1467       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
1468         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
1469       } else if (Ty->isX86_FP80Ty()) {
1470         // api needed to prevent premature destruction
1471         // bits are not in the same order as a normal i80 APInt, compensate.
1472         APInt api = CFP->getValueAPF().bitcastToAPInt();
1473         const uint64_t *p = api.getRawData();
1474         Record.push_back((p[1] << 48) | (p[0] >> 16));
1475         Record.push_back(p[0] & 0xffffLL);
1476       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
1477         APInt api = CFP->getValueAPF().bitcastToAPInt();
1478         const uint64_t *p = api.getRawData();
1479         Record.push_back(p[0]);
1480         Record.push_back(p[1]);
1481       } else {
1482         assert (0 && "Unknown FP type!");
1483       }
1484     } else if (isa<ConstantDataSequential>(C) &&
1485                cast<ConstantDataSequential>(C)->isString()) {
1486       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
1487       // Emit constant strings specially.
1488       unsigned NumElts = Str->getNumElements();
1489       // If this is a null-terminated string, use the denser CSTRING encoding.
1490       if (Str->isCString()) {
1491         Code = bitc::CST_CODE_CSTRING;
1492         --NumElts;  // Don't encode the null, which isn't allowed by char6.
1493       } else {
1494         Code = bitc::CST_CODE_STRING;
1495         AbbrevToUse = String8Abbrev;
1496       }
1497       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
1498       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
1499       for (unsigned i = 0; i != NumElts; ++i) {
1500         unsigned char V = Str->getElementAsInteger(i);
1501         Record.push_back(V);
1502         isCStr7 &= (V & 128) == 0;
1503         if (isCStrChar6)
1504           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
1505       }
1506
1507       if (isCStrChar6)
1508         AbbrevToUse = CString6Abbrev;
1509       else if (isCStr7)
1510         AbbrevToUse = CString7Abbrev;
1511     } else if (const ConstantDataSequential *CDS =
1512                   dyn_cast<ConstantDataSequential>(C)) {
1513       Code = bitc::CST_CODE_DATA;
1514       Type *EltTy = CDS->getType()->getElementType();
1515       if (isa<IntegerType>(EltTy)) {
1516         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
1517           Record.push_back(CDS->getElementAsInteger(i));
1518       } else if (EltTy->isFloatTy()) {
1519         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1520           union { float F; uint32_t I; };
1521           F = CDS->getElementAsFloat(i);
1522           Record.push_back(I);
1523         }
1524       } else {
1525         assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
1526         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1527           union { double F; uint64_t I; };
1528           F = CDS->getElementAsDouble(i);
1529           Record.push_back(I);
1530         }
1531       }
1532     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
1533                isa<ConstantVector>(C)) {
1534       Code = bitc::CST_CODE_AGGREGATE;
1535       for (const Value *Op : C->operands())
1536         Record.push_back(VE.getValueID(Op));
1537       AbbrevToUse = AggregateAbbrev;
1538     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1539       switch (CE->getOpcode()) {
1540       default:
1541         if (Instruction::isCast(CE->getOpcode())) {
1542           Code = bitc::CST_CODE_CE_CAST;
1543           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
1544           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1545           Record.push_back(VE.getValueID(C->getOperand(0)));
1546           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
1547         } else {
1548           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
1549           Code = bitc::CST_CODE_CE_BINOP;
1550           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
1551           Record.push_back(VE.getValueID(C->getOperand(0)));
1552           Record.push_back(VE.getValueID(C->getOperand(1)));
1553           uint64_t Flags = GetOptimizationFlags(CE);
1554           if (Flags != 0)
1555             Record.push_back(Flags);
1556         }
1557         break;
1558       case Instruction::GetElementPtr: {
1559         Code = bitc::CST_CODE_CE_GEP;
1560         const auto *GO = cast<GEPOperator>(C);
1561         if (GO->isInBounds())
1562           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
1563         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
1564         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
1565           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
1566           Record.push_back(VE.getValueID(C->getOperand(i)));
1567         }
1568         break;
1569       }
1570       case Instruction::Select:
1571         Code = bitc::CST_CODE_CE_SELECT;
1572         Record.push_back(VE.getValueID(C->getOperand(0)));
1573         Record.push_back(VE.getValueID(C->getOperand(1)));
1574         Record.push_back(VE.getValueID(C->getOperand(2)));
1575         break;
1576       case Instruction::ExtractElement:
1577         Code = bitc::CST_CODE_CE_EXTRACTELT;
1578         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1579         Record.push_back(VE.getValueID(C->getOperand(0)));
1580         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
1581         Record.push_back(VE.getValueID(C->getOperand(1)));
1582         break;
1583       case Instruction::InsertElement:
1584         Code = bitc::CST_CODE_CE_INSERTELT;
1585         Record.push_back(VE.getValueID(C->getOperand(0)));
1586         Record.push_back(VE.getValueID(C->getOperand(1)));
1587         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
1588         Record.push_back(VE.getValueID(C->getOperand(2)));
1589         break;
1590       case Instruction::ShuffleVector:
1591         // If the return type and argument types are the same, this is a
1592         // standard shufflevector instruction.  If the types are different,
1593         // then the shuffle is widening or truncating the input vectors, and
1594         // the argument type must also be encoded.
