[IR] Introduce a dereferenceable_or_null(N) attribute.
[oota-llvm.git] / lib / Bitcode / Reader / BitcodeReader.cpp
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/Bitcode/ReaderWriter.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/SmallString.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/ADT/Triple.h"
15 #include "llvm/Bitcode/BitstreamReader.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "llvm/IR/AutoUpgrade.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DebugInfo.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DiagnosticPrinter.h"
23 #include "llvm/IR/GVMaterializer.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/OperandTraits.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/ValueHandle.h"
31 #include "llvm/Support/DataStream.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/MemoryBuffer.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <deque>
37 using namespace llvm;
38
39 namespace {
40 enum {
41   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
42 };
43
44 class BitcodeReaderValueList {
45   std::vector<WeakVH> ValuePtrs;
46
47   /// ResolveConstants - As we resolve forward-referenced constants, we add
48   /// information about them to this vector.  This allows us to resolve them in
49   /// bulk instead of resolving each reference at a time.  See the code in
50   /// ResolveConstantForwardRefs for more information about this.
51   ///
52   /// The key of this vector is the placeholder constant, the value is the slot
53   /// number that holds the resolved value.
54   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
55   ResolveConstantsTy ResolveConstants;
56   LLVMContext &Context;
57 public:
58   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
59   ~BitcodeReaderValueList() {
60     assert(ResolveConstants.empty() && "Constants not resolved?");
61   }
62
63   // vector compatibility methods
64   unsigned size() const { return ValuePtrs.size(); }
65   void resize(unsigned N) { ValuePtrs.resize(N); }
66   void push_back(Value *V) {
67     ValuePtrs.push_back(V);
68   }
69
70   void clear() {
71     assert(ResolveConstants.empty() && "Constants not resolved?");
72     ValuePtrs.clear();
73   }
74
75   Value *operator[](unsigned i) const {
76     assert(i < ValuePtrs.size());
77     return ValuePtrs[i];
78   }
79
80   Value *back() const { return ValuePtrs.back(); }
81     void pop_back() { ValuePtrs.pop_back(); }
82   bool empty() const { return ValuePtrs.empty(); }
83   void shrinkTo(unsigned N) {
84     assert(N <= size() && "Invalid shrinkTo request!");
85     ValuePtrs.resize(N);
86   }
87
88   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
89   Value *getValueFwdRef(unsigned Idx, Type *Ty);
90
91   void AssignValue(Value *V, unsigned Idx);
92
93   /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
94   /// resolves any forward references.
95   void ResolveConstantForwardRefs();
96 };
97
98 class BitcodeReaderMDValueList {
99   unsigned NumFwdRefs;
100   bool AnyFwdRefs;
101   unsigned MinFwdRef;
102   unsigned MaxFwdRef;
103   std::vector<TrackingMDRef> MDValuePtrs;
104
105   LLVMContext &Context;
106 public:
107   BitcodeReaderMDValueList(LLVMContext &C)
108       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
109
110   // vector compatibility methods
111   unsigned size() const       { return MDValuePtrs.size(); }
112   void resize(unsigned N)     { MDValuePtrs.resize(N); }
113   void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); }
114   void clear()                { MDValuePtrs.clear();  }
115   Metadata *back() const      { return MDValuePtrs.back(); }
116   void pop_back()             { MDValuePtrs.pop_back(); }
117   bool empty() const          { return MDValuePtrs.empty(); }
118
119   Metadata *operator[](unsigned i) const {
120     assert(i < MDValuePtrs.size());
121     return MDValuePtrs[i];
122   }
123
124   void shrinkTo(unsigned N) {
125     assert(N <= size() && "Invalid shrinkTo request!");
126     MDValuePtrs.resize(N);
127   }
128
129   Metadata *getValueFwdRef(unsigned Idx);
130   void AssignValue(Metadata *MD, unsigned Idx);
131   void tryToResolveCycles();
132 };
133
134 class BitcodeReader : public GVMaterializer {
135   LLVMContext &Context;
136   DiagnosticHandlerFunction DiagnosticHandler;
137   Module *TheModule;
138   std::unique_ptr<MemoryBuffer> Buffer;
139   std::unique_ptr<BitstreamReader> StreamFile;
140   BitstreamCursor Stream;
141   DataStreamer *LazyStreamer;
142   uint64_t NextUnreadBit;
143   bool SeenValueSymbolTable;
144
145   std::vector<Type*> TypeList;
146   BitcodeReaderValueList ValueList;
147   BitcodeReaderMDValueList MDValueList;
148   std::vector<Comdat *> ComdatList;
149   SmallVector<Instruction *, 64> InstructionList;
150
151   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
152   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits;
153   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
154   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
155
156   SmallVector<Instruction*, 64> InstsWithTBAATag;
157
158   /// MAttributes - The set of attributes by index.  Index zero in the
159   /// file is for null, and is thus not represented here.  As such all indices
160   /// are off by one.
161   std::vector<AttributeSet> MAttributes;
162
163   /// \brief The set of attribute groups.
164   std::map<unsigned, AttributeSet> MAttributeGroups;
165
166   /// FunctionBBs - While parsing a function body, this is a list of the basic
167   /// blocks for the function.
168   std::vector<BasicBlock*> FunctionBBs;
169
170   // When reading the module header, this list is populated with functions that
171   // have bodies later in the file.
172   std::vector<Function*> FunctionsWithBodies;
173
174   // When intrinsic functions are encountered which require upgrading they are
175   // stored here with their replacement function.
176   typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap;
177   UpgradedIntrinsicMap UpgradedIntrinsics;
178
179   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
180   DenseMap<unsigned, unsigned> MDKindMap;
181
182   // Several operations happen after the module header has been read, but
183   // before function bodies are processed. This keeps track of whether
184   // we've done this yet.
185   bool SeenFirstFunctionBody;
186
187   /// DeferredFunctionInfo - When function bodies are initially scanned, this
188   /// map contains info about where to find deferred function body in the
189   /// stream.
190   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
191
192   /// When Metadata block is initially scanned when parsing the module, we may
193   /// choose to defer parsing of the metadata. This vector contains info about
194   /// which Metadata blocks are deferred.
195   std::vector<uint64_t> DeferredMetadataInfo;
196
197   /// These are basic blocks forward-referenced by block addresses.  They are
198   /// inserted lazily into functions when they're loaded.  The basic block ID is
199   /// its index into the vector.
200   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
201   std::deque<Function *> BasicBlockFwdRefQueue;
202
203   /// UseRelativeIDs - Indicates that we are using a new encoding for
204   /// instruction operands where most operands in the current
205   /// FUNCTION_BLOCK are encoded relative to the instruction number,
206   /// for a more compact encoding.  Some instruction operands are not
207   /// relative to the instruction ID: basic block numbers, and types.
208   /// Once the old style function blocks have been phased out, we would
209   /// not need this flag.
210   bool UseRelativeIDs;
211
212   /// True if all functions will be materialized, negating the need to process
213   /// (e.g.) blockaddress forward references.
214   bool WillMaterializeAllForwardRefs;
215
216   /// Functions that have block addresses taken.  This is usually empty.
217   SmallPtrSet<const Function *, 4> BlockAddressesTaken;
218
219   /// True if any Metadata block has been materialized.
220   bool IsMetadataMaterialized;
221
222   bool StripDebugInfo = false;
223
224 public:
225   std::error_code Error(BitcodeError E, const Twine &Message);
226   std::error_code Error(BitcodeError E);
227   std::error_code Error(const Twine &Message);
228
229   explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C,
230                          DiagnosticHandlerFunction DiagnosticHandler);
231   explicit BitcodeReader(DataStreamer *streamer, LLVMContext &C,
232                          DiagnosticHandlerFunction DiagnosticHandler);
233   ~BitcodeReader() override { FreeState(); }
234
235   std::error_code materializeForwardReferencedFunctions();
236
237   void FreeState();
238
239   void releaseBuffer();
240
241   bool isDematerializable(const GlobalValue *GV) const override;
242   std::error_code materialize(GlobalValue *GV) override;
243   std::error_code MaterializeModule(Module *M) override;
244   std::vector<StructType *> getIdentifiedStructTypes() const override;
245   void Dematerialize(GlobalValue *GV) override;
246
247   /// @brief Main interface to parsing a bitcode buffer.
248   /// @returns true if an error occurred.
249   std::error_code ParseBitcodeInto(Module *M,
250                                    bool ShouldLazyLoadMetadata = false);
251
252   /// @brief Cheap mechanism to just extract module triple
253   /// @returns true if an error occurred.
254   ErrorOr<std::string> parseTriple();
255
256   static uint64_t decodeSignRotatedValue(uint64_t V);
257
258   /// Materialize any deferred Metadata block.
259   std::error_code materializeMetadata() override;
260
261   void setStripDebugInfo() override;
262
263 private:
264   std::vector<StructType *> IdentifiedStructTypes;
265   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
266   StructType *createIdentifiedStructType(LLVMContext &Context);
267
268   Type *getTypeByID(unsigned ID);
269   Value *getFnValueByID(unsigned ID, Type *Ty) {
270     if (Ty && Ty->isMetadataTy())
271       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
272     return ValueList.getValueFwdRef(ID, Ty);
273   }
274   Metadata *getFnMetadataByID(unsigned ID) {
275     return MDValueList.getValueFwdRef(ID);
276   }
277   BasicBlock *getBasicBlock(unsigned ID) const {
278     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
279     return FunctionBBs[ID];
280   }
281   AttributeSet getAttributes(unsigned i) const {
282     if (i-1 < MAttributes.size())
283       return MAttributes[i-1];
284     return AttributeSet();
285   }
286
287   /// getValueTypePair - Read a value/type pair out of the specified record from
288   /// slot 'Slot'.  Increment Slot past the number of slots used in the record.
289   /// Return true on failure.
290   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
291                         unsigned InstNum, Value *&ResVal) {
292     if (Slot == Record.size()) return true;
293     unsigned ValNo = (unsigned)Record[Slot++];
294     // Adjust the ValNo, if it was encoded relative to the InstNum.
295     if (UseRelativeIDs)
296       ValNo = InstNum - ValNo;
297     if (ValNo < InstNum) {
298       // If this is not a forward reference, just return the value we already
299       // have.
300       ResVal = getFnValueByID(ValNo, nullptr);
301       return ResVal == nullptr;
302     } else if (Slot == Record.size()) {
303       return true;
304     }
305
306     unsigned TypeNo = (unsigned)Record[Slot++];
307     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
308     return ResVal == nullptr;
309   }
310
311   /// popValue - Read a value out of the specified record from slot 'Slot'.
312   /// Increment Slot past the number of slots used by the value in the record.
313   /// Return true if there is an error.
314   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
315                 unsigned InstNum, Type *Ty, Value *&ResVal) {
316     if (getValue(Record, Slot, InstNum, Ty, ResVal))
317       return true;
318     // All values currently take a single record slot.
319     ++Slot;
320     return false;
321   }
322
323   /// getValue -- Like popValue, but does not increment the Slot number.
324   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
325                 unsigned InstNum, Type *Ty, Value *&ResVal) {
326     ResVal = getValue(Record, Slot, InstNum, Ty);
327     return ResVal == nullptr;
328   }
329
330   /// getValue -- Version of getValue that returns ResVal directly,
331   /// or 0 if there is an error.
332   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
333                   unsigned InstNum, Type *Ty) {
334     if (Slot == Record.size()) return nullptr;
335     unsigned ValNo = (unsigned)Record[Slot];
336     // Adjust the ValNo, if it was encoded relative to the InstNum.
337     if (UseRelativeIDs)
338       ValNo = InstNum - ValNo;
339     return getFnValueByID(ValNo, Ty);
340   }
341
342   /// getValueSigned -- Like getValue, but decodes signed VBRs.
343   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
344                         unsigned InstNum, Type *Ty) {
345     if (Slot == Record.size()) return nullptr;
346     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
347     // Adjust the ValNo, if it was encoded relative to the InstNum.
348     if (UseRelativeIDs)
349       ValNo = InstNum - ValNo;
350     return getFnValueByID(ValNo, Ty);
351   }
352
353   /// Converts alignment exponent (i.e. power of two (or zero)) to the
354   /// corresponding alignment to use. If alignment is too large, returns
355   /// a corresponding error code.
356   std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
357   std::error_code ParseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
358   std::error_code ParseModule(bool Resume, bool ShouldLazyLoadMetadata = false);
359   std::error_code ParseAttributeBlock();
360   std::error_code ParseAttributeGroupBlock();
361   std::error_code ParseTypeTable();
362   std::error_code ParseTypeTableBody();
363
364   std::error_code ParseValueSymbolTable();
365   std::error_code ParseConstants();
366   std::error_code RememberAndSkipFunctionBody();
367   /// Save the positions of the Metadata blocks and skip parsing the blocks.
368   std::error_code rememberAndSkipMetadata();
369   std::error_code ParseFunctionBody(Function *F);
370   std::error_code GlobalCleanup();
371   std::error_code ResolveGlobalAndAliasInits();
372   std::error_code ParseMetadata();
373   std::error_code ParseMetadataAttachment();
374   ErrorOr<std::string> parseModuleTriple();
375   std::error_code ParseUseLists();
376   std::error_code InitStream();
377   std::error_code InitStreamFromBuffer();
378   std::error_code InitLazyStream();
379   std::error_code FindFunctionInStream(
380       Function *F,
381       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
382 };
383 } // namespace
384
385 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
386                                              DiagnosticSeverity Severity,
387                                              const Twine &Msg)
388     : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
389
390 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
391
392 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler,
393                              std::error_code EC, const Twine &Message) {
394   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
395   DiagnosticHandler(DI);
396   return EC;
397 }
398
399 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler,
400                              std::error_code EC) {
401   return Error(DiagnosticHandler, EC, EC.message());
402 }
403
404 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) {
405   return ::Error(DiagnosticHandler, make_error_code(E), Message);
406 }
407
408 std::error_code BitcodeReader::Error(const Twine &Message) {
409   return ::Error(DiagnosticHandler,
410                  make_error_code(BitcodeError::CorruptedBitcode), Message);
411 }
412
413 std::error_code BitcodeReader::Error(BitcodeError E) {
414   return ::Error(DiagnosticHandler, make_error_code(E));
415 }
416
417 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F,
418                                                 LLVMContext &C) {
419   if (F)
420     return F;
421   return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); };
422 }
423
424 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C,
425                              DiagnosticHandlerFunction DiagnosticHandler)
426     : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)),
427       TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr),
428       NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C),
429       MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false),
430       WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {}
431
432 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C,
433                              DiagnosticHandlerFunction DiagnosticHandler)
434     : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)),
435       TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer),
436       NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C),
437       MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false),
438       WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {}
439
440 std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
441   if (WillMaterializeAllForwardRefs)
442     return std::error_code();
443
444   // Prevent recursion.
445   WillMaterializeAllForwardRefs = true;
446
447   while (!BasicBlockFwdRefQueue.empty()) {
448     Function *F = BasicBlockFwdRefQueue.front();
449     BasicBlockFwdRefQueue.pop_front();
450     assert(F && "Expected valid function");
451     if (!BasicBlockFwdRefs.count(F))
452       // Already materialized.
453       continue;
454
455     // Check for a function that isn't materializable to prevent an infinite
456     // loop.  When parsing a blockaddress stored in a global variable, there
457     // isn't a trivial way to check if a function will have a body without a
458     // linear search through FunctionsWithBodies, so just check it here.
459     if (!F->isMaterializable())
460       return Error("Never resolved function from blockaddress");
461
462     // Try to materialize F.
463     if (std::error_code EC = materialize(F))
464       return EC;
465   }
466   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
467
468   // Reset state.
469   WillMaterializeAllForwardRefs = false;
470   return std::error_code();
471 }
472
473 void BitcodeReader::FreeState() {
474   Buffer = nullptr;
475   std::vector<Type*>().swap(TypeList);
476   ValueList.clear();
477   MDValueList.clear();
478   std::vector<Comdat *>().swap(ComdatList);
479
480   std::vector<AttributeSet>().swap(MAttributes);
481   std::vector<BasicBlock*>().swap(FunctionBBs);
482   std::vector<Function*>().swap(FunctionsWithBodies);
483   DeferredFunctionInfo.clear();
484   DeferredMetadataInfo.clear();
485   MDKindMap.clear();
486
487   assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
488   BasicBlockFwdRefQueue.clear();
489 }
490
491 //===----------------------------------------------------------------------===//
492 //  Helper functions to implement forward reference resolution, etc.
493 //===----------------------------------------------------------------------===//
494
495 /// ConvertToString - Convert a string from a record into an std::string, return
496 /// true on failure.
497 template<typename StrTy>
498 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
499                             StrTy &Result) {
500   if (Idx > Record.size())
501     return true;
502
503   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
504     Result += (char)Record[i];
505   return false;
506 }
507
508 static bool hasImplicitComdat(size_t Val) {
509   switch (Val) {
510   default:
511     return false;
512   case 1:  // Old WeakAnyLinkage
513   case 4:  // Old LinkOnceAnyLinkage
514   case 10: // Old WeakODRLinkage
515   case 11: // Old LinkOnceODRLinkage
516     return true;
517   }
518 }
519
520 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
521   switch (Val) {
522   default: // Map unknown/new linkages to external
523   case 0:
524     return GlobalValue::ExternalLinkage;
525   case 2:
526     return GlobalValue::AppendingLinkage;
527   case 3:
528     return GlobalValue::InternalLinkage;
529   case 5:
530     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
531   case 6:
532     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
533   case 7:
534     return GlobalValue::ExternalWeakLinkage;
535   case 8:
536     return GlobalValue::CommonLinkage;
537   case 9:
538     return GlobalValue::PrivateLinkage;
539   case 12:
540     return GlobalValue::AvailableExternallyLinkage;
541   case 13:
542     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
543   case 14:
544     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
545   case 15:
546     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
547   case 1: // Old value with implicit comdat.
548   case 16:
549     return GlobalValue::WeakAnyLinkage;
550   case 10: // Old value with implicit comdat.
551   case 17:
552     return GlobalValue::WeakODRLinkage;
553   case 4: // Old value with implicit comdat.
554   case 18:
555     return GlobalValue::LinkOnceAnyLinkage;
556   case 11: // Old value with implicit comdat.
557   case 19:
558     return GlobalValue::LinkOnceODRLinkage;
559   }
560 }
561
562 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
563   switch (Val) {
564   default: // Map unknown visibilities to default.
565   case 0: return GlobalValue::DefaultVisibility;
566   case 1: return GlobalValue::HiddenVisibility;
567   case 2: return GlobalValue::ProtectedVisibility;
568   }
569 }
570
571 static GlobalValue::DLLStorageClassTypes
572 GetDecodedDLLStorageClass(unsigned Val) {
573   switch (Val) {
574   default: // Map unknown values to default.
575   case 0: return GlobalValue::DefaultStorageClass;
576   case 1: return GlobalValue::DLLImportStorageClass;
577   case 2: return GlobalValue::DLLExportStorageClass;
578   }
579 }
580
581 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
582   switch (Val) {
583     case 0: return GlobalVariable::NotThreadLocal;
584     default: // Map unknown non-zero value to general dynamic.
