[opaque pointer type] Avoid using PointerType::getElementType for a few cases of...
[oota-llvm.git] / lib / AsmParser / LLParser.cpp
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "LLParser.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/IR/AutoUpgrade.h"
17 #include "llvm/IR/CallingConv.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DebugInfo.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/InlineAsm.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/Operator.h"
27 #include "llvm/IR/ValueSymbolTable.h"
28 #include "llvm/Support/Dwarf.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/SaveAndRestore.h"
31 #include "llvm/Support/raw_ostream.h"
32 using namespace llvm;
33
34 static std::string getTypeString(Type *T) {
35   std::string Result;
36   raw_string_ostream Tmp(Result);
37   Tmp << *T;
38   return Tmp.str();
39 }
40
41 /// Run: module ::= toplevelentity*
42 bool LLParser::Run() {
43   // Prime the lexer.
44   Lex.Lex();
45
46   return ParseTopLevelEntities() ||
47          ValidateEndOfModule();
48 }
49
50 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
51 /// module.
52 bool LLParser::ValidateEndOfModule() {
53   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
54     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
55
56   // Handle any function attribute group forward references.
57   for (std::map<Value*, std::vector<unsigned> >::iterator
58          I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
59          I != E; ++I) {
60     Value *V = I->first;
61     std::vector<unsigned> &Vec = I->second;
62     AttrBuilder B;
63
64     for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
65          VI != VE; ++VI)
66       B.merge(NumberedAttrBuilders[*VI]);
67
68     if (Function *Fn = dyn_cast<Function>(V)) {
69       AttributeSet AS = Fn->getAttributes();
70       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
71       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
72                                AS.getFnAttributes());
73
74       FnAttrs.merge(B);
75
76       // If the alignment was parsed as an attribute, move to the alignment
77       // field.
78       if (FnAttrs.hasAlignmentAttr()) {
79         Fn->setAlignment(FnAttrs.getAlignment());
80         FnAttrs.removeAttribute(Attribute::Alignment);
81       }
82
83       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
84                             AttributeSet::get(Context,
85                                               AttributeSet::FunctionIndex,
86                                               FnAttrs));
87       Fn->setAttributes(AS);
88     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
89       AttributeSet AS = CI->getAttributes();
90       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
91       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
92                                AS.getFnAttributes());
93       FnAttrs.merge(B);
94       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
95                             AttributeSet::get(Context,
96                                               AttributeSet::FunctionIndex,
97                                               FnAttrs));
98       CI->setAttributes(AS);
99     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
100       AttributeSet AS = II->getAttributes();
101       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
102       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
103                                AS.getFnAttributes());
104       FnAttrs.merge(B);
105       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
106                             AttributeSet::get(Context,
107                                               AttributeSet::FunctionIndex,
108                                               FnAttrs));
109       II->setAttributes(AS);
110     } else {
111       llvm_unreachable("invalid object with forward attribute group reference");
112     }
113   }
114
115   // If there are entries in ForwardRefBlockAddresses at this point, the
116   // function was never defined.
117   if (!ForwardRefBlockAddresses.empty())
118     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
119                  "expected function name in blockaddress");
120
121   for (const auto &NT : NumberedTypes)
122     if (NT.second.second.isValid())
123       return Error(NT.second.second,
124                    "use of undefined type '%" + Twine(NT.first) + "'");
125
126   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
127        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
128     if (I->second.second.isValid())
129       return Error(I->second.second,
130                    "use of undefined type named '" + I->getKey() + "'");
131
132   if (!ForwardRefComdats.empty())
133     return Error(ForwardRefComdats.begin()->second,
134                  "use of undefined comdat '$" +
135                      ForwardRefComdats.begin()->first + "'");
136
137   if (!ForwardRefVals.empty())
138     return Error(ForwardRefVals.begin()->second.second,
139                  "use of undefined value '@" + ForwardRefVals.begin()->first +
140                  "'");
141
142   if (!ForwardRefValIDs.empty())
143     return Error(ForwardRefValIDs.begin()->second.second,
144                  "use of undefined value '@" +
145                  Twine(ForwardRefValIDs.begin()->first) + "'");
146
147   if (!ForwardRefMDNodes.empty())
148     return Error(ForwardRefMDNodes.begin()->second.second,
149                  "use of undefined metadata '!" +
150                  Twine(ForwardRefMDNodes.begin()->first) + "'");
151
152   // Resolve metadata cycles.
153   for (auto &N : NumberedMetadata) {
154     if (N.second && !N.second->isResolved())
155       N.second->resolveCycles();
156   }
157
158   // Look for intrinsic functions and CallInst that need to be upgraded
159   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
160     UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
161
162   UpgradeDebugInfo(*M);
163
164   return false;
165 }
166
167 //===----------------------------------------------------------------------===//
168 // Top-Level Entities
169 //===----------------------------------------------------------------------===//
170
171 bool LLParser::ParseTopLevelEntities() {
172   while (1) {
173     switch (Lex.getKind()) {
174     default:         return TokError("expected top-level entity");
175     case lltok::Eof: return false;
176     case lltok::kw_declare: if (ParseDeclare()) return true; break;
177     case lltok::kw_define:  if (ParseDefine()) return true; break;
178     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
179     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
180     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
181     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
182     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
183     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
184     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
185     case lltok::ComdatVar:  if (parseComdat()) return true; break;
186     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
187     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
188
189     // The Global variable production with no name can have many different
190     // optional leading prefixes, the production is:
191     // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
192     //               OptionalThreadLocal OptionalAddrSpace OptionalUnNammedAddr
193     //               ('constant'|'global') ...
194     case lltok::kw_private:             // OptionalLinkage
195     case lltok::kw_internal:            // OptionalLinkage
196     case lltok::kw_weak:                // OptionalLinkage
197     case lltok::kw_weak_odr:            // OptionalLinkage
198     case lltok::kw_linkonce:            // OptionalLinkage
199     case lltok::kw_linkonce_odr:        // OptionalLinkage
200     case lltok::kw_appending:           // OptionalLinkage
201     case lltok::kw_common:              // OptionalLinkage
202     case lltok::kw_extern_weak:         // OptionalLinkage
203     case lltok::kw_external:            // OptionalLinkage
204     case lltok::kw_default:             // OptionalVisibility
205     case lltok::kw_hidden:              // OptionalVisibility
206     case lltok::kw_protected:           // OptionalVisibility
207     case lltok::kw_dllimport:           // OptionalDLLStorageClass
208     case lltok::kw_dllexport:           // OptionalDLLStorageClass
209     case lltok::kw_thread_local:        // OptionalThreadLocal
210     case lltok::kw_addrspace:           // OptionalAddrSpace
211     case lltok::kw_constant:            // GlobalType
212     case lltok::kw_global: {            // GlobalType
213       unsigned Linkage, Visibility, DLLStorageClass;
214       bool UnnamedAddr;
215       GlobalVariable::ThreadLocalMode TLM;
216       bool HasLinkage;
217       if (ParseOptionalLinkage(Linkage, HasLinkage) ||
218           ParseOptionalVisibility(Visibility) ||
219           ParseOptionalDLLStorageClass(DLLStorageClass) ||
220           ParseOptionalThreadLocal(TLM) ||
221           parseOptionalUnnamedAddr(UnnamedAddr) ||
222           ParseGlobal("", SMLoc(), Linkage, HasLinkage, Visibility,
223                       DLLStorageClass, TLM, UnnamedAddr))
224         return true;
225       break;
226     }
227
228     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
229     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
230     case lltok::kw_uselistorder_bb:
231                                  if (ParseUseListOrderBB()) return true; break;
232     }
233   }
234 }
235
236
237 /// toplevelentity
238 ///   ::= 'module' 'asm' STRINGCONSTANT
239 bool LLParser::ParseModuleAsm() {
240   assert(Lex.getKind() == lltok::kw_module);
241   Lex.Lex();
242
243   std::string AsmStr;
244   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
245       ParseStringConstant(AsmStr)) return true;
246
247   M->appendModuleInlineAsm(AsmStr);
248   return false;
249 }
250
251 /// toplevelentity
252 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
253 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
254 bool LLParser::ParseTargetDefinition() {
255   assert(Lex.getKind() == lltok::kw_target);
256   std::string Str;
257   switch (Lex.Lex()) {
258   default: return TokError("unknown target property");
259   case lltok::kw_triple:
260     Lex.Lex();
261     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
262         ParseStringConstant(Str))
263       return true;
264     M->setTargetTriple(Str);
265     return false;
266   case lltok::kw_datalayout:
267     Lex.Lex();
268     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
269         ParseStringConstant(Str))
270       return true;
271     M->setDataLayout(Str);
272     return false;
273   }
274 }
275
276 /// toplevelentity
277 ///   ::= 'deplibs' '=' '[' ']'
278 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
279 /// FIXME: Remove in 4.0. Currently parse, but ignore.
280 bool LLParser::ParseDepLibs() {
281   assert(Lex.getKind() == lltok::kw_deplibs);
282   Lex.Lex();
283   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
284       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
285     return true;
286
287   if (EatIfPresent(lltok::rsquare))
288     return false;
289
290   do {
291     std::string Str;
292     if (ParseStringConstant(Str)) return true;
293   } while (EatIfPresent(lltok::comma));
294
295   return ParseToken(lltok::rsquare, "expected ']' at end of list");
296 }
297
298 /// ParseUnnamedType:
299 ///   ::= LocalVarID '=' 'type' type
300 bool LLParser::ParseUnnamedType() {
301   LocTy TypeLoc = Lex.getLoc();
302   unsigned TypeID = Lex.getUIntVal();
303   Lex.Lex(); // eat LocalVarID;
304
305   if (ParseToken(lltok::equal, "expected '=' after name") ||
306       ParseToken(lltok::kw_type, "expected 'type' after '='"))
307     return true;
308
309   Type *Result = nullptr;
310   if (ParseStructDefinition(TypeLoc, "",
311                             NumberedTypes[TypeID], Result)) return true;
312
313   if (!isa<StructType>(Result)) {
314     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
315     if (Entry.first)
316       return Error(TypeLoc, "non-struct types may not be recursive");
317     Entry.first = Result;
318     Entry.second = SMLoc();
319   }
320
321   return false;
322 }
323
324
325 /// toplevelentity
326 ///   ::= LocalVar '=' 'type' type
327 bool LLParser::ParseNamedType() {
328   std::string Name = Lex.getStrVal();
329   LocTy NameLoc = Lex.getLoc();
330   Lex.Lex();  // eat LocalVar.
331
332   if (ParseToken(lltok::equal, "expected '=' after name") ||
333       ParseToken(lltok::kw_type, "expected 'type' after name"))
334     return true;
335
336   Type *Result = nullptr;
337   if (ParseStructDefinition(NameLoc, Name,
338                             NamedTypes[Name], Result)) return true;
339
340   if (!isa<StructType>(Result)) {
341     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
342     if (Entry.first)
343       return Error(NameLoc, "non-struct types may not be recursive");
344     Entry.first = Result;
345     Entry.second = SMLoc();
346   }
347
348   return false;
349 }
350
351
352 /// toplevelentity
353 ///   ::= 'declare' FunctionHeader
354 bool LLParser::ParseDeclare() {
355   assert(Lex.getKind() == lltok::kw_declare);
356   Lex.Lex();
357
358   Function *F;
359   return ParseFunctionHeader(F, false);
360 }
361
362 /// toplevelentity
363 ///   ::= 'define' FunctionHeader '{' ...
364 bool LLParser::ParseDefine() {
365   assert(Lex.getKind() == lltok::kw_define);
366   Lex.Lex();
367
368   Function *F;
369   return ParseFunctionHeader(F, true) ||
370          ParseFunctionBody(*F);
371 }
372
373 /// ParseGlobalType
374 ///   ::= 'constant'
375 ///   ::= 'global'
376 bool LLParser::ParseGlobalType(bool &IsConstant) {
377   if (Lex.getKind() == lltok::kw_constant)
378     IsConstant = true;
379   else if (Lex.getKind() == lltok::kw_global)
380     IsConstant = false;
381   else {
382     IsConstant = false;
383     return TokError("expected 'global' or 'constant'");
384   }
385   Lex.Lex();
386   return false;
387 }
388
389 /// ParseUnnamedGlobal:
390 ///   OptionalVisibility ALIAS ...
391 ///   OptionalLinkage OptionalVisibility OptionalDLLStorageClass
392 ///                                                     ...   -> global variable
393 ///   GlobalID '=' OptionalVisibility ALIAS ...
394 ///   GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
395 ///                                                     ...   -> global variable
396 bool LLParser::ParseUnnamedGlobal() {
397   unsigned VarID = NumberedVals.size();
398   std::string Name;
399   LocTy NameLoc = Lex.getLoc();
400
401   // Handle the GlobalID form.
402   if (Lex.getKind() == lltok::GlobalID) {
403     if (Lex.getUIntVal() != VarID)
404       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
405                    Twine(VarID) + "'");
406     Lex.Lex(); // eat GlobalID;
407
408     if (ParseToken(lltok::equal, "expected '=' after name"))
409       return true;
410   }
411
412   bool HasLinkage;
413   unsigned Linkage, Visibility, DLLStorageClass;
414   GlobalVariable::ThreadLocalMode TLM;
415   bool UnnamedAddr;
416   if (ParseOptionalLinkage(Linkage, HasLinkage) ||
417       ParseOptionalVisibility(Visibility) ||
418       ParseOptionalDLLStorageClass(DLLStorageClass) ||
419       ParseOptionalThreadLocal(TLM) ||
420       parseOptionalUnnamedAddr(UnnamedAddr))
421     return true;
422
423   if (Lex.getKind() != lltok::kw_alias)
424     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
425                        DLLStorageClass, TLM, UnnamedAddr);
426   return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM,
427                     UnnamedAddr);
428 }
429
430 /// ParseNamedGlobal:
431 ///   GlobalVar '=' OptionalVisibility ALIAS ...
432 ///   GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
433 ///                                                     ...   -> global variable
434 bool LLParser::ParseNamedGlobal() {
435   assert(Lex.getKind() == lltok::GlobalVar);
436   LocTy NameLoc = Lex.getLoc();
437   std::string Name = Lex.getStrVal();
438   Lex.Lex();
439
440   bool HasLinkage;
441   unsigned Linkage, Visibility, DLLStorageClass;
442   GlobalVariable::ThreadLocalMode TLM;
443   bool UnnamedAddr;
444   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
445       ParseOptionalLinkage(Linkage, HasLinkage) ||
446       ParseOptionalVisibility(Visibility) ||
447       ParseOptionalDLLStorageClass(DLLStorageClass) ||
448       ParseOptionalThreadLocal(TLM) ||
449       parseOptionalUnnamedAddr(UnnamedAddr))
450     return true;
451
452   if (Lex.getKind() != lltok::kw_alias)
453     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
454                        DLLStorageClass, TLM, UnnamedAddr);
455
456   return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM,
457                     UnnamedAddr);
458 }
459
460 bool LLParser::parseComdat() {
461   assert(Lex.getKind() == lltok::ComdatVar);
462   std::string Name = Lex.getStrVal();
463   LocTy NameLoc = Lex.getLoc();
464   Lex.Lex();
465
466   if (ParseToken(lltok::equal, "expected '=' here"))
467     return true;
468
469   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
470     return TokError("expected comdat type");
471
472   Comdat::SelectionKind SK;
473   switch (Lex.getKind()) {
474   default:
475     return TokError("unknown selection kind");
476   case lltok::kw_any:
477     SK = Comdat::Any;
478     break;
479   case lltok::kw_exactmatch:
480     SK = Comdat::ExactMatch;
481     break;
482   case lltok::kw_largest:
483     SK = Comdat::Largest;
484     break;
485   case lltok::kw_noduplicates:
486     SK = Comdat::NoDuplicates;
487     break;
488   case lltok::kw_samesize:
489     SK = Comdat::SameSize;
490     break;
491   }
492   Lex.Lex();
493
494   // See if the comdat was forward referenced, if so, use the comdat.
495   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
496   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
497   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
498     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
499
500   Comdat *C;
501   if (I != ComdatSymTab.end())
502     C = &I->second;
503   else
504     C = M->getOrInsertComdat(Name);
505   C->setSelectionKind(SK);
506
507   return false;
508 }
509
510 // MDString:
511 //   ::= '!' STRINGCONSTANT
512 bool LLParser::ParseMDString(MDString *&Result) {
513   std::string Str;
514   if (ParseStringConstant(Str)) return true;
515   llvm::UpgradeMDStringConstant(Str);
516   Result = MDString::get(Context, Str);
517   return false;
518 }
519
520 // MDNode:
521 //   ::= '!' MDNodeNumber
522 bool LLParser::ParseMDNodeID(MDNode *&Result) {
523   // !{ ..., !42, ... }
524   unsigned MID = 0;
525   if (ParseUInt32(MID))
526     return true;
527
528   // If not a forward reference, just return it now.
529   if (NumberedMetadata.count(MID)) {
530     Result = NumberedMetadata[MID];
531     return false;
532   }
533
534   // Otherwise, create MDNode forward reference.
535   auto &FwdRef = ForwardRefMDNodes[MID];
536   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), Lex.getLoc());
537
538   Result = FwdRef.first.get();
539   NumberedMetadata[MID].reset(Result);
540   return false;
541 }
542
543 /// ParseNamedMetadata:
544 ///   !foo = !{ !1, !2 }
545 bool LLParser::ParseNamedMetadata() {
546   assert(Lex.getKind() == lltok::MetadataVar);
547   std::string Name = Lex.getStrVal();
548   Lex.Lex();
549
550   if (ParseToken(lltok::equal, "expected '=' here") ||
551       ParseToken(lltok::exclaim, "Expected '!' here") ||
552       ParseToken(lltok::lbrace, "Expected '{' here"))
553     return true;
554
555   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
556   if (Lex.getKind() != lltok::rbrace)
557     do {
558       if (ParseToken(lltok::exclaim, "Expected '!' here"))
559         return true;
560
561       MDNode *N = nullptr;
562       if (ParseMDNodeID(N)) return true;
563       NMD->addOperand(N);
564     } while (EatIfPresent(lltok::comma));
565
566   if (ParseToken(lltok::rbrace, "expected end of metadata node"))
567     return true;
568
569   return false;
570 }
571
572 /// ParseStandaloneMetadata:
573 ///   !42 = !{...}
574 bool LLParser::ParseStandaloneMetadata() {
575   assert(Lex.getKind() == lltok::exclaim);
576   Lex.Lex();
577   unsigned MetadataID = 0;
578
579   MDNode *Init;
580   if (ParseUInt32(MetadataID) ||
581       ParseToken(lltok::equal, "expected '=' here"))
582     return true;
583
584   // Detect common error, from old metadata syntax.
585   if (Lex.getKind() == lltok::Type)
586     return TokError("unexpected type in metadata definition");
587
588   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
589   if (Lex.getKind() == lltok::MetadataVar) {
590     if (ParseSpecializedMDNode(Init, IsDistinct))
591       return true;
592   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
593              ParseMDTuple(Init, IsDistinct))
594     return true;
595
596   // See if this was forward referenced, if so, handle it.
597   auto FI = ForwardRefMDNodes.find(MetadataID);
598   if (FI != ForwardRefMDNodes.end()) {
599     FI->second.first->replaceAllUsesWith(Init);
600     ForwardRefMDNodes.erase(FI);
601
602     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
603   } else {
604     if (NumberedMetadata.count(MetadataID))
605       return TokError("Metadata id is already used");
606     NumberedMetadata[MetadataID].reset(Init);
607   }
608
609   return false;
610 }
611
612 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
613   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
614          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
615 }
616
617 /// ParseAlias:
618 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility
619 ///                     OptionalDLLStorageClass OptionalThreadLocal
620 ///                     OptionalUnNammedAddr 'alias' Aliasee
621 ///
622 /// Aliasee
623 ///   ::= TypeAndValue
624 ///
625 /// Everything through OptionalUnNammedAddr has already been parsed.
626 ///
627 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, unsigned L,
628                           unsigned Visibility, unsigned DLLStorageClass,
629                           GlobalVariable::ThreadLocalMode TLM,
630                           bool UnnamedAddr) {
631   assert(Lex.getKind() == lltok::kw_alias);
632   Lex.Lex();
633
634   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
635
636   if(!GlobalAlias::isValidLinkage(Linkage))
637     return Error(NameLoc, "invalid linkage type for alias");
638
639   if (!isValidVisibilityForLinkage(Visibility, L))
640     return Error(NameLoc,
641                  "symbol with local linkage must have default visibility");
642
643   Constant *Aliasee;
644   LocTy AliaseeLoc = Lex.getLoc();
645   if (Lex.getKind() != lltok::kw_bitcast &&
646       Lex.getKind() != lltok::kw_getelementptr &&
647       Lex.getKind() != lltok::kw_addrspacecast &&
648       Lex.getKind() != lltok::kw_inttoptr) {
649     if (ParseGlobalTypeAndValue(Aliasee))
650       return true;
651   } else {
652     // The bitcast dest type is not present, it is implied by the dest type.
653     ValID ID;
654     if (ParseValID(ID))
655       return true;
656     if (ID.Kind != ValID::t_Constant)
657       return Error(AliaseeLoc, "invalid aliasee");
658     Aliasee = ID.ConstantVal;
659   }
660
661   Type *AliaseeType = Aliasee->getType();
662   auto *PTy = dyn_cast<PointerType>(AliaseeType);
663   if (!PTy)
664     return Error(AliaseeLoc, "An alias must have pointer type");
665   Type *Ty = PTy->getElementType();
666   unsigned AddrSpace = PTy->getAddressSpace();
667
668   // Okay, create the alias but do not insert it into the module yet.
669   std::unique_ptr<GlobalAlias> GA(
670       GlobalAlias::create(Ty, AddrSpace, (GlobalValue::LinkageTypes)Linkage,
671                           Name, Aliasee, /*Parent*/ nullptr));
672   GA->setThreadLocalMode(TLM);
673   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
674   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
675   GA->setUnnamedAddr(UnnamedAddr);
676
677   // See if this value already exists in the symbol table.  If so, it is either
678   // a redefinition or a definition of a forward reference.
679   if (GlobalValue *Val = M->getNamedValue(Name)) {
680     // See if this was a redefinition.  If so, there is no entry in
681     // ForwardRefVals.
682     std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
683       I = ForwardRefVals.find(Name);
684     if (I == ForwardRefVals.end())
685       return Error(NameLoc, "redefinition of global named '@" + Name + "'");
686
687     // Otherwise, this was a definition of forward ref.  Verify that types
688     // agree.
689     if (Val->getType() != GA->getType())
690       return Error(NameLoc,
691               "forward reference and definition of alias have different types");
692
693     // If they agree, just RAUW the old value with the alias and remove the
694     // forward ref info.
695     Val->replaceAllUsesWith(GA.get());
696     Val->eraseFromParent();
697     ForwardRefVals.erase(I);
698   }
699
700   // Insert into the module, we know its name won't collide now.
701   M->getAliasList().push_back(GA.get());
702   assert(GA->getName() == Name && "Should not be a name conflict!");
703
704   // The module owns this now
705   GA.release();
706
707   return false;
708 }
709
710 /// ParseGlobal
711 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
712 ///       OptionalThreadLocal OptionalUnNammedAddr OptionalAddrSpace
713 ///       OptionalExternallyInitialized GlobalType Type Const
714 ///   ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
715 ///       OptionalThreadLocal OptionalUnNammedAddr OptionalAddrSpace
716 ///       OptionalExternallyInitialized GlobalType Type Const
717 ///
718 /// Everything up to and including OptionalUnNammedAddr has been parsed
719 /// already.