1595         if (C->getType() == C->getOperand(0)->getType()) {
1596           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
1597         } else {
1598           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
1599           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1600         }
1601         Record.push_back(VE.getValueID(C->getOperand(0)));
1602         Record.push_back(VE.getValueID(C->getOperand(1)));
1603         Record.push_back(VE.getValueID(C->getOperand(2)));
1604         break;
1605       case Instruction::ICmp:
1606       case Instruction::FCmp:
1607         Code = bitc::CST_CODE_CE_CMP;
1608         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1609         Record.push_back(VE.getValueID(C->getOperand(0)));
1610         Record.push_back(VE.getValueID(C->getOperand(1)));
1611         Record.push_back(CE->getPredicate());
1612         break;
1613       }
1614     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1615       Code = bitc::CST_CODE_BLOCKADDRESS;
1616       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1617       Record.push_back(VE.getValueID(BA->getFunction()));
1618       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1619     } else {
1620 #ifndef NDEBUG
1621       C->dump();
1622 #endif
1623       llvm_unreachable("Unknown constant!");
1624     }
1625     Stream.EmitRecord(Code, Record, AbbrevToUse);
1626     Record.clear();
1627   }
1628
1629   Stream.ExitBlock();
1630 }
1631
1632 static void WriteModuleConstants(const ValueEnumerator &VE,
1633                                  BitstreamWriter &Stream) {
1634   const ValueEnumerator::ValueList &Vals = VE.getValues();
1635
1636   // Find the first constant to emit, which is the first non-globalvalue value.
1637   // We know globalvalues have been emitted by WriteModuleInfo.
1638   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1639     if (!isa<GlobalValue>(Vals[i].first)) {
1640       WriteConstants(i, Vals.size(), VE, Stream, true);
1641       return;
1642     }
1643   }
1644 }
1645
1646 /// PushValueAndType - The file has to encode both the value and type id for
1647 /// many values, because we need to know what type to create for forward
1648 /// references.  However, most operands are not forward references, so this type
1649 /// field is not needed.
1650 ///
1651 /// This function adds V's value ID to Vals.  If the value ID is higher than the
1652 /// instruction ID, then it is a forward reference, and it also includes the
1653 /// type ID.  The value ID that is written is encoded relative to the InstID.
1654 static bool PushValueAndType(const Value *V, unsigned InstID,
1655                              SmallVectorImpl<unsigned> &Vals,
1656                              ValueEnumerator &VE) {
1657   unsigned ValID = VE.getValueID(V);
1658   // Make encoding relative to the InstID.
1659   Vals.push_back(InstID - ValID);
1660   if (ValID >= InstID) {
1661     Vals.push_back(VE.getTypeID(V->getType()));
1662     return true;
1663   }
1664   return false;
1665 }
1666
1667 /// pushValue - Like PushValueAndType, but where the type of the value is
1668 /// omitted (perhaps it was already encoded in an earlier operand).
1669 static void pushValue(const Value *V, unsigned InstID,
1670                       SmallVectorImpl<unsigned> &Vals,
1671                       ValueEnumerator &VE) {
1672   unsigned ValID = VE.getValueID(V);
1673   Vals.push_back(InstID - ValID);
1674 }
1675
1676 static void pushValueSigned(const Value *V, unsigned InstID,
1677                             SmallVectorImpl<uint64_t> &Vals,
1678                             ValueEnumerator &VE) {
1679   unsigned ValID = VE.getValueID(V);
1680   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
1681   emitSignedInt64(Vals, diff);
1682 }
1683
1684 /// WriteInstruction - Emit an instruction to the specified stream.