585     case 1: return GlobalVariable::GeneralDynamicTLSModel;
586     case 2: return GlobalVariable::LocalDynamicTLSModel;
587     case 3: return GlobalVariable::InitialExecTLSModel;
588     case 4: return GlobalVariable::LocalExecTLSModel;
589   }
590 }
591
592 static int GetDecodedCastOpcode(unsigned Val) {
593   switch (Val) {
594   default: return -1;
595   case bitc::CAST_TRUNC   : return Instruction::Trunc;
596   case bitc::CAST_ZEXT    : return Instruction::ZExt;
597   case bitc::CAST_SEXT    : return Instruction::SExt;
598   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
599   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
600   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
601   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
602   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
603   case bitc::CAST_FPEXT   : return Instruction::FPExt;
604   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
605   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
606   case bitc::CAST_BITCAST : return Instruction::BitCast;
607   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
608   }
609 }
610 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
611   switch (Val) {
612   default: return -1;
613   case bitc::BINOP_ADD:
614     return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
615   case bitc::BINOP_SUB:
616     return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
617   case bitc::BINOP_MUL:
618     return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
619   case bitc::BINOP_UDIV: return Instruction::UDiv;
620   case bitc::BINOP_SDIV:
621     return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
622   case bitc::BINOP_UREM: return Instruction::URem;
623   case bitc::BINOP_SREM:
624     return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
625   case bitc::BINOP_SHL:  return Instruction::Shl;
626   case bitc::BINOP_LSHR: return Instruction::LShr;
627   case bitc::BINOP_ASHR: return Instruction::AShr;
628   case bitc::BINOP_AND:  return Instruction::And;
629   case bitc::BINOP_OR:   return Instruction::Or;
630   case bitc::BINOP_XOR:  return Instruction::Xor;
631   }
632 }
633
634 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
635   switch (Val) {
636   default: return AtomicRMWInst::BAD_BINOP;
637   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
638   case bitc::RMW_ADD: return AtomicRMWInst::Add;
639   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
640   case bitc::RMW_AND: return AtomicRMWInst::And;
641   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
642   case bitc::RMW_OR: return AtomicRMWInst::Or;
643   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
644   case bitc::RMW_MAX: return AtomicRMWInst::Max;
645   case bitc::RMW_MIN: return AtomicRMWInst::Min;
646   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
647   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
648   }
649 }
650
651 static AtomicOrdering GetDecodedOrdering(unsigned Val) {
652   switch (Val) {
653   case bitc::ORDERING_NOTATOMIC: return NotAtomic;
654   case bitc::ORDERING_UNORDERED: return Unordered;
655   case bitc::ORDERING_MONOTONIC: return Monotonic;
656   case bitc::ORDERING_ACQUIRE: return Acquire;
657   case bitc::ORDERING_RELEASE: return Release;
658   case bitc::ORDERING_ACQREL: return AcquireRelease;
659   default: // Map unknown orderings to sequentially-consistent.
660   case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
661   }
662 }
663
664 static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
665   switch (Val) {
666   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
667   default: // Map unknown scopes to cross-thread.
668   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
669   }
670 }
671
672 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
673   switch (Val) {
674   default: // Map unknown selection kinds to any.
675   case bitc::COMDAT_SELECTION_KIND_ANY:
676     return Comdat::Any;
677   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
678     return Comdat::ExactMatch;
679   case bitc::COMDAT_SELECTION_KIND_LARGEST:
680     return Comdat::Largest;
681   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
682     return Comdat::NoDuplicates;
683   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
684     return Comdat::SameSize;
685   }
686 }
687
688 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
689   switch (Val) {
690   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
691   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
692   }
693 }
694
695 namespace llvm {
696 namespace {
697   /// @brief A class for maintaining the slot number definition
698   /// as a placeholder for the actual definition for forward constants defs.
699   class ConstantPlaceHolder : public ConstantExpr {
700     void operator=(const ConstantPlaceHolder &) = delete;
701   public:
702     // allocate space for exactly one operand
703     void *operator new(size_t s) {
704       return User::operator new(s, 1);
705     }
706     explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
707       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
708       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
709     }
710
711     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
712     static bool classof(const Value *V) {
713       return isa<ConstantExpr>(V) &&
714              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
715     }
716
717
718     /// Provide fast operand accessors
719     DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
720   };
721 }
722
723 // FIXME: can we inherit this from ConstantExpr?
724 template <>
725 struct OperandTraits<ConstantPlaceHolder> :
726   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
727 };
728 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
729 }
730
731
732 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
733   if (Idx == size()) {
734     push_back(V);
735     return;
736   }
737
738   if (Idx >= size())
739     resize(Idx+1);
740
741   WeakVH &OldV = ValuePtrs[Idx];
742   if (!OldV) {
743     OldV = V;
744     return;
745   }
746
747   // Handle constants and non-constants (e.g. instrs) differently for
748   // efficiency.
749   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
750     ResolveConstants.push_back(std::make_pair(PHC, Idx));
751     OldV = V;
752   } else {
753     // If there was a forward reference to this value, replace it.
754     Value *PrevVal = OldV;
755     OldV->replaceAllUsesWith(V);
756     delete PrevVal;
757   }
758 }
759
760
761 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
762                                                     Type *Ty) {
763   if (Idx >= size())
764     resize(Idx + 1);
765
766   if (Value *V = ValuePtrs[Idx]) {
767     assert(Ty == V->getType() && "Type mismatch in constant table!");
768     return cast<Constant>(V);
769   }
770
771   // Create and return a placeholder, which will later be RAUW'd.
772   Constant *C = new ConstantPlaceHolder(Ty, Context);
773   ValuePtrs[Idx] = C;
774   return C;
775 }
776
777 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
778   if (Idx >= size())
779     resize(Idx + 1);
780
781   if (Value *V = ValuePtrs[Idx]) {
782     assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!");
783     return V;
784   }
785
786   // No type specified, must be invalid reference.
787   if (!Ty) return nullptr;
788
789   // Create and return a placeholder, which will later be RAUW'd.
790   Value *V = new Argument(Ty);
791   ValuePtrs[Idx] = V;
792   return V;
793 }
794
795 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
796 /// resolves any forward references.  The idea behind this is that we sometimes
797 /// get constants (such as large arrays) which reference *many* forward ref
798 /// constants.  Replacing each of these causes a lot of thrashing when
799 /// building/reuniquing the constant.  Instead of doing this, we look at all the
800 /// uses and rewrite all the place holders at once for any constant that uses
801 /// a placeholder.
802 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
803   // Sort the values by-pointer so that they are efficient to look up with a
804   // binary search.
805   std::sort(ResolveConstants.begin(), ResolveConstants.end());
806
807   SmallVector<Constant*, 64> NewOps;
808
809   while (!ResolveConstants.empty()) {
810     Value *RealVal = operator[](ResolveConstants.back().second);
811     Constant *Placeholder = ResolveConstants.back().first;
812     ResolveConstants.pop_back();
813
814     // Loop over all users of the placeholder, updating them to reference the
815     // new value.  If they reference more than one placeholder, update them all
816     // at once.
817     while (!Placeholder->use_empty()) {
818       auto UI = Placeholder->user_begin();
819       User *U = *UI;
820
821       // If the using object isn't uniqued, just update the operands.  This
822       // handles instructions and initializers for global variables.
823       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
824         UI.getUse().set(RealVal);
825         continue;
826       }
827
828       // Otherwise, we have a constant that uses the placeholder.  Replace that
829       // constant with a new constant that has *all* placeholder uses updated.
830       Constant *UserC = cast<Constant>(U);
831       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
832            I != E; ++I) {
833         Value *NewOp;
834         if (!isa<ConstantPlaceHolder>(*I)) {
835           // Not a placeholder reference.
836           NewOp = *I;
837         } else if (*I == Placeholder) {
838           // Common case is that it just references this one placeholder.
839           NewOp = RealVal;
840         } else {
841           // Otherwise, look up the placeholder in ResolveConstants.
842           ResolveConstantsTy::iterator It =
843             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
844                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
845                                                             0));
846           assert(It != ResolveConstants.end() && It->first == *I);
847           NewOp = operator[](It->second);
848         }
849
850         NewOps.push_back(cast<Constant>(NewOp));
851       }
852
853       // Make the new constant.
854       Constant *NewC;
855       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
856         NewC = ConstantArray::get(UserCA->getType(), NewOps);
857       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
858         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
859       } else if (isa<ConstantVector>(UserC)) {
860         NewC = ConstantVector::get(NewOps);
861       } else {
862         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
863         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
864       }
865
866       UserC->replaceAllUsesWith(NewC);
867       UserC->destroyConstant();
868       NewOps.clear();
869     }
870
871     // Update all ValueHandles, they should be the only users at this point.
872     Placeholder->replaceAllUsesWith(RealVal);
873     delete Placeholder;
874   }
875 }
876
877 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) {
878   if (Idx == size()) {
879     push_back(MD);
880     return;
881   }
882
883   if (Idx >= size())
884     resize(Idx+1);
885
886   TrackingMDRef &OldMD = MDValuePtrs[Idx];
887   if (!OldMD) {
888     OldMD.reset(MD);
889     return;
890   }
891
892   // If there was a forward reference to this value, replace it.
893   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
894   PrevMD->replaceAllUsesWith(MD);
895   --NumFwdRefs;
896 }
897
898 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
899   if (Idx >= size())
900     resize(Idx + 1);
901
902   if (Metadata *MD = MDValuePtrs[Idx])
903     return MD;
904
905   // Track forward refs to be resolved later.
906   if (AnyFwdRefs) {
907     MinFwdRef = std::min(MinFwdRef, Idx);
908     MaxFwdRef = std::max(MaxFwdRef, Idx);
909   } else {
910     AnyFwdRefs = true;
911     MinFwdRef = MaxFwdRef = Idx;
912   }
913   ++NumFwdRefs;
914
915   // Create and return a placeholder, which will later be RAUW'd.
916   Metadata *MD = MDNode::getTemporary(Context, None).release();
917   MDValuePtrs[Idx].reset(MD);
918   return MD;
919 }
920
921 void BitcodeReaderMDValueList::tryToResolveCycles() {
922   if (!AnyFwdRefs)
923     // Nothing to do.
924     return;
925
926   if (NumFwdRefs)
927     // Still forward references... can't resolve cycles.
928     return;
929
930   // Resolve any cycles.
931   for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
932     auto &MD = MDValuePtrs[I];
933     auto *N = dyn_cast_or_null<MDNode>(MD);
934     if (!N)
935       continue;
936
937     assert(!N->isTemporary() && "Unexpected forward reference");
938     N->resolveCycles();
939   }
940
941   // Make sure we return early again until there's another forward ref.
942   AnyFwdRefs = false;
943 }
944
945 Type *BitcodeReader::getTypeByID(unsigned ID) {
946   // The type table size is always specified correctly.
947   if (ID >= TypeList.size())
948     return nullptr;
949
950   if (Type *Ty = TypeList[ID])
951     return Ty;
952
953   // If we have a forward reference, the only possible case is when it is to a
954   // named struct.  Just create a placeholder for now.
955   return TypeList[ID] = createIdentifiedStructType(Context);
956 }
957
958 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
959                                                       StringRef Name) {
960   auto *Ret = StructType::create(Context, Name);
961   IdentifiedStructTypes.push_back(Ret);
962   return Ret;
963 }
964
965 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
966   auto *Ret = StructType::create(Context);
967   IdentifiedStructTypes.push_back(Ret);
968   return Ret;
969 }
970
971
972 //===----------------------------------------------------------------------===//
973 //  Functions for parsing blocks from the bitcode file
974 //===----------------------------------------------------------------------===//
975
976
977 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
978 /// been decoded from the given integer. This function must stay in sync with
979 /// 'encodeLLVMAttributesForBitcode'.
980 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
981                                            uint64_t EncodedAttrs) {
982   // FIXME: Remove in 4.0.
983
984   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
985   // the bits above 31 down by 11 bits.
986   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
987   assert((!Alignment || isPowerOf2_32(Alignment)) &&
988          "Alignment must be a power of two.");
989
990   if (Alignment)
991     B.addAlignmentAttr(Alignment);
992   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
993                 (EncodedAttrs & 0xffff));
994 }
995
996 std::error_code BitcodeReader::ParseAttributeBlock() {
997   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
998     return Error("Invalid record");
999
1000   if (!MAttributes.empty())
1001     return Error("Invalid multiple blocks");
1002
1003   SmallVector<uint64_t, 64> Record;
1004
1005   SmallVector<AttributeSet, 8> Attrs;
1006
1007   // Read all the records.
1008   while (1) {
1009     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1010
1011     switch (Entry.Kind) {
1012     case BitstreamEntry::SubBlock: // Handled for us already.
1013     case BitstreamEntry::Error:
1014       return Error("Malformed block");
1015     case BitstreamEntry::EndBlock:
1016       return std::error_code();
1017     case BitstreamEntry::Record:
1018       // The interesting case.
1019       break;
1020     }
1021
1022     // Read a record.
1023     Record.clear();
1024     switch (Stream.readRecord(Entry.ID, Record)) {
1025     default:  // Default behavior: ignore.
1026       break;
1027     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1028       // FIXME: Remove in 4.0.
1029       if (Record.size() & 1)
1030         return Error("Invalid record");
1031
1032       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1033         AttrBuilder B;
1034         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1035         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1036       }
1037
1038       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1039       Attrs.clear();
1040       break;
1041     }
1042     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1043       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1044         Attrs.push_back(MAttributeGroups[Record[i]]);
1045
1046       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1047       Attrs.clear();
1048       break;
1049     }
1050     }
1051   }
1052 }
1053
1054 // Returns Attribute::None on unrecognized codes.
1055 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) {
1056   switch (Code) {
1057   default:
1058     return Attribute::None;
1059   case bitc::ATTR_KIND_ALIGNMENT:
1060     return Attribute::Alignment;
1061   case bitc::ATTR_KIND_ALWAYS_INLINE:
1062     return Attribute::AlwaysInline;
1063   case bitc::ATTR_KIND_BUILTIN:
1064     return Attribute::Builtin;
1065   case bitc::ATTR_KIND_BY_VAL:
1066     return Attribute::ByVal;
1067   case bitc::ATTR_KIND_IN_ALLOCA:
1068     return Attribute::InAlloca;
1069   case bitc::ATTR_KIND_COLD:
1070     return Attribute::Cold;
1071   case bitc::ATTR_KIND_INLINE_HINT:
1072     return Attribute::InlineHint;
1073   case bitc::ATTR_KIND_IN_REG:
1074     return Attribute::InReg;
1075   case bitc::ATTR_KIND_JUMP_TABLE:
1076     return Attribute::JumpTable;
1077   case bitc::ATTR_KIND_MIN_SIZE:
1078     return Attribute::MinSize;
1079   case bitc::ATTR_KIND_NAKED:
1080     return Attribute::Naked;
1081   case bitc::ATTR_KIND_NEST:
1082     return Attribute::Nest;
1083   case bitc::ATTR_KIND_NO_ALIAS:
1084     return Attribute::NoAlias;
1085   case bitc::ATTR_KIND_NO_BUILTIN:
1086     return Attribute::NoBuiltin;
1087   case bitc::ATTR_KIND_NO_CAPTURE:
1088     return Attribute::NoCapture;
1089   case bitc::ATTR_KIND_NO_DUPLICATE:
1090     return Attribute::NoDuplicate;
1091   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1092     return Attribute::NoImplicitFloat;
1093   case bitc::ATTR_KIND_NO_INLINE:
1094     return Attribute::NoInline;
1095   case bitc::ATTR_KIND_NON_LAZY_BIND:
1096     return Attribute::NonLazyBind;
1097   case bitc::ATTR_KIND_NON_NULL:
1098     return Attribute::NonNull;
1099   case bitc::ATTR_KIND_DEREFERENCEABLE:
1100     return Attribute::Dereferenceable;
1101   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1102     return Attribute::DereferenceableOrNull;
1103   case bitc::ATTR_KIND_NO_RED_ZONE:
1104     return Attribute::NoRedZone;
1105   case bitc::ATTR_KIND_NO_RETURN:
1106     return Attribute::NoReturn;
1107   case bitc::ATTR_KIND_NO_UNWIND:
1108     return Attribute::NoUnwind;
1109   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1110     return Attribute::OptimizeForSize;
1111   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1112     return Attribute::OptimizeNone;
1113   case bitc::ATTR_KIND_READ_NONE:
1114     return Attribute::ReadNone;
1115   case bitc::ATTR_KIND_READ_ONLY:
1116     return Attribute::ReadOnly;
1117   case bitc::ATTR_KIND_RETURNED:
1118     return Attribute::Returned;
1119   case bitc::ATTR_KIND_RETURNS_TWICE:
1120     return Attribute::ReturnsTwice;
1121   case bitc::ATTR_KIND_S_EXT:
1122     return Attribute::SExt;
1123   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1124     return Attribute::StackAlignment;
1125   case bitc::ATTR_KIND_STACK_PROTECT:
1126     return Attribute::StackProtect;
1127   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1128     return Attribute::StackProtectReq;
1129   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1130     return Attribute::StackProtectStrong;
1131   case bitc::ATTR_KIND_STRUCT_RET:
1132     return Attribute::StructRet;
1133   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1134     return Attribute::SanitizeAddress;
1135   case bitc::ATTR_KIND_SANITIZE_THREAD:
1136     return Attribute::SanitizeThread;
1137   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1138     return Attribute::SanitizeMemory;
1139   case bitc::ATTR_KIND_UW_TABLE:
1140     return Attribute::UWTable;
1141   case bitc::ATTR_KIND_Z_EXT:
1142     return Attribute::ZExt;
1143   }
1144 }
1145
1146 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1147                                                    unsigned &Alignment) {
1148   // Note: Alignment in bitcode files is incremented by 1, so that zero
1149   // can be used for default alignment.
1150   if (Exponent > Value::MaxAlignmentExponent + 1)
1151     return Error("Invalid alignment value");
1152   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1153   return std::error_code();
1154 }
1155
1156 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code,
1157                                              Attribute::AttrKind *Kind) {
1158   *Kind = GetAttrFromCode(Code);
1159   if (*Kind == Attribute::None)
1160     return Error(BitcodeError::CorruptedBitcode,
1161                  "Unknown attribute kind (" + Twine(Code) + ")");
1162   return std::error_code();
1163 }
1164
1165 std::error_code BitcodeReader::ParseAttributeGroupBlock() {
1166   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1167     return Error("Invalid record");
1168
1169   if (!MAttributeGroups.empty())
1170     return Error("Invalid multiple blocks");
1171
1172   SmallVector<uint64_t, 64> Record;
1173
1174   // Read all the records.
1175   while (1) {
1176     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1177
1178     switch (Entry.Kind) {
1179     case BitstreamEntry::SubBlock: // Handled for us already.
1180     case BitstreamEntry::Error:
1181       return Error("Malformed block");
1182     case BitstreamEntry::EndBlock:
1183       return std::error_code();
1184     case BitstreamEntry::Record:
1185       // The interesting case.
1186       break;
1187     }
1188
1189     // Read a record.
1190     Record.clear();
1191     switch (Stream.readRecord(Entry.ID, Record)) {
1192     default:  // Default behavior: ignore.