720 ///
721 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
722                            unsigned Linkage, bool HasLinkage,
723                            unsigned Visibility, unsigned DLLStorageClass,
724                            GlobalVariable::ThreadLocalMode TLM,
725                            bool UnnamedAddr) {
726   if (!isValidVisibilityForLinkage(Visibility, Linkage))
727     return Error(NameLoc,
728                  "symbol with local linkage must have default visibility");
729
730   unsigned AddrSpace;
731   bool IsConstant, IsExternallyInitialized;
732   LocTy IsExternallyInitializedLoc;
733   LocTy TyLoc;
734
735   Type *Ty = nullptr;
736   if (ParseOptionalAddrSpace(AddrSpace) ||
737       ParseOptionalToken(lltok::kw_externally_initialized,
738                          IsExternallyInitialized,
739                          &IsExternallyInitializedLoc) ||
740       ParseGlobalType(IsConstant) ||
741       ParseType(Ty, TyLoc))
742     return true;
743
744   // If the linkage is specified and is external, then no initializer is
745   // present.
746   Constant *Init = nullptr;
747   if (!HasLinkage || (Linkage != GlobalValue::ExternalWeakLinkage &&
748                       Linkage != GlobalValue::ExternalLinkage)) {
749     if (ParseGlobalValue(Ty, Init))
750       return true;
751   }
752
753   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
754     return Error(TyLoc, "invalid type for global variable");
755
756   GlobalValue *GVal = nullptr;
757
758   // See if the global was forward referenced, if so, use the global.
759   if (!Name.empty()) {
760     GVal = M->getNamedValue(Name);
761     if (GVal) {
762       if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
763         return Error(NameLoc, "redefinition of global '@" + Name + "'");
764     }
765   } else {
766     std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
767       I = ForwardRefValIDs.find(NumberedVals.size());
768     if (I != ForwardRefValIDs.end()) {
769       GVal = I->second.first;
770       ForwardRefValIDs.erase(I);
771     }
772   }
773
774   GlobalVariable *GV;
775   if (!GVal) {
776     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
777                             Name, nullptr, GlobalVariable::NotThreadLocal,
778                             AddrSpace);
779   } else {
780     if (GVal->getType()->getElementType() != Ty)
781       return Error(TyLoc,
782             "forward reference and definition of global have different types");
783
784     GV = cast<GlobalVariable>(GVal);
785
786     // Move the forward-reference to the correct spot in the module.
787     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
788   }
789
790   if (Name.empty())
791     NumberedVals.push_back(GV);
792
793   // Set the parsed properties on the global.
794   if (Init)
795     GV->setInitializer(Init);
796   GV->setConstant(IsConstant);
797   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
798   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
799   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
800   GV->setExternallyInitialized(IsExternallyInitialized);
801   GV->setThreadLocalMode(TLM);
802   GV->setUnnamedAddr(UnnamedAddr);
803
804   // Parse attributes on the global.
805   while (Lex.getKind() == lltok::comma) {
806     Lex.Lex();
807
808     if (Lex.getKind() == lltok::kw_section) {
809       Lex.Lex();
810       GV->setSection(Lex.getStrVal());
811       if (ParseToken(lltok::StringConstant, "expected global section string"))
812         return true;
813     } else if (Lex.getKind() == lltok::kw_align) {
814       unsigned Alignment;
815       if (ParseOptionalAlignment(Alignment)) return true;
816       GV->setAlignment(Alignment);
817     } else {
818       Comdat *C;
819       if (parseOptionalComdat(Name, C))
820         return true;
821       if (C)
822         GV->setComdat(C);
823       else
824         return TokError("unknown global variable property!");
825     }
826   }
827
828   return false;
829 }
830
831 /// ParseUnnamedAttrGrp
832 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
833 bool LLParser::ParseUnnamedAttrGrp() {
834   assert(Lex.getKind() == lltok::kw_attributes);
835   LocTy AttrGrpLoc = Lex.getLoc();
836   Lex.Lex();
837
838   if (Lex.getKind() != lltok::AttrGrpID)
839     return TokError("expected attribute group id");
840
841   unsigned VarID = Lex.getUIntVal();
842   std::vector<unsigned> unused;
843   LocTy BuiltinLoc;
844   Lex.Lex();
845
846   if (ParseToken(lltok::equal, "expected '=' here") ||
847       ParseToken(lltok::lbrace, "expected '{' here") ||
848       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
849                                  BuiltinLoc) ||
850       ParseToken(lltok::rbrace, "expected end of attribute group"))
851     return true;
852
853   if (!NumberedAttrBuilders[VarID].hasAttributes())
854     return Error(AttrGrpLoc, "attribute group has no attributes");
855
856   return false;
857 }
858
859 /// ParseFnAttributeValuePairs
860 ///   ::= <attr> | <attr> '=' <value>
861 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
862                                           std::vector<unsigned> &FwdRefAttrGrps,
863                                           bool inAttrGrp, LocTy &BuiltinLoc) {
864   bool HaveError = false;
865
866   B.clear();
867
868   while (true) {
869     lltok::Kind Token = Lex.getKind();
870     if (Token == lltok::kw_builtin)
871       BuiltinLoc = Lex.getLoc();
872     switch (Token) {
873     default:
874       if (!inAttrGrp) return HaveError;
875       return Error(Lex.getLoc(), "unterminated attribute group");
876     case lltok::rbrace:
877       // Finished.
878       return false;
879
880     case lltok::AttrGrpID: {
881       // Allow a function to reference an attribute group:
882       //
883       //   define void @foo() #1 { ... }
884       if (inAttrGrp)
885         HaveError |=
886           Error(Lex.getLoc(),
887               "cannot have an attribute group reference in an attribute group");
888
889       unsigned AttrGrpNum = Lex.getUIntVal();
890       if (inAttrGrp) break;
891
892       // Save the reference to the attribute group. We'll fill it in later.
893       FwdRefAttrGrps.push_back(AttrGrpNum);
894       break;
895     }
896     // Target-dependent attributes:
897     case lltok::StringConstant: {
898       std::string Attr = Lex.getStrVal();
899       Lex.Lex();
900       std::string Val;
901       if (EatIfPresent(lltok::equal) &&
902           ParseStringConstant(Val))
903         return true;
904
905       B.addAttribute(Attr, Val);
906       continue;
907     }
908
909     // Target-independent attributes:
910     case lltok::kw_align: {
911       // As a hack, we allow function alignment to be initially parsed as an
912       // attribute on a function declaration/definition or added to an attribute
913       // group and later moved to the alignment field.
914       unsigned Alignment;
915       if (inAttrGrp) {
916         Lex.Lex();
917         if (ParseToken(lltok::equal, "expected '=' here") ||
918             ParseUInt32(Alignment))
919           return true;
920       } else {
921         if (ParseOptionalAlignment(Alignment))
922           return true;
923       }
924       B.addAlignmentAttr(Alignment);
925       continue;
926     }
927     case lltok::kw_alignstack: {
928       unsigned Alignment;
929       if (inAttrGrp) {
930         Lex.Lex();
931         if (ParseToken(lltok::equal, "expected '=' here") ||
932             ParseUInt32(Alignment))
933           return true;
934       } else {
935         if (ParseOptionalStackAlignment(Alignment))
936           return true;
937       }
938       B.addStackAlignmentAttr(Alignment);
939       continue;
940     }
941     case lltok::kw_alwaysinline:      B.addAttribute(Attribute::AlwaysInline); break;
942     case lltok::kw_builtin:           B.addAttribute(Attribute::Builtin); break;
943     case lltok::kw_cold:              B.addAttribute(Attribute::Cold); break;
944     case lltok::kw_inlinehint:        B.addAttribute(Attribute::InlineHint); break;
945     case lltok::kw_jumptable:         B.addAttribute(Attribute::JumpTable); break;
946     case lltok::kw_minsize:           B.addAttribute(Attribute::MinSize); break;
947     case lltok::kw_naked:             B.addAttribute(Attribute::Naked); break;
948     case lltok::kw_nobuiltin:         B.addAttribute(Attribute::NoBuiltin); break;
949     case lltok::kw_noduplicate:       B.addAttribute(Attribute::NoDuplicate); break;
950     case lltok::kw_noimplicitfloat:   B.addAttribute(Attribute::NoImplicitFloat); break;
951     case lltok::kw_noinline:          B.addAttribute(Attribute::NoInline); break;
952     case lltok::kw_nonlazybind:       B.addAttribute(Attribute::NonLazyBind); break;
953     case lltok::kw_noredzone:         B.addAttribute(Attribute::NoRedZone); break;
954     case lltok::kw_noreturn:          B.addAttribute(Attribute::NoReturn); break;
955     case lltok::kw_nounwind:          B.addAttribute(Attribute::NoUnwind); break;
956     case lltok::kw_optnone:           B.addAttribute(Attribute::OptimizeNone); break;
957     case lltok::kw_optsize:           B.addAttribute(Attribute::OptimizeForSize); break;
958     case lltok::kw_readnone:          B.addAttribute(Attribute::ReadNone); break;
959     case lltok::kw_readonly:          B.addAttribute(Attribute::ReadOnly); break;
960     case lltok::kw_returns_twice:     B.addAttribute(Attribute::ReturnsTwice); break;
961     case lltok::kw_ssp:               B.addAttribute(Attribute::StackProtect); break;
962     case lltok::kw_sspreq:            B.addAttribute(Attribute::StackProtectReq); break;
963     case lltok::kw_sspstrong:         B.addAttribute(Attribute::StackProtectStrong); break;
964     case lltok::kw_sanitize_address:  B.addAttribute(Attribute::SanitizeAddress); break;
965     case lltok::kw_sanitize_thread:   B.addAttribute(Attribute::SanitizeThread); break;
966     case lltok::kw_sanitize_memory:   B.addAttribute(Attribute::SanitizeMemory); break;
967     case lltok::kw_uwtable:           B.addAttribute(Attribute::UWTable); break;
968
969     // Error handling.
970     case lltok::kw_inreg:
971     case lltok::kw_signext:
972     case lltok::kw_zeroext:
973       HaveError |=
974         Error(Lex.getLoc(),
975               "invalid use of attribute on a function");
976       break;
977     case lltok::kw_byval:
978     case lltok::kw_dereferenceable:
979     case lltok::kw_dereferenceable_or_null:
980     case lltok::kw_inalloca:
981     case lltok::kw_nest:
982     case lltok::kw_noalias:
983     case lltok::kw_nocapture:
984     case lltok::kw_nonnull:
985     case lltok::kw_returned:
986     case lltok::kw_sret:
987       HaveError |=
988         Error(Lex.getLoc(),
989               "invalid use of parameter-only attribute on a function");
990       break;
991     }
992
993     Lex.Lex();
994   }
995 }
996
997 //===----------------------------------------------------------------------===//
998 // GlobalValue Reference/Resolution Routines.
999 //===----------------------------------------------------------------------===//
1000
1001 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1002 /// forward reference record if needed.  This can return null if the value
1003 /// exists but does not have the right type.
1004 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1005                                     LocTy Loc) {
1006   PointerType *PTy = dyn_cast<PointerType>(Ty);
1007   if (!PTy) {
1008     Error(Loc, "global variable reference must have pointer type");
1009     return nullptr;
1010   }
1011
1012   // Look this name up in the normal function symbol table.
1013   GlobalValue *Val =
1014     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1015
1016   // If this is a forward reference for the value, see if we already created a
1017   // forward ref record.
1018   if (!Val) {
1019     std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
1020       I = ForwardRefVals.find(Name);
1021     if (I != ForwardRefVals.end())
1022       Val = I->second.first;
1023   }
1024
1025   // If we have the value in the symbol table or fwd-ref table, return it.
1026   if (Val) {
1027     if (Val->getType() == Ty) return Val;
1028     Error(Loc, "'@" + Name + "' defined with type '" +
1029           getTypeString(Val->getType()) + "'");
1030     return nullptr;
1031   }
1032
1033   // Otherwise, create a new forward reference for this value and remember it.
1034   GlobalValue *FwdVal;
1035   if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1036     FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1037   else
1038     FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
1039                                 GlobalValue::ExternalWeakLinkage, nullptr, Name,
1040                                 nullptr, GlobalVariable::NotThreadLocal,
1041                                 PTy->getAddressSpace());
1042
1043   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1044   return FwdVal;
1045 }
1046
1047 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1048   PointerType *PTy = dyn_cast<PointerType>(Ty);
1049   if (!PTy) {
1050     Error(Loc, "global variable reference must have pointer type");
1051     return nullptr;
1052   }
1053
1054   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1055
1056   // If this is a forward reference for the value, see if we already created a
1057   // forward ref record.
1058   if (!Val) {
1059     std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
1060       I = ForwardRefValIDs.find(ID);
1061     if (I != ForwardRefValIDs.end())
1062       Val = I->second.first;
1063   }
1064
1065   // If we have the value in the symbol table or fwd-ref table, return it.
1066   if (Val) {
1067     if (Val->getType() == Ty) return Val;
1068     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1069           getTypeString(Val->getType()) + "'");
1070     return nullptr;
1071   }
1072
1073   // Otherwise, create a new forward reference for this value and remember it.
1074   GlobalValue *FwdVal;
1075   if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1076     FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
1077   else
1078     FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
1079                                 GlobalValue::ExternalWeakLinkage, nullptr, "");
1080
1081   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1082   return FwdVal;
1083 }
1084
1085
1086 //===----------------------------------------------------------------------===//
1087 // Comdat Reference/Resolution Routines.
1088 //===----------------------------------------------------------------------===//
1089
1090 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1091   // Look this name up in the comdat symbol table.
1092   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1093   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1094   if (I != ComdatSymTab.end())
1095     return &I->second;
1096
1097   // Otherwise, create a new forward reference for this value and remember it.
1098   Comdat *C = M->getOrInsertComdat(Name);
1099   ForwardRefComdats[Name] = Loc;
1100   return C;
1101 }
1102
1103
1104 //===----------------------------------------------------------------------===//
1105 // Helper Routines.
1106 //===----------------------------------------------------------------------===//
1107
1108 /// ParseToken - If the current token has the specified kind, eat it and return
1109 /// success.  Otherwise, emit the specified error and return failure.
1110 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1111   if (Lex.getKind() != T)
1112     return TokError(ErrMsg);
1113   Lex.Lex();
1114   return false;
1115 }
1116
1117 /// ParseStringConstant
1118 ///   ::= StringConstant
1119 bool LLParser::ParseStringConstant(std::string &Result) {
1120   if (Lex.getKind() != lltok::StringConstant)
1121     return TokError("expected string constant");
1122   Result = Lex.getStrVal();
1123   Lex.Lex();
1124   return false;
1125 }
1126
1127 /// ParseUInt32
1128 ///   ::= uint32
1129 bool LLParser::ParseUInt32(unsigned &Val) {
1130   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1131     return TokError("expected integer");
1132   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1133   if (Val64 != unsigned(Val64))
1134     return TokError("expected 32-bit integer (too large)");
1135   Val = Val64;
1136   Lex.Lex();
1137   return false;
1138 }
1139
1140 /// ParseUInt64
1141 ///   ::= uint64
1142 bool LLParser::ParseUInt64(uint64_t &Val) {
1143   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1144     return TokError("expected integer");
1145   Val = Lex.getAPSIntVal().getLimitedValue();
1146   Lex.Lex();
1147   return false;
1148 }
1149
1150 /// ParseTLSModel
1151 ///   := 'localdynamic'
1152 ///   := 'initialexec'
1153 ///   := 'localexec'
1154 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1155   switch (Lex.getKind()) {
1156     default:
1157       return TokError("expected localdynamic, initialexec or localexec");
1158     case lltok::kw_localdynamic:
1159       TLM = GlobalVariable::LocalDynamicTLSModel;
1160       break;
1161     case lltok::kw_initialexec:
1162       TLM = GlobalVariable::InitialExecTLSModel;
1163       break;
1164     case lltok::kw_localexec:
1165       TLM = GlobalVariable::LocalExecTLSModel;
1166       break;
1167   }
1168
1169   Lex.Lex();
1170   return false;
1171 }
1172
1173 /// ParseOptionalThreadLocal
1174 ///   := /*empty*/
1175 ///   := 'thread_local'
1176 ///   := 'thread_local' '(' tlsmodel ')'
1177 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1178   TLM = GlobalVariable::NotThreadLocal;
1179   if (!EatIfPresent(lltok::kw_thread_local))
1180     return false;
1181
1182   TLM = GlobalVariable::GeneralDynamicTLSModel;
1183   if (Lex.getKind() == lltok::lparen) {
1184     Lex.Lex();
1185     return ParseTLSModel(TLM) ||
1186       ParseToken(lltok::rparen, "expected ')' after thread local model");
1187   }
1188   return false;
1189 }
1190
1191 /// ParseOptionalAddrSpace
1192 ///   := /*empty*/
1193 ///   := 'addrspace' '(' uint32 ')'
1194 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1195   AddrSpace = 0;
1196   if (!EatIfPresent(lltok::kw_addrspace))
1197     return false;
1198   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1199          ParseUInt32(AddrSpace) ||
1200          ParseToken(lltok::rparen, "expected ')' in address space");
1201 }
1202
1203 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1204 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1205   bool HaveError = false;
1206
1207   B.clear();
1208
1209   while (1) {
1210     lltok::Kind Token = Lex.getKind();
1211     switch (Token) {
1212     default:  // End of attributes.
1213       return HaveError;
1214     case lltok::kw_align: {
1215       unsigned Alignment;
1216       if (ParseOptionalAlignment(Alignment))
1217         return true;
1218       B.addAlignmentAttr(Alignment);
1219       continue;
1220     }
1221     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1222     case lltok::kw_dereferenceable: {
1223       uint64_t Bytes;
1224       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1225         return true;
1226       B.addDereferenceableAttr(Bytes);
1227       continue;
1228     }
1229     case lltok::kw_dereferenceable_or_null: {
1230       uint64_t Bytes;
1231       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1232         return true;
1233       B.addDereferenceableOrNullAttr(Bytes);
1234       continue;
1235     }
1236     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1237     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1238     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1239     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1240     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1241     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1242     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1243     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1244     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1245     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1246     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1247     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1248
1249     case lltok::kw_alignstack:
1250     case lltok::kw_alwaysinline:
1251     case lltok::kw_builtin:
1252     case lltok::kw_inlinehint:
1253     case lltok::kw_jumptable:
1254     case lltok::kw_minsize:
1255     case lltok::kw_naked:
1256     case lltok::kw_nobuiltin:
1257     case lltok::kw_noduplicate:
1258     case lltok::kw_noimplicitfloat:
1259     case lltok::kw_noinline:
1260     case lltok::kw_nonlazybind:
1261     case lltok::kw_noredzone:
1262     case lltok::kw_noreturn:
1263     case lltok::kw_nounwind:
1264     case lltok::kw_optnone:
1265     case lltok::kw_optsize:
1266     case lltok::kw_returns_twice:
1267     case lltok::kw_sanitize_address:
1268     case lltok::kw_sanitize_memory:
1269     case lltok::kw_sanitize_thread:
1270     case lltok::kw_ssp:
1271     case lltok::kw_sspreq:
1272     case lltok::kw_sspstrong:
1273     case lltok::kw_uwtable:
1274       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1275       break;
1276     }
1277
1278     Lex.Lex();
1279   }
1280 }
1281
1282 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1283 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1284   bool HaveError = false;
1285
1286   B.clear();
1287
1288   while (1) {
1289     lltok::Kind Token = Lex.getKind();
1290     switch (Token) {
1291     default:  // End of attributes.
1292       return HaveError;
1293     case lltok::kw_dereferenceable: {
1294       uint64_t Bytes;
1295       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1296         return true;
1297       B.addDereferenceableAttr(Bytes);
1298       continue;
1299     }
1300     case lltok::kw_dereferenceable_or_null: {
1301       uint64_t Bytes;
1302       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1303         return true;
1304       B.addDereferenceableOrNullAttr(Bytes);
1305       continue;
1306     }
1307     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1308     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1309     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1310     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1311     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1312
1313     // Error handling.
1314     case lltok::kw_align:
1315     case lltok::kw_byval:
1316     case lltok::kw_inalloca:
1317     case lltok::kw_nest:
1318     case lltok::kw_nocapture:
1319     case lltok::kw_returned:
1320     case lltok::kw_sret:
1321       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1322       break;
1323
1324     case lltok::kw_alignstack:
1325     case lltok::kw_alwaysinline:
1326     case lltok::kw_builtin:
1327     case lltok::kw_cold:
1328     case lltok::kw_inlinehint:
1329     case lltok::kw_jumptable:
1330     case lltok::kw_minsize:
1331     case lltok::kw_naked:
1332     case lltok::kw_nobuiltin:
1333     case lltok::kw_noduplicate:
1334     case lltok::kw_noimplicitfloat:
1335     case lltok::kw_noinline:
1336     case lltok::kw_nonlazybind:
1337     case lltok::kw_noredzone:
1338     case lltok::kw_noreturn:
1339     case lltok::kw_nounwind:
1340     case lltok::kw_optnone:
1341     case lltok::kw_optsize:
1342     case lltok::kw_returns_twice:
1343     case lltok::kw_sanitize_address:
1344     case lltok::kw_sanitize_memory:
1345     case lltok::kw_sanitize_thread:
1346     case lltok::kw_ssp:
1347     case lltok::kw_sspreq:
1348     case lltok::kw_sspstrong:
1349     case lltok::kw_uwtable:
1350       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1351       break;
1352
1353     case lltok::kw_readnone:
1354     case lltok::kw_readonly:
1355       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1356     }
1357
1358     Lex.Lex();
1359   }
1360 }
1361
1362 /// ParseOptionalLinkage
1363 ///   ::= /*empty*/
1364 ///   ::= 'private'
1365 ///   ::= 'internal'
1366 ///   ::= 'weak'
1367 ///   ::= 'weak_odr'
1368 ///   ::= 'linkonce'
1369 ///   ::= 'linkonce_odr'
1370 ///   ::= 'available_externally'
1371 ///   ::= 'appending'
1372 ///   ::= 'common'
1373 ///   ::= 'extern_weak'
1374 ///   ::= 'external'
1375 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1376   HasLinkage = false;
1377   switch (Lex.getKind()) {
1378   default:                       Res=GlobalValue::ExternalLinkage; return false;
1379   case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1380   case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1381   case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1382   case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1383   case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1384   case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1385   case lltok::kw_available_externally:
1386     Res = GlobalValue::AvailableExternallyLinkage;
1387     break;
1388   case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1389   case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1390   case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1391   case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1392   }
1393   Lex.Lex();
1394   HasLinkage = true;
1395   return false;
1396 }
1397
1398 /// ParseOptionalVisibility
1399 ///   ::= /*empty*/
1400 ///   ::= 'default'
1401 ///   ::= 'hidden'
1402 ///   ::= 'protected'
1403 ///
1404 bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1405   switch (Lex.getKind()) {
1406   default:                  Res = GlobalValue::DefaultVisibility; return false;
1407   case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1408   case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1409   case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1410   }
1411   Lex.Lex();
1412   return false;
1413 }
1414
1415 /// ParseOptionalDLLStorageClass
1416 ///   ::= /*empty*/
1417 ///   ::= 'dllimport'
1418 ///   ::= 'dllexport'
1419 ///
1420 bool LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1421   switch (Lex.getKind()) {
1422   default:                  Res = GlobalValue::DefaultStorageClass; return false;
1423   case lltok::kw_dllimport: Res = GlobalValue::DLLImportStorageClass; break;
1424   case lltok::kw_dllexport: Res = GlobalValue::DLLExportStorageClass; break;
1425   }
1426   Lex.Lex();
1427   return false;
1428 }
1429
1430 /// ParseOptionalCallingConv
1431 ///   ::= /*empty*/
1432 ///   ::= 'ccc'
1433 ///   ::= 'fastcc'
1434 ///   ::= 'intel_ocl_bicc'
1435 ///   ::= 'coldcc'
1436 ///   ::= 'x86_stdcallcc'
1437 ///   ::= 'x86_fastcallcc'
1438 ///   ::= 'x86_thiscallcc'
1439 ///   ::= 'x86_vectorcallcc'
1440 ///   ::= 'arm_apcscc'
1441 ///   ::= 'arm_aapcscc'
1442 ///   ::= 'arm_aapcs_vfpcc'
1443 ///   ::= 'msp430_intrcc'
1444 ///   ::= 'ptx_kernel'
1445 ///   ::= 'ptx_device'
1446 ///   ::= 'spir_func'
1447 ///   ::= 'spir_kernel'
1448 ///   ::= 'x86_64_sysvcc'
1449 ///   ::= 'x86_64_win64cc'
1450 ///   ::= 'webkit_jscc'
1451 ///   ::= 'anyregcc'
1452 ///   ::= 'preserve_mostcc'
1453 ///   ::= 'preserve_allcc'
1454 ///   ::= 'ghccc'
1455 ///   ::= 'cc' UINT
1456 ///
1457 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1458   switch (Lex.getKind()) {
1459   default:                       CC = CallingConv::C; return false;
1460   case lltok::kw_ccc:            CC = CallingConv::C; break;
1461   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1462   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1463   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1464   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1465   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1466   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1467   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1468   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1469   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1470   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1471   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1472   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1473   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1474   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1475   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1476   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1477   case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break;
1478   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1479   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1480   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1481   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1482   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1483   case lltok::kw_cc: {
1484       Lex.Lex();
1485       return ParseUInt32(CC);
1486     }
1487   }
1488
1489   Lex.Lex();
1490   return false;
1491 }
1492
1493 /// ParseInstructionMetadata
1494 ///   ::= !dbg !42 (',' !dbg !57)*
1495 bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1496                                         PerFunctionState *PFS) {
1497   do {
1498     if (Lex.getKind() != lltok::MetadataVar)
1499       return TokError("expected metadata after comma");
1500
1501     std::string Name = Lex.getStrVal();
1502     unsigned MDK = M->getMDKindID(Name);
1503     Lex.Lex();
1504
1505     MDNode *N;
1506     if (ParseMDNode(N))
1507       return true;
1508
1509     Inst->setMetadata(MDK, N);
1510     if (MDK == LLVMContext::MD_tbaa)
1511       InstsWithTBAATag.push_back(Inst);
1512
1513     // If this is the end of the list, we're done.