1685 static void WriteInstruction(const Instruction &I, unsigned InstID,
1686                              ValueEnumerator &VE, BitstreamWriter &Stream,
1687                              SmallVectorImpl<unsigned> &Vals) {
1688   unsigned Code = 0;
1689   unsigned AbbrevToUse = 0;
1690   VE.setInstructionID(&I);
1691   switch (I.getOpcode()) {
1692   default:
1693     if (Instruction::isCast(I.getOpcode())) {
1694       Code = bitc::FUNC_CODE_INST_CAST;
1695       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1696         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1697       Vals.push_back(VE.getTypeID(I.getType()));
1698       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1699     } else {
1700       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1701       Code = bitc::FUNC_CODE_INST_BINOP;
1702       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1703         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1704       pushValue(I.getOperand(1), InstID, Vals, VE);
1705       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1706       uint64_t Flags = GetOptimizationFlags(&I);
1707       if (Flags != 0) {
1708         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1709           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1710         Vals.push_back(Flags);
1711       }
1712     }
1713     break;
1714
1715   case Instruction::GetElementPtr: {
1716     Code = bitc::FUNC_CODE_INST_GEP;
1717     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
1718     auto &GEPInst = cast<GetElementPtrInst>(I);
1719     Vals.push_back(GEPInst.isInBounds());
1720     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
1721     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1722       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1723     break;
1724   }
1725   case Instruction::ExtractValue: {
1726     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1727     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1728     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1729     Vals.append(EVI->idx_begin(), EVI->idx_end());
1730     break;
1731   }
1732   case Instruction::InsertValue: {
1733     Code = bitc::FUNC_CODE_INST_INSERTVAL;
1734     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1735     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1736     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1737     Vals.append(IVI->idx_begin(), IVI->idx_end());
1738     break;
1739   }
1740   case Instruction::Select:
1741     Code = bitc::FUNC_CODE_INST_VSELECT;
1742     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1743     pushValue(I.getOperand(2), InstID, Vals, VE);
1744     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1745     break;
1746   case Instruction::ExtractElement:
1747     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1748     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1749     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1750     break;
1751   case Instruction::InsertElement:
1752     Code = bitc::FUNC_CODE_INST_INSERTELT;
1753     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1754     pushValue(I.getOperand(1), InstID, Vals, VE);
1755     PushValueAndType(I.getOperand(2), InstID, Vals, VE);
1756     break;
1757   case Instruction::ShuffleVector:
1758     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1759     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1760     pushValue(I.getOperand(1), InstID, Vals, VE);
1761     pushValue(I.getOperand(2), InstID, Vals, VE);
1762     break;
1763   case Instruction::ICmp:
1764   case Instruction::FCmp: {
1765     // compare returning Int1Ty or vector of Int1Ty
1766     Code = bitc::FUNC_CODE_INST_CMP2;
1767     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1768     pushValue(I.getOperand(1), InstID, Vals, VE);
1769     Vals.push_back(cast<CmpInst>(I).getPredicate());
1770     uint64_t Flags = GetOptimizationFlags(&I);
1771     if (Flags != 0)
1772       Vals.push_back(Flags);
1773     break;
1774   }
1775
1776   case Instruction::Ret:
1777     {
1778       Code = bitc::FUNC_CODE_INST_RET;
1779       unsigned NumOperands = I.getNumOperands();
1780       if (NumOperands == 0)
1781         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1782       else if (NumOperands == 1) {
1783         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1784           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1785       } else {
1786         for (unsigned i = 0, e = NumOperands; i != e; ++i)
1787           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1788       }
1789     }
1790     break;
1791   case Instruction::Br:
1792     {
1793       Code = bitc::FUNC_CODE_INST_BR;
1794       const BranchInst &II = cast<BranchInst>(I);
1795       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1796       if (II.isConditional()) {
1797         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1798         pushValue(II.getCondition(), InstID, Vals, VE);
1799       }
1800     }
1801     break;
1802   case Instruction::Switch:
1803     {
1804       Code = bitc::FUNC_CODE_INST_SWITCH;
1805       const SwitchInst &SI = cast<SwitchInst>(I);
1806       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1807       pushValue(SI.getCondition(), InstID, Vals, VE);
1808       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1809       for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1810            i != e; ++i) {
1811         Vals.push_back(VE.getValueID(i.getCaseValue()));
1812         Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1813       }
1814     }
1815     break;
1816   case Instruction::IndirectBr:
1817     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1818     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1819     // Encode the address operand as relative, but not the basic blocks.
1820     pushValue(I.getOperand(0), InstID, Vals, VE);
1821     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
1822       Vals.push_back(VE.getValueID(I.getOperand(i)));
1823     break;
1824
1825   case Instruction::Invoke: {
1826     const InvokeInst *II = cast<InvokeInst>(&I);
1827     const Value *Callee = II->getCalledValue();
1828     FunctionType *FTy = II->getFunctionType();
1829     Code = bitc::FUNC_CODE_INST_INVOKE;
1830
1831     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1832     Vals.push_back(II->getCallingConv() | 1 << 13);
1833     Vals.push_back(VE.getValueID(II->getNormalDest()));
1834     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1835     Vals.push_back(VE.getTypeID(FTy));
1836     PushValueAndType(Callee, InstID, Vals, VE);
1837
1838     // Emit value #'s for the fixed parameters.
1839     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1840       pushValue(I.getOperand(i), InstID, Vals, VE);  // fixed param.
1841
1842     // Emit type/value pairs for varargs params.