1193       break;
1194     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1195       if (Record.size() < 3)
1196         return Error("Invalid record");
1197
1198       uint64_t GrpID = Record[0];
1199       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1200
1201       AttrBuilder B;
1202       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1203         if (Record[i] == 0) {        // Enum attribute
1204           Attribute::AttrKind Kind;
1205           if (std::error_code EC = ParseAttrKind(Record[++i], &Kind))
1206             return EC;
1207
1208           B.addAttribute(Kind);
1209         } else if (Record[i] == 1) { // Integer attribute
1210           Attribute::AttrKind Kind;
1211           if (std::error_code EC = ParseAttrKind(Record[++i], &Kind))
1212             return EC;
1213           if (Kind == Attribute::Alignment)
1214             B.addAlignmentAttr(Record[++i]);
1215           else if (Kind == Attribute::StackAlignment)
1216             B.addStackAlignmentAttr(Record[++i]);
1217           else if (Kind == Attribute::Dereferenceable)
1218             B.addDereferenceableAttr(Record[++i]);
1219           else if (Kind == Attribute::DereferenceableOrNull)
1220             B.addDereferenceableOrNullAttr(Record[++i]);
1221         } else {                     // String attribute
1222           assert((Record[i] == 3 || Record[i] == 4) &&
1223                  "Invalid attribute group entry");
1224           bool HasValue = (Record[i++] == 4);
1225           SmallString<64> KindStr;
1226           SmallString<64> ValStr;
1227
1228           while (Record[i] != 0 && i != e)
1229             KindStr += Record[i++];
1230           assert(Record[i] == 0 && "Kind string not null terminated");
1231
1232           if (HasValue) {
1233             // Has a value associated with it.
1234             ++i; // Skip the '0' that terminates the "kind" string.
1235             while (Record[i] != 0 && i != e)
1236               ValStr += Record[i++];
1237             assert(Record[i] == 0 && "Value string not null terminated");
1238           }
1239
1240           B.addAttribute(KindStr.str(), ValStr.str());
1241         }
1242       }
1243
1244       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1245       break;
1246     }
1247     }
1248   }
1249 }
1250
1251 std::error_code BitcodeReader::ParseTypeTable() {
1252   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1253     return Error("Invalid record");
1254
1255   return ParseTypeTableBody();
1256 }
1257
1258 std::error_code BitcodeReader::ParseTypeTableBody() {
1259   if (!TypeList.empty())
1260     return Error("Invalid multiple blocks");
1261
1262   SmallVector<uint64_t, 64> Record;
1263   unsigned NumRecords = 0;
1264
1265   SmallString<64> TypeName;
1266
1267   // Read all the records for this type table.
1268   while (1) {
1269     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1270
1271     switch (Entry.Kind) {
1272     case BitstreamEntry::SubBlock: // Handled for us already.
1273     case BitstreamEntry::Error:
1274       return Error("Malformed block");
1275     case BitstreamEntry::EndBlock:
1276       if (NumRecords != TypeList.size())
1277         return Error("Malformed block");
1278       return std::error_code();
1279     case BitstreamEntry::Record:
1280       // The interesting case.
1281       break;
1282     }
1283
1284     // Read a record.
1285     Record.clear();
1286     Type *ResultTy = nullptr;
1287     switch (Stream.readRecord(Entry.ID, Record)) {
1288     default:
1289       return Error("Invalid value");
1290     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1291       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1292       // type list.  This allows us to reserve space.
1293       if (Record.size() < 1)
1294         return Error("Invalid record");
1295       TypeList.resize(Record[0]);
1296       continue;
1297     case bitc::TYPE_CODE_VOID:      // VOID
1298       ResultTy = Type::getVoidTy(Context);
1299       break;
1300     case bitc::TYPE_CODE_HALF:     // HALF
1301       ResultTy = Type::getHalfTy(Context);
1302       break;
1303     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1304       ResultTy = Type::getFloatTy(Context);
1305       break;
1306     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1307       ResultTy = Type::getDoubleTy(Context);
1308       break;
1309     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1310       ResultTy = Type::getX86_FP80Ty(Context);
1311       break;
1312     case bitc::TYPE_CODE_FP128:     // FP128
1313       ResultTy = Type::getFP128Ty(Context);
1314       break;
1315     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1316       ResultTy = Type::getPPC_FP128Ty(Context);
1317       break;
1318     case bitc::TYPE_CODE_LABEL:     // LABEL
1319       ResultTy = Type::getLabelTy(Context);
1320       break;
1321     case bitc::TYPE_CODE_METADATA:  // METADATA
1322       ResultTy = Type::getMetadataTy(Context);
1323       break;
1324     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1325       ResultTy = Type::getX86_MMXTy(Context);
1326       break;
1327     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1328       if (Record.size() < 1)
1329         return Error("Invalid record");
1330
1331       uint64_t NumBits = Record[0];
1332       if (NumBits < IntegerType::MIN_INT_BITS ||
1333           NumBits > IntegerType::MAX_INT_BITS)
1334         return Error("Bitwidth for integer type out of range");
1335       ResultTy = IntegerType::get(Context, NumBits);
1336       break;
1337     }
1338     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1339                                     //          [pointee type, address space]
1340       if (Record.size() < 1)
1341         return Error("Invalid record");
1342       unsigned AddressSpace = 0;
1343       if (Record.size() == 2)
1344         AddressSpace = Record[1];
1345       ResultTy = getTypeByID(Record[0]);
1346       if (!ResultTy)
1347         return Error("Invalid type");
1348       ResultTy = PointerType::get(ResultTy, AddressSpace);
1349       break;
1350     }
1351     case bitc::TYPE_CODE_FUNCTION_OLD: {
1352       // FIXME: attrid is dead, remove it in LLVM 4.0
1353       // FUNCTION: [vararg, attrid, retty, paramty x N]
1354       if (Record.size() < 3)
1355         return Error("Invalid record");
1356       SmallVector<Type*, 8> ArgTys;
1357       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1358         if (Type *T = getTypeByID(Record[i]))
1359           ArgTys.push_back(T);
1360         else
1361           break;
1362       }
1363
1364       ResultTy = getTypeByID(Record[2]);
1365       if (!ResultTy || ArgTys.size() < Record.size()-3)
1366         return Error("Invalid type");
1367
1368       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1369       break;
1370     }
1371     case bitc::TYPE_CODE_FUNCTION: {
1372       // FUNCTION: [vararg, retty, paramty x N]
1373       if (Record.size() < 2)
1374         return Error("Invalid record");
1375       SmallVector<Type*, 8> ArgTys;
1376       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1377         if (Type *T = getTypeByID(Record[i]))
1378           ArgTys.push_back(T);
1379         else
1380           break;
1381       }
1382
1383       ResultTy = getTypeByID(Record[1]);
1384       if (!ResultTy || ArgTys.size() < Record.size()-2)
1385         return Error("Invalid type");
1386
1387       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1388       break;
1389     }
1390     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1391       if (Record.size() < 1)
1392         return Error("Invalid record");
1393       SmallVector<Type*, 8> EltTys;
1394       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1395         if (Type *T = getTypeByID(Record[i]))
1396           EltTys.push_back(T);
1397         else
1398           break;
1399       }
1400       if (EltTys.size() != Record.size()-1)
1401         return Error("Invalid type");
1402       ResultTy = StructType::get(Context, EltTys, Record[0]);
1403       break;
1404     }
1405     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1406       if (ConvertToString(Record, 0, TypeName))
1407         return Error("Invalid record");
1408       continue;
1409
1410     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1411       if (Record.size() < 1)
1412         return Error("Invalid record");
1413
1414       if (NumRecords >= TypeList.size())
1415         return Error("Invalid TYPE table");
1416
1417       // Check to see if this was forward referenced, if so fill in the temp.
1418       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1419       if (Res) {
1420         Res->setName(TypeName);
1421         TypeList[NumRecords] = nullptr;
1422       } else  // Otherwise, create a new struct.
1423         Res = createIdentifiedStructType(Context, TypeName);
1424       TypeName.clear();
1425
1426       SmallVector<Type*, 8> EltTys;
1427       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1428         if (Type *T = getTypeByID(Record[i]))
1429           EltTys.push_back(T);
1430         else
1431           break;
1432       }
1433       if (EltTys.size() != Record.size()-1)
1434         return Error("Invalid record");
1435       Res->setBody(EltTys, Record[0]);
1436       ResultTy = Res;
1437       break;
1438     }
1439     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1440       if (Record.size() != 1)
1441         return Error("Invalid record");
1442
1443       if (NumRecords >= TypeList.size())
1444         return Error("Invalid TYPE table");
1445
1446       // Check to see if this was forward referenced, if so fill in the temp.
1447       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1448       if (Res) {
1449         Res->setName(TypeName);
1450         TypeList[NumRecords] = nullptr;
1451       } else  // Otherwise, create a new struct with no body.
1452         Res = createIdentifiedStructType(Context, TypeName);
1453       TypeName.clear();
1454       ResultTy = Res;
1455       break;
1456     }
1457     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1458       if (Record.size() < 2)
1459         return Error("Invalid record");
1460       if ((ResultTy = getTypeByID(Record[1])))
1461         ResultTy = ArrayType::get(ResultTy, Record[0]);
1462       else
1463         return Error("Invalid type");
1464       break;
1465     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1466       if (Record.size() < 2)
1467         return Error("Invalid record");
1468       if ((ResultTy = getTypeByID(Record[1])))
1469         ResultTy = VectorType::get(ResultTy, Record[0]);
1470       else
1471         return Error("Invalid type");
1472       break;
1473     }
1474
1475     if (NumRecords >= TypeList.size())
1476       return Error("Invalid TYPE table");
1477     if (TypeList[NumRecords])
1478       return Error(
1479           "Invalid TYPE table: Only named structs can be forward referenced");
1480     assert(ResultTy && "Didn't read a type?");
1481     TypeList[NumRecords++] = ResultTy;
1482   }
1483 }
1484
1485 std::error_code BitcodeReader::ParseValueSymbolTable() {
1486   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1487     return Error("Invalid record");
1488
1489   SmallVector<uint64_t, 64> Record;
1490
1491   Triple TT(TheModule->getTargetTriple());
1492
1493   // Read all the records for this value table.
1494   SmallString<128> ValueName;
1495   while (1) {
1496     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1497
1498     switch (Entry.Kind) {
1499     case BitstreamEntry::SubBlock: // Handled for us already.
1500     case BitstreamEntry::Error:
1501       return Error("Malformed block");
1502     case BitstreamEntry::EndBlock:
1503       return std::error_code();
1504     case BitstreamEntry::Record:
1505       // The interesting case.
1506       break;
1507     }
1508
1509     // Read a record.
1510     Record.clear();
1511     switch (Stream.readRecord(Entry.ID, Record)) {
1512     default:  // Default behavior: unknown type.
1513       break;
1514     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
1515       if (ConvertToString(Record, 1, ValueName))
1516         return Error("Invalid record");
1517       unsigned ValueID = Record[0];
1518       if (ValueID >= ValueList.size() || !ValueList[ValueID])
1519         return Error("Invalid record");
1520       Value *V = ValueList[ValueID];
1521
1522       V->setName(StringRef(ValueName.data(), ValueName.size()));
1523       if (auto *GO = dyn_cast<GlobalObject>(V)) {
1524         if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1525           if (TT.isOSBinFormatMachO())
1526             GO->setComdat(nullptr);
1527           else
1528             GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1529         }
1530       }
1531       ValueName.clear();
1532       break;
1533     }
1534     case bitc::VST_CODE_BBENTRY: {
1535       if (ConvertToString(Record, 1, ValueName))
1536         return Error("Invalid record");
1537       BasicBlock *BB = getBasicBlock(Record[0]);
1538       if (!BB)
1539         return Error("Invalid record");
1540
1541       BB->setName(StringRef(ValueName.data(), ValueName.size()));
1542       ValueName.clear();
1543       break;
1544     }
1545     }
1546   }
1547 }
1548
1549 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
1550
1551 std::error_code BitcodeReader::ParseMetadata() {
1552   IsMetadataMaterialized = true;
1553   unsigned NextMDValueNo = MDValueList.size();
1554
1555   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1556     return Error("Invalid record");
1557
1558   SmallVector<uint64_t, 64> Record;
1559
1560   auto getMD =
1561       [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); };
1562   auto getMDOrNull = [&](unsigned ID) -> Metadata *{
1563     if (ID)
1564       return getMD(ID - 1);
1565     return nullptr;
1566   };
1567   auto getMDString = [&](unsigned ID) -> MDString *{
1568     // This requires that the ID is not really a forward reference.  In
1569     // particular, the MDString must already have been resolved.
1570     return cast_or_null<MDString>(getMDOrNull(ID));
1571   };
1572
1573 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS)                                 \
1574   (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS)
1575
1576   // Read all the records.
1577   while (1) {
1578     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1579
1580     switch (Entry.Kind) {
1581     case BitstreamEntry::SubBlock: // Handled for us already.
1582     case BitstreamEntry::Error:
1583       return Error("Malformed block");
1584     case BitstreamEntry::EndBlock:
1585       MDValueList.tryToResolveCycles();
1586       return std::error_code();
1587     case BitstreamEntry::Record:
1588       // The interesting case.
1589       break;
1590     }
1591
1592     // Read a record.
1593     Record.clear();
1594     unsigned Code = Stream.readRecord(Entry.ID, Record);
1595     bool IsDistinct = false;
1596     switch (Code) {
1597     default:  // Default behavior: ignore.
1598       break;
1599     case bitc::METADATA_NAME: {
1600       // Read name of the named metadata.
1601       SmallString<8> Name(Record.begin(), Record.end());
1602       Record.clear();
1603       Code = Stream.ReadCode();
1604
1605       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1606       unsigned NextBitCode = Stream.readRecord(Code, Record);
1607       assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
1608
1609       // Read named metadata elements.
1610       unsigned Size = Record.size();
1611       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1612       for (unsigned i = 0; i != Size; ++i) {
1613         MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1614         if (!MD)
1615           return Error("Invalid record");
1616         NMD->addOperand(MD);
1617       }
1618       break;
1619     }
1620     case bitc::METADATA_OLD_FN_NODE: {
1621       // FIXME: Remove in 4.0.
1622       // This is a LocalAsMetadata record, the only type of function-local
1623       // metadata.
1624       if (Record.size() % 2 == 1)
1625         return Error("Invalid record");
1626
1627       // If this isn't a LocalAsMetadata record, we're dropping it.  This used
1628       // to be legal, but there's no upgrade path.
1629       auto dropRecord = [&] {
1630         MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++);
1631       };
1632       if (Record.size() != 2) {
1633         dropRecord();
1634         break;
1635       }
1636
1637       Type *Ty = getTypeByID(Record[0]);
1638       if (Ty->isMetadataTy() || Ty->isVoidTy()) {
1639         dropRecord();
1640         break;
1641       }
1642
1643       MDValueList.AssignValue(
1644           LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
1645           NextMDValueNo++);
1646       break;
1647     }
1648     case bitc::METADATA_OLD_NODE: {
1649       // FIXME: Remove in 4.0.
1650       if (Record.size() % 2 == 1)
1651         return Error("Invalid record");
1652
1653       unsigned Size = Record.size();
1654       SmallVector<Metadata *, 8> Elts;
1655       for (unsigned i = 0; i != Size; i += 2) {
1656         Type *Ty = getTypeByID(Record[i]);
1657         if (!Ty)
1658           return Error("Invalid record");
1659         if (Ty->isMetadataTy())
1660           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1661         else if (!Ty->isVoidTy()) {
1662           auto *MD =
1663               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
1664           assert(isa<ConstantAsMetadata>(MD) &&
1665                  "Expected non-function-local metadata");
1666           Elts.push_back(MD);
1667         } else
1668           Elts.push_back(nullptr);
1669       }
1670       MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++);
1671       break;
1672     }
1673     case bitc::METADATA_VALUE: {
1674       if (Record.size() != 2)
1675         return Error("Invalid record");
1676
1677       Type *Ty = getTypeByID(Record[0]);
1678       if (Ty->isMetadataTy() || Ty->isVoidTy())
1679         return Error("Invalid record");
1680
1681       MDValueList.AssignValue(
1682           ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
1683           NextMDValueNo++);
1684       break;
1685     }
1686     case bitc::METADATA_DISTINCT_NODE:
1687       IsDistinct = true;
1688       // fallthrough...