1514   } while (EatIfPresent(lltok::comma));
1515   return false;
1516 }
1517
1518 /// ParseOptionalAlignment
1519 ///   ::= /* empty */
1520 ///   ::= 'align' 4
1521 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1522   Alignment = 0;
1523   if (!EatIfPresent(lltok::kw_align))
1524     return false;
1525   LocTy AlignLoc = Lex.getLoc();
1526   if (ParseUInt32(Alignment)) return true;
1527   if (!isPowerOf2_32(Alignment))
1528     return Error(AlignLoc, "alignment is not a power of two");
1529   if (Alignment > Value::MaximumAlignment)
1530     return Error(AlignLoc, "huge alignments are not supported yet");
1531   return false;
1532 }
1533
1534 /// ParseOptionalDerefAttrBytes
1535 ///   ::= /* empty */
1536 ///   ::= AttrKind '(' 4 ')'
1537 ///
1538 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1539 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1540                                            uint64_t &Bytes) {
1541   assert((AttrKind == lltok::kw_dereferenceable ||
1542           AttrKind == lltok::kw_dereferenceable_or_null) &&
1543          "contract!");
1544
1545   Bytes = 0;
1546   if (!EatIfPresent(AttrKind))
1547     return false;
1548   LocTy ParenLoc = Lex.getLoc();
1549   if (!EatIfPresent(lltok::lparen))
1550     return Error(ParenLoc, "expected '('");
1551   LocTy DerefLoc = Lex.getLoc();
1552   if (ParseUInt64(Bytes)) return true;
1553   ParenLoc = Lex.getLoc();
1554   if (!EatIfPresent(lltok::rparen))
1555     return Error(ParenLoc, "expected ')'");
1556   if (!Bytes)
1557     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
1558   return false;
1559 }
1560
1561 /// ParseOptionalCommaAlign
1562 ///   ::=
1563 ///   ::= ',' align 4
1564 ///
1565 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1566 /// end.
1567 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1568                                        bool &AteExtraComma) {
1569   AteExtraComma = false;
1570   while (EatIfPresent(lltok::comma)) {
1571     // Metadata at the end is an early exit.
1572     if (Lex.getKind() == lltok::MetadataVar) {
1573       AteExtraComma = true;
1574       return false;
1575     }
1576
1577     if (Lex.getKind() != lltok::kw_align)
1578       return Error(Lex.getLoc(), "expected metadata or 'align'");
1579
1580     if (ParseOptionalAlignment(Alignment)) return true;
1581   }
1582
1583   return false;
1584 }
1585
1586 /// ParseScopeAndOrdering
1587 ///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1588 ///   else: ::=
1589 ///
1590 /// This sets Scope and Ordering to the parsed values.
1591 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1592                                      AtomicOrdering &Ordering) {
1593   if (!isAtomic)
1594     return false;
1595
1596   Scope = CrossThread;
1597   if (EatIfPresent(lltok::kw_singlethread))
1598     Scope = SingleThread;
1599
1600   return ParseOrdering(Ordering);
1601 }
1602
1603 /// ParseOrdering
1604 ///   ::= AtomicOrdering
1605 ///
1606 /// This sets Ordering to the parsed value.
1607 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
1608   switch (Lex.getKind()) {
1609   default: return TokError("Expected ordering on atomic instruction");
1610   case lltok::kw_unordered: Ordering = Unordered; break;
1611   case lltok::kw_monotonic: Ordering = Monotonic; break;
1612   case lltok::kw_acquire: Ordering = Acquire; break;
1613   case lltok::kw_release: Ordering = Release; break;
1614   case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1615   case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1616   }
1617   Lex.Lex();
1618   return false;
1619 }
1620
1621 /// ParseOptionalStackAlignment
1622 ///   ::= /* empty */
1623 ///   ::= 'alignstack' '(' 4 ')'
1624 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1625   Alignment = 0;
1626   if (!EatIfPresent(lltok::kw_alignstack))
1627     return false;
1628   LocTy ParenLoc = Lex.getLoc();
1629   if (!EatIfPresent(lltok::lparen))
1630     return Error(ParenLoc, "expected '('");
1631   LocTy AlignLoc = Lex.getLoc();
1632   if (ParseUInt32(Alignment)) return true;
1633   ParenLoc = Lex.getLoc();
1634   if (!EatIfPresent(lltok::rparen))
1635     return Error(ParenLoc, "expected ')'");
1636   if (!isPowerOf2_32(Alignment))
1637     return Error(AlignLoc, "stack alignment is not a power of two");
1638   return false;
1639 }
1640
1641 /// ParseIndexList - This parses the index list for an insert/extractvalue
1642 /// instruction.  This sets AteExtraComma in the case where we eat an extra
1643 /// comma at the end of the line and find that it is followed by metadata.
1644 /// Clients that don't allow metadata can call the version of this function that
1645 /// only takes one argument.
1646 ///
1647 /// ParseIndexList
1648 ///    ::=  (',' uint32)+
1649 ///
1650 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1651                               bool &AteExtraComma) {
1652   AteExtraComma = false;
1653
1654   if (Lex.getKind() != lltok::comma)
1655     return TokError("expected ',' as start of index list");
1656
1657   while (EatIfPresent(lltok::comma)) {
1658     if (Lex.getKind() == lltok::MetadataVar) {
1659       if (Indices.empty()) return TokError("expected index");
1660       AteExtraComma = true;
1661       return false;
1662     }
1663     unsigned Idx = 0;
1664     if (ParseUInt32(Idx)) return true;
1665     Indices.push_back(Idx);
1666   }
1667
1668   return false;
1669 }
1670
1671 //===----------------------------------------------------------------------===//
1672 // Type Parsing.
1673 //===----------------------------------------------------------------------===//
1674
1675 /// ParseType - Parse a type.
1676 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
1677   SMLoc TypeLoc = Lex.getLoc();
1678   switch (Lex.getKind()) {
1679   default:
1680     return TokError(Msg);
1681   case lltok::Type:
1682     // Type ::= 'float' | 'void' (etc)
1683     Result = Lex.getTyVal();
1684     Lex.Lex();
1685     break;
1686   case lltok::lbrace:
1687     // Type ::= StructType
1688     if (ParseAnonStructType(Result, false))
1689       return true;
1690     break;
1691   case lltok::lsquare:
1692     // Type ::= '[' ... ']'
1693     Lex.Lex(); // eat the lsquare.
1694     if (ParseArrayVectorType(Result, false))
1695       return true;
1696     break;
1697   case lltok::less: // Either vector or packed struct.
1698     // Type ::= '<' ... '>'
1699     Lex.Lex();
1700     if (Lex.getKind() == lltok::lbrace) {
1701       if (ParseAnonStructType(Result, true) ||
1702           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1703         return true;
1704     } else if (ParseArrayVectorType(Result, true))
1705       return true;
1706     break;
1707   case lltok::LocalVar: {
1708     // Type ::= %foo
1709     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1710
1711     // If the type hasn't been defined yet, create a forward definition and
1712     // remember where that forward def'n was seen (in case it never is defined).
1713     if (!Entry.first) {
1714       Entry.first = StructType::create(Context, Lex.getStrVal());
1715       Entry.second = Lex.getLoc();
1716     }
1717     Result = Entry.first;
1718     Lex.Lex();
1719     break;
1720   }
1721
1722   case lltok::LocalVarID: {
1723     // Type ::= %4
1724     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1725
1726     // If the type hasn't been defined yet, create a forward definition and
1727     // remember where that forward def'n was seen (in case it never is defined).
1728     if (!Entry.first) {
1729       Entry.first = StructType::create(Context);
1730       Entry.second = Lex.getLoc();
1731     }
1732     Result = Entry.first;
1733     Lex.Lex();
1734     break;
1735   }
1736   }
1737
1738   // Parse the type suffixes.
1739   while (1) {
1740     switch (Lex.getKind()) {
1741     // End of type.
1742     default:
1743       if (!AllowVoid && Result->isVoidTy())
1744         return Error(TypeLoc, "void type only allowed for function results");
1745       return false;
1746
1747     // Type ::= Type '*'
1748     case lltok::star:
1749       if (Result->isLabelTy())
1750         return TokError("basic block pointers are invalid");
1751       if (Result->isVoidTy())
1752         return TokError("pointers to void are invalid - use i8* instead");
1753       if (!PointerType::isValidElementType(Result))
1754         return TokError("pointer to this type is invalid");
1755       Result = PointerType::getUnqual(Result);
1756       Lex.Lex();
1757       break;
1758
1759     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1760     case lltok::kw_addrspace: {
1761       if (Result->isLabelTy())
1762         return TokError("basic block pointers are invalid");
1763       if (Result->isVoidTy())
1764         return TokError("pointers to void are invalid; use i8* instead");
1765       if (!PointerType::isValidElementType(Result))
1766         return TokError("pointer to this type is invalid");
1767       unsigned AddrSpace;
1768       if (ParseOptionalAddrSpace(AddrSpace) ||
1769           ParseToken(lltok::star, "expected '*' in address space"))
1770         return true;
1771
1772       Result = PointerType::get(Result, AddrSpace);
1773       break;
1774     }
1775
1776     /// Types '(' ArgTypeListI ')' OptFuncAttrs
1777     case lltok::lparen:
1778       if (ParseFunctionType(Result))
1779         return true;
1780       break;
1781     }
1782   }
1783 }
1784
1785 /// ParseParameterList
1786 ///    ::= '(' ')'
1787 ///    ::= '(' Arg (',' Arg)* ')'
1788 ///  Arg
1789 ///    ::= Type OptionalAttributes Value OptionalAttributes
1790 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1791                                   PerFunctionState &PFS, bool IsMustTailCall,
1792                                   bool InVarArgsFunc) {
1793   if (ParseToken(lltok::lparen, "expected '(' in call"))
1794     return true;
1795
1796   unsigned AttrIndex = 1;
1797   while (Lex.getKind() != lltok::rparen) {
1798     // If this isn't the first argument, we need a comma.
1799     if (!ArgList.empty() &&
1800         ParseToken(lltok::comma, "expected ',' in argument list"))
1801       return true;
1802
1803     // Parse an ellipsis if this is a musttail call in a variadic function.
1804     if (Lex.getKind() == lltok::dotdotdot) {
1805       const char *Msg = "unexpected ellipsis in argument list for ";
1806       if (!IsMustTailCall)
1807         return TokError(Twine(Msg) + "non-musttail call");
1808       if (!InVarArgsFunc)
1809         return TokError(Twine(Msg) + "musttail call in non-varargs function");
1810       Lex.Lex();  // Lex the '...', it is purely for readability.
1811       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1812     }
1813
1814     // Parse the argument.
1815     LocTy ArgLoc;
1816     Type *ArgTy = nullptr;
1817     AttrBuilder ArgAttrs;
1818     Value *V;
1819     if (ParseType(ArgTy, ArgLoc))
1820       return true;
1821
1822     if (ArgTy->isMetadataTy()) {
1823       if (ParseMetadataAsValue(V, PFS))
1824         return true;
1825     } else {
1826       // Otherwise, handle normal operands.
1827       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
1828         return true;
1829     }
1830     ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
1831                                                              AttrIndex++,
1832                                                              ArgAttrs)));
1833   }
1834
1835   if (IsMustTailCall && InVarArgsFunc)
1836     return TokError("expected '...' at end of argument list for musttail call "
1837                     "in varargs function");
1838
1839   Lex.Lex();  // Lex the ')'.
1840   return false;
1841 }
1842
1843
1844
1845 /// ParseArgumentList - Parse the argument list for a function type or function
1846 /// prototype.
1847 ///   ::= '(' ArgTypeListI ')'
1848 /// ArgTypeListI
1849 ///   ::= /*empty*/
1850 ///   ::= '...'
1851 ///   ::= ArgTypeList ',' '...'
1852 ///   ::= ArgType (',' ArgType)*
1853 ///
1854 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
1855                                  bool &isVarArg){
1856   isVarArg = false;
1857   assert(Lex.getKind() == lltok::lparen);
1858   Lex.Lex(); // eat the (.
1859
1860   if (Lex.getKind() == lltok::rparen) {
1861     // empty
1862   } else if (Lex.getKind() == lltok::dotdotdot) {
1863     isVarArg = true;
1864     Lex.Lex();
1865   } else {
1866     LocTy TypeLoc = Lex.getLoc();
1867     Type *ArgTy = nullptr;
1868     AttrBuilder Attrs;
1869     std::string Name;
1870
1871     if (ParseType(ArgTy) ||
1872         ParseOptionalParamAttrs(Attrs)) return true;
1873
1874     if (ArgTy->isVoidTy())
1875       return Error(TypeLoc, "argument can not have void type");
1876
1877     if (Lex.getKind() == lltok::LocalVar) {
1878       Name = Lex.getStrVal();
1879       Lex.Lex();
1880     }
1881
1882     if (!FunctionType::isValidArgumentType(ArgTy))
1883       return Error(TypeLoc, "invalid type for function argument");
1884
1885     unsigned AttrIndex = 1;
1886     ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1887                               AttributeSet::get(ArgTy->getContext(),
1888                                                 AttrIndex++, Attrs), Name));
1889
1890     while (EatIfPresent(lltok::comma)) {
1891       // Handle ... at end of arg list.
1892       if (EatIfPresent(lltok::dotdotdot)) {
1893         isVarArg = true;
1894         break;
1895       }
1896
1897       // Otherwise must be an argument type.
1898       TypeLoc = Lex.getLoc();
1899       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
1900
1901       if (ArgTy->isVoidTy())
1902         return Error(TypeLoc, "argument can not have void type");
1903
1904       if (Lex.getKind() == lltok::LocalVar) {
1905         Name = Lex.getStrVal();
1906         Lex.Lex();
1907       } else {
1908         Name = "";
1909       }
1910
1911       if (!ArgTy->isFirstClassType())
1912         return Error(TypeLoc, "invalid type for function argument");
1913
1914       ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1915                                 AttributeSet::get(ArgTy->getContext(),
1916                                                   AttrIndex++, Attrs),
1917                                 Name));
1918     }
1919   }
1920
1921   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1922 }
1923
1924 /// ParseFunctionType
1925 ///  ::= Type ArgumentList OptionalAttrs
1926 bool LLParser::ParseFunctionType(Type *&Result) {
1927   assert(Lex.getKind() == lltok::lparen);
1928
1929   if (!FunctionType::isValidReturnType(Result))
1930     return TokError("invalid function return type");
1931
1932   SmallVector<ArgInfo, 8> ArgList;
1933   bool isVarArg;
1934   if (ParseArgumentList(ArgList, isVarArg))
1935     return true;
1936
1937   // Reject names on the arguments lists.
1938   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1939     if (!ArgList[i].Name.empty())
1940       return Error(ArgList[i].Loc, "argument name invalid in function type");
1941     if (ArgList[i].Attrs.hasAttributes(i + 1))
1942       return Error(ArgList[i].Loc,
1943                    "argument attributes invalid in function type");
1944   }
1945
1946   SmallVector<Type*, 16> ArgListTy;
1947   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1948     ArgListTy.push_back(ArgList[i].Ty);
1949
1950   Result = FunctionType::get(Result, ArgListTy, isVarArg);
1951   return false;
1952 }
1953
1954 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1955 /// other structs.
1956 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
1957   SmallVector<Type*, 8> Elts;
1958   if (ParseStructBody(Elts)) return true;
1959
1960   Result = StructType::get(Context, Elts, Packed);
1961   return false;
1962 }
1963
1964 /// ParseStructDefinition - Parse a struct in a 'type' definition.
1965 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
1966                                      std::pair<Type*, LocTy> &Entry,
1967                                      Type *&ResultTy) {
1968   // If the type was already defined, diagnose the redefinition.
1969   if (Entry.first && !Entry.second.isValid())
1970     return Error(TypeLoc, "redefinition of type");
1971
1972   // If we have opaque, just return without filling in the definition for the
1973   // struct.  This counts as a definition as far as the .ll file goes.
1974   if (EatIfPresent(lltok::kw_opaque)) {
1975     // This type is being defined, so clear the location to indicate this.
1976     Entry.second = SMLoc();
1977
1978     // If this type number has never been uttered, create it.
1979     if (!Entry.first)
1980       Entry.first = StructType::create(Context, Name);
1981     ResultTy = Entry.first;
1982     return false;
1983   }
1984
1985   // If the type starts with '<', then it is either a packed struct or a vector.
1986   bool isPacked = EatIfPresent(lltok::less);
1987
1988   // If we don't have a struct, then we have a random type alias, which we
1989   // accept for compatibility with old files.  These types are not allowed to be
1990   // forward referenced and not allowed to be recursive.
1991   if (Lex.getKind() != lltok::lbrace) {
1992     if (Entry.first)
1993       return Error(TypeLoc, "forward references to non-struct type");
1994
1995     ResultTy = nullptr;
1996     if (isPacked)
1997       return ParseArrayVectorType(ResultTy, true);
1998     return ParseType(ResultTy);
1999   }
2000
2001   // This type is being defined, so clear the location to indicate this.
2002   Entry.second = SMLoc();
2003
2004   // If this type number has never been uttered, create it.
2005   if (!Entry.first)
2006     Entry.first = StructType::create(Context, Name);
2007
2008   StructType *STy = cast<StructType>(Entry.first);
2009
2010   SmallVector<Type*, 8> Body;
2011   if (ParseStructBody(Body) ||
2012       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2013     return true;
2014
2015   STy->setBody(Body, isPacked);
2016   ResultTy = STy;
2017   return false;
2018 }
2019
2020
2021 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2022 ///   StructType
2023 ///     ::= '{' '}'
2024 ///     ::= '{' Type (',' Type)* '}'
2025 ///     ::= '<' '{' '}' '>'
2026 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2027 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2028   assert(Lex.getKind() == lltok::lbrace);
2029   Lex.Lex(); // Consume the '{'
2030
2031   // Handle the empty struct.
2032   if (EatIfPresent(lltok::rbrace))
2033     return false;
2034
2035   LocTy EltTyLoc = Lex.getLoc();
2036   Type *Ty = nullptr;
2037   if (ParseType(Ty)) return true;
2038   Body.push_back(Ty);
2039
2040   if (!StructType::isValidElementType(Ty))
2041     return Error(EltTyLoc, "invalid element type for struct");
2042
2043   while (EatIfPresent(lltok::comma)) {
2044     EltTyLoc = Lex.getLoc();
2045     if (ParseType(Ty)) return true;
2046
2047     if (!StructType::isValidElementType(Ty))
2048       return Error(EltTyLoc, "invalid element type for struct");
2049
2050     Body.push_back(Ty);
2051   }
2052
2053   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2054 }
2055
2056 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2057 /// token has already been consumed.
2058 ///   Type
2059 ///     ::= '[' APSINTVAL 'x' Types ']'
2060 ///     ::= '<' APSINTVAL 'x' Types '>'
2061 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2062   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2063       Lex.getAPSIntVal().getBitWidth() > 64)
2064     return TokError("expected number in address space");
2065
2066   LocTy SizeLoc = Lex.getLoc();
2067   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2068   Lex.Lex();
2069
2070   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2071       return true;
2072
2073   LocTy TypeLoc = Lex.getLoc();
2074   Type *EltTy = nullptr;
2075   if (ParseType(EltTy)) return true;
2076
2077   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2078                  "expected end of sequential type"))
2079     return true;
2080
2081   if (isVector) {
2082     if (Size == 0)
2083       return Error(SizeLoc, "zero element vector is illegal");
2084     if ((unsigned)Size != Size)
2085       return Error(SizeLoc, "size too large for vector");
2086     if (!VectorType::isValidElementType(EltTy))
2087       return Error(TypeLoc, "invalid vector element type");
2088     Result = VectorType::get(EltTy, unsigned(Size));
2089   } else {
2090     if (!ArrayType::isValidElementType(EltTy))
2091       return Error(TypeLoc, "invalid array element type");
2092     Result = ArrayType::get(EltTy, Size);
2093   }
2094   return false;
2095 }
2096
2097 //===----------------------------------------------------------------------===//
2098 // Function Semantic Analysis.
2099 //===----------------------------------------------------------------------===//
2100
2101 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2102                                              int functionNumber)
2103   : P(p), F(f), FunctionNumber(functionNumber) {
2104
2105   // Insert unnamed arguments into the NumberedVals list.
2106   for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
2107        AI != E; ++AI)
2108     if (!AI->hasName())
2109       NumberedVals.push_back(AI);
2110 }
2111
2112 LLParser::PerFunctionState::~PerFunctionState() {
2113   // If there were any forward referenced non-basicblock values, delete them.