1843     if (FTy->isVarArg()) {
1844       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1845            i != e; ++i)
1846         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1847     }
1848     break;
1849   }
1850   case Instruction::Resume:
1851     Code = bitc::FUNC_CODE_INST_RESUME;
1852     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1853     break;
1854   case Instruction::CleanupRet: {
1855     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
1856     const auto &CRI = cast<CleanupReturnInst>(I);
1857     Vals.push_back(CRI.hasReturnValue());
1858     Vals.push_back(CRI.hasUnwindDest());
1859     if (CRI.hasReturnValue())
1860       PushValueAndType(CRI.getReturnValue(), InstID, Vals, VE);
1861     if (CRI.hasUnwindDest())
1862       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
1863     break;
1864   }
1865   case Instruction::CatchRet: {
1866     Code = bitc::FUNC_CODE_INST_CATCHRET;
1867     const auto &CRI = cast<CatchReturnInst>(I);
1868     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
1869     break;
1870   }
1871   case Instruction::CatchPad: {
1872     Code = bitc::FUNC_CODE_INST_CATCHPAD;
1873     const auto &CPI = cast<CatchPadInst>(I);
1874     Vals.push_back(VE.getTypeID(CPI.getType()));
1875     Vals.push_back(VE.getValueID(CPI.getNormalDest()));
1876     Vals.push_back(VE.getValueID(CPI.getUnwindDest()));
1877     unsigned NumArgOperands = CPI.getNumArgOperands();
1878     Vals.push_back(NumArgOperands);
1879     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
1880       PushValueAndType(CPI.getArgOperand(Op), InstID, Vals, VE);
1881     break;
1882   }
1883   case Instruction::TerminatePad: {
1884     Code = bitc::FUNC_CODE_INST_TERMINATEPAD;
1885     const auto &TPI = cast<TerminatePadInst>(I);
1886     Vals.push_back(TPI.hasUnwindDest());
1887     if (TPI.hasUnwindDest())
1888       Vals.push_back(VE.getValueID(TPI.getUnwindDest()));
1889     unsigned NumArgOperands = TPI.getNumArgOperands();
1890     Vals.push_back(NumArgOperands);
1891     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
1892       PushValueAndType(TPI.getArgOperand(Op), InstID, Vals, VE);
1893     break;
1894   }
1895   case Instruction::CleanupPad: {
1896     Code = bitc::FUNC_CODE_INST_CLEANUPPAD;
1897     const auto &CPI = cast<CleanupPadInst>(I);
1898     Vals.push_back(VE.getTypeID(CPI.getType()));
1899     unsigned NumOperands = CPI.getNumOperands();
1900     Vals.push_back(NumOperands);
1901     for (unsigned Op = 0; Op != NumOperands; ++Op)
1902       PushValueAndType(CPI.getOperand(Op), InstID, Vals, VE);
1903     break;
1904   }
1905   case Instruction::CatchEndPad: {
1906     Code = bitc::FUNC_CODE_INST_CATCHENDPAD;
1907     const auto &CEPI = cast<CatchEndPadInst>(I);
1908     if (CEPI.hasUnwindDest())
1909       Vals.push_back(VE.getValueID(CEPI.getUnwindDest()));
1910     break;
1911   }
1912   case Instruction::Unreachable:
1913     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1914     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1915     break;
1916
1917   case Instruction::PHI: {
1918     const PHINode &PN = cast<PHINode>(I);
1919     Code = bitc::FUNC_CODE_INST_PHI;
1920     // With the newer instruction encoding, forward references could give
1921     // negative valued IDs.  This is most common for PHIs, so we use
1922     // signed VBRs.
1923     SmallVector<uint64_t, 128> Vals64;
1924     Vals64.push_back(VE.getTypeID(PN.getType()));
1925     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1926       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
1927       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1928     }
1929     // Emit a Vals64 vector and exit.
1930     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
1931     Vals64.clear();
1932     return;
1933   }
1934
1935   case Instruction::LandingPad: {
1936     const LandingPadInst &LP = cast<LandingPadInst>(I);
1937     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1938     Vals.push_back(VE.getTypeID(LP.getType()));
1939     Vals.push_back(LP.isCleanup());
1940     Vals.push_back(LP.getNumClauses());
1941     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1942       if (LP.isCatch(I))
1943         Vals.push_back(LandingPadInst::Catch);
1944       else
1945         Vals.push_back(LandingPadInst::Filter);
1946       PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1947     }
1948     break;
1949   }
1950
1951   case Instruction::Alloca: {
1952     Code = bitc::FUNC_CODE_INST_ALLOCA;
1953     const AllocaInst &AI = cast<AllocaInst>(I);
1954     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
1955     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1956     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1957     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
1958     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
1959            "not enough bits for maximum alignment");
1960     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
1961     AlignRecord |= AI.isUsedWithInAlloca() << 5;
1962     AlignRecord |= 1 << 6;
1963     // Reserve bit 7 for SwiftError flag.
