assert(0) -> LLVM_UNREACHABLE.
[oota-llvm.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/MDNode.h"
23 #include "llvm/Module.h"
24 #include "llvm/TypeSymbolTable.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/Streams.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/System/Program.h"
31 using namespace llvm;
32
33 /// These are manifest constants used by the bitcode writer. They do not need to
34 /// be kept in sync with the reader, but need to be consistent within this file.
35 enum {
36   CurVersion = 0,
37   
38   // VALUE_SYMTAB_BLOCK abbrev id's.
39   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
40   VST_ENTRY_7_ABBREV,
41   VST_ENTRY_6_ABBREV,
42   VST_BBENTRY_6_ABBREV,
43   
44   // CONSTANTS_BLOCK abbrev id's.
45   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
46   CONSTANTS_INTEGER_ABBREV,
47   CONSTANTS_CE_CAST_Abbrev,
48   CONSTANTS_NULL_Abbrev,
49   
50   // FUNCTION_BLOCK abbrev id's.
51   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
52   FUNCTION_INST_BINOP_ABBREV,
53   FUNCTION_INST_CAST_ABBREV,
54   FUNCTION_INST_RET_VOID_ABBREV,
55   FUNCTION_INST_RET_VAL_ABBREV,
56   FUNCTION_INST_UNREACHABLE_ABBREV
57 };
58
59
60 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
61   switch (Opcode) {
62   default: LLVM_UNREACHABLE("Unknown cast instruction!");
63   case Instruction::Trunc   : return bitc::CAST_TRUNC;
64   case Instruction::ZExt    : return bitc::CAST_ZEXT;
65   case Instruction::SExt    : return bitc::CAST_SEXT;
66   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
67   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
68   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
69   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
70   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
71   case Instruction::FPExt   : return bitc::CAST_FPEXT;
72   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
73   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
74   case Instruction::BitCast : return bitc::CAST_BITCAST;
75   }
76 }
77
78 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
79   switch (Opcode) {
80   default: LLVM_UNREACHABLE("Unknown binary instruction!");
81   case Instruction::Add:
82   case Instruction::FAdd: return bitc::BINOP_ADD;
83   case Instruction::Sub:
84   case Instruction::FSub: return bitc::BINOP_SUB;
85   case Instruction::Mul:
86   case Instruction::FMul: return bitc::BINOP_MUL;
87   case Instruction::UDiv: return bitc::BINOP_UDIV;
88   case Instruction::FDiv:
89   case Instruction::SDiv: return bitc::BINOP_SDIV;
90   case Instruction::URem: return bitc::BINOP_UREM;
91   case Instruction::FRem:
92   case Instruction::SRem: return bitc::BINOP_SREM;
93   case Instruction::Shl:  return bitc::BINOP_SHL;
94   case Instruction::LShr: return bitc::BINOP_LSHR;
95   case Instruction::AShr: return bitc::BINOP_ASHR;
96   case Instruction::And:  return bitc::BINOP_AND;
97   case Instruction::Or:   return bitc::BINOP_OR;
98   case Instruction::Xor:  return bitc::BINOP_XOR;
99   }
100 }
101
102
103
104 static void WriteStringRecord(unsigned Code, const std::string &Str, 
105                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
106   SmallVector<unsigned, 64> Vals;
107   
108   // Code: [strchar x N]
109   for (unsigned i = 0, e = Str.size(); i != e; ++i)
110     Vals.push_back(Str[i]);
111     
112   // Emit the finished record.
113   Stream.EmitRecord(Code, Vals, AbbrevToUse);
114 }
115
116 // Emit information about parameter attributes.
117 static void WriteAttributeTable(const ValueEnumerator &VE, 
118                                 BitstreamWriter &Stream) {
119   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
120   if (Attrs.empty()) return;
121   
122   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
123
124   SmallVector<uint64_t, 64> Record;
125   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
126     const AttrListPtr &A = Attrs[i];
127     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
128       const AttributeWithIndex &PAWI = A.getSlot(i);
129       Record.push_back(PAWI.Index);
130
131       // FIXME: remove in LLVM 3.0
132       // Store the alignment in the bitcode as a 16-bit raw value instead of a
133       // 5-bit log2 encoded value. Shift the bits above the alignment up by
134       // 11 bits.
135       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
136       if (PAWI.Attrs & Attribute::Alignment)
137         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
138       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
139
140       Record.push_back(FauxAttr);
141     }
142     
143     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
144     Record.clear();
145   }
146   
147   Stream.ExitBlock();
148 }
149
150 /// WriteTypeTable - Write out the type table for a module.
151 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
152   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
153   
154   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
155   SmallVector<uint64_t, 64> TypeVals;
156   
157   // Abbrev for TYPE_CODE_POINTER.
158   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
159   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
160   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
161                             Log2_32_Ceil(VE.getTypes().size()+1)));
162   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
163   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
164   
165   // Abbrev for TYPE_CODE_FUNCTION.
166   Abbv = new BitCodeAbbrev();
167   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
168   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
169   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
170   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
171   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
172                             Log2_32_Ceil(VE.getTypes().size()+1)));
173   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
174   
175   // Abbrev for TYPE_CODE_STRUCT.
176   Abbv = new BitCodeAbbrev();
177   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
178   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
179   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
180   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
181                             Log2_32_Ceil(VE.getTypes().size()+1)));
182   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
183  
184   // Abbrev for TYPE_CODE_ARRAY.
185   Abbv = new BitCodeAbbrev();
186   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
187   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
188   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
189                             Log2_32_Ceil(VE.getTypes().size()+1)));
190   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
191   
192   // Emit an entry count so the reader can reserve space.
193   TypeVals.push_back(TypeList.size());
194   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
195   TypeVals.clear();
196   
197   // Loop over all of the types, emitting each in turn.