1689     case bitc::METADATA_NODE: {
1690       SmallVector<Metadata *, 8> Elts;
1691       Elts.reserve(Record.size());
1692       for (unsigned ID : Record)
1693         Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr);
1694       MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
1695                                          : MDNode::get(Context, Elts),
1696                               NextMDValueNo++);
1697       break;
1698     }
1699     case bitc::METADATA_LOCATION: {
1700       if (Record.size() != 5)
1701         return Error("Invalid record");
1702
1703       unsigned Line = Record[1];
1704       unsigned Column = Record[2];
1705       MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3]));
1706       Metadata *InlinedAt =
1707           Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr;
1708       MDValueList.AssignValue(
1709           GET_OR_DISTINCT(MDLocation, Record[0],
1710                           (Context, Line, Column, Scope, InlinedAt)),
1711           NextMDValueNo++);
1712       break;
1713     }
1714     case bitc::METADATA_GENERIC_DEBUG: {
1715       if (Record.size() < 4)
1716         return Error("Invalid record");
1717
1718       unsigned Tag = Record[1];
1719       unsigned Version = Record[2];
1720
1721       if (Tag >= 1u << 16 || Version != 0)
1722         return Error("Invalid record");
1723
1724       auto *Header = getMDString(Record[3]);
1725       SmallVector<Metadata *, 8> DwarfOps;
1726       for (unsigned I = 4, E = Record.size(); I != E; ++I)
1727         DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1)
1728                                      : nullptr);
1729       MDValueList.AssignValue(GET_OR_DISTINCT(GenericDebugNode, Record[0],
1730                                               (Context, Tag, Header, DwarfOps)),
1731                               NextMDValueNo++);
1732       break;
1733     }
1734     case bitc::METADATA_SUBRANGE: {
1735       if (Record.size() != 3)
1736         return Error("Invalid record");
1737
1738       MDValueList.AssignValue(
1739           GET_OR_DISTINCT(MDSubrange, Record[0],
1740                           (Context, Record[1], unrotateSign(Record[2]))),
1741           NextMDValueNo++);
1742       break;
1743     }
1744     case bitc::METADATA_ENUMERATOR: {
1745       if (Record.size() != 3)
1746         return Error("Invalid record");
1747
1748       MDValueList.AssignValue(GET_OR_DISTINCT(MDEnumerator, Record[0],
1749                                               (Context, unrotateSign(Record[1]),
1750                                                getMDString(Record[2]))),
1751                               NextMDValueNo++);
1752       break;
1753     }
1754     case bitc::METADATA_BASIC_TYPE: {
1755       if (Record.size() != 6)
1756         return Error("Invalid record");
1757
1758       MDValueList.AssignValue(
1759           GET_OR_DISTINCT(MDBasicType, Record[0],
1760                           (Context, Record[1], getMDString(Record[2]),
1761                            Record[3], Record[4], Record[5])),
1762           NextMDValueNo++);
1763       break;
1764     }
1765     case bitc::METADATA_DERIVED_TYPE: {
1766       if (Record.size() != 12)
1767         return Error("Invalid record");
1768
1769       MDValueList.AssignValue(
1770           GET_OR_DISTINCT(MDDerivedType, Record[0],
1771                           (Context, Record[1], getMDString(Record[2]),
1772                            getMDOrNull(Record[3]), Record[4],
1773                            getMDOrNull(Record[5]), getMDOrNull(Record[6]),
1774                            Record[7], Record[8], Record[9], Record[10],
1775                            getMDOrNull(Record[11]))),
1776           NextMDValueNo++);
1777       break;
1778     }
1779     case bitc::METADATA_COMPOSITE_TYPE: {
1780       if (Record.size() != 16)
1781         return Error("Invalid record");
1782
1783       MDValueList.AssignValue(
1784           GET_OR_DISTINCT(MDCompositeType, Record[0],
1785                           (Context, Record[1], getMDString(Record[2]),
1786                            getMDOrNull(Record[3]), Record[4],
1787                            getMDOrNull(Record[5]), getMDOrNull(Record[6]),
1788                            Record[7], Record[8], Record[9], Record[10],
1789                            getMDOrNull(Record[11]), Record[12],
1790                            getMDOrNull(Record[13]), getMDOrNull(Record[14]),
1791                            getMDString(Record[15]))),
1792           NextMDValueNo++);
1793       break;
1794     }
1795     case bitc::METADATA_SUBROUTINE_TYPE: {
1796       if (Record.size() != 3)
1797         return Error("Invalid record");
1798
1799       MDValueList.AssignValue(
1800           GET_OR_DISTINCT(MDSubroutineType, Record[0],
1801                           (Context, Record[1], getMDOrNull(Record[2]))),
1802           NextMDValueNo++);
1803       break;
1804     }
1805     case bitc::METADATA_FILE: {
1806       if (Record.size() != 3)
1807         return Error("Invalid record");
1808
1809       MDValueList.AssignValue(
1810           GET_OR_DISTINCT(MDFile, Record[0], (Context, getMDString(Record[1]),
1811                                               getMDString(Record[2]))),
1812           NextMDValueNo++);
1813       break;
1814     }
1815     case bitc::METADATA_COMPILE_UNIT: {
1816       if (Record.size() != 14)
1817         return Error("Invalid record");
1818
1819       MDValueList.AssignValue(
1820           GET_OR_DISTINCT(MDCompileUnit, Record[0],
1821                           (Context, Record[1], getMDOrNull(Record[2]),
1822                            getMDString(Record[3]), Record[4],
1823                            getMDString(Record[5]), Record[6],
1824                            getMDString(Record[7]), Record[8],
1825                            getMDOrNull(Record[9]), getMDOrNull(Record[10]),
1826                            getMDOrNull(Record[11]), getMDOrNull(Record[12]),
1827                            getMDOrNull(Record[13]))),
1828           NextMDValueNo++);
1829       break;
1830     }
1831     case bitc::METADATA_SUBPROGRAM: {
1832       if (Record.size() != 19)
1833         return Error("Invalid record");
1834
1835       MDValueList.AssignValue(
1836           GET_OR_DISTINCT(
1837               MDSubprogram, Record[0],
1838               (Context, getMDOrNull(Record[1]), getMDString(Record[2]),
1839                getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
1840                getMDOrNull(Record[6]), Record[7], Record[8], Record[9],
1841                getMDOrNull(Record[10]), Record[11], Record[12], Record[13],
1842                Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]),
1843                getMDOrNull(Record[17]), getMDOrNull(Record[18]))),
1844           NextMDValueNo++);
1845       break;
1846     }
1847     case bitc::METADATA_LEXICAL_BLOCK: {
1848       if (Record.size() != 5)
1849         return Error("Invalid record");
1850
1851       MDValueList.AssignValue(
1852           GET_OR_DISTINCT(MDLexicalBlock, Record[0],
1853                           (Context, getMDOrNull(Record[1]),
1854                            getMDOrNull(Record[2]), Record[3], Record[4])),
1855           NextMDValueNo++);
1856       break;
1857     }
1858     case bitc::METADATA_LEXICAL_BLOCK_FILE: {
1859       if (Record.size() != 4)
1860         return Error("Invalid record");
1861
1862       MDValueList.AssignValue(
1863           GET_OR_DISTINCT(MDLexicalBlockFile, Record[0],
1864                           (Context, getMDOrNull(Record[1]),
1865                            getMDOrNull(Record[2]), Record[3])),
1866           NextMDValueNo++);
1867       break;
1868     }
1869     case bitc::METADATA_NAMESPACE: {
1870       if (Record.size() != 5)
1871         return Error("Invalid record");
1872
1873       MDValueList.AssignValue(
1874           GET_OR_DISTINCT(MDNamespace, Record[0],
1875                           (Context, getMDOrNull(Record[1]),
1876                            getMDOrNull(Record[2]), getMDString(Record[3]),
1877                            Record[4])),
1878           NextMDValueNo++);
1879       break;
1880     }
1881     case bitc::METADATA_TEMPLATE_TYPE: {
1882       if (Record.size() != 3)
1883         return Error("Invalid record");
1884
1885       MDValueList.AssignValue(GET_OR_DISTINCT(MDTemplateTypeParameter,
1886                                               Record[0],
1887                                               (Context, getMDString(Record[1]),
1888                                                getMDOrNull(Record[2]))),
1889                               NextMDValueNo++);
1890       break;
1891     }
1892     case bitc::METADATA_TEMPLATE_VALUE: {
1893       if (Record.size() != 5)
1894         return Error("Invalid record");
1895
1896       MDValueList.AssignValue(
1897           GET_OR_DISTINCT(MDTemplateValueParameter, Record[0],
1898                           (Context, Record[1], getMDString(Record[2]),
1899                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
1900           NextMDValueNo++);
1901       break;
1902     }
1903     case bitc::METADATA_GLOBAL_VAR: {
1904       if (Record.size() != 11)
1905         return Error("Invalid record");
1906
1907       MDValueList.AssignValue(
1908           GET_OR_DISTINCT(MDGlobalVariable, Record[0],
1909                           (Context, getMDOrNull(Record[1]),
1910                            getMDString(Record[2]), getMDString(Record[3]),
1911                            getMDOrNull(Record[4]), Record[5],
1912                            getMDOrNull(Record[6]), Record[7], Record[8],
1913                            getMDOrNull(Record[9]), getMDOrNull(Record[10]))),
1914           NextMDValueNo++);
1915       break;
1916     }
1917     case bitc::METADATA_LOCAL_VAR: {
1918       // 10th field is for the obseleted 'inlinedAt:' field.
1919       if (Record.size() != 9 && Record.size() != 10)
1920         return Error("Invalid record");
1921
1922       MDValueList.AssignValue(
1923           GET_OR_DISTINCT(MDLocalVariable, Record[0],
1924                           (Context, Record[1], getMDOrNull(Record[2]),
1925                            getMDString(Record[3]), getMDOrNull(Record[4]),
1926                            Record[5], getMDOrNull(Record[6]), Record[7],
1927                            Record[8])),
1928           NextMDValueNo++);
1929       break;
1930     }
1931     case bitc::METADATA_EXPRESSION: {
1932       if (Record.size() < 1)
1933         return Error("Invalid record");
1934
1935       MDValueList.AssignValue(
1936           GET_OR_DISTINCT(MDExpression, Record[0],
1937                           (Context, makeArrayRef(Record).slice(1))),
1938           NextMDValueNo++);
1939       break;
1940     }
1941     case bitc::METADATA_OBJC_PROPERTY: {
1942       if (Record.size() != 8)
1943         return Error("Invalid record");
1944
1945       MDValueList.AssignValue(
1946           GET_OR_DISTINCT(MDObjCProperty, Record[0],
1947                           (Context, getMDString(Record[1]),
1948                            getMDOrNull(Record[2]), Record[3],
1949                            getMDString(Record[4]), getMDString(Record[5]),
1950                            Record[6], getMDOrNull(Record[7]))),
1951           NextMDValueNo++);
1952       break;
1953     }
1954     case bitc::METADATA_IMPORTED_ENTITY: {
1955       if (Record.size() != 6)
1956         return Error("Invalid record");
1957
1958       MDValueList.AssignValue(
1959           GET_OR_DISTINCT(MDImportedEntity, Record[0],
1960                           (Context, Record[1], getMDOrNull(Record[2]),
1961                            getMDOrNull(Record[3]), Record[4],
1962                            getMDString(Record[5]))),
1963           NextMDValueNo++);
1964       break;
1965     }
1966     case bitc::METADATA_STRING: {
1967       std::string String(Record.begin(), Record.end());
1968       llvm::UpgradeMDStringConstant(String);
1969       Metadata *MD = MDString::get(Context, String);
1970       MDValueList.AssignValue(MD, NextMDValueNo++);
1971       break;
1972     }
1973     case bitc::METADATA_KIND: {
1974       if (Record.size() < 2)
1975         return Error("Invalid record");
1976
1977       unsigned Kind = Record[0];
1978       SmallString<8> Name(Record.begin()+1, Record.end());
1979
1980       unsigned NewKind = TheModule->getMDKindID(Name.str());
1981       if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1982         return Error("Conflicting METADATA_KIND records");
1983       break;
1984     }
1985     }
1986   }
1987 #undef GET_OR_DISTINCT
1988 }
1989
1990 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
1991 /// the LSB for dense VBR encoding.
1992 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
1993   if ((V & 1) == 0)
1994     return V >> 1;
1995   if (V != 1)
1996     return -(V >> 1);
1997   // There is no such thing as -0 with integers.  "-0" really means MININT.
1998   return 1ULL << 63;
1999 }
2000
2001 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
2002 /// values and aliases that we can.
2003 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() {
2004   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
2005   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
2006   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
2007   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
2008
2009   GlobalInitWorklist.swap(GlobalInits);
2010   AliasInitWorklist.swap(AliasInits);
2011   FunctionPrefixWorklist.swap(FunctionPrefixes);
2012   FunctionPrologueWorklist.swap(FunctionPrologues);
2013
2014   while (!GlobalInitWorklist.empty()) {
2015     unsigned ValID = GlobalInitWorklist.back().second;
2016     if (ValID >= ValueList.size()) {
2017       // Not ready to resolve this yet, it requires something later in the file.
2018       GlobalInits.push_back(GlobalInitWorklist.back());
2019     } else {
2020       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2021         GlobalInitWorklist.back().first->setInitializer(C);
2022       else
2023         return Error("Expected a constant");
2024     }
2025     GlobalInitWorklist.pop_back();
2026   }
2027
2028   while (!AliasInitWorklist.empty()) {
2029     unsigned ValID = AliasInitWorklist.back().second;
2030     if (ValID >= ValueList.size()) {
2031       AliasInits.push_back(AliasInitWorklist.back());
2032     } else {
2033       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2034         AliasInitWorklist.back().first->setAliasee(C);
2035       else
2036         return Error("Expected a constant");
2037     }
2038     AliasInitWorklist.pop_back();
2039   }
2040
2041   while (!FunctionPrefixWorklist.empty()) {
2042     unsigned ValID = FunctionPrefixWorklist.back().second;
2043     if (ValID >= ValueList.size()) {
2044       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2045     } else {
2046       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2047         FunctionPrefixWorklist.back().first->setPrefixData(C);
2048       else
2049         return Error("Expected a constant");
2050     }
2051     FunctionPrefixWorklist.pop_back();
2052   }
2053
2054   while (!FunctionPrologueWorklist.empty()) {
2055     unsigned ValID = FunctionPrologueWorklist.back().second;
2056     if (ValID >= ValueList.size()) {
2057       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2058     } else {
2059       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2060         FunctionPrologueWorklist.back().first->setPrologueData(C);
2061       else
2062         return Error("Expected a constant");
2063     }
2064     FunctionPrologueWorklist.pop_back();
2065   }
2066
2067   return std::error_code();
2068 }
2069
2070 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2071   SmallVector<uint64_t, 8> Words(Vals.size());
2072   std::transform(Vals.begin(), Vals.end(), Words.begin(),
2073                  BitcodeReader::decodeSignRotatedValue);
2074
2075   return APInt(TypeBits, Words);
2076 }
2077
2078 std::error_code BitcodeReader::ParseConstants() {
2079   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2080     return Error("Invalid record");
2081
2082   SmallVector<uint64_t, 64> Record;
2083
2084   // Read all the records for this value table.
2085   Type *CurTy = Type::getInt32Ty(Context);
2086   unsigned NextCstNo = ValueList.size();
2087   while (1) {
2088     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2089
2090     switch (Entry.Kind) {
2091     case BitstreamEntry::SubBlock: // Handled for us already.
2092     case BitstreamEntry::Error:
2093       return Error("Malformed block");
2094     case BitstreamEntry::EndBlock:
2095       if (NextCstNo != ValueList.size())
2096         return Error("Invalid ronstant reference");
2097
2098       // Once all the constants have been read, go through and resolve forward
2099       // references.
2100       ValueList.ResolveConstantForwardRefs();
2101       return std::error_code();
2102     case BitstreamEntry::Record:
2103       // The interesting case.
2104       break;
2105     }
2106
2107     // Read a record.
2108     Record.clear();
2109     Value *V = nullptr;
2110     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2111     switch (BitCode) {
2112     default:  // Default behavior: unknown constant
2113     case bitc::CST_CODE_UNDEF:     // UNDEF
2114       V = UndefValue::get(CurTy);
2115       break;
2116     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2117       if (Record.empty())
2118         return Error("Invalid record");
2119       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2120         return Error("Invalid record");
2121       CurTy = TypeList[Record[0]];
2122       continue;  // Skip the ValueList manipulation.
2123     case bitc::CST_CODE_NULL:      // NULL
2124       V = Constant::getNullValue(CurTy);
2125       break;
2126     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2127       if (!CurTy->isIntegerTy() || Record.empty())
2128         return Error("Invalid record");
2129       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2130       break;
2131     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2132       if (!CurTy->isIntegerTy() || Record.empty())
2133         return Error("Invalid record");
2134
2135       APInt VInt = ReadWideAPInt(Record,
2136                                  cast<IntegerType>(CurTy)->getBitWidth());
2137       V = ConstantInt::get(Context, VInt);
2138
2139       break;
2140     }
2141     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2142       if (Record.empty())
2143         return Error("Invalid record");
2144       if (CurTy->isHalfTy())
2145         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
2146                                              APInt(16, (uint16_t)Record[0])));
2147       else if (CurTy->isFloatTy())
2148         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
2149                                              APInt(32, (uint32_t)Record[0])));
2150       else if (CurTy->isDoubleTy())
2151         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
2152                                              APInt(64, Record[0])));
2153       else if (CurTy->isX86_FP80Ty()) {
2154         // Bits are not stored the same way as a normal i80 APInt, compensate.
2155         uint64_t Rearrange[2];
2156         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2157         Rearrange[1] = Record[0] >> 48;
2158         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
2159                                              APInt(80, Rearrange)));
2160       } else if (CurTy->isFP128Ty())
2161         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
2162                                              APInt(128, Record)));
2163       else if (CurTy->isPPC_FP128Ty())
2164         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
2165                                              APInt(128, Record)));
2166       else
2167         V = UndefValue::get(CurTy);
2168       break;
2169     }
2170
2171     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2172       if (Record.empty())
2173         return Error("Invalid record");
2174
2175       unsigned Size = Record.size();
2176       SmallVector<Constant*, 16> Elts;
2177
2178       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2179         for (unsigned i = 0; i != Size; ++i)
2180           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2181                                                      STy->getElementType(i)));
2182         V = ConstantStruct::get(STy, Elts);
2183       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2184         Type *EltTy = ATy->getElementType();
2185         for (unsigned i = 0; i != Size; ++i)
2186           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2187         V = ConstantArray::get(ATy, Elts);
2188       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2189         Type *EltTy = VTy->getElementType();
2190         for (unsigned i = 0; i != Size; ++i)
2191           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2192         V = ConstantVector::get(Elts);
2193       } else {
2194         V = UndefValue::get(CurTy);
2195       }
2196       break;
2197     }
2198     case bitc::CST_CODE_STRING:    // STRING: [values]
2199     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2200       if (Record.empty())
2201         return Error("Invalid record");
2202
2203       SmallString<16> Elts(Record.begin(), Record.end());
2204       V = ConstantDataArray::getString(Context, Elts,
2205                                        BitCode == bitc::CST_CODE_CSTRING);
2206       break;
2207     }
2208     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2209       if (Record.empty())
2210         return Error("Invalid record");
2211
2212       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2213       unsigned Size = Record.size();
2214
2215       if (EltTy->isIntegerTy(8)) {
2216         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2217         if (isa<VectorType>(CurTy))
2218           V = ConstantDataVector::get(Context, Elts);
2219         else
2220           V = ConstantDataArray::get(Context, Elts);
2221       } else if (EltTy->isIntegerTy(16)) {
2222         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2223         if (isa<VectorType>(CurTy))
2224           V = ConstantDataVector::get(Context, Elts);
2225         else
2226           V = ConstantDataArray::get(Context, Elts);
2227       } else if (EltTy->isIntegerTy(32)) {
2228         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2229         if (isa<VectorType>(CurTy))
2230           V = ConstantDataVector::get(Context, Elts);
2231         else
2232           V = ConstantDataArray::get(Context, Elts);
2233       } else if (EltTy->isIntegerTy(64)) {
2234         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2235         if (isa<VectorType>(CurTy))
2236           V = ConstantDataVector::get(Context, Elts);
2237         else
2238           V = ConstantDataArray::get(Context, Elts);
2239       } else if (EltTy->isFloatTy()) {
2240         SmallVector<float, 16> Elts(Size);
2241         std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat);
2242         if (isa<VectorType>(CurTy))
2243           V = ConstantDataVector::get(Context, Elts);
2244         else
2245           V = ConstantDataArray::get(Context, Elts);
2246       } else if (EltTy->isDoubleTy()) {
2247         SmallVector<double, 16> Elts(Size);
2248         std::transform(Record.begin(), Record.end(), Elts.begin(),
2249                        BitsToDouble);
2250         if (isa<VectorType>(CurTy))
2251           V = ConstantDataVector::get(Context, Elts);
2252         else
2253           V = ConstantDataArray::get(Context, Elts);
2254       } else {
2255         return Error("Invalid type for value");
2256       }
2257       break;
2258     }
2259
2260     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2261       if (Record.size() < 3)
2262         return Error("Invalid record");
2263       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
2264       if (Opc < 0) {
2265         V = UndefValue::get(CurTy);  // Unknown binop.
2266       } else {
2267         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2268         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2269         unsigned Flags = 0;
2270         if (Record.size() >= 4) {
2271           if (Opc == Instruction::Add ||
2272               Opc == Instruction::Sub ||
2273               Opc == Instruction::Mul ||
2274               Opc == Instruction::Shl) {
2275             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2276               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2277             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2278               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2279           } else if (Opc == Instruction::SDiv ||
2280                      Opc == Instruction::UDiv ||
2281                      Opc == Instruction::LShr ||
2282                      Opc == Instruction::AShr) {
2283             if (Record[3] & (1 << bitc::PEO_EXACT))
2284               Flags |= SDivOperator::IsExact;
2285           }
2286         }
2287         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2288       }
2289       break;
2290     }
2291     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2292       if (Record.size() < 3)
2293         return Error("Invalid record");
2294       int Opc = GetDecodedCastOpcode(Record[0]);
2295       if (Opc < 0) {
2296         V = UndefValue::get(CurTy);  // Unknown cast.
2297       } else {
2298         Type *OpTy = getTypeByID(Record[1]);
2299         if (!OpTy)
2300           return Error("Invalid record");
2301         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2302         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2303         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2304       }
2305       break;
2306     }
2307     case bitc::CST_CODE_CE_INBOUNDS_GEP:
2308     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
2309       unsigned OpNum = 0;
2310       Type *PointeeType = nullptr;
2311       if (Record.size() % 2)
2312         PointeeType = getTypeByID(Record[OpNum++]);
2313       SmallVector<Constant*, 16> Elts;
2314       while (OpNum != Record.size()) {
2315         Type *ElTy = getTypeByID(Record[OpNum++]);
2316         if (!ElTy)
2317           return Error("Invalid record");
2318         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2319       }
2320
2321       if (PointeeType &&
2322           PointeeType !=
2323               cast<SequentialType>(Elts[0]->getType()->getScalarType())
2324                   ->getElementType())
2325         return Error("Explicit gep operator type does not match pointee type "
2326                      "of pointer operand");
2327
2328       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2329       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2330                                          BitCode ==
2331                                              bitc::CST_CODE_CE_INBOUNDS_GEP);
2332       break;
2333     }
2334     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2335       if (Record.size() < 3)
2336         return Error("Invalid record");
2337
2338       Type *SelectorTy = Type::getInt1Ty(Context);
2339
2340       // If CurTy is a vector of length n, then Record[0] must be a <n x i1>
2341       // vector. Otherwise, it must be a single bit.