2114   for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
2115        I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
2116     if (!isa<BasicBlock>(I->second.first)) {
2117       I->second.first->replaceAllUsesWith(
2118                            UndefValue::get(I->second.first->getType()));
2119       delete I->second.first;
2120       I->second.first = nullptr;
2121     }
2122
2123   for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
2124        I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
2125     if (!isa<BasicBlock>(I->second.first)) {
2126       I->second.first->replaceAllUsesWith(
2127                            UndefValue::get(I->second.first->getType()));
2128       delete I->second.first;
2129       I->second.first = nullptr;
2130     }
2131 }
2132
2133 bool LLParser::PerFunctionState::FinishFunction() {
2134   if (!ForwardRefVals.empty())
2135     return P.Error(ForwardRefVals.begin()->second.second,
2136                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2137                    "'");
2138   if (!ForwardRefValIDs.empty())
2139     return P.Error(ForwardRefValIDs.begin()->second.second,
2140                    "use of undefined value '%" +
2141                    Twine(ForwardRefValIDs.begin()->first) + "'");
2142   return false;
2143 }
2144
2145
2146 /// GetVal - Get a value with the specified name or ID, creating a
2147 /// forward reference record if needed.  This can return null if the value
2148 /// exists but does not have the right type.
2149 Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
2150                                           Type *Ty, LocTy Loc) {
2151   // Look this name up in the normal function symbol table.
2152   Value *Val = F.getValueSymbolTable().lookup(Name);
2153
2154   // If this is a forward reference for the value, see if we already created a
2155   // forward ref record.
2156   if (!Val) {
2157     std::map<std::string, std::pair<Value*, LocTy> >::iterator
2158       I = ForwardRefVals.find(Name);
2159     if (I != ForwardRefVals.end())
2160       Val = I->second.first;
2161   }
2162
2163   // If we have the value in the symbol table or fwd-ref table, return it.
2164   if (Val) {
2165     if (Val->getType() == Ty) return Val;
2166     if (Ty->isLabelTy())
2167       P.Error(Loc, "'%" + Name + "' is not a basic block");
2168     else
2169       P.Error(Loc, "'%" + Name + "' defined with type '" +
2170               getTypeString(Val->getType()) + "'");
2171     return nullptr;
2172   }
2173
2174   // Don't make placeholders with invalid type.
2175   if (!Ty->isFirstClassType()) {
2176     P.Error(Loc, "invalid use of a non-first-class type");
2177     return nullptr;
2178   }
2179
2180   // Otherwise, create a new forward reference for this value and remember it.
2181   Value *FwdVal;
2182   if (Ty->isLabelTy())
2183     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2184   else
2185     FwdVal = new Argument(Ty, Name);
2186
2187   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2188   return FwdVal;
2189 }
2190
2191 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
2192                                           LocTy Loc) {
2193   // Look this name up in the normal function symbol table.
2194   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2195
2196   // If this is a forward reference for the value, see if we already created a
2197   // forward ref record.
2198   if (!Val) {
2199     std::map<unsigned, std::pair<Value*, LocTy> >::iterator
2200       I = ForwardRefValIDs.find(ID);
2201     if (I != ForwardRefValIDs.end())
2202       Val = I->second.first;
2203   }
2204
2205   // If we have the value in the symbol table or fwd-ref table, return it.
2206   if (Val) {
2207     if (Val->getType() == Ty) return Val;
2208     if (Ty->isLabelTy())
2209       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2210     else
2211       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2212               getTypeString(Val->getType()) + "'");
2213     return nullptr;
2214   }
2215
2216   if (!Ty->isFirstClassType()) {
2217     P.Error(Loc, "invalid use of a non-first-class type");
2218     return nullptr;
2219   }
2220
2221   // Otherwise, create a new forward reference for this value and remember it.
2222   Value *FwdVal;
2223   if (Ty->isLabelTy())
2224     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2225   else
2226     FwdVal = new Argument(Ty);
2227
2228   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2229   return FwdVal;
2230 }
2231
2232 /// SetInstName - After an instruction is parsed and inserted into its
2233 /// basic block, this installs its name.
2234 bool LLParser::PerFunctionState::SetInstName(int NameID,
2235                                              const std::string &NameStr,
2236                                              LocTy NameLoc, Instruction *Inst) {
2237   // If this instruction has void type, it cannot have a name or ID specified.
2238   if (Inst->getType()->isVoidTy()) {
2239     if (NameID != -1 || !NameStr.empty())
2240       return P.Error(NameLoc, "instructions returning void cannot have a name");
2241     return false;
2242   }
2243
2244   // If this was a numbered instruction, verify that the instruction is the
2245   // expected value and resolve any forward references.
2246   if (NameStr.empty()) {
2247     // If neither a name nor an ID was specified, just use the next ID.
2248     if (NameID == -1)
2249       NameID = NumberedVals.size();
2250
2251     if (unsigned(NameID) != NumberedVals.size())
2252       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2253                      Twine(NumberedVals.size()) + "'");
2254
2255     std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
2256       ForwardRefValIDs.find(NameID);
2257     if (FI != ForwardRefValIDs.end()) {
2258       if (FI->second.first->getType() != Inst->getType())
2259         return P.Error(NameLoc, "instruction forward referenced with type '" +
2260                        getTypeString(FI->second.first->getType()) + "'");
2261       FI->second.first->replaceAllUsesWith(Inst);
2262       delete FI->second.first;
2263       ForwardRefValIDs.erase(FI);
2264     }
2265
2266     NumberedVals.push_back(Inst);
2267     return false;
2268   }
2269
2270   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2271   std::map<std::string, std::pair<Value*, LocTy> >::iterator
2272     FI = ForwardRefVals.find(NameStr);
2273   if (FI != ForwardRefVals.end()) {
2274     if (FI->second.first->getType() != Inst->getType())
2275       return P.Error(NameLoc, "instruction forward referenced with type '" +
2276                      getTypeString(FI->second.first->getType()) + "'");
2277     FI->second.first->replaceAllUsesWith(Inst);
2278     delete FI->second.first;
2279     ForwardRefVals.erase(FI);
2280   }
2281
2282   // Set the name on the instruction.
2283   Inst->setName(NameStr);
2284
2285   if (Inst->getName() != NameStr)
2286     return P.Error(NameLoc, "multiple definition of local value named '" +
2287                    NameStr + "'");
2288   return false;
2289 }
2290
2291 /// GetBB - Get a basic block with the specified name or ID, creating a
2292 /// forward reference record if needed.
2293 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2294                                               LocTy Loc) {
2295   return dyn_cast_or_null<BasicBlock>(GetVal(Name,
2296                                       Type::getLabelTy(F.getContext()), Loc));
2297 }
2298
2299 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2300   return dyn_cast_or_null<BasicBlock>(GetVal(ID,
2301                                       Type::getLabelTy(F.getContext()), Loc));
2302 }
2303
2304 /// DefineBB - Define the specified basic block, which is either named or
2305 /// unnamed.  If there is an error, this returns null otherwise it returns
2306 /// the block being defined.
2307 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2308                                                  LocTy Loc) {
2309   BasicBlock *BB;
2310   if (Name.empty())
2311     BB = GetBB(NumberedVals.size(), Loc);
2312   else
2313     BB = GetBB(Name, Loc);
2314   if (!BB) return nullptr; // Already diagnosed error.
2315
2316   // Move the block to the end of the function.  Forward ref'd blocks are
2317   // inserted wherever they happen to be referenced.
2318   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2319
2320   // Remove the block from forward ref sets.
2321   if (Name.empty()) {
2322     ForwardRefValIDs.erase(NumberedVals.size());
2323     NumberedVals.push_back(BB);
2324   } else {
2325     // BB forward references are already in the function symbol table.
2326     ForwardRefVals.erase(Name);
2327   }
2328
2329   return BB;
2330 }
2331
2332 //===----------------------------------------------------------------------===//
2333 // Constants.
2334 //===----------------------------------------------------------------------===//
2335
2336 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2337 /// type implied.  For example, if we parse "4" we don't know what integer type
2338 /// it has.  The value will later be combined with its type and checked for
2339 /// sanity.  PFS is used to convert function-local operands of metadata (since
2340 /// metadata operands are not just parsed here but also converted to values).
2341 /// PFS can be null when we are not parsing metadata values inside a function.
2342 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2343   ID.Loc = Lex.getLoc();
2344   switch (Lex.getKind()) {
2345   default: return TokError("expected value token");
2346   case lltok::GlobalID:  // @42
2347     ID.UIntVal = Lex.getUIntVal();
2348     ID.Kind = ValID::t_GlobalID;
2349     break;
2350   case lltok::GlobalVar:  // @foo
2351     ID.StrVal = Lex.getStrVal();
2352     ID.Kind = ValID::t_GlobalName;
2353     break;
2354   case lltok::LocalVarID:  // %42
2355     ID.UIntVal = Lex.getUIntVal();
2356     ID.Kind = ValID::t_LocalID;
2357     break;
2358   case lltok::LocalVar:  // %foo
2359     ID.StrVal = Lex.getStrVal();
2360     ID.Kind = ValID::t_LocalName;
2361     break;
2362   case lltok::APSInt:
2363     ID.APSIntVal = Lex.getAPSIntVal();
2364     ID.Kind = ValID::t_APSInt;
2365     break;
2366   case lltok::APFloat:
2367     ID.APFloatVal = Lex.getAPFloatVal();
2368     ID.Kind = ValID::t_APFloat;
2369     break;
2370   case lltok::kw_true:
2371     ID.ConstantVal = ConstantInt::getTrue(Context);
2372     ID.Kind = ValID::t_Constant;
2373     break;
2374   case lltok::kw_false:
2375     ID.ConstantVal = ConstantInt::getFalse(Context);
2376     ID.Kind = ValID::t_Constant;
2377     break;
2378   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2379   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2380   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2381
2382   case lltok::lbrace: {
2383     // ValID ::= '{' ConstVector '}'
2384     Lex.Lex();
2385     SmallVector<Constant*, 16> Elts;
2386     if (ParseGlobalValueVector(Elts) ||
2387         ParseToken(lltok::rbrace, "expected end of struct constant"))
2388       return true;
2389
2390     ID.ConstantStructElts = new Constant*[Elts.size()];
2391     ID.UIntVal = Elts.size();
2392     memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2393     ID.Kind = ValID::t_ConstantStruct;
2394     return false;
2395   }
2396   case lltok::less: {
2397     // ValID ::= '<' ConstVector '>'         --> Vector.
2398     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2399     Lex.Lex();
2400     bool isPackedStruct = EatIfPresent(lltok::lbrace);
2401
2402     SmallVector<Constant*, 16> Elts;
2403     LocTy FirstEltLoc = Lex.getLoc();
2404     if (ParseGlobalValueVector(Elts) ||
2405         (isPackedStruct &&
2406          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2407         ParseToken(lltok::greater, "expected end of constant"))
2408       return true;
2409
2410     if (isPackedStruct) {
2411       ID.ConstantStructElts = new Constant*[Elts.size()];
2412       memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2413       ID.UIntVal = Elts.size();
2414       ID.Kind = ValID::t_PackedConstantStruct;
2415       return false;
2416     }
2417
2418     if (Elts.empty())
2419       return Error(ID.Loc, "constant vector must not be empty");
2420
2421     if (!Elts[0]->getType()->isIntegerTy() &&
2422         !Elts[0]->getType()->isFloatingPointTy() &&
2423         !Elts[0]->getType()->isPointerTy())
2424       return Error(FirstEltLoc,
2425             "vector elements must have integer, pointer or floating point type");
2426
2427     // Verify that all the vector elements have the same type.
2428     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2429       if (Elts[i]->getType() != Elts[0]->getType())
2430         return Error(FirstEltLoc,
2431                      "vector element #" + Twine(i) +
2432                     " is not of type '" + getTypeString(Elts[0]->getType()));
2433
2434     ID.ConstantVal = ConstantVector::get(Elts);
2435     ID.Kind = ValID::t_Constant;
2436     return false;
2437   }
2438   case lltok::lsquare: {   // Array Constant
2439     Lex.Lex();
2440     SmallVector<Constant*, 16> Elts;
2441     LocTy FirstEltLoc = Lex.getLoc();
2442     if (ParseGlobalValueVector(Elts) ||
2443         ParseToken(lltok::rsquare, "expected end of array constant"))
2444       return true;
2445
2446     // Handle empty element.
2447     if (Elts.empty()) {
2448       // Use undef instead of an array because it's inconvenient to determine
2449       // the element type at this point, there being no elements to examine.
2450       ID.Kind = ValID::t_EmptyArray;
2451       return false;
2452     }
2453
2454     if (!Elts[0]->getType()->isFirstClassType())
2455       return Error(FirstEltLoc, "invalid array element type: " +
2456                    getTypeString(Elts[0]->getType()));
2457
2458     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2459
2460     // Verify all elements are correct type!
2461     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2462       if (Elts[i]->getType() != Elts[0]->getType())
2463         return Error(FirstEltLoc,
2464                      "array element #" + Twine(i) +
2465                      " is not of type '" + getTypeString(Elts[0]->getType()));
2466     }
2467
2468     ID.ConstantVal = ConstantArray::get(ATy, Elts);
2469     ID.Kind = ValID::t_Constant;
2470     return false;
2471   }
2472   case lltok::kw_c:  // c "foo"
2473     Lex.Lex();
2474     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2475                                                   false);
2476     if (ParseToken(lltok::StringConstant, "expected string")) return true;
2477     ID.Kind = ValID::t_Constant;
2478     return false;
2479
2480   case lltok::kw_asm: {
2481     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2482     //             STRINGCONSTANT
2483     bool HasSideEffect, AlignStack, AsmDialect;
2484     Lex.Lex();
2485     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2486         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2487         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2488         ParseStringConstant(ID.StrVal) ||
2489         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2490         ParseToken(lltok::StringConstant, "expected constraint string"))
2491       return true;
2492     ID.StrVal2 = Lex.getStrVal();
2493     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2494       (unsigned(AsmDialect)<<2);
2495     ID.Kind = ValID::t_InlineAsm;
2496     return false;
2497   }
2498
2499   case lltok::kw_blockaddress: {
2500     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2501     Lex.Lex();
2502
2503     ValID Fn, Label;
2504
2505     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2506         ParseValID(Fn) ||
2507         ParseToken(lltok::comma, "expected comma in block address expression")||
2508         ParseValID(Label) ||
2509         ParseToken(lltok::rparen, "expected ')' in block address expression"))
2510       return true;
2511
2512     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2513       return Error(Fn.Loc, "expected function name in blockaddress");
2514     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2515       return Error(Label.Loc, "expected basic block name in blockaddress");
2516
2517     // Try to find the function (but skip it if it's forward-referenced).
2518     GlobalValue *GV = nullptr;
2519     if (Fn.Kind == ValID::t_GlobalID) {
2520       if (Fn.UIntVal < NumberedVals.size())
2521         GV = NumberedVals[Fn.UIntVal];
2522     } else if (!ForwardRefVals.count(Fn.StrVal)) {
2523       GV = M->getNamedValue(Fn.StrVal);
2524     }
2525     Function *F = nullptr;
2526     if (GV) {
2527       // Confirm that it's actually a function with a definition.
2528       if (!isa<Function>(GV))
2529         return Error(Fn.Loc, "expected function name in blockaddress");
2530       F = cast<Function>(GV);
2531       if (F->isDeclaration())
2532         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
2533     }
2534
2535     if (!F) {
2536       // Make a global variable as a placeholder for this reference.
2537       GlobalValue *&FwdRef =
2538           ForwardRefBlockAddresses.insert(std::make_pair(
2539                                               std::move(Fn),
2540                                               std::map<ValID, GlobalValue *>()))
2541               .first->second.insert(std::make_pair(std::move(Label), nullptr))
2542               .first->second;
2543       if (!FwdRef)
2544         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
2545                                     GlobalValue::InternalLinkage, nullptr, "");
2546       ID.ConstantVal = FwdRef;
2547       ID.Kind = ValID::t_Constant;
2548       return false;
2549     }
2550
2551     // We found the function; now find the basic block.  Don't use PFS, since we
2552     // might be inside a constant expression.
2553     BasicBlock *BB;
2554     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
2555       if (Label.Kind == ValID::t_LocalID)
2556         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
2557       else
2558         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
2559       if (!BB)
2560         return Error(Label.Loc, "referenced value is not a basic block");
2561     } else {
2562       if (Label.Kind == ValID::t_LocalID)
2563         return Error(Label.Loc, "cannot take address of numeric label after "
2564                                 "the function is defined");
2565       BB = dyn_cast_or_null<BasicBlock>(
2566           F->getValueSymbolTable().lookup(Label.StrVal));
2567       if (!BB)
2568         return Error(Label.Loc, "referenced value is not a basic block");
2569     }
2570
2571     ID.ConstantVal = BlockAddress::get(F, BB);
2572     ID.Kind = ValID::t_Constant;
2573     return false;
2574   }
2575
2576   case lltok::kw_trunc:
2577   case lltok::kw_zext:
2578   case lltok::kw_sext:
2579   case lltok::kw_fptrunc:
2580   case lltok::kw_fpext:
2581   case lltok::kw_bitcast:
2582   case lltok::kw_addrspacecast:
2583   case lltok::kw_uitofp:
2584   case lltok::kw_sitofp:
2585   case lltok::kw_fptoui:
2586   case lltok::kw_fptosi:
2587   case lltok::kw_inttoptr:
2588   case lltok::kw_ptrtoint: {
2589     unsigned Opc = Lex.getUIntVal();
2590     Type *DestTy = nullptr;
2591     Constant *SrcVal;
2592     Lex.Lex();
2593     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2594         ParseGlobalTypeAndValue(SrcVal) ||
2595         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2596         ParseType(DestTy) ||
2597         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2598       return true;
2599     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2600       return Error(ID.Loc, "invalid cast opcode for cast from '" +
2601                    getTypeString(SrcVal->getType()) + "' to '" +
2602                    getTypeString(DestTy) + "'");
2603     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2604                                                  SrcVal, DestTy);
2605     ID.Kind = ValID::t_Constant;
2606     return false;
2607   }
2608   case lltok::kw_extractvalue: {
2609     Lex.Lex();
2610     Constant *Val;
2611     SmallVector<unsigned, 4> Indices;
2612     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2613         ParseGlobalTypeAndValue(Val) ||
2614         ParseIndexList(Indices) ||
2615         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2616       return true;
2617
2618     if (!Val->getType()->isAggregateType())
2619       return Error(ID.Loc, "extractvalue operand must be aggregate type");
2620     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2621       return Error(ID.Loc, "invalid indices for extractvalue");
2622     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2623     ID.Kind = ValID::t_Constant;
2624     return false;
2625   }
2626   case lltok::kw_insertvalue: {
2627     Lex.Lex();
2628     Constant *Val0, *Val1;
2629     SmallVector<unsigned, 4> Indices;
2630     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2631         ParseGlobalTypeAndValue(Val0) ||
2632         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2633         ParseGlobalTypeAndValue(Val1) ||
2634         ParseIndexList(Indices) ||
2635         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2636       return true;
2637     if (!Val0->getType()->isAggregateType())
2638       return Error(ID.Loc, "insertvalue operand must be aggregate type");
2639     Type *IndexedType =
2640         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
2641     if (!IndexedType)
2642       return Error(ID.Loc, "invalid indices for insertvalue");
2643     if (IndexedType != Val1->getType())
2644       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
2645                                getTypeString(Val1->getType()) +
2646                                "' instead of '" + getTypeString(IndexedType) +
2647                                "'");
2648     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2649     ID.Kind = ValID::t_Constant;
2650     return false;
2651   }
2652   case lltok::kw_icmp:
2653   case lltok::kw_fcmp: {
2654     unsigned PredVal, Opc = Lex.getUIntVal();
2655     Constant *Val0, *Val1;
2656     Lex.Lex();
2657     if (ParseCmpPredicate(PredVal, Opc) ||
2658         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2659         ParseGlobalTypeAndValue(Val0) ||
2660         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2661         ParseGlobalTypeAndValue(Val1) ||
2662         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2663       return true;
2664
2665     if (Val0->getType() != Val1->getType())
2666       return Error(ID.Loc, "compare operands must have the same type");
2667
2668     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2669
2670     if (Opc == Instruction::FCmp) {
2671       if (!Val0->getType()->isFPOrFPVectorTy())
2672         return Error(ID.Loc, "fcmp requires floating point operands");
2673       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2674     } else {
2675       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2676       if (!Val0->getType()->isIntOrIntVectorTy() &&
2677           !Val0->getType()->getScalarType()->isPointerTy())
2678         return Error(ID.Loc, "icmp requires pointer or integer operands");
2679       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2680     }
2681     ID.Kind = ValID::t_Constant;
2682     return false;
2683   }
2684
2685   // Binary Operators.
2686   case lltok::kw_add:
2687   case lltok::kw_fadd:
2688   case lltok::kw_sub:
2689   case lltok::kw_fsub:
2690   case lltok::kw_mul:
2691   case lltok::kw_fmul:
2692   case lltok::kw_udiv:
2693   case lltok::kw_sdiv:
2694   case lltok::kw_fdiv:
2695   case lltok::kw_urem:
2696   case lltok::kw_srem:
2697   case lltok::kw_frem:
2698   case lltok::kw_shl:
2699   case lltok::kw_lshr:
2700   case lltok::kw_ashr: {
2701     bool NUW = false;
2702     bool NSW = false;
2703     bool Exact = false;
2704     unsigned Opc = Lex.getUIntVal();
2705     Constant *Val0, *Val1;
2706     Lex.Lex();
2707     LocTy ModifierLoc = Lex.getLoc();
2708     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2709         Opc == Instruction::Mul || Opc == Instruction::Shl) {
2710       if (EatIfPresent(lltok::kw_nuw))
2711         NUW = true;
2712       if (EatIfPresent(lltok::kw_nsw)) {
2713         NSW = true;
2714         if (EatIfPresent(lltok::kw_nuw))
2715           NUW = true;
2716       }
2717     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2718                Opc == Instruction::LShr || Opc == Instruction::AShr) {
2719       if (EatIfPresent(lltok::kw_exact))
2720         Exact = true;
2721     }
2722     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2723         ParseGlobalTypeAndValue(Val0) ||
2724         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2725         ParseGlobalTypeAndValue(Val1) ||
2726         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2727       return true;
2728     if (Val0->getType() != Val1->getType())
2729       return Error(ID.Loc, "operands of constexpr must have same type");
2730     if (!Val0->getType()->isIntOrIntVectorTy()) {
2731       if (NUW)
2732         return Error(ModifierLoc, "nuw only applies to integer operations");
2733       if (NSW)
2734         return Error(ModifierLoc, "nsw only applies to integer operations");
2735     }
2736     // Check that the type is valid for the operator.