198   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
199     const Type *T = TypeList[i].first;
200     int AbbrevToUse = 0;
201     unsigned Code = 0;
202     
203     switch (T->getTypeID()) {
204     default: LLVM_UNREACHABLE("Unknown type!");
205     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
206     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
207     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
208     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
209     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
210     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
211     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
212     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
213     case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
214     case Type::IntegerTyID:
215       // INTEGER: [width]
216       Code = bitc::TYPE_CODE_INTEGER;
217       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
218       break;
219     case Type::PointerTyID: {
220       const PointerType *PTy = cast<PointerType>(T);
221       // POINTER: [pointee type, address space]
222       Code = bitc::TYPE_CODE_POINTER;
223       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
224       unsigned AddressSpace = PTy->getAddressSpace();
225       TypeVals.push_back(AddressSpace);
226       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
227       break;
228     }
229     case Type::FunctionTyID: {
230       const FunctionType *FT = cast<FunctionType>(T);
231       // FUNCTION: [isvararg, attrid, retty, paramty x N]
232       Code = bitc::TYPE_CODE_FUNCTION;
233       TypeVals.push_back(FT->isVarArg());
234       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
235       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
236       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
237         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
238       AbbrevToUse = FunctionAbbrev;
239       break;
240     }
241     case Type::StructTyID: {
242       const StructType *ST = cast<StructType>(T);
243       // STRUCT: [ispacked, eltty x N]
244       Code = bitc::TYPE_CODE_STRUCT;
245       TypeVals.push_back(ST->isPacked());
246       // Output all of the element types.
247       for (StructType::element_iterator I = ST->element_begin(),
248            E = ST->element_end(); I != E; ++I)
249         TypeVals.push_back(VE.getTypeID(*I));
250       AbbrevToUse = StructAbbrev;
251       break;
252     }
253     case Type::ArrayTyID: {
254       const ArrayType *AT = cast<ArrayType>(T);
255       // ARRAY: [numelts, eltty]
256       Code = bitc::TYPE_CODE_ARRAY;
257       TypeVals.push_back(AT->getNumElements());
258       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
259       AbbrevToUse = ArrayAbbrev;
260       break;
261     }
262     case Type::VectorTyID: {
263       const VectorType *VT = cast<VectorType>(T);
264       // VECTOR [numelts, eltty]
265       Code = bitc::TYPE_CODE_VECTOR;
266       TypeVals.push_back(VT->getNumElements());
267       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
268       break;
269     }
270     }
271
272     // Emit the finished record.
273     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
274     TypeVals.clear();
275   }
276   
277   Stream.ExitBlock();
278 }
279
280 static unsigned getEncodedLinkage(const GlobalValue *GV) {
281   switch (GV->getLinkage()) {
282   default: LLVM_UNREACHABLE("Invalid linkage!");
283   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
284   case GlobalValue::ExternalLinkage:     return 0;
285   case GlobalValue::WeakAnyLinkage:      return 1;
286   case GlobalValue::AppendingLinkage:    return 2;
287   case GlobalValue::InternalLinkage:     return 3;
288   case GlobalValue::LinkOnceAnyLinkage:  return 4;
289   case GlobalValue::DLLImportLinkage:    return 5;
290   case GlobalValue::DLLExportLinkage:    return 6;
291   case GlobalValue::ExternalWeakLinkage: return 7;
292   case GlobalValue::CommonLinkage:       return 8;
293   case GlobalValue::PrivateLinkage:      return 9;
294   case GlobalValue::WeakODRLinkage:      return 10;
295   case GlobalValue::LinkOnceODRLinkage:  return 11;
296   case GlobalValue::AvailableExternallyLinkage:  return 12;
297   }
298 }
299
300 static unsigned getEncodedVisibility(const GlobalValue *GV) {
301   switch (GV->getVisibility()) {
302   default: LLVM_UNREACHABLE("Invalid visibility!");
303   case GlobalValue::DefaultVisibility:   return 0;
304   case GlobalValue::HiddenVisibility:    return 1;
305   case GlobalValue::ProtectedVisibility: return 2;
306   }
307 }
308
309 // Emit top-level description of module, including target triple, inline asm,
310 // descriptors for global variables, and function prototype info.
311 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
312                             BitstreamWriter &Stream) {
313   // Emit the list of dependent libraries for the Module.
314   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
315     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
316
317   // Emit various pieces of data attached to a module.
318   if (!M->getTargetTriple().empty())
319     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
320                       0/*TODO*/, Stream);
321   if (!M->getDataLayout().empty())
322     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
323                       0/*TODO*/, Stream);
324   if (!M->getModuleInlineAsm().empty())
325     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
326                       0/*TODO*/, Stream);
327
328   // Emit information about sections and GC, computing how many there are. Also
329   // compute the maximum alignment value.
330   std::map<std::string, unsigned> SectionMap;
331   std::map<std::string, unsigned> GCMap;
332   unsigned MaxAlignment = 0;
333   unsigned MaxGlobalType = 0;
334   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
335        GV != E; ++GV) {
336     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
337     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
338     
339     if (!GV->hasSection()) continue;
340     // Give section names unique ID's.
341     unsigned &Entry = SectionMap[GV->getSection()];
342     if (Entry != 0) continue;
343     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
344                       0/*TODO*/, Stream);
345     Entry = SectionMap.size();
346   }
347   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
348     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
349     if (F->hasSection()) {
350       // Give section names unique ID's.
351       unsigned &Entry = SectionMap[F->getSection()];
352       if (!Entry) {
353         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
354                           0/*TODO*/, Stream);
355         Entry = SectionMap.size();
356       }
357     }
358     if (F->hasGC()) {
359       // Same for GC names.