2342       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2343         SelectorTy = VectorType::get(Type::getInt1Ty(Context),
2344                                      VTy->getNumElements());
2345
2346       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2347                                                               SelectorTy),
2348                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2349                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2350       break;
2351     }
2352     case bitc::CST_CODE_CE_EXTRACTELT
2353         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2354       if (Record.size() < 3)
2355         return Error("Invalid record");
2356       VectorType *OpTy =
2357         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2358       if (!OpTy)
2359         return Error("Invalid record");
2360       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2361       Constant *Op1 = nullptr;
2362       if (Record.size() == 4) {
2363         Type *IdxTy = getTypeByID(Record[2]);
2364         if (!IdxTy)
2365           return Error("Invalid record");
2366         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2367       } else // TODO: Remove with llvm 4.0
2368         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2369       if (!Op1)
2370         return Error("Invalid record");
2371       V = ConstantExpr::getExtractElement(Op0, Op1);
2372       break;
2373     }
2374     case bitc::CST_CODE_CE_INSERTELT
2375         : { // CE_INSERTELT: [opval, opval, opty, opval]
2376       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2377       if (Record.size() < 3 || !OpTy)
2378         return Error("Invalid record");
2379       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2380       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2381                                                   OpTy->getElementType());
2382       Constant *Op2 = nullptr;
2383       if (Record.size() == 4) {
2384         Type *IdxTy = getTypeByID(Record[2]);
2385         if (!IdxTy)
2386           return Error("Invalid record");
2387         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2388       } else // TODO: Remove with llvm 4.0
2389         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2390       if (!Op2)
2391         return Error("Invalid record");
2392       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2393       break;
2394     }
2395     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2396       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2397       if (Record.size() < 3 || !OpTy)
2398         return Error("Invalid record");
2399       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2400       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2401       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2402                                                  OpTy->getNumElements());
2403       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2404       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2405       break;
2406     }
2407     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2408       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2409       VectorType *OpTy =
2410         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2411       if (Record.size() < 4 || !RTy || !OpTy)
2412         return Error("Invalid record");
2413       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2414       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2415       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2416                                                  RTy->getNumElements());
2417       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2418       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2419       break;
2420     }
2421     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2422       if (Record.size() < 4)
2423         return Error("Invalid record");
2424       Type *OpTy = getTypeByID(Record[0]);
2425       if (!OpTy)
2426         return Error("Invalid record");
2427       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2428       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2429
2430       if (OpTy->isFPOrFPVectorTy())
2431         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2432       else
2433         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2434       break;
2435     }
2436     // This maintains backward compatibility, pre-asm dialect keywords.
2437     // FIXME: Remove with the 4.0 release.
2438     case bitc::CST_CODE_INLINEASM_OLD: {
2439       if (Record.size() < 2)
2440         return Error("Invalid record");
2441       std::string AsmStr, ConstrStr;
2442       bool HasSideEffects = Record[0] & 1;
2443       bool IsAlignStack = Record[0] >> 1;
2444       unsigned AsmStrSize = Record[1];
2445       if (2+AsmStrSize >= Record.size())
2446         return Error("Invalid record");
2447       unsigned ConstStrSize = Record[2+AsmStrSize];
2448       if (3+AsmStrSize+ConstStrSize > Record.size())
2449         return Error("Invalid record");
2450
2451       for (unsigned i = 0; i != AsmStrSize; ++i)
2452         AsmStr += (char)Record[2+i];
2453       for (unsigned i = 0; i != ConstStrSize; ++i)
2454         ConstrStr += (char)Record[3+AsmStrSize+i];
2455       PointerType *PTy = cast<PointerType>(CurTy);
2456       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2457                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2458       break;
2459     }
2460     // This version adds support for the asm dialect keywords (e.g.,
2461     // inteldialect).
2462     case bitc::CST_CODE_INLINEASM: {
2463       if (Record.size() < 2)
2464         return Error("Invalid record");
2465       std::string AsmStr, ConstrStr;
2466       bool HasSideEffects = Record[0] & 1;
2467       bool IsAlignStack = (Record[0] >> 1) & 1;
2468       unsigned AsmDialect = Record[0] >> 2;
2469       unsigned AsmStrSize = Record[1];
2470       if (2+AsmStrSize >= Record.size())
2471         return Error("Invalid record");
2472       unsigned ConstStrSize = Record[2+AsmStrSize];
2473       if (3+AsmStrSize+ConstStrSize > Record.size())
2474         return Error("Invalid record");
2475
2476       for (unsigned i = 0; i != AsmStrSize; ++i)
2477         AsmStr += (char)Record[2+i];
2478       for (unsigned i = 0; i != ConstStrSize; ++i)
2479         ConstrStr += (char)Record[3+AsmStrSize+i];
2480       PointerType *PTy = cast<PointerType>(CurTy);
2481       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2482                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2483                          InlineAsm::AsmDialect(AsmDialect));
2484       break;
2485     }
2486     case bitc::CST_CODE_BLOCKADDRESS:{
2487       if (Record.size() < 3)
2488         return Error("Invalid record");
2489       Type *FnTy = getTypeByID(Record[0]);
2490       if (!FnTy)
2491         return Error("Invalid record");
2492       Function *Fn =
2493         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2494       if (!Fn)
2495         return Error("Invalid record");
2496
2497       // Don't let Fn get dematerialized.
2498       BlockAddressesTaken.insert(Fn);
2499
2500       // If the function is already parsed we can insert the block address right
2501       // away.
2502       BasicBlock *BB;
2503       unsigned BBID = Record[2];
2504       if (!BBID)
2505         // Invalid reference to entry block.
2506         return Error("Invalid ID");
2507       if (!Fn->empty()) {
2508         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2509         for (size_t I = 0, E = BBID; I != E; ++I) {
2510           if (BBI == BBE)
2511             return Error("Invalid ID");
2512           ++BBI;
2513         }
2514         BB = BBI;
2515       } else {
2516         // Otherwise insert a placeholder and remember it so it can be inserted
2517         // when the function is parsed.
2518         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2519         if (FwdBBs.empty())
2520           BasicBlockFwdRefQueue.push_back(Fn);
2521         if (FwdBBs.size() < BBID + 1)
2522           FwdBBs.resize(BBID + 1);
2523         if (!FwdBBs[BBID])
2524           FwdBBs[BBID] = BasicBlock::Create(Context);
2525         BB = FwdBBs[BBID];
2526       }
2527       V = BlockAddress::get(Fn, BB);
2528       break;
2529     }
2530     }
2531
2532     ValueList.AssignValue(V, NextCstNo);
2533     ++NextCstNo;
2534   }
2535 }
2536
2537 std::error_code BitcodeReader::ParseUseLists() {
2538   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2539     return Error("Invalid record");
2540
2541   // Read all the records.
2542   SmallVector<uint64_t, 64> Record;
2543   while (1) {
2544     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2545
2546     switch (Entry.Kind) {
2547     case BitstreamEntry::SubBlock: // Handled for us already.
2548     case BitstreamEntry::Error:
2549       return Error("Malformed block");
2550     case BitstreamEntry::EndBlock:
2551       return std::error_code();
2552     case BitstreamEntry::Record:
2553       // The interesting case.
2554       break;
2555     }
2556
2557     // Read a use list record.
2558     Record.clear();
2559     bool IsBB = false;
2560     switch (Stream.readRecord(Entry.ID, Record)) {
2561     default:  // Default behavior: unknown type.
2562       break;
2563     case bitc::USELIST_CODE_BB:
2564       IsBB = true;
2565       // fallthrough
2566     case bitc::USELIST_CODE_DEFAULT: {
2567       unsigned RecordLength = Record.size();
2568       if (RecordLength < 3)
2569         // Records should have at least an ID and two indexes.
2570         return Error("Invalid record");
2571       unsigned ID = Record.back();
2572       Record.pop_back();
2573
2574       Value *V;
2575       if (IsBB) {
2576         assert(ID < FunctionBBs.size() && "Basic block not found");
2577         V = FunctionBBs[ID];
2578       } else
2579         V = ValueList[ID];
2580       unsigned NumUses = 0;
2581       SmallDenseMap<const Use *, unsigned, 16> Order;
2582       for (const Use &U : V->uses()) {
2583         if (++NumUses > Record.size())
2584           break;
2585         Order[&U] = Record[NumUses - 1];
2586       }
2587       if (Order.size() != Record.size() || NumUses > Record.size())
2588         // Mismatches can happen if the functions are being materialized lazily
2589         // (out-of-order), or a value has been upgraded.
2590         break;
2591
2592       V->sortUseList([&](const Use &L, const Use &R) {
2593         return Order.lookup(&L) < Order.lookup(&R);
2594       });
2595       break;
2596     }
2597     }
2598   }
2599 }
2600
2601 /// When we see the block for metadata, remember where it is and then skip it.
2602 /// This lets us lazily deserialize the metadata.
2603 std::error_code BitcodeReader::rememberAndSkipMetadata() {
2604   // Save the current stream state.
2605   uint64_t CurBit = Stream.GetCurrentBitNo();
2606   DeferredMetadataInfo.push_back(CurBit);
2607
2608   // Skip over the block for now.
2609   if (Stream.SkipBlock())
2610     return Error("Invalid record");
2611   return std::error_code();
2612 }
2613
2614 std::error_code BitcodeReader::materializeMetadata() {
2615   for (uint64_t BitPos : DeferredMetadataInfo) {
2616     // Move the bit stream to the saved position.
2617     Stream.JumpToBit(BitPos);
2618     if (std::error_code EC = ParseMetadata())
2619       return EC;
2620   }
2621   DeferredMetadataInfo.clear();
2622   return std::error_code();
2623 }
2624
2625 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2626
2627 /// RememberAndSkipFunctionBody - When we see the block for a function body,
2628 /// remember where it is and then skip it.  This lets us lazily deserialize the
2629 /// functions.
2630 std::error_code BitcodeReader::RememberAndSkipFunctionBody() {
2631   // Get the function we are talking about.
2632   if (FunctionsWithBodies.empty())
2633     return Error("Insufficient function protos");
2634
2635   Function *Fn = FunctionsWithBodies.back();
2636   FunctionsWithBodies.pop_back();
2637
2638   // Save the current stream state.
2639   uint64_t CurBit = Stream.GetCurrentBitNo();
2640   DeferredFunctionInfo[Fn] = CurBit;
2641
2642   // Skip over the function block for now.
2643   if (Stream.SkipBlock())
2644     return Error("Invalid record");
2645   return std::error_code();
2646 }
2647
2648 std::error_code BitcodeReader::GlobalCleanup() {
2649   // Patch the initializers for globals and aliases up.
2650   ResolveGlobalAndAliasInits();
2651   if (!GlobalInits.empty() || !AliasInits.empty())
2652     return Error("Malformed global initializer set");
2653
2654   // Look for intrinsic functions which need to be upgraded at some point
2655   for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
2656        FI != FE; ++FI) {
2657     Function *NewFn;
2658     if (UpgradeIntrinsicFunction(FI, NewFn))
2659       UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
2660   }
2661
2662   // Look for global variables which need to be renamed.
2663   for (Module::global_iterator
2664          GI = TheModule->global_begin(), GE = TheModule->global_end();
2665        GI != GE;) {
2666     GlobalVariable *GV = GI++;
2667     UpgradeGlobalVariable(GV);
2668   }
2669
2670   // Force deallocation of memory for these vectors to favor the client that
2671   // want lazy deserialization.
2672   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
2673   std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
2674   return std::error_code();
2675 }
2676
2677 std::error_code BitcodeReader::ParseModule(bool Resume,
2678                                            bool ShouldLazyLoadMetadata) {
2679   if (Resume)
2680     Stream.JumpToBit(NextUnreadBit);
2681   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
2682     return Error("Invalid record");
2683
2684   SmallVector<uint64_t, 64> Record;
2685   std::vector<std::string> SectionTable;
2686   std::vector<std::string> GCTable;
2687
2688   // Read all the records for this module.
2689   while (1) {
2690     BitstreamEntry Entry = Stream.advance();
2691
2692     switch (Entry.Kind) {
2693     case BitstreamEntry::Error:
2694       return Error("Malformed block");
2695     case BitstreamEntry::EndBlock:
2696       return GlobalCleanup();
2697
2698     case BitstreamEntry::SubBlock:
2699       switch (Entry.ID) {
2700       default:  // Skip unknown content.
2701         if (Stream.SkipBlock())
2702           return Error("Invalid record");
2703         break;
2704       case bitc::BLOCKINFO_BLOCK_ID:
2705         if (Stream.ReadBlockInfoBlock())
2706           return Error("Malformed block");
2707         break;
2708       case bitc::PARAMATTR_BLOCK_ID:
2709         if (std::error_code EC = ParseAttributeBlock())
2710           return EC;
2711         break;
2712       case bitc::PARAMATTR_GROUP_BLOCK_ID:
2713         if (std::error_code EC = ParseAttributeGroupBlock())
2714           return EC;
2715         break;
2716       case bitc::TYPE_BLOCK_ID_NEW:
2717         if (std::error_code EC = ParseTypeTable())
2718           return EC;
2719         break;
2720       case bitc::VALUE_SYMTAB_BLOCK_ID:
2721         if (std::error_code EC = ParseValueSymbolTable())
2722           return EC;
2723         SeenValueSymbolTable = true;
2724         break;
2725       case bitc::CONSTANTS_BLOCK_ID:
2726         if (std::error_code EC = ParseConstants())
2727           return EC;
2728         if (std::error_code EC = ResolveGlobalAndAliasInits())
2729           return EC;
2730         break;
2731       case bitc::METADATA_BLOCK_ID:
2732         if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
2733           if (std::error_code EC = rememberAndSkipMetadata())
2734             return EC;
2735           break;
2736         }
2737         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
2738         if (std::error_code EC = ParseMetadata())
2739           return EC;
2740         break;
2741       case bitc::FUNCTION_BLOCK_ID:
2742         // If this is the first function body we've seen, reverse the
2743         // FunctionsWithBodies list.
2744         if (!SeenFirstFunctionBody) {
2745           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
2746           if (std::error_code EC = GlobalCleanup())
2747             return EC;
2748           SeenFirstFunctionBody = true;
2749         }
2750
2751         if (std::error_code EC = RememberAndSkipFunctionBody())
2752           return EC;
2753         // For streaming bitcode, suspend parsing when we reach the function
2754         // bodies. Subsequent materialization calls will resume it when
2755         // necessary. For streaming, the function bodies must be at the end of
2756         // the bitcode. If the bitcode file is old, the symbol table will be
2757         // at the end instead and will not have been seen yet. In this case,
2758         // just finish the parse now.
2759         if (LazyStreamer && SeenValueSymbolTable) {
2760           NextUnreadBit = Stream.GetCurrentBitNo();
2761           return std::error_code();
2762         }
2763         break;
2764       case bitc::USELIST_BLOCK_ID:
2765         if (std::error_code EC = ParseUseLists())
2766           return EC;
2767         break;
2768       }
2769       continue;
2770
2771     case BitstreamEntry::Record:
2772       // The interesting case.
2773       break;
2774     }
2775
2776
2777     // Read a record.
2778     switch (Stream.readRecord(Entry.ID, Record)) {
2779     default: break;  // Default behavior, ignore unknown content.
2780     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
2781       if (Record.size() < 1)
2782         return Error("Invalid record");
2783       // Only version #0 and #1 are supported so far.
2784       unsigned module_version = Record[0];
2785       switch (module_version) {
2786         default:
2787           return Error("Invalid value");
2788         case 0:
2789           UseRelativeIDs = false;
2790           break;
2791         case 1:
2792           UseRelativeIDs = true;
2793           break;
2794       }
2795       break;
2796     }
2797     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
2798       std::string S;
2799       if (ConvertToString(Record, 0, S))
2800         return Error("Invalid record");
2801       TheModule->setTargetTriple(S);
2802       break;
2803     }
2804     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
2805       std::string S;
2806       if (ConvertToString(Record, 0, S))
2807         return Error("Invalid record");
2808       TheModule->setDataLayout(S);
2809       break;
2810     }
2811     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
2812       std::string S;
2813       if (ConvertToString(Record, 0, S))
2814         return Error("Invalid record");
2815       TheModule->setModuleInlineAsm(S);
2816       break;
2817     }
2818     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
2819       // FIXME: Remove in 4.0.
2820       std::string S;
2821       if (ConvertToString(Record, 0, S))
2822         return Error("Invalid record");
2823       // Ignore value.