2737     switch (Opc) {
2738     case Instruction::Add:
2739     case Instruction::Sub:
2740     case Instruction::Mul:
2741     case Instruction::UDiv:
2742     case Instruction::SDiv:
2743     case Instruction::URem:
2744     case Instruction::SRem:
2745     case Instruction::Shl:
2746     case Instruction::AShr:
2747     case Instruction::LShr:
2748       if (!Val0->getType()->isIntOrIntVectorTy())
2749         return Error(ID.Loc, "constexpr requires integer operands");
2750       break;
2751     case Instruction::FAdd:
2752     case Instruction::FSub:
2753     case Instruction::FMul:
2754     case Instruction::FDiv:
2755     case Instruction::FRem:
2756       if (!Val0->getType()->isFPOrFPVectorTy())
2757         return Error(ID.Loc, "constexpr requires fp operands");
2758       break;
2759     default: llvm_unreachable("Unknown binary operator!");
2760     }
2761     unsigned Flags = 0;
2762     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2763     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2764     if (Exact) Flags |= PossiblyExactOperator::IsExact;
2765     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2766     ID.ConstantVal = C;
2767     ID.Kind = ValID::t_Constant;
2768     return false;
2769   }
2770
2771   // Logical Operations
2772   case lltok::kw_and:
2773   case lltok::kw_or:
2774   case lltok::kw_xor: {
2775     unsigned Opc = Lex.getUIntVal();
2776     Constant *Val0, *Val1;
2777     Lex.Lex();
2778     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2779         ParseGlobalTypeAndValue(Val0) ||
2780         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2781         ParseGlobalTypeAndValue(Val1) ||
2782         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2783       return true;
2784     if (Val0->getType() != Val1->getType())
2785       return Error(ID.Loc, "operands of constexpr must have same type");
2786     if (!Val0->getType()->isIntOrIntVectorTy())
2787       return Error(ID.Loc,
2788                    "constexpr requires integer or integer vector operands");
2789     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2790     ID.Kind = ValID::t_Constant;
2791     return false;
2792   }
2793
2794   case lltok::kw_getelementptr:
2795   case lltok::kw_shufflevector:
2796   case lltok::kw_insertelement:
2797   case lltok::kw_extractelement:
2798   case lltok::kw_select: {
2799     unsigned Opc = Lex.getUIntVal();
2800     SmallVector<Constant*, 16> Elts;
2801     bool InBounds = false;
2802     Type *Ty;
2803     Lex.Lex();
2804
2805     if (Opc == Instruction::GetElementPtr)
2806       InBounds = EatIfPresent(lltok::kw_inbounds);
2807
2808     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
2809       return true;
2810
2811     LocTy ExplicitTypeLoc = Lex.getLoc();
2812     if (Opc == Instruction::GetElementPtr) {
2813       if (ParseType(Ty) ||
2814           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
2815         return true;
2816     }
2817
2818     if (ParseGlobalValueVector(Elts) ||
2819         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2820       return true;
2821
2822     if (Opc == Instruction::GetElementPtr) {
2823       if (Elts.size() == 0 ||
2824           !Elts[0]->getType()->getScalarType()->isPointerTy())
2825         return Error(ID.Loc, "base of getelementptr must be a pointer");
2826
2827       Type *BaseType = Elts[0]->getType();
2828       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
2829       if (Ty != BasePointerType->getElementType())
2830         return Error(
2831             ExplicitTypeLoc,
2832             "explicit pointee type doesn't match operand's pointee type");
2833
2834       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2835       for (Constant *Val : Indices) {
2836         Type *ValTy = Val->getType();
2837         if (!ValTy->getScalarType()->isIntegerTy())
2838           return Error(ID.Loc, "getelementptr index must be an integer");
2839         if (ValTy->isVectorTy() != BaseType->isVectorTy())
2840           return Error(ID.Loc, "getelementptr index type missmatch");
2841         if (ValTy->isVectorTy()) {
2842           unsigned ValNumEl = cast<VectorType>(ValTy)->getNumElements();
2843           unsigned PtrNumEl = cast<VectorType>(BaseType)->getNumElements();
2844           if (ValNumEl != PtrNumEl)
2845             return Error(
2846                 ID.Loc,
2847                 "getelementptr vector index has a wrong number of elements");
2848         }
2849       }
2850
2851       SmallPtrSet<const Type*, 4> Visited;
2852       if (!Indices.empty() &&
2853           !BasePointerType->getElementType()->isSized(&Visited))
2854         return Error(ID.Loc, "base element of getelementptr must be sized");
2855
2856       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
2857         return Error(ID.Loc, "invalid getelementptr indices");
2858       ID.ConstantVal =
2859           ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds);
2860     } else if (Opc == Instruction::Select) {
2861       if (Elts.size() != 3)
2862         return Error(ID.Loc, "expected three operands to select");
2863       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2864                                                               Elts[2]))
2865         return Error(ID.Loc, Reason);
2866       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2867     } else if (Opc == Instruction::ShuffleVector) {
2868       if (Elts.size() != 3)
2869         return Error(ID.Loc, "expected three operands to shufflevector");
2870       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2871         return Error(ID.Loc, "invalid operands to shufflevector");
2872       ID.ConstantVal =
2873                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2874     } else if (Opc == Instruction::ExtractElement) {
2875       if (Elts.size() != 2)
2876         return Error(ID.Loc, "expected two operands to extractelement");
2877       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2878         return Error(ID.Loc, "invalid extractelement operands");
2879       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2880     } else {
2881       assert(Opc == Instruction::InsertElement && "Unknown opcode");
2882       if (Elts.size() != 3)
2883       return Error(ID.Loc, "expected three operands to insertelement");
2884       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2885         return Error(ID.Loc, "invalid insertelement operands");
2886       ID.ConstantVal =
2887                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2888     }
2889
2890     ID.Kind = ValID::t_Constant;
2891     return false;
2892   }
2893   }
2894
2895   Lex.Lex();
2896   return false;
2897 }
2898
2899 /// ParseGlobalValue - Parse a global value with the specified type.
2900 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
2901   C = nullptr;
2902   ValID ID;
2903   Value *V = nullptr;
2904   bool Parsed = ParseValID(ID) ||
2905                 ConvertValIDToValue(Ty, ID, V, nullptr);
2906   if (V && !(C = dyn_cast<Constant>(V)))
2907     return Error(ID.Loc, "global values must be constants");
2908   return Parsed;
2909 }
2910
2911 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2912   Type *Ty = nullptr;
2913   return ParseType(Ty) ||
2914          ParseGlobalValue(Ty, V);
2915 }
2916
2917 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
2918   C = nullptr;
2919
2920   LocTy KwLoc = Lex.getLoc();
2921   if (!EatIfPresent(lltok::kw_comdat))
2922     return false;
2923
2924   if (EatIfPresent(lltok::lparen)) {
2925     if (Lex.getKind() != lltok::ComdatVar)
2926       return TokError("expected comdat variable");
2927     C = getComdat(Lex.getStrVal(), Lex.getLoc());
2928     Lex.Lex();
2929     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
2930       return true;
2931   } else {
2932     if (GlobalName.empty())
2933       return TokError("comdat cannot be unnamed");
2934     C = getComdat(GlobalName, KwLoc);
2935   }
2936
2937   return false;
2938 }
2939
2940 /// ParseGlobalValueVector
2941 ///   ::= /*empty*/
2942 ///   ::= TypeAndValue (',' TypeAndValue)*
2943 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) {
2944   // Empty list.
2945   if (Lex.getKind() == lltok::rbrace ||
2946       Lex.getKind() == lltok::rsquare ||
2947       Lex.getKind() == lltok::greater ||
2948       Lex.getKind() == lltok::rparen)
2949     return false;
2950
2951   Constant *C;
2952   if (ParseGlobalTypeAndValue(C)) return true;
2953   Elts.push_back(C);
2954
2955   while (EatIfPresent(lltok::comma)) {
2956     if (ParseGlobalTypeAndValue(C)) return true;
2957     Elts.push_back(C);
2958   }
2959
2960   return false;
2961 }
2962
2963 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
2964   SmallVector<Metadata *, 16> Elts;
2965   if (ParseMDNodeVector(Elts))
2966     return true;
2967
2968   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
2969   return false;
2970 }
2971
2972 /// MDNode:
2973 ///  ::= !{ ... }
2974 ///  ::= !7
2975 ///  ::= !MDLocation(...)
2976 bool LLParser::ParseMDNode(MDNode *&N) {
2977   if (Lex.getKind() == lltok::MetadataVar)
2978     return ParseSpecializedMDNode(N);
2979
2980   return ParseToken(lltok::exclaim, "expected '!' here") ||
2981          ParseMDNodeTail(N);
2982 }
2983
2984 bool LLParser::ParseMDNodeTail(MDNode *&N) {
2985   // !{ ... }
2986   if (Lex.getKind() == lltok::lbrace)
2987     return ParseMDTuple(N);
2988
2989   // !42
2990   return ParseMDNodeID(N);
2991 }
2992
2993 namespace {
2994
2995 /// Structure to represent an optional metadata field.
2996 template <class FieldTy> struct MDFieldImpl {
2997   typedef MDFieldImpl ImplTy;
2998   FieldTy Val;
2999   bool Seen;
3000
3001   void assign(FieldTy Val) {
3002     Seen = true;
3003     this->Val = std::move(Val);
3004   }
3005
3006   explicit MDFieldImpl(FieldTy Default)
3007       : Val(std::move(Default)), Seen(false) {}
3008 };
3009
3010 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3011   uint64_t Max;
3012
3013   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3014       : ImplTy(Default), Max(Max) {}
3015 };
3016 struct LineField : public MDUnsignedField {
3017   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3018 };
3019 struct ColumnField : public MDUnsignedField {
3020   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3021 };
3022 struct DwarfTagField : public MDUnsignedField {
3023   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3024   DwarfTagField(dwarf::Tag DefaultTag)
3025       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3026 };
3027 struct DwarfAttEncodingField : public MDUnsignedField {
3028   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3029 };
3030 struct DwarfVirtualityField : public MDUnsignedField {
3031   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3032 };
3033 struct DwarfLangField : public MDUnsignedField {
3034   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3035 };
3036
3037 struct DIFlagField : public MDUnsignedField {
3038   DIFlagField() : MDUnsignedField(0, UINT32_MAX) {}
3039 };
3040
3041 struct MDSignedField : public MDFieldImpl<int64_t> {
3042   int64_t Min;
3043   int64_t Max;
3044
3045   MDSignedField(int64_t Default = 0)
3046       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3047   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3048       : ImplTy(Default), Min(Min), Max(Max) {}
3049 };
3050
3051 struct MDBoolField : public MDFieldImpl<bool> {
3052   MDBoolField(bool Default = false) : ImplTy(Default) {}
3053 };
3054 struct MDField : public MDFieldImpl<Metadata *> {
3055   bool AllowNull;
3056
3057   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3058 };
3059 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3060   MDConstant() : ImplTy(nullptr) {}
3061 };
3062 struct MDStringField : public MDFieldImpl<MDString *> {
3063   bool AllowEmpty;
3064   MDStringField(bool AllowEmpty = true)
3065       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3066 };
3067 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3068   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3069 };
3070
3071 } // end namespace
3072
3073 namespace llvm {
3074
3075 template <>
3076 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3077                             MDUnsignedField &Result) {
3078   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3079     return TokError("expected unsigned integer");
3080
3081   auto &U = Lex.getAPSIntVal();
3082   if (U.ugt(Result.Max))
3083     return TokError("value for '" + Name + "' too large, limit is " +
3084                     Twine(Result.Max));
3085   Result.assign(U.getZExtValue());
3086   assert(Result.Val <= Result.Max && "Expected value in range");
3087   Lex.Lex();
3088   return false;
3089 }
3090
3091 template <>
3092 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3093   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3094 }
3095 template <>
3096 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3097   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3098 }
3099
3100 template <>
3101 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3102   if (Lex.getKind() == lltok::APSInt)
3103     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3104
3105   if (Lex.getKind() != lltok::DwarfTag)
3106     return TokError("expected DWARF tag");
3107
3108   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3109   if (Tag == dwarf::DW_TAG_invalid)
3110     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3111   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3112
3113   Result.assign(Tag);
3114   Lex.Lex();
3115   return false;
3116 }
3117
3118 template <>
3119 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3120                             DwarfVirtualityField &Result) {
3121   if (Lex.getKind() == lltok::APSInt)
3122     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3123
3124   if (Lex.getKind() != lltok::DwarfVirtuality)
3125     return TokError("expected DWARF virtuality code");
3126
3127   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3128   if (!Virtuality)
3129     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3130                     Lex.getStrVal() + "'");
3131   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3132   Result.assign(Virtuality);
3133   Lex.Lex();
3134   return false;
3135 }
3136
3137 template <>
3138 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3139   if (Lex.getKind() == lltok::APSInt)
3140     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3141
3142   if (Lex.getKind() != lltok::DwarfLang)
3143     return TokError("expected DWARF language");
3144
3145   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3146   if (!Lang)
3147     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3148                     "'");
3149   assert(Lang <= Result.Max && "Expected valid DWARF language");
3150   Result.assign(Lang);
3151   Lex.Lex();
3152   return false;
3153 }
3154
3155 template <>
3156 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3157                             DwarfAttEncodingField &Result) {
3158   if (Lex.getKind() == lltok::APSInt)
3159     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3160
3161   if (Lex.getKind() != lltok::DwarfAttEncoding)
3162     return TokError("expected DWARF type attribute encoding");
3163
3164   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3165   if (!Encoding)
3166     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3167                     Lex.getStrVal() + "'");
3168   assert(Encoding <= Result.Max && "Expected valid DWARF language");
3169   Result.assign(Encoding);
3170   Lex.Lex();
3171   return false;
3172 }
3173
3174 /// DIFlagField
3175 ///  ::= uint32
3176 ///  ::= DIFlagVector
3177 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3178 template <>
3179 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3180   assert(Result.Max == UINT32_MAX && "Expected only 32-bits");
3181
3182   // Parser for a single flag.
3183   auto parseFlag = [&](unsigned &Val) {
3184     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned())
3185       return ParseUInt32(Val);
3186
3187     if (Lex.getKind() != lltok::DIFlag)
3188       return TokError("expected debug info flag");
3189
3190     Val = DebugNode::getFlag(Lex.getStrVal());
3191     if (!Val)
3192       return TokError(Twine("invalid debug info flag flag '") +
3193                       Lex.getStrVal() + "'");
3194     Lex.Lex();
3195     return false;
3196   };
3197
3198   // Parse the flags and combine them together.
3199   unsigned Combined = 0;
3200   do {
3201     unsigned Val;
3202     if (parseFlag(Val))
3203       return true;
3204     Combined |= Val;
3205   } while (EatIfPresent(lltok::bar));
3206
3207   Result.assign(Combined);
3208   return false;
3209 }
3210
3211 template <>
3212 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3213                             MDSignedField &Result) {
3214   if (Lex.getKind() != lltok::APSInt)
3215     return TokError("expected signed integer");
3216
3217   auto &S = Lex.getAPSIntVal();
3218   if (S < Result.Min)
3219     return TokError("value for '" + Name + "' too small, limit is " +
3220                     Twine(Result.Min));
3221   if (S > Result.Max)
3222     return TokError("value for '" + Name + "' too large, limit is " +
3223                     Twine(Result.Max));
3224   Result.assign(S.getExtValue());
3225   assert(Result.Val >= Result.Min && "Expected value in range");
3226   assert(Result.Val <= Result.Max && "Expected value in range");
3227   Lex.Lex();
3228   return false;
3229 }
3230
3231 template <>
3232 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
3233   switch (Lex.getKind()) {
3234   default:
3235     return TokError("expected 'true' or 'false'");
3236   case lltok::kw_true:
3237     Result.assign(true);
3238     break;
3239   case lltok::kw_false:
3240     Result.assign(false);
3241     break;
3242   }
3243   Lex.Lex();
3244   return false;
3245 }
3246
3247 template <>
3248 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
3249   if (Lex.getKind() == lltok::kw_null) {
3250     if (!Result.AllowNull)
3251       return TokError("'" + Name + "' cannot be null");
3252     Lex.Lex();
3253     Result.assign(nullptr);
3254     return false;
3255   }
3256
3257   Metadata *MD;
3258   if (ParseMetadata(MD, nullptr))
3259     return true;
3260
3261   Result.assign(MD);
3262   return false;
3263 }
3264
3265 template <>
3266 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) {
3267   Metadata *MD;
3268   if (ParseValueAsMetadata(MD, "expected constant", nullptr))
3269     return true;
3270
3271   Result.assign(cast<ConstantAsMetadata>(MD));
3272   return false;
3273 }
3274
3275 template <>
3276 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
3277   LocTy ValueLoc = Lex.getLoc();
3278   std::string S;
3279   if (ParseStringConstant(S))
3280     return true;
3281
3282   if (!Result.AllowEmpty && S.empty())
3283     return Error(ValueLoc, "'" + Name + "' cannot be empty");
3284
3285   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
3286   return false;
3287 }
3288
3289 template <>
3290 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
3291   SmallVector<Metadata *, 4> MDs;
3292   if (ParseMDNodeVector(MDs))
3293     return true;
3294
3295   Result.assign(std::move(MDs));
3296   return false;
3297 }
3298
3299 } // end namespace llvm
3300
3301 template <class ParserTy>
3302 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
3303   do {
3304     if (Lex.getKind() != lltok::LabelStr)
3305       return TokError("expected field label here");
3306
3307     if (parseField())
3308       return true;
3309   } while (EatIfPresent(lltok::comma));
3310
3311   return false;
3312 }
3313
3314 template <class ParserTy>
3315 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
3316   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3317   Lex.Lex();
3318
3319   if (ParseToken(lltok::lparen, "expected '(' here"))
3320     return true;
3321   if (Lex.getKind() != lltok::rparen)
3322     if (ParseMDFieldsImplBody(parseField))
3323       return true;
3324
3325   ClosingLoc = Lex.getLoc();
3326   return ParseToken(lltok::rparen, "expected ')' here");
3327 }
3328
3329 template <class FieldTy>
3330 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
3331   if (Result.Seen)
3332     return TokError("field '" + Name + "' cannot be specified more than once");
3333
3334   LocTy Loc = Lex.getLoc();
3335   Lex.Lex();
3336   return ParseMDField(Loc, Name, Result);
3337 }
3338
3339 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
3340   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3341
3342 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
3343   if (Lex.getStrVal() == #CLASS)                                               \
3344     return Parse##CLASS(N, IsDistinct);
3345 #include "llvm/IR/Metadata.def"
3346
3347   return TokError("expected metadata type");
3348 }
3349
3350 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
3351 #define NOP_FIELD(NAME, TYPE, INIT)
3352 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
3353   if (!NAME.Seen)                                                              \
3354     return Error(ClosingLoc, "missing required field '" #NAME "'");
3355 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
3356   if (Lex.getStrVal() == #NAME)                                                \
3357     return ParseMDField(#NAME, NAME);
3358 #define PARSE_MD_FIELDS()                                                      \
3359   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
3360   do {                                                                         \
3361     LocTy ClosingLoc;                                                          \
3362     if (ParseMDFieldsImpl([&]() -> bool {                                      \
3363       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
3364       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
3365     }, ClosingLoc))                                                            \
3366       return true;                                                             \
3367     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
3368   } while (false)
3369 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
3370   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
3371
3372 /// ParseMDLocationFields:
3373 ///   ::= !MDLocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
3374 bool LLParser::ParseMDLocation(MDNode *&Result, bool IsDistinct) {
3375 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3376   OPTIONAL(line, LineField, );                                                 \
3377   OPTIONAL(column, ColumnField, );                                             \
3378   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3379   OPTIONAL(inlinedAt, MDField, );
3380   PARSE_MD_FIELDS();
3381 #undef VISIT_MD_FIELDS
3382
3383   Result = GET_OR_DISTINCT(
3384       MDLocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
3385   return false;
3386 }
3387
3388 /// ParseGenericDebugNode:
3389 ///   ::= !GenericDebugNode(tag: 15, header: "...", operands: {...})
3390 bool LLParser::ParseGenericDebugNode(MDNode *&Result, bool IsDistinct) {
3391 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3392   REQUIRED(tag, DwarfTagField, );                                              \
3393   OPTIONAL(header, MDStringField, );                                           \
3394   OPTIONAL(operands, MDFieldList, );
3395   PARSE_MD_FIELDS();
3396 #undef VISIT_MD_FIELDS
3397
3398   Result = GET_OR_DISTINCT(GenericDebugNode,
3399                            (Context, tag.Val, header.Val, operands.Val));
3400   return false;
3401 }
3402
3403 /// ParseMDSubrange:
3404 ///   ::= !MDSubrange(count: 30, lowerBound: 2)
3405 bool LLParser::ParseMDSubrange(MDNode *&Result, bool IsDistinct) {
3406 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3407   REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX));                         \
3408   OPTIONAL(lowerBound, MDSignedField, );
3409   PARSE_MD_FIELDS();
3410 #undef VISIT_MD_FIELDS
3411
3412   Result = GET_OR_DISTINCT(MDSubrange, (Context, count.Val, lowerBound.Val));
3413   return false;
3414 }
3415
3416 /// ParseMDEnumerator:
3417 ///   ::= !MDEnumerator(value: 30, name: "SomeKind")
3418 bool LLParser::ParseMDEnumerator(MDNode *&Result, bool IsDistinct) {
3419 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3420   REQUIRED(name, MDStringField, );                                             \
3421   REQUIRED(value, MDSignedField, );
3422   PARSE_MD_FIELDS();
3423 #undef VISIT_MD_FIELDS
3424
3425   Result = GET_OR_DISTINCT(MDEnumerator, (Context, value.Val, name.Val));
3426   return false;
3427 }
3428
3429 /// ParseMDBasicType:
3430 ///   ::= !MDBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
3431 bool LLParser::ParseMDBasicType(MDNode *&Result, bool IsDistinct) {
3432 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3433   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
3434   OPTIONAL(name, MDStringField, );                                             \
3435   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3436   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3437   OPTIONAL(encoding, DwarfAttEncodingField, );
3438   PARSE_MD_FIELDS();
3439 #undef VISIT_MD_FIELDS
3440
3441   Result = GET_OR_DISTINCT(MDBasicType, (Context, tag.Val, name.Val, size.Val,
3442                                          align.Val, encoding.Val));
3443   return false;
3444 }
3445
3446 /// ParseMDDerivedType:
3447 ///   ::= !MDDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
3448 ///                      line: 7, scope: !1, baseType: !2, size: 32,
3449 ///                      align: 32, offset: 0, flags: 0, extraData: !3)
3450 bool LLParser::ParseMDDerivedType(MDNode *&Result, bool IsDistinct) {
3451 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3452   REQUIRED(tag, DwarfTagField, );                                              \
3453   OPTIONAL(name, MDStringField, );                                             \
3454   OPTIONAL(file, MDField, );                                                   \
3455   OPTIONAL(line, LineField, );                                                 \
3456   OPTIONAL(scope, MDField, );                                                  \
3457   REQUIRED(baseType, MDField, );                                               \
3458   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3459   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3460   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3461   OPTIONAL(flags, DIFlagField, );                                              \