360       unsigned &Entry = GCMap[F->getGC()];
361       if (!Entry) {
362         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
363                           0/*TODO*/, Stream);
364         Entry = GCMap.size();
365       }
366     }
367   }
368   
369   // Emit abbrev for globals, now that we know # sections and max alignment.
370   unsigned SimpleGVarAbbrev = 0;
371   if (!M->global_empty()) { 
372     // Add an abbrev for common globals with no visibility or thread localness.
373     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
374     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
375     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
376                               Log2_32_Ceil(MaxGlobalType+1)));
377     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
378     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
379     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
380     if (MaxAlignment == 0)                                      // Alignment.
381       Abbv->Add(BitCodeAbbrevOp(0));
382     else {
383       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
384       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
385                                Log2_32_Ceil(MaxEncAlignment+1)));
386     }
387     if (SectionMap.empty())                                    // Section.
388       Abbv->Add(BitCodeAbbrevOp(0));
389     else
390       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
391                                Log2_32_Ceil(SectionMap.size()+1)));
392     // Don't bother emitting vis + thread local.
393     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
394   }
395   
396   // Emit the global variable information.
397   SmallVector<unsigned, 64> Vals;
398   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
399        GV != E; ++GV) {
400     unsigned AbbrevToUse = 0;
401
402     // GLOBALVAR: [type, isconst, initid, 
403     //             linkage, alignment, section, visibility, threadlocal]
404     Vals.push_back(VE.getTypeID(GV->getType()));
405     Vals.push_back(GV->isConstant());
406     Vals.push_back(GV->isDeclaration() ? 0 :
407                    (VE.getValueID(GV->getInitializer()) + 1));
408     Vals.push_back(getEncodedLinkage(GV));
409     Vals.push_back(Log2_32(GV->getAlignment())+1);
410     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
411     if (GV->isThreadLocal() || 
412         GV->getVisibility() != GlobalValue::DefaultVisibility) {
413       Vals.push_back(getEncodedVisibility(GV));
414       Vals.push_back(GV->isThreadLocal());
415     } else {
416       AbbrevToUse = SimpleGVarAbbrev;
417     }
418     
419     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
420     Vals.clear();
421   }
422
423   // Emit the function proto information.
424   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
425     // FUNCTION:  [type, callingconv, isproto, paramattr,
426     //             linkage, alignment, section, visibility, gc]
427     Vals.push_back(VE.getTypeID(F->getType()));
428     Vals.push_back(F->getCallingConv());
429     Vals.push_back(F->isDeclaration());
430     Vals.push_back(getEncodedLinkage(F));
431     Vals.push_back(VE.getAttributeID(F->getAttributes()));
432     Vals.push_back(Log2_32(F->getAlignment())+1);
433     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
434     Vals.push_back(getEncodedVisibility(F));
435     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
436     
437     unsigned AbbrevToUse = 0;
438     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
439     Vals.clear();
440   }
441   
442   
443   // Emit the alias information.
444   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
445        AI != E; ++AI) {
446     Vals.push_back(VE.getTypeID(AI->getType()));
447     Vals.push_back(VE.getValueID(AI->getAliasee()));
448     Vals.push_back(getEncodedLinkage(AI));
449     Vals.push_back(getEncodedVisibility(AI));
450     unsigned AbbrevToUse = 0;
451     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
452     Vals.clear();
453   }
454 }
455
456
457 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
458                            const ValueEnumerator &VE,
459                            BitstreamWriter &Stream, bool isGlobal) {
460   if (FirstVal == LastVal) return;
461   
462   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
463
464   unsigned AggregateAbbrev = 0;
465   unsigned String8Abbrev = 0;
466   unsigned CString7Abbrev = 0;
467   unsigned CString6Abbrev = 0;
468   unsigned MDString8Abbrev = 0;
469   unsigned MDString6Abbrev = 0;
470   // If this is a constant pool for the module, emit module-specific abbrevs.
471   if (isGlobal) {
472     // Abbrev for CST_CODE_AGGREGATE.
473     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
474     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
475     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
476     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
477     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
478
479     // Abbrev for CST_CODE_STRING.
480     Abbv = new BitCodeAbbrev();
481     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
482     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
483     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
484     String8Abbrev = Stream.EmitAbbrev(Abbv);
485     // Abbrev for CST_CODE_CSTRING.
486     Abbv = new BitCodeAbbrev();
487     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
488     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
489     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
490     CString7Abbrev = Stream.EmitAbbrev(Abbv);
491     // Abbrev for CST_CODE_CSTRING.
492     Abbv = new BitCodeAbbrev();
493     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
494     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
495     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
496     CString6Abbrev = Stream.EmitAbbrev(Abbv);
497
498     // Abbrev for CST_CODE_MDSTRING.
499     Abbv = new BitCodeAbbrev();
500     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING));
501     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
502     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
503     MDString8Abbrev = Stream.EmitAbbrev(Abbv);
504     // Abbrev for CST_CODE_MDSTRING.
505     Abbv = new BitCodeAbbrev();
506     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING));
507     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
508     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
509     MDString6Abbrev = Stream.EmitAbbrev(Abbv);
510   }  
511   
512   SmallVector<uint64_t, 64> Record;
513
514   const ValueEnumerator::ValueList &Vals = VE.getValues();
515   const Type *LastTy = 0;
516   for (unsigned i = FirstVal; i != LastVal; ++i) {
517     const Value *V = Vals[i].first;
518     // If we need to switch types, do so now.
519     if (V->getType() != LastTy) {
520       LastTy = V->getType();
521       Record.push_back(VE.getTypeID(LastTy));
522       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
523                         CONSTANTS_SETTYPE_ABBREV);
524       Record.clear();
525     }
526     
527     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
528       Record.push_back(unsigned(IA->hasSideEffects()));
529       
530       // Add the asm string.