1964     // AlignRecord |= AI.isSwiftError() << 7;
1965     Vals.push_back(AlignRecord);
1966     break;
1967   }
1968
1969   case Instruction::Load:
1970     if (cast<LoadInst>(I).isAtomic()) {
1971       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1972       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1973     } else {
1974       Code = bitc::FUNC_CODE_INST_LOAD;
1975       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1976         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1977     }
1978     Vals.push_back(VE.getTypeID(I.getType()));
1979     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1980     Vals.push_back(cast<LoadInst>(I).isVolatile());
1981     if (cast<LoadInst>(I).isAtomic()) {
1982       Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1983       Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1984     }
1985     break;
1986   case Instruction::Store:
1987     if (cast<StoreInst>(I).isAtomic())
1988       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1989     else
1990       Code = bitc::FUNC_CODE_INST_STORE;
1991     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1992     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // valty + val
1993     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1994     Vals.push_back(cast<StoreInst>(I).isVolatile());
1995     if (cast<StoreInst>(I).isAtomic()) {
1996       Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1997       Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1998     }
1999     break;
2000   case Instruction::AtomicCmpXchg:
2001     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2002     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
2003     PushValueAndType(I.getOperand(1), InstID, Vals, VE);         // cmp.
2004     pushValue(I.getOperand(2), InstID, Vals, VE);         // newval.
2005     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2006     Vals.push_back(GetEncodedOrdering(
2007                      cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2008     Vals.push_back(GetEncodedSynchScope(
2009                      cast<AtomicCmpXchgInst>(I).getSynchScope()));
2010     Vals.push_back(GetEncodedOrdering(
2011                      cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2012     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2013     break;
2014   case Instruction::AtomicRMW:
2015     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2016     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
2017     pushValue(I.getOperand(1), InstID, Vals, VE);         // val.
2018     Vals.push_back(GetEncodedRMWOperation(
2019                      cast<AtomicRMWInst>(I).getOperation()));
2020     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2021     Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2022     Vals.push_back(GetEncodedSynchScope(
2023                      cast<AtomicRMWInst>(I).getSynchScope()));
2024     break;
2025   case Instruction::Fence:
2026     Code = bitc::FUNC_CODE_INST_FENCE;
2027     Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2028     Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
2029     break;
2030   case Instruction::Call: {
2031     const CallInst &CI = cast<CallInst>(I);
2032     FunctionType *FTy = CI.getFunctionType();
2033
2034     Code = bitc::FUNC_CODE_INST_CALL;
2035
2036     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
2037     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
2038                    unsigned(CI.isMustTailCall()) << 14 | 1 << 15);
2039     Vals.push_back(VE.getTypeID(FTy));
2040     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
2041
2042     // Emit value #'s for the fixed parameters.
2043     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2044       // Check for labels (can happen with asm labels).
2045       if (FTy->getParamType(i)->isLabelTy())
2046         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2047       else
2048         pushValue(CI.getArgOperand(i), InstID, Vals, VE);  // fixed param.
2049     }
2050
2051     // Emit type/value pairs for varargs params.
2052     if (FTy->isVarArg()) {
2053       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2054            i != e; ++i)
2055         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
2056     }
2057     break;
2058   }
2059   case Instruction::VAArg:
2060     Code = bitc::FUNC_CODE_INST_VAARG;
2061     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
2062     pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
2063     Vals.push_back(VE.getTypeID(I.getType())); // restype.
2064     break;
2065   }
2066
2067   Stream.EmitRecord(Code, Vals, AbbrevToUse);
2068   Vals.clear();
2069 }
2070
2071 // Emit names for globals/functions etc.
2072 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
2073                                   const ValueEnumerator &VE,
2074                                   BitstreamWriter &Stream) {
2075   if (VST.empty()) return;
2076   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2077
2078   // FIXME: Set up the abbrev, we know how many values there are!
2079   // FIXME: We know if the type names can use 7-bit ascii.
2080   SmallVector<unsigned, 64> NameVals;
2081
2082   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
2083        SI != SE; ++SI) {
2084
2085     const ValueName &Name = *SI;
2086
2087     // Figure out the encoding to use for the name.
2088     bool is7Bit = true;
2089     bool isChar6 = true;
2090     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
2091          C != E; ++C) {
2092       if (isChar6)
2093         isChar6 = BitCodeAbbrevOp::isChar6(*C);
2094       if ((unsigned char)*C & 128) {
2095         is7Bit = false;
2096         break;  // don't bother scanning the rest.