3462   OPTIONAL(extraData, MDField, );
3463   PARSE_MD_FIELDS();
3464 #undef VISIT_MD_FIELDS
3465
3466   Result = GET_OR_DISTINCT(MDDerivedType,
3467                            (Context, tag.Val, name.Val, file.Val, line.Val,
3468                             scope.Val, baseType.Val, size.Val, align.Val,
3469                             offset.Val, flags.Val, extraData.Val));
3470   return false;
3471 }
3472
3473 bool LLParser::ParseMDCompositeType(MDNode *&Result, bool IsDistinct) {
3474 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3475   REQUIRED(tag, DwarfTagField, );                                              \
3476   OPTIONAL(name, MDStringField, );                                             \
3477   OPTIONAL(file, MDField, );                                                   \
3478   OPTIONAL(line, LineField, );                                                 \
3479   OPTIONAL(scope, MDField, );                                                  \
3480   OPTIONAL(baseType, MDField, );                                               \
3481   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3482   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3483   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3484   OPTIONAL(flags, DIFlagField, );                                              \
3485   OPTIONAL(elements, MDField, );                                               \
3486   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
3487   OPTIONAL(vtableHolder, MDField, );                                           \
3488   OPTIONAL(templateParams, MDField, );                                         \
3489   OPTIONAL(identifier, MDStringField, );
3490   PARSE_MD_FIELDS();
3491 #undef VISIT_MD_FIELDS
3492
3493   Result = GET_OR_DISTINCT(
3494       MDCompositeType,
3495       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
3496        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
3497        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val));
3498   return false;
3499 }
3500
3501 bool LLParser::ParseMDSubroutineType(MDNode *&Result, bool IsDistinct) {
3502 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3503   OPTIONAL(flags, DIFlagField, );                                              \
3504   REQUIRED(types, MDField, );
3505   PARSE_MD_FIELDS();
3506 #undef VISIT_MD_FIELDS
3507
3508   Result = GET_OR_DISTINCT(MDSubroutineType, (Context, flags.Val, types.Val));
3509   return false;
3510 }
3511
3512 /// ParseMDFileType:
3513 ///   ::= !MDFileType(filename: "path/to/file", directory: "/path/to/dir")
3514 bool LLParser::ParseMDFile(MDNode *&Result, bool IsDistinct) {
3515 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3516   REQUIRED(filename, MDStringField, );                                         \
3517   REQUIRED(directory, MDStringField, );
3518   PARSE_MD_FIELDS();
3519 #undef VISIT_MD_FIELDS
3520
3521   Result = GET_OR_DISTINCT(MDFile, (Context, filename.Val, directory.Val));
3522   return false;
3523 }
3524
3525 /// ParseMDCompileUnit:
3526 ///   ::= !MDCompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
3527 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
3528 ///                      splitDebugFilename: "abc.debug", emissionKind: 1,
3529 ///                      enums: !1, retainedTypes: !2, subprograms: !3,
3530 ///                      globals: !4, imports: !5)
3531 bool LLParser::ParseMDCompileUnit(MDNode *&Result, bool IsDistinct) {
3532 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3533   REQUIRED(language, DwarfLangField, );                                        \
3534   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
3535   OPTIONAL(producer, MDStringField, );                                         \
3536   OPTIONAL(isOptimized, MDBoolField, );                                        \
3537   OPTIONAL(flags, MDStringField, );                                            \
3538   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
3539   OPTIONAL(splitDebugFilename, MDStringField, );                               \
3540   OPTIONAL(emissionKind, MDUnsignedField, (0, UINT32_MAX));                    \
3541   OPTIONAL(enums, MDField, );                                                  \
3542   OPTIONAL(retainedTypes, MDField, );                                          \
3543   OPTIONAL(subprograms, MDField, );                                            \
3544   OPTIONAL(globals, MDField, );                                                \
3545   OPTIONAL(imports, MDField, );
3546   PARSE_MD_FIELDS();
3547 #undef VISIT_MD_FIELDS
3548
3549   Result = GET_OR_DISTINCT(MDCompileUnit,
3550                            (Context, language.Val, file.Val, producer.Val,
3551                             isOptimized.Val, flags.Val, runtimeVersion.Val,
3552                             splitDebugFilename.Val, emissionKind.Val, enums.Val,
3553                             retainedTypes.Val, subprograms.Val, globals.Val,
3554                             imports.Val));
3555   return false;
3556 }
3557
3558 /// ParseMDSubprogram:
3559 ///   ::= !MDSubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
3560 ///                     file: !1, line: 7, type: !2, isLocal: false,
3561 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
3562 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
3563 ///                     virtualIndex: 10, flags: 11,
3564 ///                     isOptimized: false, function: void ()* @_Z3foov,
3565 ///                     templateParams: !4, declaration: !5, variables: !6)
3566 bool LLParser::ParseMDSubprogram(MDNode *&Result, bool IsDistinct) {
3567 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3568   OPTIONAL(scope, MDField, );                                                  \
3569   OPTIONAL(name, MDStringField, );                                             \
3570   OPTIONAL(linkageName, MDStringField, );                                      \
3571   OPTIONAL(file, MDField, );                                                   \
3572   OPTIONAL(line, LineField, );                                                 \
3573   OPTIONAL(type, MDField, );                                                   \
3574   OPTIONAL(isLocal, MDBoolField, );                                            \
3575   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
3576   OPTIONAL(scopeLine, LineField, );                                            \
3577   OPTIONAL(containingType, MDField, );                                         \
3578   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
3579   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
3580   OPTIONAL(flags, DIFlagField, );                                              \
3581   OPTIONAL(isOptimized, MDBoolField, );                                        \
3582   OPTIONAL(function, MDConstant, );                                            \
3583   OPTIONAL(templateParams, MDField, );                                         \
3584   OPTIONAL(declaration, MDField, );                                            \
3585   OPTIONAL(variables, MDField, );
3586   PARSE_MD_FIELDS();
3587 #undef VISIT_MD_FIELDS
3588
3589   Result = GET_OR_DISTINCT(
3590       MDSubprogram, (Context, scope.Val, name.Val, linkageName.Val, file.Val,
3591                      line.Val, type.Val, isLocal.Val, isDefinition.Val,
3592                      scopeLine.Val, containingType.Val, virtuality.Val,
3593                      virtualIndex.Val, flags.Val, isOptimized.Val, function.Val,
3594                      templateParams.Val, declaration.Val, variables.Val));
3595   return false;
3596 }
3597
3598 /// ParseMDLexicalBlock:
3599 ///   ::= !MDLexicalBlock(scope: !0, file: !2, line: 7, column: 9)
3600 bool LLParser::ParseMDLexicalBlock(MDNode *&Result, bool IsDistinct) {
3601 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3602   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3603   OPTIONAL(file, MDField, );                                                   \
3604   OPTIONAL(line, LineField, );                                                 \
3605   OPTIONAL(column, ColumnField, );
3606   PARSE_MD_FIELDS();
3607 #undef VISIT_MD_FIELDS
3608
3609   Result = GET_OR_DISTINCT(
3610       MDLexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
3611   return false;
3612 }
3613
3614 /// ParseMDLexicalBlockFile:
3615 ///   ::= !MDLexicalBlockFile(scope: !0, file: !2, discriminator: 9)
3616 bool LLParser::ParseMDLexicalBlockFile(MDNode *&Result, bool IsDistinct) {
3617 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3618   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3619   OPTIONAL(file, MDField, );                                                   \
3620   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
3621   PARSE_MD_FIELDS();
3622 #undef VISIT_MD_FIELDS
3623
3624   Result = GET_OR_DISTINCT(MDLexicalBlockFile,
3625                            (Context, scope.Val, file.Val, discriminator.Val));
3626   return false;
3627 }
3628
3629 /// ParseMDNamespace:
3630 ///   ::= !MDNamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
3631 bool LLParser::ParseMDNamespace(MDNode *&Result, bool IsDistinct) {
3632 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3633   REQUIRED(scope, MDField, );                                                  \
3634   OPTIONAL(file, MDField, );                                                   \
3635   OPTIONAL(name, MDStringField, );                                             \
3636   OPTIONAL(line, LineField, );
3637   PARSE_MD_FIELDS();
3638 #undef VISIT_MD_FIELDS
3639
3640   Result = GET_OR_DISTINCT(MDNamespace,
3641                            (Context, scope.Val, file.Val, name.Val, line.Val));
3642   return false;
3643 }
3644
3645 /// ParseMDTemplateTypeParameter:
3646 ///   ::= !MDTemplateTypeParameter(name: "Ty", type: !1)
3647 bool LLParser::ParseMDTemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
3648 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3649   OPTIONAL(name, MDStringField, );                                             \
3650   REQUIRED(type, MDField, );
3651   PARSE_MD_FIELDS();
3652 #undef VISIT_MD_FIELDS
3653
3654   Result =
3655       GET_OR_DISTINCT(MDTemplateTypeParameter, (Context, name.Val, type.Val));
3656   return false;
3657 }
3658
3659 /// ParseMDTemplateValueParameter:
3660 ///   ::= !MDTemplateValueParameter(tag: DW_TAG_template_value_parameter,
3661 ///                                 name: "V", type: !1, value: i32 7)
3662 bool LLParser::ParseMDTemplateValueParameter(MDNode *&Result, bool IsDistinct) {
3663 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3664   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
3665   OPTIONAL(name, MDStringField, );                                             \
3666   OPTIONAL(type, MDField, );                                                   \
3667   REQUIRED(value, MDField, );
3668   PARSE_MD_FIELDS();
3669 #undef VISIT_MD_FIELDS
3670
3671   Result = GET_OR_DISTINCT(MDTemplateValueParameter,
3672                            (Context, tag.Val, name.Val, type.Val, value.Val));
3673   return false;
3674 }
3675
3676 /// ParseMDGlobalVariable:
3677 ///   ::= !MDGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
3678 ///                         file: !1, line: 7, type: !2, isLocal: false,
3679 ///                         isDefinition: true, variable: i32* @foo,
3680 ///                         declaration: !3)
3681 bool LLParser::ParseMDGlobalVariable(MDNode *&Result, bool IsDistinct) {
3682 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3683   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
3684   OPTIONAL(scope, MDField, );                                                  \
3685   OPTIONAL(linkageName, MDStringField, );                                      \
3686   OPTIONAL(file, MDField, );                                                   \
3687   OPTIONAL(line, LineField, );                                                 \
3688   OPTIONAL(type, MDField, );                                                   \
3689   OPTIONAL(isLocal, MDBoolField, );                                            \
3690   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
3691   OPTIONAL(variable, MDConstant, );                                            \
3692   OPTIONAL(declaration, MDField, );
3693   PARSE_MD_FIELDS();
3694 #undef VISIT_MD_FIELDS
3695
3696   Result = GET_OR_DISTINCT(MDGlobalVariable,
3697                            (Context, scope.Val, name.Val, linkageName.Val,
3698                             file.Val, line.Val, type.Val, isLocal.Val,
3699                             isDefinition.Val, variable.Val, declaration.Val));
3700   return false;
3701 }
3702
3703 /// ParseMDLocalVariable:
3704 ///   ::= !MDLocalVariable(tag: DW_TAG_arg_variable, scope: !0, name: "foo",
3705 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7)
3706 bool LLParser::ParseMDLocalVariable(MDNode *&Result, bool IsDistinct) {
3707 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3708   REQUIRED(tag, DwarfTagField, );                                              \
3709   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3710   OPTIONAL(name, MDStringField, );                                             \
3711   OPTIONAL(file, MDField, );                                                   \
3712   OPTIONAL(line, LineField, );                                                 \
3713   OPTIONAL(type, MDField, );                                                   \
3714   OPTIONAL(arg, MDUnsignedField, (0, UINT8_MAX));                              \
3715   OPTIONAL(flags, DIFlagField, );
3716   PARSE_MD_FIELDS();
3717 #undef VISIT_MD_FIELDS
3718
3719   Result = GET_OR_DISTINCT(MDLocalVariable,
3720                            (Context, tag.Val, scope.Val, name.Val, file.Val,
3721                             line.Val, type.Val, arg.Val, flags.Val));
3722   return false;
3723 }
3724
3725 /// ParseMDExpression:
3726 ///   ::= !MDExpression(0, 7, -1)
3727 bool LLParser::ParseMDExpression(MDNode *&Result, bool IsDistinct) {
3728   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3729   Lex.Lex();
3730
3731   if (ParseToken(lltok::lparen, "expected '(' here"))
3732     return true;
3733
3734   SmallVector<uint64_t, 8> Elements;
3735   if (Lex.getKind() != lltok::rparen)
3736     do {
3737       if (Lex.getKind() == lltok::DwarfOp) {
3738         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
3739           Lex.Lex();
3740           Elements.push_back(Op);
3741           continue;
3742         }
3743         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
3744       }
3745
3746       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3747         return TokError("expected unsigned integer");
3748
3749       auto &U = Lex.getAPSIntVal();
3750       if (U.ugt(UINT64_MAX))
3751         return TokError("element too large, limit is " + Twine(UINT64_MAX));
3752       Elements.push_back(U.getZExtValue());
3753       Lex.Lex();
3754     } while (EatIfPresent(lltok::comma));
3755
3756   if (ParseToken(lltok::rparen, "expected ')' here"))
3757     return true;
3758
3759   Result = GET_OR_DISTINCT(MDExpression, (Context, Elements));
3760   return false;
3761 }
3762
3763 /// ParseMDObjCProperty:
3764 ///   ::= !MDObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
3765 ///                       getter: "getFoo", attributes: 7, type: !2)
3766 bool LLParser::ParseMDObjCProperty(MDNode *&Result, bool IsDistinct) {
3767 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3768   OPTIONAL(name, MDStringField, );                                             \
3769   OPTIONAL(file, MDField, );                                                   \
3770   OPTIONAL(line, LineField, );                                                 \
3771   OPTIONAL(setter, MDStringField, );                                           \
3772   OPTIONAL(getter, MDStringField, );                                           \
3773   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
3774   OPTIONAL(type, MDField, );
3775   PARSE_MD_FIELDS();
3776 #undef VISIT_MD_FIELDS
3777
3778   Result = GET_OR_DISTINCT(MDObjCProperty,
3779                            (Context, name.Val, file.Val, line.Val, setter.Val,
3780                             getter.Val, attributes.Val, type.Val));
3781   return false;
3782 }
3783
3784 /// ParseMDImportedEntity:
3785 ///   ::= !MDImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
3786 ///                         line: 7, name: "foo")
3787 bool LLParser::ParseMDImportedEntity(MDNode *&Result, bool IsDistinct) {
3788 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3789   REQUIRED(tag, DwarfTagField, );                                              \
3790   REQUIRED(scope, MDField, );                                                  \
3791   OPTIONAL(entity, MDField, );                                                 \
3792   OPTIONAL(line, LineField, );                                                 \
3793   OPTIONAL(name, MDStringField, );
3794   PARSE_MD_FIELDS();
3795 #undef VISIT_MD_FIELDS
3796
3797   Result = GET_OR_DISTINCT(MDImportedEntity, (Context, tag.Val, scope.Val,
3798                                               entity.Val, line.Val, name.Val));
3799   return false;
3800 }
3801
3802 #undef PARSE_MD_FIELD
3803 #undef NOP_FIELD
3804 #undef REQUIRE_FIELD
3805 #undef DECLARE_FIELD
3806
3807 /// ParseMetadataAsValue
3808 ///  ::= metadata i32 %local
3809 ///  ::= metadata i32 @global
3810 ///  ::= metadata i32 7
3811 ///  ::= metadata !0
3812 ///  ::= metadata !{...}
3813 ///  ::= metadata !"string"
3814 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
3815   // Note: the type 'metadata' has already been parsed.
3816   Metadata *MD;
3817   if (ParseMetadata(MD, &PFS))
3818     return true;
3819
3820   V = MetadataAsValue::get(Context, MD);
3821   return false;
3822 }
3823
3824 /// ParseValueAsMetadata
3825 ///  ::= i32 %local
3826 ///  ::= i32 @global
3827 ///  ::= i32 7
3828 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
3829                                     PerFunctionState *PFS) {
3830   Type *Ty;
3831   LocTy Loc;
3832   if (ParseType(Ty, TypeMsg, Loc))
3833     return true;
3834   if (Ty->isMetadataTy())
3835     return Error(Loc, "invalid metadata-value-metadata roundtrip");
3836
3837   Value *V;
3838   if (ParseValue(Ty, V, PFS))
3839     return true;
3840
3841   MD = ValueAsMetadata::get(V);
3842   return false;
3843 }
3844
3845 /// ParseMetadata
3846 ///  ::= i32 %local
3847 ///  ::= i32 @global
3848 ///  ::= i32 7
3849 ///  ::= !42
3850 ///  ::= !{...}
3851 ///  ::= !"string"
3852 ///  ::= !MDLocation(...)
3853 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
3854   if (Lex.getKind() == lltok::MetadataVar) {
3855     MDNode *N;
3856     if (ParseSpecializedMDNode(N))
3857       return true;
3858     MD = N;
3859     return false;
3860   }
3861
3862   // ValueAsMetadata:
3863   // <type> <value>
3864   if (Lex.getKind() != lltok::exclaim)
3865     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
3866
3867   // '!'.
3868   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
3869   Lex.Lex();
3870
3871   // MDString:
3872   //   ::= '!' STRINGCONSTANT
3873   if (Lex.getKind() == lltok::StringConstant) {
3874     MDString *S;
3875     if (ParseMDString(S))
3876       return true;
3877     MD = S;
3878     return false;
3879   }
3880
3881   // MDNode:
3882   // !{ ... }
3883   // !7
3884   MDNode *N;
3885   if (ParseMDNodeTail(N))
3886     return true;
3887   MD = N;
3888   return false;
3889 }
3890
3891
3892 //===----------------------------------------------------------------------===//
3893 // Function Parsing.
3894 //===----------------------------------------------------------------------===//
3895
3896 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
3897                                    PerFunctionState *PFS) {
3898   if (Ty->isFunctionTy())
3899     return Error(ID.Loc, "functions are not values, refer to them as pointers");
3900
3901   switch (ID.Kind) {
3902   case ValID::t_LocalID:
3903     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
3904     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
3905     return V == nullptr;
3906   case ValID::t_LocalName:
3907     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
3908     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
3909     return V == nullptr;
3910   case ValID::t_InlineAsm: {
3911     PointerType *PTy = dyn_cast<PointerType>(Ty);
3912     FunctionType *FTy =
3913       PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : nullptr;
3914     if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
3915       return Error(ID.Loc, "invalid type for inline asm constraint string");
3916     V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1,
3917                        (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2)));
3918     return false;
3919   }
3920   case ValID::t_GlobalName:
3921     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
3922     return V == nullptr;
3923   case ValID::t_GlobalID:
3924     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
3925     return V == nullptr;
3926   case ValID::t_APSInt:
3927     if (!Ty->isIntegerTy())
3928       return Error(ID.Loc, "integer constant must have integer type");
3929     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
3930     V = ConstantInt::get(Context, ID.APSIntVal);
3931     return false;
3932   case ValID::t_APFloat:
3933     if (!Ty->isFloatingPointTy() ||
3934         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
3935       return Error(ID.Loc, "floating point constant invalid for type");
3936
3937     // The lexer has no type info, so builds all half, float, and double FP
3938     // constants as double.  Fix this here.  Long double does not need this.
3939     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
3940       bool Ignored;
3941       if (Ty->isHalfTy())
3942         ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
3943                               &Ignored);
3944       else if (Ty->isFloatTy())
3945         ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
3946                               &Ignored);
3947     }
3948     V = ConstantFP::get(Context, ID.APFloatVal);
3949
3950     if (V->getType() != Ty)
3951       return Error(ID.Loc, "floating point constant does not have type '" +
3952                    getTypeString(Ty) + "'");
3953
3954     return false;
3955   case ValID::t_Null:
3956     if (!Ty->isPointerTy())
3957       return Error(ID.Loc, "null must be a pointer type");
3958     V = ConstantPointerNull::get(cast<PointerType>(Ty));
3959     return false;
3960   case ValID::t_Undef:
3961     // FIXME: LabelTy should not be a first-class type.
3962     if (!Ty->isFirstClassType() || Ty->isLabelTy())
3963       return Error(ID.Loc, "invalid type for undef constant");
3964     V = UndefValue::get(Ty);
3965     return false;
3966   case ValID::t_EmptyArray:
3967     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
3968       return Error(ID.Loc, "invalid empty array initializer");
3969     V = UndefValue::get(Ty);
3970     return false;
3971   case ValID::t_Zero:
3972     // FIXME: LabelTy should not be a first-class type.
3973     if (!Ty->isFirstClassType() || Ty->isLabelTy())
3974       return Error(ID.Loc, "invalid type for null constant");
3975     V = Constant::getNullValue(Ty);
3976     return false;
3977   case ValID::t_Constant:
3978     if (ID.ConstantVal->getType() != Ty)
3979       return Error(ID.Loc, "constant expression type mismatch");
3980
3981     V = ID.ConstantVal;
3982     return false;
3983   case ValID::t_ConstantStruct:
3984   case ValID::t_PackedConstantStruct:
3985     if (StructType *ST = dyn_cast<StructType>(Ty)) {
3986       if (ST->getNumElements() != ID.UIntVal)
3987         return Error(ID.Loc,
3988                      "initializer with struct type has wrong # elements");
3989       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
3990         return Error(ID.Loc, "packed'ness of initializer and type don't match");
3991
3992       // Verify that the elements are compatible with the structtype.
3993       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
3994         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
3995           return Error(ID.Loc, "element " + Twine(i) +
3996                     " of struct initializer doesn't match struct element type");
3997
3998       V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
3999                                                ID.UIntVal));
4000     } else
4001       return Error(ID.Loc, "constant expression type mismatch");
4002     return false;
4003   }
4004   llvm_unreachable("Invalid ValID");
4005 }
4006
4007 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
4008   V = nullptr;
4009   ValID ID;
4010   return ParseValID(ID, PFS) ||
4011          ConvertValIDToValue(Ty, ID, V, PFS);
4012 }
4013
4014 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
4015   Type *Ty = nullptr;
4016   return ParseType(Ty) ||
4017          ParseValue(Ty, V, PFS);
4018 }
4019
4020 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
4021                                       PerFunctionState &PFS) {
4022   Value *V;
4023   Loc = Lex.getLoc();
4024   if (ParseTypeAndValue(V, PFS)) return true;
4025   if (!isa<BasicBlock>(V))
4026     return Error(Loc, "expected a basic block");
4027   BB = cast<BasicBlock>(V);
4028   return false;
4029 }
4030
4031
4032 /// FunctionHeader
4033 ///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
4034 ///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
4035 ///       OptionalAlign OptGC OptionalPrefix OptionalPrologue
4036 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
4037   // Parse the linkage.
4038   LocTy LinkageLoc = Lex.getLoc();
4039   unsigned Linkage;
4040
4041   unsigned Visibility;
4042   unsigned DLLStorageClass;
4043   AttrBuilder RetAttrs;
4044   unsigned CC;
4045   Type *RetType = nullptr;
4046   LocTy RetTypeLoc = Lex.getLoc();
4047   if (ParseOptionalLinkage(Linkage) ||
4048       ParseOptionalVisibility(Visibility) ||
4049       ParseOptionalDLLStorageClass(DLLStorageClass) ||
4050       ParseOptionalCallingConv(CC) ||
4051       ParseOptionalReturnAttrs(RetAttrs) ||
4052       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
4053     return true;
4054
4055   // Verify that the linkage is ok.
4056   switch ((GlobalValue::LinkageTypes)Linkage) {
4057   case GlobalValue::ExternalLinkage:
4058     break; // always ok.