531       const std::string &AsmStr = IA->getAsmString();
532       Record.push_back(AsmStr.size());
533       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
534         Record.push_back(AsmStr[i]);
535       
536       // Add the constraint string.
537       const std::string &ConstraintStr = IA->getConstraintString();
538       Record.push_back(ConstraintStr.size());
539       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
540         Record.push_back(ConstraintStr[i]);
541       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
542       Record.clear();
543       continue;
544     }
545     const Constant *C = cast<Constant>(V);
546     unsigned Code = -1U;
547     unsigned AbbrevToUse = 0;
548     if (C->isNullValue()) {
549       Code = bitc::CST_CODE_NULL;
550     } else if (isa<UndefValue>(C)) {
551       Code = bitc::CST_CODE_UNDEF;
552     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
553       if (IV->getBitWidth() <= 64) {
554         int64_t V = IV->getSExtValue();
555         if (V >= 0)
556           Record.push_back(V << 1);
557         else
558           Record.push_back((-V << 1) | 1);
559         Code = bitc::CST_CODE_INTEGER;
560         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
561       } else {                             // Wide integers, > 64 bits in size.
562         // We have an arbitrary precision integer value to write whose 
563         // bit width is > 64. However, in canonical unsigned integer 
564         // format it is likely that the high bits are going to be zero.
565         // So, we only write the number of active words.
566         unsigned NWords = IV->getValue().getActiveWords(); 
567         const uint64_t *RawWords = IV->getValue().getRawData();
568         for (unsigned i = 0; i != NWords; ++i) {
569           int64_t V = RawWords[i];
570           if (V >= 0)
571             Record.push_back(V << 1);
572           else
573             Record.push_back((-V << 1) | 1);
574         }
575         Code = bitc::CST_CODE_WIDE_INTEGER;
576       }
577     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
578       Code = bitc::CST_CODE_FLOAT;
579       const Type *Ty = CFP->getType();
580       if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
581         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
582       } else if (Ty == Type::X86_FP80Ty) {
583         // api needed to prevent premature destruction
584         // bits are not in the same order as a normal i80 APInt, compensate.
585         APInt api = CFP->getValueAPF().bitcastToAPInt();
586         const uint64_t *p = api.getRawData();
587         Record.push_back((p[1] << 48) | (p[0] >> 16));
588         Record.push_back(p[0] & 0xffffLL);
589       } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
590         APInt api = CFP->getValueAPF().bitcastToAPInt();
591         const uint64_t *p = api.getRawData();
592         Record.push_back(p[0]);
593         Record.push_back(p[1]);
594       } else {
595         assert (0 && "Unknown FP type!");
596       }
597     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
598       // Emit constant strings specially.
599       unsigned NumOps = C->getNumOperands();
600       // If this is a null-terminated string, use the denser CSTRING encoding.
601       if (C->getOperand(NumOps-1)->isNullValue()) {
602         Code = bitc::CST_CODE_CSTRING;
603         --NumOps;  // Don't encode the null, which isn't allowed by char6.
604       } else {
605         Code = bitc::CST_CODE_STRING;
606         AbbrevToUse = String8Abbrev;
607       }
608       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
609       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
610       for (unsigned i = 0; i != NumOps; ++i) {
611         unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
612         Record.push_back(V);
613         isCStr7 &= (V & 128) == 0;
614         if (isCStrChar6) 
615           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
616       }
617       
618       if (isCStrChar6)
619         AbbrevToUse = CString6Abbrev;
620       else if (isCStr7)
621         AbbrevToUse = CString7Abbrev;
622     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
623                isa<ConstantVector>(V)) {
624       Code = bitc::CST_CODE_AGGREGATE;
625       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
626         Record.push_back(VE.getValueID(C->getOperand(i)));
627       AbbrevToUse = AggregateAbbrev;
628     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
629       switch (CE->getOpcode()) {
630       default:
631         if (Instruction::isCast(CE->getOpcode())) {
632           Code = bitc::CST_CODE_CE_CAST;
633           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
634           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
635           Record.push_back(VE.getValueID(C->getOperand(0)));
636           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
637         } else {
638           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
639           Code = bitc::CST_CODE_CE_BINOP;
640           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
641           Record.push_back(VE.getValueID(C->getOperand(0)));
642           Record.push_back(VE.getValueID(C->getOperand(1)));
643         }
644         break;
645       case Instruction::GetElementPtr:
646         Code = bitc::CST_CODE_CE_GEP;
647         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
648           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
649           Record.push_back(VE.getValueID(C->getOperand(i)));
650         }
651         break;
652       case Instruction::Select:
653         Code = bitc::CST_CODE_CE_SELECT;
654         Record.push_back(VE.getValueID(C->getOperand(0)));
655         Record.push_back(VE.getValueID(C->getOperand(1)));
656         Record.push_back(VE.getValueID(C->getOperand(2)));
657         break;
658       case Instruction::ExtractElement:
659         Code = bitc::CST_CODE_CE_EXTRACTELT;
660         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
661         Record.push_back(VE.getValueID(C->getOperand(0)));
662         Record.push_back(VE.getValueID(C->getOperand(1)));
663         break;
664       case Instruction::InsertElement:
665         Code = bitc::CST_CODE_CE_INSERTELT;
666         Record.push_back(VE.getValueID(C->getOperand(0)));
667         Record.push_back(VE.getValueID(C->getOperand(1)));
668         Record.push_back(VE.getValueID(C->getOperand(2)));
669         break;
670       case Instruction::ShuffleVector:
671         // If the return type and argument types are the same, this is a
672         // standard shufflevector instruction.  If the types are different,
673         // then the shuffle is widening or truncating the input vectors, and
674         // the argument type must also be encoded.