2097       }
2098     }
2099
2100     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2101
2102     // VST_ENTRY:   [valueid, namechar x N]
2103     // VST_BBENTRY: [bbid, namechar x N]
2104     unsigned Code;
2105     if (isa<BasicBlock>(SI->getValue())) {
2106       Code = bitc::VST_CODE_BBENTRY;
2107       if (isChar6)
2108         AbbrevToUse = VST_BBENTRY_6_ABBREV;
2109     } else {
2110       Code = bitc::VST_CODE_ENTRY;
2111       if (isChar6)
2112         AbbrevToUse = VST_ENTRY_6_ABBREV;
2113       else if (is7Bit)
2114         AbbrevToUse = VST_ENTRY_7_ABBREV;
2115     }
2116
2117     NameVals.push_back(VE.getValueID(SI->getValue()));
2118     for (const char *P = Name.getKeyData(),
2119          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
2120       NameVals.push_back((unsigned char)*P);
2121
2122     // Emit the finished record.
2123     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2124     NameVals.clear();
2125   }
2126   Stream.ExitBlock();
2127 }
2128
2129 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
2130                          BitstreamWriter &Stream) {
2131   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2132   unsigned Code;
2133   if (isa<BasicBlock>(Order.V))
2134     Code = bitc::USELIST_CODE_BB;
2135   else
2136     Code = bitc::USELIST_CODE_DEFAULT;
2137
2138   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
2139   Record.push_back(VE.getValueID(Order.V));
2140   Stream.EmitRecord(Code, Record);
2141 }
2142
2143 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
2144                               BitstreamWriter &Stream) {
2145   assert(VE.shouldPreserveUseListOrder() &&
2146          "Expected to be preserving use-list order");
2147
2148   auto hasMore = [&]() {
2149     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
2150   };
2151   if (!hasMore())
2152     // Nothing to do.
2153     return;
2154
2155   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
2156   while (hasMore()) {
2157     WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
2158     VE.UseListOrders.pop_back();
2159   }
2160   Stream.ExitBlock();
2161 }
2162
2163 /// WriteFunction - Emit a function body to the module stream.
2164 static void WriteFunction(const Function &F, ValueEnumerator &VE,
2165                           BitstreamWriter &Stream) {
2166   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2167   VE.incorporateFunction(F);
2168
2169   SmallVector<unsigned, 64> Vals;
2170
2171   // Emit the number of basic blocks, so the reader can create them ahead of
2172   // time.
2173   Vals.push_back(VE.getBasicBlocks().size());
2174   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2175   Vals.clear();
2176
2177   // If there are function-local constants, emit them now.
2178   unsigned CstStart, CstEnd;
2179   VE.getFunctionConstantRange(CstStart, CstEnd);
2180   WriteConstants(CstStart, CstEnd, VE, Stream, false);
2181
2182   // If there is function-local metadata, emit it now.
2183   WriteFunctionLocalMetadata(F, VE, Stream);
2184
2185   // Keep a running idea of what the instruction ID is.
2186   unsigned InstID = CstEnd;
2187
2188   bool NeedsMetadataAttachment = F.hasMetadata();
2189
2190   DILocation *LastDL = nullptr;
2191
2192   // Finally, emit all the instructions, in order.
2193   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2194     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
2195          I != E; ++I) {
2196       WriteInstruction(*I, InstID, VE, Stream, Vals);
2197
2198       if (!I->getType()->isVoidTy())
2199         ++InstID;
2200
2201       // If the instruction has metadata, write a metadata attachment later.
2202       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2203
2204       // If the instruction has a debug location, emit it.
2205       DILocation *DL = I->getDebugLoc();
2206       if (!DL)
2207         continue;
2208
2209       if (DL == LastDL) {
2210         // Just repeat the same debug loc as last time.
2211         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2212         continue;
2213       }
2214
2215       Vals.push_back(DL->getLine());
2216       Vals.push_back(DL->getColumn());
2217       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
2218       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
2219       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2220       Vals.clear();
2221
2222       LastDL = DL;
2223     }
2224
2225   // Emit names for all the instructions etc.
2226   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
2227
2228   if (NeedsMetadataAttachment)
2229     WriteMetadataAttachment(F, VE, Stream);
2230   if (VE.shouldPreserveUseListOrder())
2231     WriteUseListBlock(&F, VE, Stream);
2232   VE.purgeFunction();
2233   Stream.ExitBlock();
2234 }
2235
2236 // Emit blockinfo, which defines the standard abbreviations etc.
2237 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
2238   // We only want to emit block info records for blocks that have multiple
2239   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2240   // Other blocks can define their abbrevs inline.
2241   Stream.EnterBlockInfoBlock(2);
2242
2243   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
2244     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2245     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
2246     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2247     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2248     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2249     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2250                                    Abbv) != VST_ENTRY_8_ABBREV)
2251       llvm_unreachable("Unexpected abbrev ordering!");
2252   }
2253
2254   { // 7-bit fixed width VST_ENTRY strings.
2255     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2256     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2257     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2258     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2259     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2260     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2261                                    Abbv) != VST_ENTRY_7_ABBREV)
2262       llvm_unreachable("Unexpected abbrev ordering!");
2263   }
2264   { // 6-bit char6 VST_ENTRY strings.