2824       break;
2825     }
2826     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
2827       std::string S;
2828       if (ConvertToString(Record, 0, S))
2829         return Error("Invalid record");
2830       SectionTable.push_back(S);
2831       break;
2832     }
2833     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
2834       std::string S;
2835       if (ConvertToString(Record, 0, S))
2836         return Error("Invalid record");
2837       GCTable.push_back(S);
2838       break;
2839     }
2840     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
2841       if (Record.size() < 2)
2842         return Error("Invalid record");
2843       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
2844       unsigned ComdatNameSize = Record[1];
2845       std::string ComdatName;
2846       ComdatName.reserve(ComdatNameSize);
2847       for (unsigned i = 0; i != ComdatNameSize; ++i)
2848         ComdatName += (char)Record[2 + i];
2849       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
2850       C->setSelectionKind(SK);
2851       ComdatList.push_back(C);
2852       break;
2853     }
2854     // GLOBALVAR: [pointer type, isconst, initid,
2855     //             linkage, alignment, section, visibility, threadlocal,
2856     //             unnamed_addr, externally_initialized, dllstorageclass,
2857     //             comdat]
2858     case bitc::MODULE_CODE_GLOBALVAR: {
2859       if (Record.size() < 6)
2860         return Error("Invalid record");
2861       Type *Ty = getTypeByID(Record[0]);
2862       if (!Ty)
2863         return Error("Invalid record");
2864       if (!Ty->isPointerTy())
2865         return Error("Invalid type for value");
2866       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2867       Ty = cast<PointerType>(Ty)->getElementType();
2868
2869       bool isConstant = Record[1];
2870       uint64_t RawLinkage = Record[3];
2871       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2872       unsigned Alignment;
2873       if (std::error_code EC = parseAlignmentValue(Record[4], Alignment))
2874         return EC;
2875       std::string Section;
2876       if (Record[5]) {
2877         if (Record[5]-1 >= SectionTable.size())
2878           return Error("Invalid ID");
2879         Section = SectionTable[Record[5]-1];
2880       }
2881       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
2882       // Local linkage must have default visibility.
2883       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
2884         // FIXME: Change to an error if non-default in 4.0.
2885         Visibility = GetDecodedVisibility(Record[6]);
2886
2887       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
2888       if (Record.size() > 7)
2889         TLM = GetDecodedThreadLocalMode(Record[7]);
2890
2891       bool UnnamedAddr = false;
2892       if (Record.size() > 8)
2893         UnnamedAddr = Record[8];
2894
2895       bool ExternallyInitialized = false;
2896       if (Record.size() > 9)
2897         ExternallyInitialized = Record[9];
2898
2899       GlobalVariable *NewGV =
2900         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
2901                            TLM, AddressSpace, ExternallyInitialized);
2902       NewGV->setAlignment(Alignment);
2903       if (!Section.empty())
2904         NewGV->setSection(Section);
2905       NewGV->setVisibility(Visibility);
2906       NewGV->setUnnamedAddr(UnnamedAddr);
2907
2908       if (Record.size() > 10)
2909         NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10]));
2910       else
2911         UpgradeDLLImportExportLinkage(NewGV, RawLinkage);
2912
2913       ValueList.push_back(NewGV);
2914
2915       // Remember which value to use for the global initializer.
2916       if (unsigned InitID = Record[2])
2917         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
2918
2919       if (Record.size() > 11) {
2920         if (unsigned ComdatID = Record[11]) {
2921           assert(ComdatID <= ComdatList.size());
2922           NewGV->setComdat(ComdatList[ComdatID - 1]);
2923         }
2924       } else if (hasImplicitComdat(RawLinkage)) {
2925         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
2926       }
2927       break;
2928     }
2929     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
2930     //             alignment, section, visibility, gc, unnamed_addr,
2931     //             prologuedata, dllstorageclass, comdat, prefixdata]
2932     case bitc::MODULE_CODE_FUNCTION: {
2933       if (Record.size() < 8)
2934         return Error("Invalid record");
2935       Type *Ty = getTypeByID(Record[0]);
2936       if (!Ty)
2937         return Error("Invalid record");
2938       if (!Ty->isPointerTy())
2939         return Error("Invalid type for value");
2940       FunctionType *FTy =
2941         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
2942       if (!FTy)
2943         return Error("Invalid type for value");
2944
2945       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
2946                                         "", TheModule);
2947
2948       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
2949       bool isProto = Record[2];
2950       uint64_t RawLinkage = Record[3];
2951       Func->setLinkage(getDecodedLinkage(RawLinkage));
2952       Func->setAttributes(getAttributes(Record[4]));
2953
2954       unsigned Alignment;
2955       if (std::error_code EC = parseAlignmentValue(Record[5], Alignment))
2956         return EC;
2957       Func->setAlignment(Alignment);
2958       if (Record[6]) {
2959         if (Record[6]-1 >= SectionTable.size())
2960           return Error("Invalid ID");
2961         Func->setSection(SectionTable[Record[6]-1]);
2962       }
2963       // Local linkage must have default visibility.
2964       if (!Func->hasLocalLinkage())
2965         // FIXME: Change to an error if non-default in 4.0.
2966         Func->setVisibility(GetDecodedVisibility(Record[7]));
2967       if (Record.size() > 8 && Record[8]) {
2968         if (Record[8]-1 > GCTable.size())
2969           return Error("Invalid ID");
2970         Func->setGC(GCTable[Record[8]-1].c_str());
2971       }
2972       bool UnnamedAddr = false;
2973       if (Record.size() > 9)
2974         UnnamedAddr = Record[9];
2975       Func->setUnnamedAddr(UnnamedAddr);
2976       if (Record.size() > 10 && Record[10] != 0)
2977         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
2978
2979       if (Record.size() > 11)
2980         Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11]));
2981       else
2982         UpgradeDLLImportExportLinkage(Func, RawLinkage);
2983
2984       if (Record.size() > 12) {
2985         if (unsigned ComdatID = Record[12]) {
2986           assert(ComdatID <= ComdatList.size());
2987           Func->setComdat(ComdatList[ComdatID - 1]);
2988         }
2989       } else if (hasImplicitComdat(RawLinkage)) {
2990         Func->setComdat(reinterpret_cast<Comdat *>(1));
2991       }
2992
2993       if (Record.size() > 13 && Record[13] != 0)
2994         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
2995
2996       ValueList.push_back(Func);
2997
2998       // If this is a function with a body, remember the prototype we are
2999       // creating now, so that we can match up the body with them later.
3000       if (!isProto) {
3001         Func->setIsMaterializable(true);
3002         FunctionsWithBodies.push_back(Func);
3003         if (LazyStreamer)
3004           DeferredFunctionInfo[Func] = 0;
3005       }
3006       break;
3007     }
3008     // ALIAS: [alias type, aliasee val#, linkage]
3009     // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass]
3010     case bitc::MODULE_CODE_ALIAS: {
3011       if (Record.size() < 3)
3012         return Error("Invalid record");
3013       Type *Ty = getTypeByID(Record[0]);
3014       if (!Ty)
3015         return Error("Invalid record");
3016       auto *PTy = dyn_cast<PointerType>(Ty);
3017       if (!PTy)
3018         return Error("Invalid type for value");
3019
3020       auto *NewGA =
3021           GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
3022                               getDecodedLinkage(Record[2]), "", TheModule);
3023       // Old bitcode files didn't have visibility field.
3024       // Local linkage must have default visibility.
3025       if (Record.size() > 3 && !NewGA->hasLocalLinkage())
3026         // FIXME: Change to an error if non-default in 4.0.
3027         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
3028       if (Record.size() > 4)
3029         NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4]));
3030       else
3031         UpgradeDLLImportExportLinkage(NewGA, Record[2]);
3032       if (Record.size() > 5)
3033         NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5]));
3034       if (Record.size() > 6)
3035         NewGA->setUnnamedAddr(Record[6]);
3036       ValueList.push_back(NewGA);
3037       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
3038       break;
3039     }
3040     /// MODULE_CODE_PURGEVALS: [numvals]
3041     case bitc::MODULE_CODE_PURGEVALS:
3042       // Trim down the value list to the specified size.
3043       if (Record.size() < 1 || Record[0] > ValueList.size())
3044         return Error("Invalid record");
3045       ValueList.shrinkTo(Record[0]);
3046       break;
3047     }
3048     Record.clear();
3049   }
3050 }
3051
3052 std::error_code BitcodeReader::ParseBitcodeInto(Module *M,
3053                                                 bool ShouldLazyLoadMetadata) {
3054   TheModule = nullptr;
3055
3056   if (std::error_code EC = InitStream())
3057     return EC;
3058
3059   // Sniff for the signature.
3060   if (Stream.Read(8) != 'B' ||
3061       Stream.Read(8) != 'C' ||
3062       Stream.Read(4) != 0x0 ||
3063       Stream.Read(4) != 0xC ||
3064       Stream.Read(4) != 0xE ||
3065       Stream.Read(4) != 0xD)
3066     return Error("Invalid bitcode signature");
3067
3068   // We expect a number of well-defined blocks, though we don't necessarily
3069   // need to understand them all.
3070   while (1) {
3071     if (Stream.AtEndOfStream()) {
3072       if (TheModule)
3073         return std::error_code();
3074       // We didn't really read a proper Module.
3075       return Error("Malformed IR file");
3076     }
3077
3078     BitstreamEntry Entry =
3079       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
3080
3081     switch (Entry.Kind) {
3082     case BitstreamEntry::Error:
3083       return Error("Malformed block");
3084     case BitstreamEntry::EndBlock:
3085       return std::error_code();
3086
3087     case BitstreamEntry::SubBlock:
3088       switch (Entry.ID) {
3089       case bitc::BLOCKINFO_BLOCK_ID:
3090         if (Stream.ReadBlockInfoBlock())
3091           return Error("Malformed block");
3092         break;
3093       case bitc::MODULE_BLOCK_ID:
3094         // Reject multiple MODULE_BLOCK's in a single bitstream.
3095         if (TheModule)
3096           return Error("Invalid multiple blocks");
3097         TheModule = M;
3098         if (std::error_code EC = ParseModule(false, ShouldLazyLoadMetadata))
3099           return EC;
3100         if (LazyStreamer)
3101           return std::error_code();
3102         break;
3103       default:
3104         if (Stream.SkipBlock())
3105           return Error("Invalid record");
3106         break;
3107       }
3108       continue;
3109     case BitstreamEntry::Record:
3110       // There should be no records in the top-level of blocks.
3111
3112       // The ranlib in Xcode 4 will align archive members by appending newlines
3113       // to the end of them. If this file size is a multiple of 4 but not 8, we
3114       // have to read and ignore these final 4 bytes :-(
3115       if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
3116           Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
3117           Stream.AtEndOfStream())
3118         return std::error_code();
3119
3120       return Error("Invalid record");
3121     }
3122   }
3123 }
3124
3125 ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
3126   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3127     return Error("Invalid record");
3128
3129   SmallVector<uint64_t, 64> Record;
3130
3131   std::string Triple;
3132   // Read all the records for this module.
3133   while (1) {
3134     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3135
3136     switch (Entry.Kind) {
3137     case BitstreamEntry::SubBlock: // Handled for us already.
3138     case BitstreamEntry::Error:
3139       return Error("Malformed block");
3140     case BitstreamEntry::EndBlock:
3141       return Triple;
3142     case BitstreamEntry::Record:
3143       // The interesting case.
3144       break;
3145     }
3146
3147     // Read a record.
3148     switch (Stream.readRecord(Entry.ID, Record)) {
3149     default: break;  // Default behavior, ignore unknown content.
3150     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3151       std::string S;
3152       if (ConvertToString(Record, 0, S))
3153         return Error("Invalid record");
3154       Triple = S;
3155       break;
3156     }
3157     }
3158     Record.clear();
3159   }
3160   llvm_unreachable("Exit infinite loop");
3161 }
3162
3163 ErrorOr<std::string> BitcodeReader::parseTriple() {
3164   if (std::error_code EC = InitStream())
3165     return EC;
3166
3167   // Sniff for the signature.
3168   if (Stream.Read(8) != 'B' ||
3169       Stream.Read(8) != 'C' ||
3170       Stream.Read(4) != 0x0 ||
3171       Stream.Read(4) != 0xC ||
3172       Stream.Read(4) != 0xE ||
3173       Stream.Read(4) != 0xD)
3174     return Error("Invalid bitcode signature");
3175
3176   // We expect a number of well-defined blocks, though we don't necessarily
3177   // need to understand them all.
3178   while (1) {
3179     BitstreamEntry Entry = Stream.advance();
3180
3181     switch (Entry.Kind) {
3182     case BitstreamEntry::Error:
3183       return Error("Malformed block");
3184     case BitstreamEntry::EndBlock:
3185       return std::error_code();
3186
3187     case BitstreamEntry::SubBlock:
3188       if (Entry.ID == bitc::MODULE_BLOCK_ID)
3189         return parseModuleTriple();
3190
3191       // Ignore other sub-blocks.
3192       if (Stream.SkipBlock())
3193         return Error("Malformed block");
3194       continue;
3195
3196     case BitstreamEntry::Record:
3197       Stream.skipRecord(Entry.ID);
3198       continue;
3199     }
3200   }
3201 }
3202
3203 /// ParseMetadataAttachment - Parse metadata attachments.
3204 std::error_code BitcodeReader::ParseMetadataAttachment() {
3205   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
3206     return Error("Invalid record");
3207
3208   SmallVector<uint64_t, 64> Record;
3209   while (1) {
3210     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3211
3212     switch (Entry.Kind) {
3213     case BitstreamEntry::SubBlock: // Handled for us already.
3214     case BitstreamEntry::Error:
3215       return Error("Malformed block");
3216     case BitstreamEntry::EndBlock:
3217       return std::error_code();
3218     case BitstreamEntry::Record:
3219       // The interesting case.
3220       break;
3221     }
3222
3223     // Read a metadata attachment record.
3224     Record.clear();
3225     switch (Stream.readRecord(Entry.ID, Record)) {
3226     default:  // Default behavior: ignore.
3227       break;
3228     case bitc::METADATA_ATTACHMENT: {
3229       unsigned RecordLength = Record.size();
3230       if (Record.empty() || (RecordLength - 1) % 2 == 1)
3231         return Error("Invalid record");
3232       Instruction *Inst = InstructionList[Record[0]];
3233       for (unsigned i = 1; i != RecordLength; i = i+2) {
3234         unsigned Kind = Record[i];
3235         DenseMap<unsigned, unsigned>::iterator I =
3236           MDKindMap.find(Kind);
3237         if (I == MDKindMap.end())
3238           return Error("Invalid ID");
3239         Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]);
3240         if (isa<LocalAsMetadata>(Node))
3241           // Drop the attachment.  This used to be legal, but there's no
3242           // upgrade path.
3243           break;
3244         Inst->setMetadata(I->second, cast<MDNode>(Node));
3245         if (I->second == LLVMContext::MD_tbaa)
3246           InstsWithTBAATag.push_back(Inst);
3247       }
3248       break;
3249     }
3250     }
3251   }
3252 }
3253
3254 /// ParseFunctionBody - Lazily parse the specified function body block.
3255 std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
3256   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3257     return Error("Invalid record");
3258
3259   InstructionList.clear();
3260   unsigned ModuleValueListSize = ValueList.size();
3261   unsigned ModuleMDValueListSize = MDValueList.size();
3262
3263   // Add all the function arguments to the value table.
3264   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
3265     ValueList.push_back(I);
3266
3267   unsigned NextValueNo = ValueList.size();
3268   BasicBlock *CurBB = nullptr;
3269   unsigned CurBBNo = 0;
3270
3271   DebugLoc LastLoc;
3272   auto getLastInstruction = [&]() -> Instruction * {
3273     if (CurBB && !CurBB->empty())
3274       return &CurBB->back();
3275     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3276              !FunctionBBs[CurBBNo - 1]->empty())
3277       return &FunctionBBs[CurBBNo - 1]->back();
3278     return nullptr;
3279   };
3280
3281   // Read all the records.
3282   SmallVector<uint64_t, 64> Record;
3283   while (1) {
3284     BitstreamEntry Entry = Stream.advance();
3285
3286     switch (Entry.Kind) {
3287     case BitstreamEntry::Error:
3288       return Error("Malformed block");
3289     case BitstreamEntry::EndBlock:
3290       goto OutOfRecordLoop;
3291
3292     case BitstreamEntry::SubBlock:
3293       switch (Entry.ID) {
3294       default:  // Skip unknown content.
3295         if (Stream.SkipBlock())
3296           return Error("Invalid record");
3297         break;
3298       case bitc::CONSTANTS_BLOCK_ID:
3299         if (std::error_code EC = ParseConstants())
3300           return EC;
3301         NextValueNo = ValueList.size();
3302         break;
3303       case bitc::VALUE_SYMTAB_BLOCK_ID:
3304         if (std::error_code EC = ParseValueSymbolTable())
3305           return EC;
3306         break;
3307       case bitc::METADATA_ATTACHMENT_ID:
3308         if (std::error_code EC = ParseMetadataAttachment())
3309           return EC;
3310         break;
3311       case bitc::METADATA_BLOCK_ID:
3312         if (std::error_code EC = ParseMetadata())
3313           return EC;
3314         break;
3315       case bitc::USELIST_BLOCK_ID:
3316         if (std::error_code EC = ParseUseLists())
3317           return EC;
3318         break;
3319       }
3320       continue;
3321
3322     case BitstreamEntry::Record:
3323       // The interesting case.
3324       break;
3325     }
3326
3327     // Read a record.
3328     Record.clear();
3329     Instruction *I = nullptr;
3330     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3331     switch (BitCode) {
3332     default: // Default behavior: reject
3333       return Error("Invalid value");
3334     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3335       if (Record.size() < 1 || Record[0] == 0)
3336         return Error("Invalid record");
3337       // Create all the basic blocks for the function.
3338       FunctionBBs.resize(Record[0]);
3339
3340       // See if anything took the address of blocks in this function.
3341       auto BBFRI = BasicBlockFwdRefs.find(F);
3342       if (BBFRI == BasicBlockFwdRefs.end()) {
3343         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3344           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3345       } else {
3346         auto &BBRefs = BBFRI->second;
3347         // Check for invalid basic block references.
3348         if (BBRefs.size() > FunctionBBs.size())
3349           return Error("Invalid ID");
3350         assert(!BBRefs.empty() && "Unexpected empty array");
3351         assert(!BBRefs.front() && "Invalid reference to entry block");
3352         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3353              ++I)
3354           if (I < RE && BBRefs[I]) {
3355             BBRefs[I]->insertInto(F);
3356             FunctionBBs[I] = BBRefs[I];
3357           } else {
3358             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3359           }
3360
3361         // Erase from the table.
3362         BasicBlockFwdRefs.erase(BBFRI);
3363       }
3364
3365       CurBB = FunctionBBs[0];
3366       continue;
3367     }
3368
3369     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3370       // This record indicates that the last instruction is at the same
3371       // location as the previous instruction with a location.