675         if (C->getType() == C->getOperand(0)->getType()) {
676           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
677         } else {
678           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
679           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
680         }
681         Record.push_back(VE.getValueID(C->getOperand(0)));
682         Record.push_back(VE.getValueID(C->getOperand(1)));
683         Record.push_back(VE.getValueID(C->getOperand(2)));
684         break;
685       case Instruction::ICmp:
686       case Instruction::FCmp:
687         Code = bitc::CST_CODE_CE_CMP;
688         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
689         Record.push_back(VE.getValueID(C->getOperand(0)));
690         Record.push_back(VE.getValueID(C->getOperand(1)));
691         Record.push_back(CE->getPredicate());
692         break;
693       }
694     } else if (const MDString *S = dyn_cast<MDString>(C)) {
695       Code = bitc::CST_CODE_MDSTRING;
696       AbbrevToUse = MDString6Abbrev;
697       for (unsigned i = 0, e = S->size(); i != e; ++i) {
698         char V = S->begin()[i];
699         Record.push_back(V);
700
701         if (!BitCodeAbbrevOp::isChar6(V))
702           AbbrevToUse = MDString8Abbrev;
703       }
704     } else if (const MDNode *N = dyn_cast<MDNode>(C)) {
705       Code = bitc::CST_CODE_MDNODE;
706       for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
707         if (N->getElement(i)) {
708           Record.push_back(VE.getTypeID(N->getElement(i)->getType()));
709           Record.push_back(VE.getValueID(N->getElement(i)));
710         } else {
711           Record.push_back(VE.getTypeID(Type::VoidTy));
712           Record.push_back(0);
713         }
714       }
715     } else {
716       LLVM_UNREACHABLE("Unknown constant!");
717     }
718     Stream.EmitRecord(Code, Record, AbbrevToUse);
719     Record.clear();
720   }
721
722   Stream.ExitBlock();
723 }
724
725 static void WriteModuleConstants(const ValueEnumerator &VE,
726                                  BitstreamWriter &Stream) {
727   const ValueEnumerator::ValueList &Vals = VE.getValues();
728   
729   // Find the first constant to emit, which is the first non-globalvalue value.
730   // We know globalvalues have been emitted by WriteModuleInfo.
731   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
732     if (!isa<GlobalValue>(Vals[i].first)) {
733       WriteConstants(i, Vals.size(), VE, Stream, true);
734       return;
735     }
736   }
737 }
738
739 /// PushValueAndType - The file has to encode both the value and type id for
740 /// many values, because we need to know what type to create for forward
741 /// references.  However, most operands are not forward references, so this type
742 /// field is not needed.
743 ///
744 /// This function adds V's value ID to Vals.  If the value ID is higher than the
745 /// instruction ID, then it is a forward reference, and it also includes the
746 /// type ID.
747 static bool PushValueAndType(const Value *V, unsigned InstID,
748                              SmallVector<unsigned, 64> &Vals, 
749                              ValueEnumerator &VE) {
750   unsigned ValID = VE.getValueID(V);
751   Vals.push_back(ValID);
752   if (ValID >= InstID) {
753     Vals.push_back(VE.getTypeID(V->getType()));
754     return true;
755   }
756   return false;
757 }
758
759 /// WriteInstruction - Emit an instruction to the specified stream.
760 static void WriteInstruction(const Instruction &I, unsigned InstID,
761                              ValueEnumerator &VE, BitstreamWriter &Stream,
762                              SmallVector<unsigned, 64> &Vals) {
763   unsigned Code = 0;
764   unsigned AbbrevToUse = 0;
765   switch (I.getOpcode()) {
766   default:
767     if (Instruction::isCast(I.getOpcode())) {
768       Code = bitc::FUNC_CODE_INST_CAST;
769       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
770         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
771       Vals.push_back(VE.getTypeID(I.getType()));
772       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
773     } else {
774       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
775       Code = bitc::FUNC_CODE_INST_BINOP;
776       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
777         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
778       Vals.push_back(VE.getValueID(I.getOperand(1)));
779       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
780     }
781     break;
782
783   case Instruction::GetElementPtr:
784     Code = bitc::FUNC_CODE_INST_GEP;
785     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
786       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
787     break;
788   case Instruction::ExtractValue: {
789     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
790     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
791     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
792     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
793       Vals.push_back(*i);
794     break;
795   }
796   case Instruction::InsertValue: {
797     Code = bitc::FUNC_CODE_INST_INSERTVAL;
798     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
799     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
800     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
801     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
802       Vals.push_back(*i);
803     break;
804   }
805   case Instruction::Select:
806     Code = bitc::FUNC_CODE_INST_VSELECT;
807     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
808     Vals.push_back(VE.getValueID(I.getOperand(2)));
809     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
810     break;
811   case Instruction::ExtractElement:
812     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
813     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
814     Vals.push_back(VE.getValueID(I.getOperand(1)));
815     break;
816   case Instruction::InsertElement:
817     Code = bitc::FUNC_CODE_INST_INSERTELT;
818     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
819     Vals.push_back(VE.getValueID(I.getOperand(1)));
820     Vals.push_back(VE.getValueID(I.getOperand(2)));
821     break;
822   case Instruction::ShuffleVector:
823     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
824     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
825     Vals.push_back(VE.getValueID(I.getOperand(1)));
826     Vals.push_back(VE.getValueID(I.getOperand(2)));
827     break;
828   case Instruction::ICmp:
829   case Instruction::FCmp:
830     // compare returning Int1Ty or vector of Int1Ty
831     Code = bitc::FUNC_CODE_INST_CMP2;
832     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
833     Vals.push_back(VE.getValueID(I.getOperand(1)));
834     Vals.push_back(cast<CmpInst>(I).getPredicate());
835     break;
836
837   case Instruction::Ret: 
838     {
839       Code = bitc::FUNC_CODE_INST_RET;
840       unsigned NumOperands = I.getNumOperands();
841       if (NumOperands == 0)
842         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
843       else if (NumOperands == 1) {
844         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
845           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
846       } else {
847         for (unsigned i = 0, e = NumOperands; i != e; ++i)
848           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
849       }
850     }
851     break;
852   case Instruction::Br:
853     {
854       Code = bitc::FUNC_CODE_INST_BR;
855       BranchInst &II(cast<BranchInst>(I));
856       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
857       if (II.isConditional()) {
858         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
859         Vals.push_back(VE.getValueID(II.getCondition()));
860       }
861     }
862     break;
863   case Instruction::Switch:
864     Code = bitc::FUNC_CODE_INST_SWITCH;
865     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
866     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
867       Vals.push_back(VE.getValueID(I.getOperand(i)));
868     break;
869   case Instruction::Invoke: {
870     const InvokeInst *II = cast<InvokeInst>(&I);
871     const Value *Callee(II->getCalledValue());
872     const PointerType *PTy = cast<PointerType>(Callee->getType());
873     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
874     Code = bitc::FUNC_CODE_INST_INVOKE;
875     
876     Vals.push_back(VE.getAttributeID(II->getAttributes()));
877     Vals.push_back(II->getCallingConv());
878     Vals.push_back(VE.getValueID(II->getNormalDest()));
879     Vals.push_back(VE.getValueID(II->getUnwindDest()));
880     PushValueAndType(Callee, InstID, Vals, VE);
881     
882     // Emit value #'s for the fixed parameters.