4059   case GlobalValue::ExternalWeakLinkage:
4060     if (isDefine)
4061       return Error(LinkageLoc, "invalid linkage for function definition");
4062     break;
4063   case GlobalValue::PrivateLinkage:
4064   case GlobalValue::InternalLinkage:
4065   case GlobalValue::AvailableExternallyLinkage:
4066   case GlobalValue::LinkOnceAnyLinkage:
4067   case GlobalValue::LinkOnceODRLinkage:
4068   case GlobalValue::WeakAnyLinkage:
4069   case GlobalValue::WeakODRLinkage:
4070     if (!isDefine)
4071       return Error(LinkageLoc, "invalid linkage for function declaration");
4072     break;
4073   case GlobalValue::AppendingLinkage:
4074   case GlobalValue::CommonLinkage:
4075     return Error(LinkageLoc, "invalid function linkage type");
4076   }
4077
4078   if (!isValidVisibilityForLinkage(Visibility, Linkage))
4079     return Error(LinkageLoc,
4080                  "symbol with local linkage must have default visibility");
4081
4082   if (!FunctionType::isValidReturnType(RetType))
4083     return Error(RetTypeLoc, "invalid function return type");
4084
4085   LocTy NameLoc = Lex.getLoc();
4086
4087   std::string FunctionName;
4088   if (Lex.getKind() == lltok::GlobalVar) {
4089     FunctionName = Lex.getStrVal();
4090   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
4091     unsigned NameID = Lex.getUIntVal();
4092
4093     if (NameID != NumberedVals.size())
4094       return TokError("function expected to be numbered '%" +
4095                       Twine(NumberedVals.size()) + "'");
4096   } else {
4097     return TokError("expected function name");
4098   }
4099
4100   Lex.Lex();
4101
4102   if (Lex.getKind() != lltok::lparen)
4103     return TokError("expected '(' in function argument list");
4104
4105   SmallVector<ArgInfo, 8> ArgList;
4106   bool isVarArg;
4107   AttrBuilder FuncAttrs;
4108   std::vector<unsigned> FwdRefAttrGrps;
4109   LocTy BuiltinLoc;
4110   std::string Section;
4111   unsigned Alignment;
4112   std::string GC;
4113   bool UnnamedAddr;
4114   LocTy UnnamedAddrLoc;
4115   Constant *Prefix = nullptr;
4116   Constant *Prologue = nullptr;
4117   Comdat *C;
4118
4119   if (ParseArgumentList(ArgList, isVarArg) ||
4120       ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
4121                          &UnnamedAddrLoc) ||
4122       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
4123                                  BuiltinLoc) ||
4124       (EatIfPresent(lltok::kw_section) &&
4125        ParseStringConstant(Section)) ||
4126       parseOptionalComdat(FunctionName, C) ||
4127       ParseOptionalAlignment(Alignment) ||
4128       (EatIfPresent(lltok::kw_gc) &&
4129        ParseStringConstant(GC)) ||
4130       (EatIfPresent(lltok::kw_prefix) &&
4131        ParseGlobalTypeAndValue(Prefix)) ||
4132       (EatIfPresent(lltok::kw_prologue) &&
4133        ParseGlobalTypeAndValue(Prologue)))
4134     return true;
4135
4136   if (FuncAttrs.contains(Attribute::Builtin))
4137     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
4138
4139   // If the alignment was parsed as an attribute, move to the alignment field.
4140   if (FuncAttrs.hasAlignmentAttr()) {
4141     Alignment = FuncAttrs.getAlignment();
4142     FuncAttrs.removeAttribute(Attribute::Alignment);
4143   }
4144
4145   // Okay, if we got here, the function is syntactically valid.  Convert types
4146   // and do semantic checks.
4147   std::vector<Type*> ParamTypeList;
4148   SmallVector<AttributeSet, 8> Attrs;
4149
4150   if (RetAttrs.hasAttributes())
4151     Attrs.push_back(AttributeSet::get(RetType->getContext(),
4152                                       AttributeSet::ReturnIndex,
4153                                       RetAttrs));
4154
4155   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
4156     ParamTypeList.push_back(ArgList[i].Ty);
4157     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
4158       AttrBuilder B(ArgList[i].Attrs, i + 1);
4159       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
4160     }
4161   }
4162
4163   if (FuncAttrs.hasAttributes())
4164     Attrs.push_back(AttributeSet::get(RetType->getContext(),
4165                                       AttributeSet::FunctionIndex,
4166                                       FuncAttrs));
4167
4168   AttributeSet PAL = AttributeSet::get(Context, Attrs);
4169
4170   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
4171     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
4172
4173   FunctionType *FT =
4174     FunctionType::get(RetType, ParamTypeList, isVarArg);
4175   PointerType *PFT = PointerType::getUnqual(FT);
4176
4177   Fn = nullptr;
4178   if (!FunctionName.empty()) {
4179     // If this was a definition of a forward reference, remove the definition
4180     // from the forward reference table and fill in the forward ref.
4181     std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
4182       ForwardRefVals.find(FunctionName);
4183     if (FRVI != ForwardRefVals.end()) {
4184       Fn = M->getFunction(FunctionName);
4185       if (!Fn)
4186         return Error(FRVI->second.second, "invalid forward reference to "
4187                      "function as global value!");
4188       if (Fn->getType() != PFT)
4189         return Error(FRVI->second.second, "invalid forward reference to "
4190                      "function '" + FunctionName + "' with wrong type!");
4191
4192       ForwardRefVals.erase(FRVI);
4193     } else if ((Fn = M->getFunction(FunctionName))) {
4194       // Reject redefinitions.
4195       return Error(NameLoc, "invalid redefinition of function '" +
4196                    FunctionName + "'");
4197     } else if (M->getNamedValue(FunctionName)) {
4198       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
4199     }
4200
4201   } else {
4202     // If this is a definition of a forward referenced function, make sure the
4203     // types agree.
4204     std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
4205       = ForwardRefValIDs.find(NumberedVals.size());
4206     if (I != ForwardRefValIDs.end()) {
4207       Fn = cast<Function>(I->second.first);
4208       if (Fn->getType() != PFT)
4209         return Error(NameLoc, "type of definition and forward reference of '@" +
4210                      Twine(NumberedVals.size()) + "' disagree");
4211       ForwardRefValIDs.erase(I);
4212     }
4213   }
4214
4215   if (!Fn)
4216     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
4217   else // Move the forward-reference to the correct spot in the module.
4218     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
4219
4220   if (FunctionName.empty())
4221     NumberedVals.push_back(Fn);
4222
4223   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
4224   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
4225   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
4226   Fn->setCallingConv(CC);
4227   Fn->setAttributes(PAL);
4228   Fn->setUnnamedAddr(UnnamedAddr);
4229   Fn->setAlignment(Alignment);
4230   Fn->setSection(Section);
4231   Fn->setComdat(C);
4232   if (!GC.empty()) Fn->setGC(GC.c_str());
4233   Fn->setPrefixData(Prefix);
4234   Fn->setPrologueData(Prologue);
4235   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
4236
4237   // Add all of the arguments we parsed to the function.
4238   Function::arg_iterator ArgIt = Fn->arg_begin();
4239   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
4240     // If the argument has a name, insert it into the argument symbol table.
4241     if (ArgList[i].Name.empty()) continue;
4242
4243     // Set the name, if it conflicted, it will be auto-renamed.
4244     ArgIt->setName(ArgList[i].Name);
4245
4246     if (ArgIt->getName() != ArgList[i].Name)
4247       return Error(ArgList[i].Loc, "redefinition of argument '%" +
4248                    ArgList[i].Name + "'");
4249   }
4250
4251   if (isDefine)
4252     return false;
4253
4254   // Check the declaration has no block address forward references.
4255   ValID ID;
4256   if (FunctionName.empty()) {
4257     ID.Kind = ValID::t_GlobalID;
4258     ID.UIntVal = NumberedVals.size() - 1;
4259   } else {
4260     ID.Kind = ValID::t_GlobalName;
4261     ID.StrVal = FunctionName;
4262   }
4263   auto Blocks = ForwardRefBlockAddresses.find(ID);
4264   if (Blocks != ForwardRefBlockAddresses.end())
4265     return Error(Blocks->first.Loc,
4266                  "cannot take blockaddress inside a declaration");
4267   return false;
4268 }
4269
4270 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
4271   ValID ID;
4272   if (FunctionNumber == -1) {
4273     ID.Kind = ValID::t_GlobalName;
4274     ID.StrVal = F.getName();
4275   } else {
4276     ID.Kind = ValID::t_GlobalID;
4277     ID.UIntVal = FunctionNumber;
4278   }
4279
4280   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
4281   if (Blocks == P.ForwardRefBlockAddresses.end())
4282     return false;
4283
4284   for (const auto &I : Blocks->second) {
4285     const ValID &BBID = I.first;
4286     GlobalValue *GV = I.second;
4287
4288     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
4289            "Expected local id or name");
4290     BasicBlock *BB;
4291     if (BBID.Kind == ValID::t_LocalName)
4292       BB = GetBB(BBID.StrVal, BBID.Loc);
4293     else
4294       BB = GetBB(BBID.UIntVal, BBID.Loc);
4295     if (!BB)
4296       return P.Error(BBID.Loc, "referenced value is not a basic block");
4297
4298     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
4299     GV->eraseFromParent();
4300   }
4301
4302   P.ForwardRefBlockAddresses.erase(Blocks);
4303   return false;
4304 }
4305
4306 /// ParseFunctionBody
4307 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
4308 bool LLParser::ParseFunctionBody(Function &Fn) {
4309   if (Lex.getKind() != lltok::lbrace)
4310     return TokError("expected '{' in function body");
4311   Lex.Lex();  // eat the {.
4312
4313   int FunctionNumber = -1;
4314   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
4315
4316   PerFunctionState PFS(*this, Fn, FunctionNumber);
4317
4318   // Resolve block addresses and allow basic blocks to be forward-declared
4319   // within this function.
4320   if (PFS.resolveForwardRefBlockAddresses())
4321     return true;
4322   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
4323
4324   // We need at least one basic block.
4325   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
4326     return TokError("function body requires at least one basic block");
4327
4328   while (Lex.getKind() != lltok::rbrace &&
4329          Lex.getKind() != lltok::kw_uselistorder)
4330     if (ParseBasicBlock(PFS)) return true;
4331
4332   while (Lex.getKind() != lltok::rbrace)
4333     if (ParseUseListOrder(&PFS))
4334       return true;
4335
4336   // Eat the }.
4337   Lex.Lex();
4338
4339   // Verify function is ok.
4340   return PFS.FinishFunction();
4341 }
4342
4343 /// ParseBasicBlock
4344 ///   ::= LabelStr? Instruction*
4345 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
4346   // If this basic block starts out with a name, remember it.
4347   std::string Name;
4348   LocTy NameLoc = Lex.getLoc();
4349   if (Lex.getKind() == lltok::LabelStr) {
4350     Name = Lex.getStrVal();
4351     Lex.Lex();
4352   }
4353
4354   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
4355   if (!BB)
4356     return Error(NameLoc,
4357                  "unable to create block named '" + Name + "'");
4358
4359   std::string NameStr;
4360
4361   // Parse the instructions in this block until we get a terminator.
4362   Instruction *Inst;
4363   do {
4364     // This instruction may have three possibilities for a name: a) none
4365     // specified, b) name specified "%foo =", c) number specified: "%4 =".
4366     LocTy NameLoc = Lex.getLoc();
4367     int NameID = -1;
4368     NameStr = "";
4369
4370     if (Lex.getKind() == lltok::LocalVarID) {
4371       NameID = Lex.getUIntVal();
4372       Lex.Lex();
4373       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
4374         return true;
4375     } else if (Lex.getKind() == lltok::LocalVar) {
4376       NameStr = Lex.getStrVal();
4377       Lex.Lex();
4378       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
4379         return true;
4380     }
4381
4382     switch (ParseInstruction(Inst, BB, PFS)) {
4383     default: llvm_unreachable("Unknown ParseInstruction result!");
4384     case InstError: return true;
4385     case InstNormal:
4386       BB->getInstList().push_back(Inst);
4387
4388       // With a normal result, we check to see if the instruction is followed by
4389       // a comma and metadata.
4390       if (EatIfPresent(lltok::comma))
4391         if (ParseInstructionMetadata(Inst, &PFS))
4392           return true;
4393       break;
4394     case InstExtraComma:
4395       BB->getInstList().push_back(Inst);
4396
4397       // If the instruction parser ate an extra comma at the end of it, it
4398       // *must* be followed by metadata.
4399       if (ParseInstructionMetadata(Inst, &PFS))
4400         return true;
4401       break;
4402     }
4403
4404     // Set the name on the instruction.
4405     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
4406   } while (!isa<TerminatorInst>(Inst));
4407
4408   return false;
4409 }
4410
4411 //===----------------------------------------------------------------------===//
4412 // Instruction Parsing.
4413 //===----------------------------------------------------------------------===//
4414
4415 /// ParseInstruction - Parse one of the many different instructions.
4416 ///
4417 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
4418                                PerFunctionState &PFS) {
4419   lltok::Kind Token = Lex.getKind();
4420   if (Token == lltok::Eof)
4421     return TokError("found end of file when expecting more instructions");
4422   LocTy Loc = Lex.getLoc();
4423   unsigned KeywordVal = Lex.getUIntVal();
4424   Lex.Lex();  // Eat the keyword.
4425
4426   switch (Token) {
4427   default:                    return Error(Loc, "expected instruction opcode");
4428   // Terminator Instructions.
4429   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
4430   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
4431   case lltok::kw_br:          return ParseBr(Inst, PFS);
4432   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
4433   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
4434   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
4435   case lltok::kw_resume:      return ParseResume(Inst, PFS);
4436   // Binary Operators.
4437   case lltok::kw_add:
4438   case lltok::kw_sub:
4439   case lltok::kw_mul:
4440   case lltok::kw_shl: {
4441     bool NUW = EatIfPresent(lltok::kw_nuw);
4442     bool NSW = EatIfPresent(lltok::kw_nsw);
4443     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
4444
4445     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
4446
4447     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
4448     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
4449     return false;
4450   }
4451   case lltok::kw_fadd:
4452   case lltok::kw_fsub:
4453   case lltok::kw_fmul:
4454   case lltok::kw_fdiv:
4455   case lltok::kw_frem: {
4456     FastMathFlags FMF = EatFastMathFlagsIfPresent();
4457     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
4458     if (Res != 0)
4459       return Res;
4460     if (FMF.any())
4461       Inst->setFastMathFlags(FMF);
4462     return 0;
4463   }
4464
4465   case lltok::kw_sdiv:
4466   case lltok::kw_udiv:
4467   case lltok::kw_lshr:
4468   case lltok::kw_ashr: {
4469     bool Exact = EatIfPresent(lltok::kw_exact);
4470
4471     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
4472     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
4473     return false;
4474   }
4475
4476   case lltok::kw_urem:
4477   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
4478   case lltok::kw_and:
4479   case lltok::kw_or:
4480   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
4481   case lltok::kw_icmp:
4482   case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
4483   // Casts.
4484   case lltok::kw_trunc:
4485   case lltok::kw_zext:
4486   case lltok::kw_sext:
4487   case lltok::kw_fptrunc:
4488   case lltok::kw_fpext:
4489   case lltok::kw_bitcast:
4490   case lltok::kw_addrspacecast:
4491   case lltok::kw_uitofp:
4492   case lltok::kw_sitofp:
4493   case lltok::kw_fptoui:
4494   case lltok::kw_fptosi:
4495   case lltok::kw_inttoptr:
4496   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
4497   // Other.
4498   case lltok::kw_select:         return ParseSelect(Inst, PFS);
4499   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
4500   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
4501   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
4502   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
4503   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
4504   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
4505   // Call.
4506   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
4507   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
4508   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
4509   // Memory.
4510   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
4511   case lltok::kw_load:           return ParseLoad(Inst, PFS);
4512   case lltok::kw_store:          return ParseStore(Inst, PFS);
4513   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
4514   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
4515   case lltok::kw_fence:          return ParseFence(Inst, PFS);
4516   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
4517   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
4518   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
4519   }
4520 }
4521
4522 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
4523 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
4524   if (Opc == Instruction::FCmp) {
4525     switch (Lex.getKind()) {
4526     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
4527     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
4528     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
4529     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
4530     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
4531     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
4532     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
4533     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
4534     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
4535     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
4536     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
4537     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
4538     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
4539     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
4540     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
4541     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
4542     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
4543     }
4544   } else {
4545     switch (Lex.getKind()) {
4546     default: return TokError("expected icmp predicate (e.g. 'eq')");
4547     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
4548     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
4549     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
4550     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
4551     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
4552     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
4553     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
4554     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
4555     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
4556     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
4557     }
4558   }
4559   Lex.Lex();
4560   return false;
4561 }
4562
4563 //===----------------------------------------------------------------------===//
4564 // Terminator Instructions.
4565 //===----------------------------------------------------------------------===//
4566
4567 /// ParseRet - Parse a return instruction.
4568 ///   ::= 'ret' void (',' !dbg, !1)*
4569 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
4570 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
4571                         PerFunctionState &PFS) {
4572   SMLoc TypeLoc = Lex.getLoc();
4573   Type *Ty = nullptr;
4574   if (ParseType(Ty, true /*void allowed*/)) return true;
4575
4576   Type *ResType = PFS.getFunction().getReturnType();
4577
4578   if (Ty->isVoidTy()) {
4579     if (!ResType->isVoidTy())
4580       return Error(TypeLoc, "value doesn't match function result type '" +
4581                    getTypeString(ResType) + "'");
4582
4583     Inst = ReturnInst::Create(Context);
4584     return false;
4585   }
4586
4587   Value *RV;
4588   if (ParseValue(Ty, RV, PFS)) return true;
4589
4590   if (ResType != RV->getType())
4591     return Error(TypeLoc, "value doesn't match function result type '" +
4592                  getTypeString(ResType) + "'");
4593
4594   Inst = ReturnInst::Create(Context, RV);
4595   return false;
4596 }
4597
4598
4599 /// ParseBr
4600 ///   ::= 'br' TypeAndValue
4601 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
4602 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
4603   LocTy Loc, Loc2;
4604   Value *Op0;
4605   BasicBlock *Op1, *Op2;
4606   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
4607
4608   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
4609     Inst = BranchInst::Create(BB);
4610     return false;
4611   }
4612
4613   if (Op0->getType() != Type::getInt1Ty(Context))
4614     return Error(Loc, "branch condition must have 'i1' type");
4615
4616   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
4617       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
4618       ParseToken(lltok::comma, "expected ',' after true destination") ||
4619       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
4620     return true;
4621
4622   Inst = BranchInst::Create(Op1, Op2, Op0);
4623   return false;
4624 }
4625
4626 /// ParseSwitch
4627 ///  Instruction
4628 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
4629 ///  JumpTable
4630 ///    ::= (TypeAndValue ',' TypeAndValue)*
4631 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
4632   LocTy CondLoc, BBLoc;
4633   Value *Cond;
4634   BasicBlock *DefaultBB;
4635   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
4636       ParseToken(lltok::comma, "expected ',' after switch condition") ||
4637       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
4638       ParseToken(lltok::lsquare, "expected '[' with switch table"))
4639     return true;
4640
4641   if (!Cond->getType()->isIntegerTy())
4642     return Error(CondLoc, "switch condition must have integer type");
4643
4644   // Parse the jump table pairs.
4645   SmallPtrSet<Value*, 32> SeenCases;
4646   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
4647   while (Lex.getKind() != lltok::rsquare) {
4648     Value *Constant;
4649     BasicBlock *DestBB;
4650
4651     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
4652         ParseToken(lltok::comma, "expected ',' after case value") ||
4653         ParseTypeAndBasicBlock(DestBB, PFS))
4654       return true;
4655
4656     if (!SeenCases.insert(Constant).second)
4657       return Error(CondLoc, "duplicate case value in switch");
4658     if (!isa<ConstantInt>(Constant))
4659       return Error(CondLoc, "case value is not a constant integer");
4660
4661     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
4662   }
4663
4664   Lex.Lex();  // Eat the ']'.
4665
4666   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
4667   for (unsigned i = 0, e = Table.size(); i != e; ++i)
4668     SI->addCase(Table[i].first, Table[i].second);
4669   Inst = SI;
4670   return false;
4671 }
4672
4673 /// ParseIndirectBr
4674 ///  Instruction
4675 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
4676 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
4677   LocTy AddrLoc;
4678   Value *Address;
4679   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
4680       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
4681       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
4682     return true;
4683
4684   if (!Address->getType()->isPointerTy())
4685     return Error(AddrLoc, "indirectbr address must have pointer type");
4686
4687   // Parse the destination list.
4688   SmallVector<BasicBlock*, 16> DestList;
4689
4690   if (Lex.getKind() != lltok::rsquare) {
4691     BasicBlock *DestBB;
4692     if (ParseTypeAndBasicBlock(DestBB, PFS))
4693       return true;
4694     DestList.push_back(DestBB);
4695
4696     while (EatIfPresent(lltok::comma)) {
4697       if (ParseTypeAndBasicBlock(DestBB, PFS))
4698         return true;
4699       DestList.push_back(DestBB);
4700     }
4701   }
4702
4703   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
4704     return true;
4705
4706   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
4707   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
4708     IBI->addDestination(DestList[i]);
4709   Inst = IBI;
4710   return false;
4711 }
4712
4713
4714 /// ParseInvoke
4715 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
4716 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
4717 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
4718   LocTy CallLoc = Lex.getLoc();
4719   AttrBuilder RetAttrs, FnAttrs;
4720   std::vector<unsigned> FwdRefAttrGrps;
4721   LocTy NoBuiltinLoc;
4722   unsigned CC;
4723   Type *RetType = nullptr;
4724   LocTy RetTypeLoc;
4725   ValID CalleeID;
4726   SmallVector<ParamInfo, 16> ArgList;
4727
4728   BasicBlock *NormalBB, *UnwindBB;
4729   if (ParseOptionalCallingConv(CC) ||
4730       ParseOptionalReturnAttrs(RetAttrs) ||
4731       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
4732       ParseValID(CalleeID) ||
4733       ParseParameterList(ArgList, PFS) ||
4734       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
4735                                  NoBuiltinLoc) ||
4736       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
4737       ParseTypeAndBasicBlock(NormalBB, PFS) ||
4738       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
4739       ParseTypeAndBasicBlock(UnwindBB, PFS))
4740     return true;
4741
4742   // If RetType is a non-function pointer type, then this is the short syntax
4743   // for the call, which means that RetType is just the return type.  Infer the
4744   // rest of the function argument types from the arguments that are present.
4745   PointerType *PFTy = nullptr;
4746   FunctionType *Ty = nullptr;
4747   if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
4748       !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
4749     // Pull out the types of all of the arguments...
4750     std::vector<Type*> ParamTypes;
4751     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
4752       ParamTypes.push_back(ArgList[i].V->getType());
4753
4754     if (!FunctionType::isValidReturnType(RetType))
4755       return Error(RetTypeLoc, "Invalid result type for LLVM function");
4756
4757     Ty = FunctionType::get(RetType, ParamTypes, false);
4758     PFTy = PointerType::getUnqual(Ty);
4759   }
4760
4761   // Look up the callee.
4762   Value *Callee;
4763   if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
4764
4765   // Set up the Attribute for the function.
4766   SmallVector<AttributeSet, 8> Attrs;
4767   if (RetAttrs.hasAttributes())
4768     Attrs.push_back(AttributeSet::get(RetType->getContext(),
4769                                       AttributeSet::ReturnIndex,
4770                                       RetAttrs));
4771
4772   SmallVector<Value*, 8> Args;
4773
4774   // Loop through FunctionType's arguments and ensure they are specified
4775   // correctly.  Also, gather any parameter attributes.