2265     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2266     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2267     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2268     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2269     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2270     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2271                                    Abbv) != VST_ENTRY_6_ABBREV)
2272       llvm_unreachable("Unexpected abbrev ordering!");
2273   }
2274   { // 6-bit char6 VST_BBENTRY strings.
2275     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2276     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2277     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2278     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2279     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2280     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2281                                    Abbv) != VST_BBENTRY_6_ABBREV)
2282       llvm_unreachable("Unexpected abbrev ordering!");
2283   }
2284
2285
2286
2287   { // SETTYPE abbrev for CONSTANTS_BLOCK.
2288     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2289     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2290     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
2291                               VE.computeBitsRequiredForTypeIndicies()));
2292     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2293                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
2294       llvm_unreachable("Unexpected abbrev ordering!");
2295   }
2296
2297   { // INTEGER abbrev for CONSTANTS_BLOCK.
2298     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2299     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
2300     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2301     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2302                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
2303       llvm_unreachable("Unexpected abbrev ordering!");
2304   }
2305
2306   { // CE_CAST abbrev for CONSTANTS_BLOCK.
2307     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2308     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
2309     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
2310     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
2311                               VE.computeBitsRequiredForTypeIndicies()));
2312     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
2313
2314     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2315                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
2316       llvm_unreachable("Unexpected abbrev ordering!");
2317   }
2318   { // NULL abbrev for CONSTANTS_BLOCK.
2319     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2320     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
2321     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2322                                    Abbv) != CONSTANTS_NULL_Abbrev)
2323       llvm_unreachable("Unexpected abbrev ordering!");
2324   }
2325
2326   // FIXME: This should only use space for first class types!
2327
2328   { // INST_LOAD abbrev for FUNCTION_BLOCK.
2329     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2330     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
2331     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
2332     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
2333                               VE.computeBitsRequiredForTypeIndicies()));
2334     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
2335     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
2336     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2337                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
2338       llvm_unreachable("Unexpected abbrev ordering!");
2339   }
2340   { // INST_BINOP abbrev for FUNCTION_BLOCK.
2341     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2342     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2343     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2344     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2345     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2346     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2347                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
2348       llvm_unreachable("Unexpected abbrev ordering!");
2349   }
2350   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
2351     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2352     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2353     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2354     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2355     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2356     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
2357     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2358                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
2359       llvm_unreachable("Unexpected abbrev ordering!");
2360   }
2361   { // INST_CAST abbrev for FUNCTION_BLOCK.
2362     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2363     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
2364     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
2365     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
2366                               VE.computeBitsRequiredForTypeIndicies()));
2367     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
2368     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2369                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
2370       llvm_unreachable("Unexpected abbrev ordering!");
2371   }
2372
2373   { // INST_RET abbrev for FUNCTION_BLOCK.
2374     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2375     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2376     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2377                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
2378       llvm_unreachable("Unexpected abbrev ordering!");
2379   }
2380   { // INST_RET abbrev for FUNCTION_BLOCK.
2381     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2382     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2383     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
2384     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2385                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
2386       llvm_unreachable("Unexpected abbrev ordering!");
2387   }
2388   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
2389     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2390     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
2391     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2392                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
2393       llvm_unreachable("Unexpected abbrev ordering!");
2394   }
2395   {
2396     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2397     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
2398     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
2399     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2400                               Log2_32_Ceil(VE.getTypes().size() + 1)));
2401     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2402     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2403     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
2404         FUNCTION_INST_GEP_ABBREV)
2405       llvm_unreachable("Unexpected abbrev ordering!");
2406   }
2407
2408   Stream.ExitBlock();
2409 }
2410
2411 /// WriteModule - Emit the specified module to the bitstream.
2412 static void WriteModule(const Module *M, BitstreamWriter &Stream,
2413                         bool ShouldPreserveUseListOrder) {
2414   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
2415
2416   SmallVector<unsigned, 1> Vals;
2417   unsigned CurVersion = 1;
2418   Vals.push_back(CurVersion);
2419   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
2420
2421   // Analyze the module, enumerating globals, functions, etc.
2422   ValueEnumerator VE(*M, ShouldPreserveUseListOrder);
2423
2424   // Emit blockinfo, which defines the standard abbreviations etc.
2425   WriteBlockInfo(VE, Stream);
2426
2427   // Emit information about attribute groups.
2428   WriteAttributeGroupTable(VE, Stream);
2429
2430   // Emit information about parameter attributes.
2431   WriteAttributeTable(VE, Stream);
2432
2433   // Emit information describing all of the types in the module.
2434   WriteTypeTable(VE, Stream);
2435
2436   writeComdats(VE, Stream);
2437
2438   // Emit top-level description of module, including target triple, inline asm,
2439   // descriptors for global variables, and function prototype info.