883     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
884       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
885
886     // Emit type/value pairs for varargs params.
887     if (FTy->isVarArg()) {
888       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
889            i != e; ++i)
890         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
891     }
892     break;
893   }
894   case Instruction::Unwind:
895     Code = bitc::FUNC_CODE_INST_UNWIND;
896     break;
897   case Instruction::Unreachable:
898     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
899     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
900     break;
901   
902   case Instruction::PHI:
903     Code = bitc::FUNC_CODE_INST_PHI;
904     Vals.push_back(VE.getTypeID(I.getType()));
905     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
906       Vals.push_back(VE.getValueID(I.getOperand(i)));
907     break;
908     
909   case Instruction::Malloc:
910     Code = bitc::FUNC_CODE_INST_MALLOC;
911     Vals.push_back(VE.getTypeID(I.getType()));
912     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
913     Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
914     break;
915     
916   case Instruction::Free:
917     Code = bitc::FUNC_CODE_INST_FREE;
918     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
919     break;
920     
921   case Instruction::Alloca:
922     Code = bitc::FUNC_CODE_INST_ALLOCA;
923     Vals.push_back(VE.getTypeID(I.getType()));
924     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
925     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
926     break;
927     
928   case Instruction::Load:
929     Code = bitc::FUNC_CODE_INST_LOAD;
930     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
931       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
932       
933     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
934     Vals.push_back(cast<LoadInst>(I).isVolatile());
935     break;
936   case Instruction::Store:
937     Code = bitc::FUNC_CODE_INST_STORE2;
938     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
939     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
940     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
941     Vals.push_back(cast<StoreInst>(I).isVolatile());
942     break;
943   case Instruction::Call: {
944     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
945     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
946
947     Code = bitc::FUNC_CODE_INST_CALL;
948     
949     const CallInst *CI = cast<CallInst>(&I);
950     Vals.push_back(VE.getAttributeID(CI->getAttributes()));
951     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
952     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
953     
954     // Emit value #'s for the fixed parameters.
955     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
956       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
957       
958     // Emit type/value pairs for varargs params.
959     if (FTy->isVarArg()) {
960       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
961       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
962            i != e; ++i)
963         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
964     }
965     break;
966   }
967   case Instruction::VAArg:
968     Code = bitc::FUNC_CODE_INST_VAARG;
969     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
970     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
971     Vals.push_back(VE.getTypeID(I.getType())); // restype.
972     break;
973   }
974   
975   Stream.EmitRecord(Code, Vals, AbbrevToUse);
976   Vals.clear();
977 }
978
979 // Emit names for globals/functions etc.
980 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
981                                   const ValueEnumerator &VE,
982                                   BitstreamWriter &Stream) {
983   if (VST.empty()) return;
984   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
985
986   // FIXME: Set up the abbrev, we know how many values there are!
987   // FIXME: We know if the type names can use 7-bit ascii.
988   SmallVector<unsigned, 64> NameVals;
989   
990   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
991        SI != SE; ++SI) {
992     
993     const ValueName &Name = *SI;
994     
995     // Figure out the encoding to use for the name.
996     bool is7Bit = true;
997     bool isChar6 = true;
998     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
999          C != E; ++C) {
1000       if (isChar6) 
1001         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1002       if ((unsigned char)*C & 128) {
1003         is7Bit = false;
1004         break;  // don't bother scanning the rest.
1005       }
1006     }
1007     
1008     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1009     
1010     // VST_ENTRY:   [valueid, namechar x N]
1011     // VST_BBENTRY: [bbid, namechar x N]
1012     unsigned Code;
1013     if (isa<BasicBlock>(SI->getValue())) {
1014       Code = bitc::VST_CODE_BBENTRY;
1015       if (isChar6)
1016         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1017     } else {
1018       Code = bitc::VST_CODE_ENTRY;
1019       if (isChar6)
1020         AbbrevToUse = VST_ENTRY_6_ABBREV;
1021       else if (is7Bit)
1022         AbbrevToUse = VST_ENTRY_7_ABBREV;
1023     }
1024     
1025     NameVals.push_back(VE.getValueID(SI->getValue()));
1026     for (const char *P = Name.getKeyData(),
1027          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1028       NameVals.push_back((unsigned char)*P);
1029     
1030     // Emit the finished record.