3372       I = getLastInstruction();
3373
3374       if (!I)
3375         return Error("Invalid record");
3376       I->setDebugLoc(LastLoc);
3377       I = nullptr;
3378       continue;
3379
3380     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3381       I = getLastInstruction();
3382       if (!I || Record.size() < 4)
3383         return Error("Invalid record");
3384
3385       unsigned Line = Record[0], Col = Record[1];
3386       unsigned ScopeID = Record[2], IAID = Record[3];
3387
3388       MDNode *Scope = nullptr, *IA = nullptr;
3389       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
3390       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
3391       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
3392       I->setDebugLoc(LastLoc);
3393       I = nullptr;
3394       continue;
3395     }
3396
3397     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3398       unsigned OpNum = 0;
3399       Value *LHS, *RHS;
3400       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3401           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3402           OpNum+1 > Record.size())
3403         return Error("Invalid record");
3404
3405       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3406       if (Opc == -1)
3407         return Error("Invalid record");
3408       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3409       InstructionList.push_back(I);
3410       if (OpNum < Record.size()) {
3411         if (Opc == Instruction::Add ||
3412             Opc == Instruction::Sub ||
3413             Opc == Instruction::Mul ||
3414             Opc == Instruction::Shl) {
3415           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3416             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3417           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3418             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3419         } else if (Opc == Instruction::SDiv ||
3420                    Opc == Instruction::UDiv ||
3421                    Opc == Instruction::LShr ||
3422                    Opc == Instruction::AShr) {
3423           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3424             cast<BinaryOperator>(I)->setIsExact(true);
3425         } else if (isa<FPMathOperator>(I)) {
3426           FastMathFlags FMF;
3427           if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra))
3428             FMF.setUnsafeAlgebra();
3429           if (0 != (Record[OpNum] & FastMathFlags::NoNaNs))
3430             FMF.setNoNaNs();
3431           if (0 != (Record[OpNum] & FastMathFlags::NoInfs))
3432             FMF.setNoInfs();
3433           if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros))
3434             FMF.setNoSignedZeros();
3435           if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal))
3436             FMF.setAllowReciprocal();
3437           if (FMF.any())
3438             I->setFastMathFlags(FMF);
3439         }
3440
3441       }
3442       break;
3443     }
3444     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3445       unsigned OpNum = 0;
3446       Value *Op;
3447       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3448           OpNum+2 != Record.size())
3449         return Error("Invalid record");
3450
3451       Type *ResTy = getTypeByID(Record[OpNum]);
3452       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
3453       if (Opc == -1 || !ResTy)
3454         return Error("Invalid record");
3455       Instruction *Temp = nullptr;
3456       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3457         if (Temp) {
3458           InstructionList.push_back(Temp);
3459           CurBB->getInstList().push_back(Temp);
3460         }
3461       } else {
3462         I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
3463       }
3464       InstructionList.push_back(I);
3465       break;
3466     }
3467     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3468     case bitc::FUNC_CODE_INST_GEP_OLD:
3469     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3470       unsigned OpNum = 0;
3471
3472       Type *Ty;
3473       bool InBounds;
3474
3475       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3476         InBounds = Record[OpNum++];
3477         Ty = getTypeByID(Record[OpNum++]);
3478       } else {
3479         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3480         Ty = nullptr;
3481       }
3482
3483       Value *BasePtr;
3484       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
3485         return Error("Invalid record");
3486
3487       if (Ty &&
3488           Ty !=
3489               cast<SequentialType>(BasePtr->getType()->getScalarType())
3490                   ->getElementType())
3491         return Error(
3492             "Explicit gep type does not match pointee type of pointer operand");
3493
3494       SmallVector<Value*, 16> GEPIdx;
3495       while (OpNum != Record.size()) {
3496         Value *Op;
3497         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3498           return Error("Invalid record");
3499         GEPIdx.push_back(Op);
3500       }
3501
3502       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3503
3504       InstructionList.push_back(I);
3505       if (InBounds)
3506         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3507       break;
3508     }
3509
3510     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3511                                        // EXTRACTVAL: [opty, opval, n x indices]
3512       unsigned OpNum = 0;
3513       Value *Agg;
3514       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3515         return Error("Invalid record");
3516
3517       SmallVector<unsigned, 4> EXTRACTVALIdx;
3518       Type *CurTy = Agg->getType();
3519       for (unsigned RecSize = Record.size();
3520            OpNum != RecSize; ++OpNum) {
3521         bool IsArray = CurTy->isArrayTy();
3522         bool IsStruct = CurTy->isStructTy();
3523         uint64_t Index = Record[OpNum];
3524
3525         if (!IsStruct && !IsArray)
3526           return Error("EXTRACTVAL: Invalid type");
3527         if ((unsigned)Index != Index)
3528           return Error("Invalid value");
3529         if (IsStruct && Index >= CurTy->subtypes().size())
3530           return Error("EXTRACTVAL: Invalid struct index");
3531         if (IsArray && Index >= CurTy->getArrayNumElements())
3532           return Error("EXTRACTVAL: Invalid array index");
3533         EXTRACTVALIdx.push_back((unsigned)Index);
3534
3535         if (IsStruct)
3536           CurTy = CurTy->subtypes()[Index];
3537         else
3538           CurTy = CurTy->subtypes()[0];
3539       }
3540
3541       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3542       InstructionList.push_back(I);
3543       break;
3544     }
3545
3546     case bitc::FUNC_CODE_INST_INSERTVAL: {
3547                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
3548       unsigned OpNum = 0;
3549       Value *Agg;
3550       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3551         return Error("Invalid record");
3552       Value *Val;
3553       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3554         return Error("Invalid record");
3555
3556       SmallVector<unsigned, 4> INSERTVALIdx;
3557       Type *CurTy = Agg->getType();
3558       for (unsigned RecSize = Record.size();
3559            OpNum != RecSize; ++OpNum) {
3560         bool IsArray = CurTy->isArrayTy();
3561         bool IsStruct = CurTy->isStructTy();
3562         uint64_t Index = Record[OpNum];
3563
3564         if (!IsStruct && !IsArray)
3565           return Error("INSERTVAL: Invalid type");
3566         if (!CurTy->isStructTy() && !CurTy->isArrayTy())
3567           return Error("Invalid type");
3568         if ((unsigned)Index != Index)
3569           return Error("Invalid value");
3570         if (IsStruct && Index >= CurTy->subtypes().size())
3571           return Error("INSERTVAL: Invalid struct index");
3572         if (IsArray && Index >= CurTy->getArrayNumElements())
3573           return Error("INSERTVAL: Invalid array index");
3574
3575         INSERTVALIdx.push_back((unsigned)Index);
3576         if (IsStruct)
3577           CurTy = CurTy->subtypes()[Index];
3578         else
3579           CurTy = CurTy->subtypes()[0];
3580       }
3581
3582       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3583       InstructionList.push_back(I);
3584       break;
3585     }
3586
3587     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
3588       // obsolete form of select
3589       // handles select i1 ... in old bitcode
3590       unsigned OpNum = 0;
3591       Value *TrueVal, *FalseVal, *Cond;
3592       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3593           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3594           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
3595         return Error("Invalid record");
3596
3597       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3598       InstructionList.push_back(I);
3599       break;
3600     }
3601
3602     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
3603       // new form of select
3604       // handles select i1 or select [N x i1]
3605       unsigned OpNum = 0;
3606       Value *TrueVal, *FalseVal, *Cond;
3607       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3608           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3609           getValueTypePair(Record, OpNum, NextValueNo, Cond))
3610         return Error("Invalid record");
3611
3612       // select condition can be either i1 or [N x i1]
3613       if (VectorType* vector_type =
3614           dyn_cast<VectorType>(Cond->getType())) {
3615         // expect <n x i1>
3616         if (vector_type->getElementType() != Type::getInt1Ty(Context))
3617           return Error("Invalid type for value");
3618       } else {
3619         // expect i1
3620         if (Cond->getType() != Type::getInt1Ty(Context))
3621           return Error("Invalid type for value");
3622       }
3623
3624       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3625       InstructionList.push_back(I);
3626       break;
3627     }
3628
3629     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
3630       unsigned OpNum = 0;
3631       Value *Vec, *Idx;
3632       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3633           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3634         return Error("Invalid record");
3635       I = ExtractElementInst::Create(Vec, Idx);
3636       InstructionList.push_back(I);
3637       break;
3638     }
3639
3640     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
3641       unsigned OpNum = 0;
3642       Value *Vec, *Elt, *Idx;
3643       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3644           popValue(Record, OpNum, NextValueNo,
3645                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
3646           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3647         return Error("Invalid record");
3648       I = InsertElementInst::Create(Vec, Elt, Idx);
3649       InstructionList.push_back(I);
3650       break;
3651     }
3652
3653     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
3654       unsigned OpNum = 0;
3655       Value *Vec1, *Vec2, *Mask;
3656       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
3657           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
3658         return Error("Invalid record");
3659
3660       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
3661         return Error("Invalid record");
3662       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
3663       InstructionList.push_back(I);
3664       break;
3665     }
3666
3667     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
3668       // Old form of ICmp/FCmp returning bool
3669       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
3670       // both legal on vectors but had different behaviour.
3671     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
3672       // FCmp/ICmp returning bool or vector of bool
3673
3674       unsigned OpNum = 0;
3675       Value *LHS, *RHS;
3676       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3677           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3678           OpNum+1 != Record.size())
3679         return Error("Invalid record");
3680
3681       if (LHS->getType()->isFPOrFPVectorTy())
3682         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
3683       else
3684         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
3685       InstructionList.push_back(I);
3686       break;
3687     }
3688
3689     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
3690       {
3691         unsigned Size = Record.size();
3692         if (Size == 0) {
3693           I = ReturnInst::Create(Context);
3694           InstructionList.push_back(I);
3695           break;
3696         }
3697
3698         unsigned OpNum = 0;
3699         Value *Op = nullptr;
3700         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3701           return Error("Invalid record");
3702         if (OpNum != Record.size())
3703           return Error("Invalid record");
3704
3705         I = ReturnInst::Create(Context, Op);
3706         InstructionList.push_back(I);
3707         break;
3708       }
3709     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
3710       if (Record.size() != 1 && Record.size() != 3)
3711         return Error("Invalid record");
3712       BasicBlock *TrueDest = getBasicBlock(Record[0]);
3713       if (!TrueDest)
3714         return Error("Invalid record");
3715
3716       if (Record.size() == 1) {
3717         I = BranchInst::Create(TrueDest);
3718         InstructionList.push_back(I);
3719       }
3720       else {
3721         BasicBlock *FalseDest = getBasicBlock(Record[1]);
3722         Value *Cond = getValue(Record, 2, NextValueNo,
3723                                Type::getInt1Ty(Context));
3724         if (!FalseDest || !Cond)
3725           return Error("Invalid record");
3726         I = BranchInst::Create(TrueDest, FalseDest, Cond);
3727         InstructionList.push_back(I);
3728       }
3729       break;
3730     }
3731     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
3732       // Check magic
3733       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
3734         // "New" SwitchInst format with case ranges. The changes to write this
3735         // format were reverted but we still recognize bitcode that uses it.
3736         // Hopefully someday we will have support for case ranges and can use
3737         // this format again.
3738
3739         Type *OpTy = getTypeByID(Record[1]);
3740         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
3741
3742         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
3743         BasicBlock *Default = getBasicBlock(Record[3]);
3744         if (!OpTy || !Cond || !Default)
3745           return Error("Invalid record");
3746
3747         unsigned NumCases = Record[4];
3748
3749         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
3750         InstructionList.push_back(SI);
3751
3752         unsigned CurIdx = 5;
3753         for (unsigned i = 0; i != NumCases; ++i) {
3754           SmallVector<ConstantInt*, 1> CaseVals;
3755           unsigned NumItems = Record[CurIdx++];
3756           for (unsigned ci = 0; ci != NumItems; ++ci) {
3757             bool isSingleNumber = Record[CurIdx++];
3758
3759             APInt Low;
3760             unsigned ActiveWords = 1;
3761             if (ValueBitWidth > 64)
3762               ActiveWords = Record[CurIdx++];
3763             Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
3764                                 ValueBitWidth);
3765             CurIdx += ActiveWords;
3766
3767             if (!isSingleNumber) {
3768               ActiveWords = 1;
3769               if (ValueBitWidth > 64)
3770                 ActiveWords = Record[CurIdx++];
3771               APInt High =
3772                   ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
3773                                 ValueBitWidth);
3774               CurIdx += ActiveWords;
3775
3776               // FIXME: It is not clear whether values in the range should be
3777               // compared as signed or unsigned values. The partially
3778               // implemented changes that used this format in the past used
3779               // unsigned comparisons.
3780               for ( ; Low.ule(High); ++Low)
3781                 CaseVals.push_back(ConstantInt::get(Context, Low));
3782             } else
3783               CaseVals.push_back(ConstantInt::get(Context, Low));
3784           }
3785           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
3786           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
3787                  cve = CaseVals.end(); cvi != cve; ++cvi)
3788             SI->addCase(*cvi, DestBB);
3789         }
3790         I = SI;
3791         break;
3792       }
3793
3794       // Old SwitchInst format without case ranges.
3795
3796       if (Record.size() < 3 || (Record.size() & 1) == 0)
3797         return Error("Invalid record");
3798       Type *OpTy = getTypeByID(Record[0]);
3799       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
3800       BasicBlock *Default = getBasicBlock(Record[2]);
3801       if (!OpTy || !Cond || !Default)
3802         return Error("Invalid record");
3803       unsigned NumCases = (Record.size()-3)/2;
3804       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
3805       InstructionList.push_back(SI);
3806       for (unsigned i = 0, e = NumCases; i != e; ++i) {
3807         ConstantInt *CaseVal =
3808           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
3809         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
3810         if (!CaseVal || !DestBB) {
3811           delete SI;
3812           return Error("Invalid record");
3813         }
3814         SI->addCase(CaseVal, DestBB);
3815       }
3816       I = SI;
3817       break;
3818     }
3819     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
3820       if (Record.size() < 2)
3821         return Error("Invalid record");
3822       Type *OpTy = getTypeByID(Record[0]);
3823       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
3824       if (!OpTy || !Address)
3825         return Error("Invalid record");
3826       unsigned NumDests = Record.size()-2;
3827       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
3828       InstructionList.push_back(IBI);
3829       for (unsigned i = 0, e = NumDests; i != e; ++i) {
3830         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
3831           IBI->addDestination(DestBB);
3832         } else {
3833           delete IBI;
3834           return Error("Invalid record");
3835         }
3836       }
3837       I = IBI;
3838       break;
3839     }
3840
3841     case bitc::FUNC_CODE_INST_INVOKE: {
3842       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
3843       if (Record.size() < 4)
3844         return Error("Invalid record");
3845       AttributeSet PAL = getAttributes(Record[0]);
3846       unsigned CCInfo = Record[1];
3847       BasicBlock *NormalBB = getBasicBlock(Record[2]);
3848       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
3849
3850       unsigned OpNum = 4;
3851       Value *Callee;
3852       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
3853         return Error("Invalid record");
3854
3855       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
3856       FunctionType *FTy = !CalleeTy ? nullptr :
3857         dyn_cast<FunctionType>(CalleeTy->getElementType());
3858
3859       // Check that the right number of fixed parameters are here.
3860       if (!FTy || !NormalBB || !UnwindBB ||
3861           Record.size() < OpNum+FTy->getNumParams())
3862         return Error("Invalid record");
3863
3864       SmallVector<Value*, 16> Ops;
3865       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
3866         Ops.push_back(getValue(Record, OpNum, NextValueNo,
3867                                FTy->getParamType(i)));
3868         if (!Ops.back())
3869           return Error("Invalid record");
3870       }
3871
3872       if (!FTy->isVarArg()) {
3873         if (Record.size() != OpNum)
3874           return Error("Invalid record");
3875       } else {
3876         // Read type/value pairs for varargs params.
3877         while (OpNum != Record.size()) {
3878           Value *Op;
3879           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3880             return Error("Invalid record");
3881           Ops.push_back(Op);
3882         }
3883       }
3884
3885       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
3886       InstructionList.push_back(I);
3887       cast<InvokeInst>(I)->setCallingConv(
3888         static_cast<CallingConv::ID>(CCInfo));
3889       cast<InvokeInst>(I)->setAttributes(PAL);
3890       break;
3891     }
3892     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
3893       unsigned Idx = 0;
3894       Value *Val = nullptr;
3895       if (getValueTypePair(Record, Idx, NextValueNo, Val))
3896         return Error("Invalid record");
3897       I = ResumeInst::Create(Val);
3898       InstructionList.push_back(I);
3899       break;
3900     }
3901     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
3902       I = new UnreachableInst(Context);
3903       InstructionList.push_back(I);
3904       break;
3905     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
3906       if (Record.size() < 1 || ((Record.size()-1)&1))
3907         return Error("Invalid record");
3908       Type *Ty = getTypeByID(Record[0]);
3909       if (!Ty)
3910         return Error("Invalid record");
3911
3912       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
3913       InstructionList.push_back(PN);
3914
3915       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
3916         Value *V;
3917         // With the new function encoding, it is possible that operands have
3918         // negative IDs (for forward references).  Use a signed VBR
3919         // representation to keep the encoding small.
3920         if (UseRelativeIDs)
3921           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
3922         else
3923           V = getValue(Record, 1+i, NextValueNo, Ty);
3924         BasicBlock *BB = getBasicBlock(Record[2+i]);
3925         if (!V || !BB)
3926           return Error("Invalid record");
3927         PN->addIncoming(V, BB);
3928       }
3929       I = PN;
3930       break;
3931     }
3932
3933     case bitc::FUNC_CODE_INST_LANDINGPAD: {
3934       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
3935       unsigned Idx = 0;
3936       if (Record.size() < 4)
3937         return Error("Invalid record");
3938       Type *Ty = getTypeByID(Record[Idx++]);
3939       if (!Ty)
3940         return Error("Invalid record");
3941       Value *PersFn = nullptr;
3942       if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
3943         return Error("Invalid record");
3944
3945       bool IsCleanup = !!Record[Idx++];
3946       unsigned NumClauses = Record[Idx++];
3947       LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
3948       LP->setCleanup(IsCleanup);
3949       for (unsigned J = 0; J != NumClauses; ++J) {
3950         LandingPadInst::ClauseType CT =
3951           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
3952         Value *Val;
3953
3954         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
3955           delete LP;
3956           return Error("Invalid record");
3957         }
3958
3959         assert((CT != LandingPadInst::Catch ||
3960                 !isa<ArrayType>(Val->getType())) &&
3961                "Catch clause has a invalid type!");
3962         assert((CT != LandingPadInst::Filter ||
3963                 isa<ArrayType>(Val->getType())) &&
3964                "Filter clause has invalid type!");
3965         LP->addClause(cast<Constant>(Val));
3966       }
3967
3968       I = LP;
3969       InstructionList.push_back(I);
3970       break;
3971     }
3972
3973     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
3974       if (Record.size() != 4)
3975         return Error("Invalid record");
3976       PointerType *Ty =
3977         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
3978       Type *OpTy = getTypeByID(Record[1]);
3979       Value *Size = getFnValueByID(Record[2], OpTy);
3980       uint64_t AlignRecord = Record[3];
3981       const uint64_t InAllocaMask = uint64_t(1) << 5;
3982       bool InAlloca = AlignRecord & InAllocaMask;
3983       unsigned Align;
3984       if (std::error_code EC =
3985           parseAlignmentValue(AlignRecord & ~InAllocaMask, Align)) {
3986         return EC;
3987       }
3988       if (!Ty || !Size)
3989         return Error("Invalid record");
3990       AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, Align);
3991       AI->setUsedWithInAlloca(InAlloca);
3992       I = AI;
3993       InstructionList.push_back(I);
3994       break;
3995     }
3996     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
3997       unsigned OpNum = 0;
3998       Value *Op;
3999       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4000           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4001         return Error("Invalid record");
4002
4003       Type *Ty = nullptr;
4004       if (OpNum + 3 == Record.size())
4005         Ty = getTypeByID(Record[OpNum++]);
4006
4007       unsigned Align;
4008       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4009         return EC;
4010       I = new LoadInst(Op, "", Record[OpNum+1], Align);
4011
4012       if (Ty && Ty != I->getType())
4013         return Error("Explicit load type does not match pointee type of "
4014                      "pointer operand");
4015
4016       InstructionList.push_back(I);
4017       break;
4018     }
4019     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4020        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
4021       unsigned OpNum = 0;
4022       Value *Op;
4023       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4024           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4025         return Error("Invalid record");
4026
4027       Type *Ty = nullptr;
4028       if (OpNum + 5 == Record.size())
4029         Ty = getTypeByID(Record[OpNum++]);
4030
4031       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
4032       if (Ordering == NotAtomic || Ordering == Release ||
4033           Ordering == AcquireRelease)
4034         return Error("Invalid record");
4035       if (Ordering != NotAtomic && Record[OpNum] == 0)
4036         return Error("Invalid record");
4037       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
4038
4039       unsigned Align;
4040       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4041         return EC;
4042       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
4043
4044       (void)Ty;
4045       assert((!Ty || Ty == I->getType()) &&
4046              "Explicit type doesn't match pointee type of the first operand");
4047
4048       InstructionList.push_back(I);
4049       break;
4050     }
4051     case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
4052       unsigned OpNum = 0;
4053       Value *Val, *Ptr;
4054       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4055           popValue(Record, OpNum, NextValueNo,
4056                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4057           OpNum+2 != Record.size())
4058         return Error("Invalid record");
4059       unsigned Align;
4060       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4061         return EC;
4062       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4063       InstructionList.push_back(I);
4064       break;
4065     }
4066     case bitc::FUNC_CODE_INST_STOREATOMIC: {
4067       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
4068       unsigned OpNum = 0;
4069       Value *Val, *Ptr;
4070       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4071           popValue(Record, OpNum, NextValueNo,
4072                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4073           OpNum+4 != Record.size())
4074         return Error("Invalid record");
4075
4076       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
4077       if (Ordering == NotAtomic || Ordering == Acquire ||
4078           Ordering == AcquireRelease)
4079         return Error("Invalid record");
4080       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
4081       if (Ordering != NotAtomic && Record[OpNum] == 0)
4082         return Error("Invalid record");
4083
4084       unsigned Align;
4085       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4086         return EC;
4087       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
4088       InstructionList.push_back(I);
4089       break;
4090     }
4091     case bitc::FUNC_CODE_INST_CMPXCHG: {
4092       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
4093       //          failureordering?, isweak?]