2440   WriteModuleInfo(M, VE, Stream);
2441
2442   // Emit constants.
2443   WriteModuleConstants(VE, Stream);
2444
2445   // Emit metadata.
2446   WriteModuleMetadata(M, VE, Stream);
2447
2448   // Emit metadata.
2449   WriteModuleMetadataStore(M, Stream);
2450
2451   // Emit names for globals/functions etc.
2452   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
2453
2454   // Emit module-level use-lists.
2455   if (VE.shouldPreserveUseListOrder())
2456     WriteUseListBlock(nullptr, VE, Stream);
2457
2458   // Emit function bodies.
2459   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
2460     if (!F->isDeclaration())
2461       WriteFunction(*F, VE, Stream);
2462
2463   Stream.ExitBlock();
2464 }
2465
2466 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
2467 /// header and trailer to make it compatible with the system archiver.  To do
2468 /// this we emit the following header, and then emit a trailer that pads the
2469 /// file out to be a multiple of 16 bytes.
2470 ///
2471 /// struct bc_header {
2472 ///   uint32_t Magic;         // 0x0B17C0DE
2473 ///   uint32_t Version;       // Version, currently always 0.
2474 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
2475 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
2476 ///   uint32_t CPUType;       // CPU specifier.
2477 ///   ... potentially more later ...
2478 /// };
2479 enum {
2480   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
2481   DarwinBCHeaderSize = 5*4
2482 };
2483
2484 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
2485                                uint32_t &Position) {
2486   support::endian::write32le(&Buffer[Position], Value);
2487   Position += 4;
2488 }
2489
2490 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
2491                                          const Triple &TT) {
2492   unsigned CPUType = ~0U;
2493
2494   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
2495   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
2496   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
2497   // specific constants here because they are implicitly part of the Darwin ABI.
2498   enum {
2499     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
2500     DARWIN_CPU_TYPE_X86        = 7,
2501     DARWIN_CPU_TYPE_ARM        = 12,
2502     DARWIN_CPU_TYPE_POWERPC    = 18
2503   };
2504
2505   Triple::ArchType Arch = TT.getArch();
2506   if (Arch == Triple::x86_64)
2507     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
2508   else if (Arch == Triple::x86)
2509     CPUType = DARWIN_CPU_TYPE_X86;
2510   else if (Arch == Triple::ppc)
2511     CPUType = DARWIN_CPU_TYPE_POWERPC;
2512   else if (Arch == Triple::ppc64)
2513     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
2514   else if (Arch == Triple::arm || Arch == Triple::thumb)
2515     CPUType = DARWIN_CPU_TYPE_ARM;
2516
2517   // Traditional Bitcode starts after header.
2518   assert(Buffer.size() >= DarwinBCHeaderSize &&
2519          "Expected header size to be reserved");
2520   unsigned BCOffset = DarwinBCHeaderSize;
2521   unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
2522
2523   // Write the magic and version.
2524   unsigned Position = 0;
2525   WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
2526   WriteInt32ToBuffer(0          , Buffer, Position); // Version.
2527   WriteInt32ToBuffer(BCOffset   , Buffer, Position);
2528   WriteInt32ToBuffer(BCSize     , Buffer, Position);
2529   WriteInt32ToBuffer(CPUType    , Buffer, Position);
2530
2531   // If the file is not a multiple of 16 bytes, insert dummy padding.
2532   while (Buffer.size() & 15)
2533     Buffer.push_back(0);
2534 }
2535
2536 /// WriteBitcodeToFile - Write the specified module to the specified output
2537 /// stream.
2538 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
2539                               bool ShouldPreserveUseListOrder) {
2540   SmallVector<char, 0> Buffer;
2541   Buffer.reserve(256*1024);
2542
2543   // If this is darwin or another generic macho target, reserve space for the
2544   // header.
2545   Triple TT(M->getTargetTriple());
2546   if (TT.isOSDarwin())
2547     Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
2548
2549   // Emit the module into the buffer.
2550   {
2551     BitstreamWriter Stream(Buffer);
2552
2553     // Emit the file header.
2554     Stream.Emit((unsigned)'B', 8);
2555     Stream.Emit((unsigned)'C', 8);
2556     Stream.Emit(0x0, 4);
2557     Stream.Emit(0xC, 4);
2558     Stream.Emit(0xE, 4);
2559     Stream.Emit(0xD, 4);
2560
2561     // Emit the module.
2562     WriteModule(M, Stream, ShouldPreserveUseListOrder);
2563   }
2564
2565   if (TT.isOSDarwin())
2566     EmitDarwinBCHeaderAndTrailer(Buffer, TT);
2567
2568   // Write the generated bitstream to "Out".
2569   Out.write((char*)&Buffer.front(), Buffer.size());
2570 }