1031     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1032     NameVals.clear();
1033   }
1034   Stream.ExitBlock();
1035 }
1036
1037 /// WriteFunction - Emit a function body to the module stream.
1038 static void WriteFunction(const Function &F, ValueEnumerator &VE, 
1039                           BitstreamWriter &Stream) {
1040   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1041   VE.incorporateFunction(F);
1042
1043   SmallVector<unsigned, 64> Vals;
1044   
1045   // Emit the number of basic blocks, so the reader can create them ahead of
1046   // time.
1047   Vals.push_back(VE.getBasicBlocks().size());
1048   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1049   Vals.clear();
1050   
1051   // If there are function-local constants, emit them now.
1052   unsigned CstStart, CstEnd;
1053   VE.getFunctionConstantRange(CstStart, CstEnd);
1054   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1055   
1056   // Keep a running idea of what the instruction ID is. 
1057   unsigned InstID = CstEnd;
1058   
1059   // Finally, emit all the instructions, in order.
1060   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1061     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1062          I != E; ++I) {
1063       WriteInstruction(*I, InstID, VE, Stream, Vals);
1064       if (I->getType() != Type::VoidTy)
1065         ++InstID;
1066     }
1067   
1068   // Emit names for all the instructions etc.
1069   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1070     
1071   VE.purgeFunction();
1072   Stream.ExitBlock();
1073 }
1074
1075 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1076 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1077                                  const ValueEnumerator &VE,
1078                                  BitstreamWriter &Stream) {
1079   if (TST.empty()) return;
1080   
1081   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1082   
1083   // 7-bit fixed width VST_CODE_ENTRY strings.
1084   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1085   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1086   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1087                             Log2_32_Ceil(VE.getTypes().size()+1)));
1088   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1089   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1090   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1091   
1092   SmallVector<unsigned, 64> NameVals;
1093   
1094   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
1095        TI != TE; ++TI) {
1096     // TST_ENTRY: [typeid, namechar x N]
1097     NameVals.push_back(VE.getTypeID(TI->second));
1098     
1099     const std::string &Str = TI->first;
1100     bool is7Bit = true;
1101     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1102       NameVals.push_back((unsigned char)Str[i]);
1103       if (Str[i] & 128)
1104         is7Bit = false;
1105     }
1106     
1107     // Emit the finished record.
1108     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1109     NameVals.clear();
1110   }
1111   
1112   Stream.ExitBlock();
1113 }
1114
1115 // Emit blockinfo, which defines the standard abbreviations etc.
1116 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1117   // We only want to emit block info records for blocks that have multiple
1118   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1119   // blocks can defined their abbrevs inline.
1120   Stream.EnterBlockInfoBlock(2);
1121   
1122   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1123     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1124     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1125     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1126     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1127     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1128     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 
1129                                    Abbv) != VST_ENTRY_8_ABBREV)
1130       LLVM_UNREACHABLE("Unexpected abbrev ordering!");
1131   }
1132   
1133   { // 7-bit fixed width VST_ENTRY strings.
1134     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1135     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1136     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1137     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1138     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1139     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1140                                    Abbv) != VST_ENTRY_7_ABBREV)
1141       LLVM_UNREACHABLE("Unexpected abbrev ordering!");
1142   }
1143   { // 6-bit char6 VST_ENTRY strings.
1144     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1145     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1146     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1147     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1148     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1149     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1150                                    Abbv) != VST_ENTRY_6_ABBREV)
1151       LLVM_UNREACHABLE("Unexpected abbrev ordering!");
1152   }
1153   { // 6-bit char6 VST_BBENTRY strings.
1154     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1155     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1156     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1157     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1158     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1159     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1160                                    Abbv) != VST_BBENTRY_6_ABBREV)
1161       LLVM_UNREACHABLE("Unexpected abbrev ordering!");
1162   }
1163   
1164   
1165   
1166   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1167     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1168     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1169     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1170                               Log2_32_Ceil(VE.getTypes().size()+1)));
1171     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1172                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1173       LLVM_UNREACHABLE("Unexpected abbrev ordering!");
1174   }
1175   
1176   { // INTEGER abbrev for CONSTANTS_BLOCK.
1177     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1178     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1179     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1180     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1181                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1182       LLVM_UNREACHABLE("Unexpected abbrev ordering!");
1183   }
1184   
1185   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1186     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1187     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1188     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1189     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1190                               Log2_32_Ceil(VE.getTypes().size()+1)));
1191     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1192
1193     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1194                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1195       LLVM_UNREACHABLE("Unexpected abbrev ordering!");
1196   }
1197   { // NULL abbrev for CONSTANTS_BLOCK.
1198     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1199     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1200     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1201                                    Abbv) != CONSTANTS_NULL_Abbrev)
1202       LLVM_UNREACHABLE("Unexpected abbrev ordering!");
1203   }
1204   
1205   // FIXME: This should only use space for first class types!
1206  
1207   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1208     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1209     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1210     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1211     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1212     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1213     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1214                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1215       LLVM_UNREACHABLE("Unexpected abbrev ordering!");
1216   }
1217   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1218     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1219     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1220     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1221     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1222     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1223     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1224                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1225       LLVM_UNREACHABLE("Unexpected abbrev ordering!");
1226   }
1227   { // INST_CAST abbrev for FUNCTION_BLOCK.
1228     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1229     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1230     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1231     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1232                               Log2_32_Ceil(VE.getTypes().size()+1)));
1233     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1234     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1235                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1236       LLVM_UNREACHABLE("Unexpected abbrev ordering!");
1237   }
1238   
1239   { // INST_RET abbrev for FUNCTION_BLOCK.
1240     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1241     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1242     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1243                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1244       LLVM_UNREACHABLE("Unexpected abbrev ordering!");
1245   }
1246   { // INST_RET abbrev for FUNCTION_BLOCK.