4094       unsigned OpNum = 0;
4095       Value *Ptr, *Cmp, *New;
4096       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4097           popValue(Record, OpNum, NextValueNo,
4098                     cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
4099           popValue(Record, OpNum, NextValueNo,
4100                     cast<PointerType>(Ptr->getType())->getElementType(), New) ||
4101           (Record.size() < OpNum + 3 || Record.size() > OpNum + 5))
4102         return Error("Invalid record");
4103       AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]);
4104       if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered)
4105         return Error("Invalid record");
4106       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
4107
4108       AtomicOrdering FailureOrdering;
4109       if (Record.size() < 7)
4110         FailureOrdering =
4111             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4112       else
4113         FailureOrdering = GetDecodedOrdering(Record[OpNum+3]);
4114
4115       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4116                                 SynchScope);
4117       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4118
4119       if (Record.size() < 8) {
4120         // Before weak cmpxchgs existed, the instruction simply returned the
4121         // value loaded from memory, so bitcode files from that era will be
4122         // expecting the first component of a modern cmpxchg.
4123         CurBB->getInstList().push_back(I);
4124         I = ExtractValueInst::Create(I, 0);
4125       } else {
4126         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4127       }
4128
4129       InstructionList.push_back(I);
4130       break;
4131     }
4132     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4133       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
4134       unsigned OpNum = 0;
4135       Value *Ptr, *Val;
4136       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4137           popValue(Record, OpNum, NextValueNo,
4138                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4139           OpNum+4 != Record.size())
4140         return Error("Invalid record");
4141       AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
4142       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4143           Operation > AtomicRMWInst::LAST_BINOP)
4144         return Error("Invalid record");
4145       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
4146       if (Ordering == NotAtomic || Ordering == Unordered)
4147         return Error("Invalid record");
4148       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
4149       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
4150       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4151       InstructionList.push_back(I);
4152       break;
4153     }
4154     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
4155       if (2 != Record.size())
4156         return Error("Invalid record");
4157       AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
4158       if (Ordering == NotAtomic || Ordering == Unordered ||
4159           Ordering == Monotonic)
4160         return Error("Invalid record");
4161       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
4162       I = new FenceInst(Context, Ordering, SynchScope);
4163       InstructionList.push_back(I);
4164       break;
4165     }
4166     case bitc::FUNC_CODE_INST_CALL: {
4167       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
4168       if (Record.size() < 3)
4169         return Error("Invalid record");
4170
4171       AttributeSet PAL = getAttributes(Record[0]);
4172       unsigned CCInfo = Record[1];
4173
4174       unsigned OpNum = 2;
4175       Value *Callee;
4176       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4177         return Error("Invalid record");
4178
4179       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4180       FunctionType *FTy = nullptr;
4181       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4182       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
4183         return Error("Invalid record");
4184
4185       SmallVector<Value*, 16> Args;
4186       // Read the fixed params.
4187       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4188         if (FTy->getParamType(i)->isLabelTy())
4189           Args.push_back(getBasicBlock(Record[OpNum]));
4190         else
4191           Args.push_back(getValue(Record, OpNum, NextValueNo,
4192                                   FTy->getParamType(i)));
4193         if (!Args.back())
4194           return Error("Invalid record");
4195       }
4196
4197       // Read type/value pairs for varargs params.
4198       if (!FTy->isVarArg()) {
4199         if (OpNum != Record.size())
4200           return Error("Invalid record");
4201       } else {
4202         while (OpNum != Record.size()) {
4203           Value *Op;
4204           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4205             return Error("Invalid record");
4206           Args.push_back(Op);
4207         }
4208       }
4209
4210       I = CallInst::Create(Callee, Args);
4211       InstructionList.push_back(I);
4212       cast<CallInst>(I)->setCallingConv(
4213           static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1));
4214       CallInst::TailCallKind TCK = CallInst::TCK_None;
4215       if (CCInfo & 1)
4216         TCK = CallInst::TCK_Tail;
4217       if (CCInfo & (1 << 14))
4218         TCK = CallInst::TCK_MustTail;
4219       cast<CallInst>(I)->setTailCallKind(TCK);
4220       cast<CallInst>(I)->setAttributes(PAL);
4221       break;
4222     }
4223     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
4224       if (Record.size() < 3)
4225         return Error("Invalid record");
4226       Type *OpTy = getTypeByID(Record[0]);
4227       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
4228       Type *ResTy = getTypeByID(Record[2]);
4229       if (!OpTy || !Op || !ResTy)
4230         return Error("Invalid record");
4231       I = new VAArgInst(Op, ResTy);
4232       InstructionList.push_back(I);
4233       break;
4234     }
4235     }
4236
4237     // Add instruction to end of current BB.  If there is no current BB, reject
4238     // this file.
4239     if (!CurBB) {
4240       delete I;
4241       return Error("Invalid instruction with no BB");
4242     }
4243     CurBB->getInstList().push_back(I);
4244
4245     // If this was a terminator instruction, move to the next block.
4246     if (isa<TerminatorInst>(I)) {
4247       ++CurBBNo;
4248       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
4249     }
4250
4251     // Non-void values get registered in the value table for future use.
4252     if (I && !I->getType()->isVoidTy())
4253       ValueList.AssignValue(I, NextValueNo++);
4254   }
4255
4256 OutOfRecordLoop:
4257
4258   // Check the function list for unresolved values.
4259   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
4260     if (!A->getParent()) {
4261       // We found at least one unresolved value.  Nuke them all to avoid leaks.
4262       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
4263         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
4264           A->replaceAllUsesWith(UndefValue::get(A->getType()));
4265           delete A;
4266         }
4267       }
4268       return Error("Never resolved value found in function");
4269     }
4270   }
4271
4272   // FIXME: Check for unresolved forward-declared metadata references
4273   // and clean up leaks.
4274
4275   // Trim the value list down to the size it was before we parsed this function.
4276   ValueList.shrinkTo(ModuleValueListSize);
4277   MDValueList.shrinkTo(ModuleMDValueListSize);
4278   std::vector<BasicBlock*>().swap(FunctionBBs);
4279   return std::error_code();
4280 }
4281
4282 /// Find the function body in the bitcode stream
4283 std::error_code BitcodeReader::FindFunctionInStream(
4284     Function *F,
4285     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
4286   while (DeferredFunctionInfoIterator->second == 0) {
4287     if (Stream.AtEndOfStream())
4288       return Error("Could not find function in stream");
4289     // ParseModule will parse the next body in the stream and set its
4290     // position in the DeferredFunctionInfo map.
4291     if (std::error_code EC = ParseModule(true))
4292       return EC;
4293   }
4294   return std::error_code();
4295 }
4296
4297 //===----------------------------------------------------------------------===//
4298 // GVMaterializer implementation
4299 //===----------------------------------------------------------------------===//
4300
4301 void BitcodeReader::releaseBuffer() { Buffer.release(); }
4302
4303 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
4304   if (std::error_code EC = materializeMetadata())
4305     return EC;
4306
4307   Function *F = dyn_cast<Function>(GV);
4308   // If it's not a function or is already material, ignore the request.
4309   if (!F || !F->isMaterializable())
4310     return std::error_code();
4311
4312   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
4313   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
4314   // If its position is recorded as 0, its body is somewhere in the stream
4315   // but we haven't seen it yet.
4316   if (DFII->second == 0 && LazyStreamer)
4317     if (std::error_code EC = FindFunctionInStream(F, DFII))
4318       return EC;
4319
4320   // Move the bit stream to the saved position of the deferred function body.
4321   Stream.JumpToBit(DFII->second);
4322
4323   if (std::error_code EC = ParseFunctionBody(F))
4324     return EC;
4325   F->setIsMaterializable(false);
4326
4327   if (StripDebugInfo)
4328     stripDebugInfo(*F);
4329
4330   // Upgrade any old intrinsic calls in the function.
4331   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
4332        E = UpgradedIntrinsics.end(); I != E; ++I) {
4333     if (I->first != I->second) {
4334       for (auto UI = I->first->user_begin(), UE = I->first->user_end();
4335            UI != UE;) {
4336         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
4337           UpgradeIntrinsicCall(CI, I->second);
4338       }
4339     }
4340   }
4341
4342   // Bring in any functions that this function forward-referenced via
4343   // blockaddresses.
4344   return materializeForwardReferencedFunctions();
4345 }
4346
4347 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
4348   const Function *F = dyn_cast<Function>(GV);
4349   if (!F || F->isDeclaration())
4350     return false;
4351
4352   // Dematerializing F would leave dangling references that wouldn't be
4353   // reconnected on re-materialization.
4354   if (BlockAddressesTaken.count(F))
4355     return false;
4356
4357   return DeferredFunctionInfo.count(const_cast<Function*>(F));
4358 }
4359
4360 void BitcodeReader::Dematerialize(GlobalValue *GV) {
4361   Function *F = dyn_cast<Function>(GV);
4362   // If this function isn't dematerializable, this is a noop.
4363   if (!F || !isDematerializable(F))
4364     return;
4365
4366   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
4367
4368   // Just forget the function body, we can remat it later.
4369   F->dropAllReferences();
4370   F->setIsMaterializable(true);
4371 }
4372
4373 std::error_code BitcodeReader::MaterializeModule(Module *M) {
4374   assert(M == TheModule &&
4375          "Can only Materialize the Module this BitcodeReader is attached to.");
4376
4377   if (std::error_code EC = materializeMetadata())
4378     return EC;
4379
4380   // Promise to materialize all forward references.
4381   WillMaterializeAllForwardRefs = true;
4382
4383   // Iterate over the module, deserializing any functions that are still on
4384   // disk.
4385   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
4386        F != E; ++F) {
4387     if (std::error_code EC = materialize(F))
4388       return EC;
4389   }
4390   // At this point, if there are any function bodies, the current bit is
4391   // pointing to the END_BLOCK record after them. Now make sure the rest
4392   // of the bits in the module have been read.
4393   if (NextUnreadBit)
4394     ParseModule(true);
4395
4396   // Check that all block address forward references got resolved (as we
4397   // promised above).
4398   if (!BasicBlockFwdRefs.empty())
4399     return Error("Never resolved function from blockaddress");
4400
4401   // Upgrade any intrinsic calls that slipped through (should not happen!) and
4402   // delete the old functions to clean up. We can't do this unless the entire
4403   // module is materialized because there could always be another function body
4404   // with calls to the old function.
4405   for (std::vector<std::pair<Function*, Function*> >::iterator I =
4406        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
4407     if (I->first != I->second) {
4408       for (auto UI = I->first->user_begin(), UE = I->first->user_end();
4409            UI != UE;) {
4410         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
4411           UpgradeIntrinsicCall(CI, I->second);
4412       }
4413       if (!I->first->use_empty())
4414         I->first->replaceAllUsesWith(I->second);
4415       I->first->eraseFromParent();
4416     }
4417   }
4418   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
4419
4420   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
4421     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
4422
4423   UpgradeDebugInfo(*M);
4424   return std::error_code();
4425 }
4426
4427 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
4428   return IdentifiedStructTypes;
4429 }
4430
4431 std::error_code BitcodeReader::InitStream() {
4432   if (LazyStreamer)
4433     return InitLazyStream();
4434   return InitStreamFromBuffer();
4435 }
4436
4437 std::error_code BitcodeReader::InitStreamFromBuffer() {
4438   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
4439   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
4440
4441   if (Buffer->getBufferSize() & 3)
4442     return Error("Invalid bitcode signature");
4443
4444   // If we have a wrapper header, parse it and ignore the non-bc file contents.
4445   // The magic number is 0x0B17C0DE stored in little endian.
4446   if (isBitcodeWrapper(BufPtr, BufEnd))
4447     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
4448       return Error("Invalid bitcode wrapper header");
4449
4450   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
4451   Stream.init(&*StreamFile);
4452
4453   return std::error_code();
4454 }
4455
4456 std::error_code BitcodeReader::InitLazyStream() {
4457   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
4458   // see it.
4459   auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer);
4460   StreamingMemoryObject &Bytes = *OwnedBytes;
4461   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
4462   Stream.init(&*StreamFile);
4463
4464   unsigned char buf[16];
4465   if (Bytes.readBytes(buf, 16, 0) != 16)
4466     return Error("Invalid bitcode signature");
4467
4468   if (!isBitcode(buf, buf + 16))
4469     return Error("Invalid bitcode signature");
4470
4471   if (isBitcodeWrapper(buf, buf + 4)) {
4472     const unsigned char *bitcodeStart = buf;
4473     const unsigned char *bitcodeEnd = buf + 16;
4474     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
4475     Bytes.dropLeadingBytes(bitcodeStart - buf);
4476     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
4477   }
4478   return std::error_code();
4479 }
4480
4481 namespace {
4482 class BitcodeErrorCategoryType : public std::error_category {
4483   const char *name() const LLVM_NOEXCEPT override {
4484     return "llvm.bitcode";
4485   }
4486   std::string message(int IE) const override {
4487     BitcodeError E = static_cast<BitcodeError>(IE);
4488     switch (E) {
4489     case BitcodeError::InvalidBitcodeSignature:
4490       return "Invalid bitcode signature";
4491     case BitcodeError::CorruptedBitcode:
4492       return "Corrupted bitcode";
4493     }
4494     llvm_unreachable("Unknown error type!");
4495   }
4496 };
4497 }
4498
4499 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
4500
4501 const std::error_category &llvm::BitcodeErrorCategory() {
4502   return *ErrorCategory;
4503 }
4504
4505 //===----------------------------------------------------------------------===//
4506 // External interface
4507 //===----------------------------------------------------------------------===//
4508
4509 /// \brief Get a lazy one-at-time loading module from bitcode.
4510 ///
4511 /// This isn't always used in a lazy context.  In particular, it's also used by
4512 /// \a parseBitcodeFile().  If this is truly lazy, then we need to eagerly pull
4513 /// in forward-referenced functions from block address references.
4514 ///
4515 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to
4516 /// materialize everything -- in particular, if this isn't truly lazy.
4517 static ErrorOr<Module *>
4518 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
4519                          LLVMContext &Context, bool WillMaterializeAll,
4520                          DiagnosticHandlerFunction DiagnosticHandler,
4521                          bool ShouldLazyLoadMetadata = false) {
4522   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
4523   BitcodeReader *R =
4524       new BitcodeReader(Buffer.get(), Context, DiagnosticHandler);
4525   M->setMaterializer(R);
4526
4527   auto cleanupOnError = [&](std::error_code EC) {
4528     R->releaseBuffer(); // Never take ownership on error.
4529     delete M;  // Also deletes R.
4530     return EC;
4531   };
4532
4533   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
4534   if (std::error_code EC = R->ParseBitcodeInto(M, ShouldLazyLoadMetadata))
4535     return cleanupOnError(EC);
4536
4537   if (!WillMaterializeAll)
4538     // Resolve forward references from blockaddresses.
4539     if (std::error_code EC = R->materializeForwardReferencedFunctions())
4540       return cleanupOnError(EC);
4541
4542   Buffer.release(); // The BitcodeReader owns it now.
4543   return M;
4544 }
4545
4546 ErrorOr<Module *>
4547 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
4548                            LLVMContext &Context,
4549                            DiagnosticHandlerFunction DiagnosticHandler,
4550                            bool ShouldLazyLoadMetadata) {
4551   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
4552                                   DiagnosticHandler, ShouldLazyLoadMetadata);
4553 }
4554
4555 ErrorOr<std::unique_ptr<Module>>
4556 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer,
4557                                LLVMContext &Context,
4558                                DiagnosticHandlerFunction DiagnosticHandler) {
4559   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
4560   BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler);
4561   M->setMaterializer(R);
4562   if (std::error_code EC = R->ParseBitcodeInto(M.get()))
4563     return EC;
4564   return std::move(M);
4565 }
4566
4567 ErrorOr<Module *>
4568 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
4569                        DiagnosticHandlerFunction DiagnosticHandler) {
4570   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
4571   ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl(
4572       std::move(Buf), Context, true, DiagnosticHandler);
4573   if (!ModuleOrErr)
4574     return ModuleOrErr;
4575   Module *M = ModuleOrErr.get();
4576   // Read in the entire module, and destroy the BitcodeReader.
4577   if (std::error_code EC = M->materializeAllPermanently()) {
4578     delete M;
4579     return EC;
4580   }
4581
4582   // TODO: Restore the use-lists to the in-memory state when the bitcode was
4583   // written.  We must defer until the Module has been fully materialized.
4584
4585   return M;
4586 }
4587
4588 std::string
4589 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context,
4590                              DiagnosticHandlerFunction DiagnosticHandler) {
4591   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
4592   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context,
4593                                             DiagnosticHandler);
4594   ErrorOr<std::string> Triple = R->parseTriple();
4595   if (Triple.getError())
4596     return "";
4597   return Triple.get();
4598 }