1247     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1248     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1249     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1250     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1251                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1252       LLVM_UNREACHABLE("Unexpected abbrev ordering!");
1253   }
1254   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1255     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1256     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1257     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1258                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1259       LLVM_UNREACHABLE("Unexpected abbrev ordering!");
1260   }
1261   
1262   Stream.ExitBlock();
1263 }
1264
1265
1266 /// WriteModule - Emit the specified module to the bitstream.
1267 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1268   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1269   
1270   // Emit the version number if it is non-zero.
1271   if (CurVersion) {
1272     SmallVector<unsigned, 1> Vals;
1273     Vals.push_back(CurVersion);
1274     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1275   }
1276   
1277   // Analyze the module, enumerating globals, functions, etc.
1278   ValueEnumerator VE(M);
1279
1280   // Emit blockinfo, which defines the standard abbreviations etc.
1281   WriteBlockInfo(VE, Stream);
1282   
1283   // Emit information about parameter attributes.
1284   WriteAttributeTable(VE, Stream);
1285   
1286   // Emit information describing all of the types in the module.
1287   WriteTypeTable(VE, Stream);
1288   
1289   // Emit top-level description of module, including target triple, inline asm,
1290   // descriptors for global variables, and function prototype info.
1291   WriteModuleInfo(M, VE, Stream);
1292   
1293   // Emit constants.
1294   WriteModuleConstants(VE, Stream);
1295   
1296   // Emit function bodies.
1297   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1298     if (!I->isDeclaration())
1299       WriteFunction(*I, VE, Stream);
1300   
1301   // Emit the type symbol table information.
1302   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1303   
1304   // Emit names for globals/functions etc.
1305   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1306   
1307   Stream.ExitBlock();
1308 }
1309
1310 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1311 /// header and trailer to make it compatible with the system archiver.  To do
1312 /// this we emit the following header, and then emit a trailer that pads the
1313 /// file out to be a multiple of 16 bytes.
1314 /// 
1315 /// struct bc_header {
1316 ///   uint32_t Magic;         // 0x0B17C0DE
1317 ///   uint32_t Version;       // Version, currently always 0.
1318 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1319 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1320 ///   uint32_t CPUType;       // CPU specifier.
1321 ///   ... potentially more later ...
1322 /// };
1323 enum {
1324   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1325   DarwinBCHeaderSize = 5*4
1326 };
1327
1328 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1329                                const std::string &TT) {
1330   unsigned CPUType = ~0U;
1331   
1332   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
1333   // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
1334   // specific constants here because they are implicitly part of the Darwin ABI.
1335   enum {
1336     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1337     DARWIN_CPU_TYPE_X86        = 7,
1338     DARWIN_CPU_TYPE_POWERPC    = 18
1339   };
1340   
1341   if (TT.find("x86_64-") == 0)
1342     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1343   else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1344            TT[4] == '-' && TT[1] - '3' < 6)
1345     CPUType = DARWIN_CPU_TYPE_X86;
1346   else if (TT.find("powerpc-") == 0)
1347     CPUType = DARWIN_CPU_TYPE_POWERPC;
1348   else if (TT.find("powerpc64-") == 0)
1349     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1350   
1351   // Traditional Bitcode starts after header.
1352   unsigned BCOffset = DarwinBCHeaderSize;
1353   
1354   Stream.Emit(0x0B17C0DE, 32);
1355   Stream.Emit(0         , 32);  // Version.
1356   Stream.Emit(BCOffset  , 32);
1357   Stream.Emit(0         , 32);  // Filled in later.
1358   Stream.Emit(CPUType   , 32);
1359 }
1360
1361 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1362 /// finalize the header.
1363 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1364   // Update the size field in the header.
1365   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1366   
1367   // If the file is not a multiple of 16 bytes, insert dummy padding.
1368   while (BufferSize & 15) {
1369     Stream.Emit(0, 8);
1370     ++BufferSize;
1371   }
1372 }
1373
1374
1375 /// WriteBitcodeToFile - Write the specified module to the specified output
1376 /// stream.
1377 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1378   raw_os_ostream RawOut(Out);
1379   // If writing to stdout, set binary mode.
1380   if (llvm::cout == Out)
1381     sys::Program::ChangeStdoutToBinary();
1382   WriteBitcodeToFile(M, RawOut);
1383 }
1384
1385 /// WriteBitcodeToFile - Write the specified module to the specified output
1386 /// stream.
1387 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1388   std::vector<unsigned char> Buffer;
1389   BitstreamWriter Stream(Buffer);
1390   
1391   Buffer.reserve(256*1024);
1392
1393   WriteBitcodeToStream( M, Stream );
1394   
1395   // If writing to stdout, set binary mode.
1396   if (&llvm::outs() == &Out)
1397     sys::Program::ChangeStdoutToBinary();
1398
1399   // Write the generated bitstream to "Out".
1400   Out.write((char*)&Buffer.front(), Buffer.size());
1401   
1402   // Make sure it hits disk now.
1403   Out.flush();
1404 }
1405
1406 /// WriteBitcodeToStream - Write the specified module to the specified output
1407 /// stream.
1408 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1409   // If this is darwin, emit a file header and trailer if needed.
1410   bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1411   if (isDarwin)
1412     EmitDarwinBCHeader(Stream, M->getTargetTriple());
1413   
1414   // Emit the file header.
1415   Stream.Emit((unsigned)'B', 8);
1416   Stream.Emit((unsigned)'C', 8);
1417   Stream.Emit(0x0, 4);
1418   Stream.Emit(0xC, 4);
1419   Stream.Emit(0xE, 4);
1420   Stream.Emit(0xD, 4);
1421
1422   // Emit the module.
1423   WriteModule(M, Stream);
1424
1425   if (isDarwin)
1426     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1427 }