4776   FunctionType::param_iterator I = Ty->param_begin();
4777   FunctionType::param_iterator E = Ty->param_end();
4778   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
4779     Type *ExpectedTy = nullptr;
4780     if (I != E) {
4781       ExpectedTy = *I++;
4782     } else if (!Ty->isVarArg()) {
4783       return Error(ArgList[i].Loc, "too many arguments specified");
4784     }
4785
4786     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
4787       return Error(ArgList[i].Loc, "argument is not of expected type '" +
4788                    getTypeString(ExpectedTy) + "'");
4789     Args.push_back(ArgList[i].V);
4790     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
4791       AttrBuilder B(ArgList[i].Attrs, i + 1);
4792       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
4793     }
4794   }
4795
4796   if (I != E)
4797     return Error(CallLoc, "not enough parameters specified for call");
4798
4799   if (FnAttrs.hasAttributes()) {
4800     if (FnAttrs.hasAlignmentAttr())
4801       return Error(CallLoc, "invoke instructions may not have an alignment");
4802
4803     Attrs.push_back(AttributeSet::get(RetType->getContext(),
4804                                       AttributeSet::FunctionIndex,
4805                                       FnAttrs));
4806   }
4807
4808   // Finish off the Attribute and check them
4809   AttributeSet PAL = AttributeSet::get(Context, Attrs);
4810
4811   InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
4812   II->setCallingConv(CC);
4813   II->setAttributes(PAL);
4814   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
4815   Inst = II;
4816   return false;
4817 }
4818
4819 /// ParseResume
4820 ///   ::= 'resume' TypeAndValue
4821 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
4822   Value *Exn; LocTy ExnLoc;
4823   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
4824     return true;
4825
4826   ResumeInst *RI = ResumeInst::Create(Exn);
4827   Inst = RI;
4828   return false;
4829 }
4830
4831 //===----------------------------------------------------------------------===//
4832 // Binary Operators.
4833 //===----------------------------------------------------------------------===//
4834
4835 /// ParseArithmetic
4836 ///  ::= ArithmeticOps TypeAndValue ',' Value
4837 ///
4838 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
4839 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
4840 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
4841                                unsigned Opc, unsigned OperandType) {
4842   LocTy Loc; Value *LHS, *RHS;
4843   if (ParseTypeAndValue(LHS, Loc, PFS) ||
4844       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
4845       ParseValue(LHS->getType(), RHS, PFS))
4846     return true;
4847
4848   bool Valid;
4849   switch (OperandType) {
4850   default: llvm_unreachable("Unknown operand type!");
4851   case 0: // int or FP.
4852     Valid = LHS->getType()->isIntOrIntVectorTy() ||
4853             LHS->getType()->isFPOrFPVectorTy();
4854     break;
4855   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
4856   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
4857   }
4858
4859   if (!Valid)
4860     return Error(Loc, "invalid operand type for instruction");
4861
4862   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4863   return false;
4864 }
4865
4866 /// ParseLogical
4867 ///  ::= ArithmeticOps TypeAndValue ',' Value {
4868 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
4869                             unsigned Opc) {
4870   LocTy Loc; Value *LHS, *RHS;
4871   if (ParseTypeAndValue(LHS, Loc, PFS) ||
4872       ParseToken(lltok::comma, "expected ',' in logical operation") ||
4873       ParseValue(LHS->getType(), RHS, PFS))
4874     return true;
4875
4876   if (!LHS->getType()->isIntOrIntVectorTy())
4877     return Error(Loc,"instruction requires integer or integer vector operands");
4878
4879   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4880   return false;
4881 }
4882
4883
4884 /// ParseCompare
4885 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
4886 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
4887 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
4888                             unsigned Opc) {
4889   // Parse the integer/fp comparison predicate.
4890   LocTy Loc;
4891   unsigned Pred;
4892   Value *LHS, *RHS;
4893   if (ParseCmpPredicate(Pred, Opc) ||
4894       ParseTypeAndValue(LHS, Loc, PFS) ||
4895       ParseToken(lltok::comma, "expected ',' after compare value") ||
4896       ParseValue(LHS->getType(), RHS, PFS))
4897     return true;
4898
4899   if (Opc == Instruction::FCmp) {
4900     if (!LHS->getType()->isFPOrFPVectorTy())
4901       return Error(Loc, "fcmp requires floating point operands");
4902     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
4903   } else {
4904     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
4905     if (!LHS->getType()->isIntOrIntVectorTy() &&
4906         !LHS->getType()->getScalarType()->isPointerTy())
4907       return Error(Loc, "icmp requires integer operands");
4908     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
4909   }
4910   return false;
4911 }
4912
4913 //===----------------------------------------------------------------------===//
4914 // Other Instructions.
4915 //===----------------------------------------------------------------------===//
4916
4917
4918 /// ParseCast
4919 ///   ::= CastOpc TypeAndValue 'to' Type
4920 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
4921                          unsigned Opc) {
4922   LocTy Loc;
4923   Value *Op;
4924   Type *DestTy = nullptr;
4925   if (ParseTypeAndValue(Op, Loc, PFS) ||
4926       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
4927       ParseType(DestTy))
4928     return true;
4929
4930   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
4931     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
4932     return Error(Loc, "invalid cast opcode for cast from '" +
4933                  getTypeString(Op->getType()) + "' to '" +
4934                  getTypeString(DestTy) + "'");
4935   }
4936   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
4937   return false;
4938 }
4939
4940 /// ParseSelect
4941 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
4942 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
4943   LocTy Loc;
4944   Value *Op0, *Op1, *Op2;
4945   if (ParseTypeAndValue(Op0, Loc, PFS) ||
4946       ParseToken(lltok::comma, "expected ',' after select condition") ||
4947       ParseTypeAndValue(Op1, PFS) ||
4948       ParseToken(lltok::comma, "expected ',' after select value") ||
4949       ParseTypeAndValue(Op2, PFS))
4950     return true;
4951
4952   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
4953     return Error(Loc, Reason);
4954
4955   Inst = SelectInst::Create(Op0, Op1, Op2);
4956   return false;
4957 }
4958
4959 /// ParseVA_Arg
4960 ///   ::= 'va_arg' TypeAndValue ',' Type
4961 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
4962   Value *Op;
4963   Type *EltTy = nullptr;
4964   LocTy TypeLoc;
4965   if (ParseTypeAndValue(Op, PFS) ||
4966       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
4967       ParseType(EltTy, TypeLoc))
4968     return true;
4969
4970   if (!EltTy->isFirstClassType())
4971     return Error(TypeLoc, "va_arg requires operand with first class type");
4972
4973   Inst = new VAArgInst(Op, EltTy);
4974   return false;
4975 }
4976
4977 /// ParseExtractElement
4978 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
4979 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
4980   LocTy Loc;
4981   Value *Op0, *Op1;
4982   if (ParseTypeAndValue(Op0, Loc, PFS) ||
4983       ParseToken(lltok::comma, "expected ',' after extract value") ||
4984       ParseTypeAndValue(Op1, PFS))
4985     return true;
4986
4987   if (!ExtractElementInst::isValidOperands(Op0, Op1))
4988     return Error(Loc, "invalid extractelement operands");
4989
4990   Inst = ExtractElementInst::Create(Op0, Op1);
4991   return false;
4992 }
4993
4994 /// ParseInsertElement
4995 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
4996 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
4997   LocTy Loc;
4998   Value *Op0, *Op1, *Op2;
4999   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5000       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5001       ParseTypeAndValue(Op1, PFS) ||
5002       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5003       ParseTypeAndValue(Op2, PFS))
5004     return true;
5005
5006   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
5007     return Error(Loc, "invalid insertelement operands");
5008
5009   Inst = InsertElementInst::Create(Op0, Op1, Op2);
5010   return false;
5011 }
5012
5013 /// ParseShuffleVector
5014 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5015 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
5016   LocTy Loc;
5017   Value *Op0, *Op1, *Op2;
5018   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5019       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
5020       ParseTypeAndValue(Op1, PFS) ||
5021       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
5022       ParseTypeAndValue(Op2, PFS))
5023     return true;
5024
5025   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
5026     return Error(Loc, "invalid shufflevector operands");
5027
5028   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
5029   return false;
5030 }
5031
5032 /// ParsePHI
5033 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
5034 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
5035   Type *Ty = nullptr;  LocTy TypeLoc;
5036   Value *Op0, *Op1;
5037
5038   if (ParseType(Ty, TypeLoc) ||
5039       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5040       ParseValue(Ty, Op0, PFS) ||
5041       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5042       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5043       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5044     return true;
5045
5046   bool AteExtraComma = false;
5047   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
5048   while (1) {
5049     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
5050
5051     if (!EatIfPresent(lltok::comma))
5052       break;
5053
5054     if (Lex.getKind() == lltok::MetadataVar) {
5055       AteExtraComma = true;
5056       break;
5057     }
5058
5059     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5060         ParseValue(Ty, Op0, PFS) ||
5061         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5062         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5063         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5064       return true;
5065   }
5066
5067   if (!Ty->isFirstClassType())
5068     return Error(TypeLoc, "phi node must have first class type");
5069
5070   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
5071   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
5072     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
5073   Inst = PN;
5074   return AteExtraComma ? InstExtraComma : InstNormal;
5075 }
5076
5077 /// ParseLandingPad
5078 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
5079 /// Clause
5080 ///   ::= 'catch' TypeAndValue
5081 ///   ::= 'filter'
5082 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
5083 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
5084   Type *Ty = nullptr; LocTy TyLoc;
5085   Value *PersFn; LocTy PersFnLoc;
5086
5087   if (ParseType(Ty, TyLoc) ||
5088       ParseToken(lltok::kw_personality, "expected 'personality'") ||
5089       ParseTypeAndValue(PersFn, PersFnLoc, PFS))
5090     return true;
5091
5092   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, PersFn, 0));
5093   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
5094
5095   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
5096     LandingPadInst::ClauseType CT;
5097     if (EatIfPresent(lltok::kw_catch))
5098       CT = LandingPadInst::Catch;
5099     else if (EatIfPresent(lltok::kw_filter))
5100       CT = LandingPadInst::Filter;
5101     else
5102       return TokError("expected 'catch' or 'filter' clause type");
5103
5104     Value *V;
5105     LocTy VLoc;
5106     if (ParseTypeAndValue(V, VLoc, PFS))
5107       return true;
5108
5109     // A 'catch' type expects a non-array constant. A filter clause expects an
5110     // array constant.
5111     if (CT == LandingPadInst::Catch) {
5112       if (isa<ArrayType>(V->getType()))
5113         Error(VLoc, "'catch' clause has an invalid type");
5114     } else {
5115       if (!isa<ArrayType>(V->getType()))
5116         Error(VLoc, "'filter' clause has an invalid type");
5117     }
5118
5119     Constant *CV = dyn_cast<Constant>(V);
5120     if (!CV)
5121       return Error(VLoc, "clause argument must be a constant");
5122     LP->addClause(CV);
5123   }
5124
5125   Inst = LP.release();
5126   return false;
5127 }
5128
5129 /// ParseCall
5130 ///   ::= 'call' OptionalCallingConv OptionalAttrs Type Value
5131 ///       ParameterList OptionalAttrs
5132 ///   ::= 'tail' 'call' OptionalCallingConv OptionalAttrs Type Value
5133 ///       ParameterList OptionalAttrs
5134 ///   ::= 'musttail' 'call' OptionalCallingConv OptionalAttrs Type Value
5135 ///       ParameterList OptionalAttrs
5136 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
5137                          CallInst::TailCallKind TCK) {
5138   AttrBuilder RetAttrs, FnAttrs;
5139   std::vector<unsigned> FwdRefAttrGrps;
5140   LocTy BuiltinLoc;
5141   unsigned CC;
5142   Type *RetType = nullptr;
5143   LocTy RetTypeLoc;
5144   ValID CalleeID;
5145   SmallVector<ParamInfo, 16> ArgList;
5146   LocTy CallLoc = Lex.getLoc();
5147
5148   if ((TCK != CallInst::TCK_None &&
5149        ParseToken(lltok::kw_call, "expected 'tail call'")) ||
5150       ParseOptionalCallingConv(CC) ||
5151       ParseOptionalReturnAttrs(RetAttrs) ||
5152       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5153       ParseValID(CalleeID) ||
5154       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
5155                          PFS.getFunction().isVarArg()) ||
5156       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5157                                  BuiltinLoc))
5158     return true;
5159
5160   // If RetType is a non-function pointer type, then this is the short syntax
5161   // for the call, which means that RetType is just the return type.  Infer the
5162   // rest of the function argument types from the arguments that are present.
5163   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5164   if (!Ty) {
5165     // Pull out the types of all of the arguments...
5166     std::vector<Type*> ParamTypes;
5167     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5168       ParamTypes.push_back(ArgList[i].V->getType());
5169
5170     if (!FunctionType::isValidReturnType(RetType))
5171       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5172
5173     Ty = FunctionType::get(RetType, ParamTypes, false);
5174   }
5175
5176   // Look up the callee.
5177   Value *Callee;
5178   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5179     return true;
5180
5181   // Set up the Attribute for the function.
5182   SmallVector<AttributeSet, 8> Attrs;
5183   if (RetAttrs.hasAttributes())
5184     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5185                                       AttributeSet::ReturnIndex,
5186                                       RetAttrs));
5187
5188   SmallVector<Value*, 8> Args;
5189
5190   // Loop through FunctionType's arguments and ensure they are specified
5191   // correctly.  Also, gather any parameter attributes.
5192   FunctionType::param_iterator I = Ty->param_begin();
5193   FunctionType::param_iterator E = Ty->param_end();
5194   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5195     Type *ExpectedTy = nullptr;
5196     if (I != E) {
5197       ExpectedTy = *I++;
5198     } else if (!Ty->isVarArg()) {
5199       return Error(ArgList[i].Loc, "too many arguments specified");
5200     }
5201
5202     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5203       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5204                    getTypeString(ExpectedTy) + "'");
5205     Args.push_back(ArgList[i].V);
5206     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
5207       AttrBuilder B(ArgList[i].Attrs, i + 1);
5208       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
5209     }
5210   }
5211
5212   if (I != E)
5213     return Error(CallLoc, "not enough parameters specified for call");
5214
5215   if (FnAttrs.hasAttributes()) {
5216     if (FnAttrs.hasAlignmentAttr())
5217       return Error(CallLoc, "call instructions may not have an alignment");
5218
5219     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5220                                       AttributeSet::FunctionIndex,
5221                                       FnAttrs));
5222   }
5223
5224   // Finish off the Attribute and check them
5225   AttributeSet PAL = AttributeSet::get(Context, Attrs);
5226
5227   CallInst *CI = CallInst::Create(Ty, Callee, Args);
5228   CI->setTailCallKind(TCK);
5229   CI->setCallingConv(CC);
5230   CI->setAttributes(PAL);
5231   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
5232   Inst = CI;
5233   return false;
5234 }
5235
5236 //===----------------------------------------------------------------------===//
5237 // Memory Instructions.
5238 //===----------------------------------------------------------------------===//
5239
5240 /// ParseAlloc
5241 ///   ::= 'alloca' 'inalloca'? Type (',' TypeAndValue)? (',' 'align' i32)?
5242 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
5243   Value *Size = nullptr;
5244   LocTy SizeLoc, TyLoc;
5245   unsigned Alignment = 0;
5246   Type *Ty = nullptr;
5247
5248   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
5249
5250   if (ParseType(Ty, TyLoc)) return true;
5251
5252   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
5253     return Error(TyLoc, "invalid type for alloca");
5254
5255   bool AteExtraComma = false;
5256   if (EatIfPresent(lltok::comma)) {
5257     if (Lex.getKind() == lltok::kw_align) {
5258       if (ParseOptionalAlignment(Alignment)) return true;
5259     } else if (Lex.getKind() == lltok::MetadataVar) {
5260       AteExtraComma = true;
5261     } else {
5262       if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
5263           ParseOptionalCommaAlign(Alignment, AteExtraComma))
5264         return true;
5265     }
5266   }
5267
5268   if (Size && !Size->getType()->isIntegerTy())
5269     return Error(SizeLoc, "element count must have integer type");
5270
5271   AllocaInst *AI = new AllocaInst(Ty, Size, Alignment);
5272   AI->setUsedWithInAlloca(IsInAlloca);
5273   Inst = AI;
5274   return AteExtraComma ? InstExtraComma : InstNormal;
5275 }
5276
5277 /// ParseLoad
5278 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
5279 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
5280 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
5281 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
5282   Value *Val; LocTy Loc;
5283   unsigned Alignment = 0;
5284   bool AteExtraComma = false;
5285   bool isAtomic = false;
5286   AtomicOrdering Ordering = NotAtomic;
5287   SynchronizationScope Scope = CrossThread;
5288
5289   if (Lex.getKind() == lltok::kw_atomic) {
5290     isAtomic = true;
5291     Lex.Lex();
5292   }
5293
5294   bool isVolatile = false;
5295   if (Lex.getKind() == lltok::kw_volatile) {
5296     isVolatile = true;
5297     Lex.Lex();
5298   }
5299
5300   Type *Ty;
5301   LocTy ExplicitTypeLoc = Lex.getLoc();
5302   if (ParseType(Ty) ||
5303       ParseToken(lltok::comma, "expected comma after load's type") ||
5304       ParseTypeAndValue(Val, Loc, PFS) ||
5305       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
5306       ParseOptionalCommaAlign(Alignment, AteExtraComma))
5307     return true;
5308
5309   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
5310     return Error(Loc, "load operand must be a pointer to a first class type");
5311   if (isAtomic && !Alignment)
5312     return Error(Loc, "atomic load must have explicit non-zero alignment");
5313   if (Ordering == Release || Ordering == AcquireRelease)
5314     return Error(Loc, "atomic load cannot use Release ordering");
5315
5316   if (Ty != cast<PointerType>(Val->getType())->getElementType())
5317     return Error(ExplicitTypeLoc,
5318                  "explicit pointee type doesn't match operand's pointee type");
5319
5320   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope);
5321   return AteExtraComma ? InstExtraComma : InstNormal;
5322 }
5323
5324 /// ParseStore
5325
5326 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
5327 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
5328 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
5329 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
5330   Value *Val, *Ptr; LocTy Loc, PtrLoc;
5331   unsigned Alignment = 0;
5332   bool AteExtraComma = false;
5333   bool isAtomic = false;
5334   AtomicOrdering Ordering = NotAtomic;
5335   SynchronizationScope Scope = CrossThread;
5336
5337   if (Lex.getKind() == lltok::kw_atomic) {
5338     isAtomic = true;
5339     Lex.Lex();
5340   }
5341
5342   bool isVolatile = false;
5343   if (Lex.getKind() == lltok::kw_volatile) {
5344     isVolatile = true;
5345     Lex.Lex();
5346   }
5347
5348   if (ParseTypeAndValue(Val, Loc, PFS) ||
5349       ParseToken(lltok::comma, "expected ',' after store operand") ||
5350       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
5351       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
5352       ParseOptionalCommaAlign(Alignment, AteExtraComma))
5353     return true;
5354
5355   if (!Ptr->getType()->isPointerTy())
5356     return Error(PtrLoc, "store operand must be a pointer");
5357   if (!Val->getType()->isFirstClassType())
5358     return Error(Loc, "store operand must be a first class value");
5359   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
5360     return Error(Loc, "stored value and pointer type do not match");
5361   if (isAtomic && !Alignment)
5362     return Error(Loc, "atomic store must have explicit non-zero alignment");
5363   if (Ordering == Acquire || Ordering == AcquireRelease)
5364     return Error(Loc, "atomic store cannot use Acquire ordering");
5365
5366   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
5367   return AteExtraComma ? InstExtraComma : InstNormal;
5368 }
5369
5370 /// ParseCmpXchg
5371 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
5372 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
5373 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
5374   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
5375   bool AteExtraComma = false;
5376   AtomicOrdering SuccessOrdering = NotAtomic;
5377   AtomicOrdering FailureOrdering = NotAtomic;
5378   SynchronizationScope Scope = CrossThread;
5379   bool isVolatile = false;
5380   bool isWeak = false;
5381
5382   if (EatIfPresent(lltok::kw_weak))
5383     isWeak = true;
5384
5385   if (EatIfPresent(lltok::kw_volatile))
5386     isVolatile = true;
5387
5388   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
5389       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
5390       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
5391       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
5392       ParseTypeAndValue(New, NewLoc, PFS) ||
5393       ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) ||
5394       ParseOrdering(FailureOrdering))
5395     return true;
5396
5397   if (SuccessOrdering == Unordered || FailureOrdering == Unordered)
5398     return TokError("cmpxchg cannot be unordered");
5399   if (SuccessOrdering < FailureOrdering)
5400     return TokError("cmpxchg must be at least as ordered on success as failure");
5401   if (FailureOrdering == Release || FailureOrdering == AcquireRelease)
5402     return TokError("cmpxchg failure ordering cannot include release semantics");
5403   if (!Ptr->getType()->isPointerTy())
5404     return Error(PtrLoc, "cmpxchg operand must be a pointer");
5405   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
5406     return Error(CmpLoc, "compare value and pointer type do not match");
5407   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
5408     return Error(NewLoc, "new value and pointer type do not match");
5409   if (!New->getType()->isIntegerTy())
5410     return Error(NewLoc, "cmpxchg operand must be an integer");
5411   unsigned Size = New->getType()->getPrimitiveSizeInBits();
5412   if (Size < 8 || (Size & (Size - 1)))
5413     return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
5414                          " integer");
5415
5416   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
5417       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope);
5418   CXI->setVolatile(isVolatile);
5419   CXI->setWeak(isWeak);
5420   Inst = CXI;
5421   return AteExtraComma ? InstExtraComma : InstNormal;
5422 }
5423
5424 /// ParseAtomicRMW
5425 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
5426 ///       'singlethread'? AtomicOrdering
5427 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
5428   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
5429   bool AteExtraComma = false;
5430   AtomicOrdering Ordering = NotAtomic;
5431   SynchronizationScope Scope = CrossThread;
5432   bool isVolatile = false;
5433   AtomicRMWInst::BinOp Operation;
5434
5435   if (EatIfPresent(lltok::kw_volatile))
5436     isVolatile = true;
5437
5438   switch (Lex.getKind()) {
5439   default: return TokError("expected binary operation in atomicrmw");
5440   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
5441   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
5442   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
5443   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
5444   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
5445   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
5446   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
5447   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
5448   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
5449   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
5450   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
5451   }
5452   Lex.Lex();  // Eat the operation.
5453
5454   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
5455       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
5456       ParseTypeAndValue(Val, ValLoc, PFS) ||
5457       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
5458     return true;
5459
5460   if (Ordering == Unordered)
5461     return TokError("atomicrmw cannot be unordered");
5462   if (!Ptr->getType()->isPointerTy())
5463     return Error(PtrLoc, "atomicrmw operand must be a pointer");
5464   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
5465     return Error(ValLoc, "atomicrmw value and pointer type do not match");
5466   if (!Val->getType()->isIntegerTy())
5467     return Error(ValLoc, "atomicrmw operand must be an integer");
5468   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
5469   if (Size < 8 || (Size & (Size - 1)))
5470     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
5471                          " integer");
5472
5473   AtomicRMWInst *RMWI =
5474     new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
5475   RMWI->setVolatile(isVolatile);
5476   Inst = RMWI;
5477   return AteExtraComma ? InstExtraComma : InstNormal;
5478 }
5479
5480 /// ParseFence
5481 ///   ::= 'fence' 'singlethread'? AtomicOrdering
5482 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
5483   AtomicOrdering Ordering = NotAtomic;
5484   SynchronizationScope Scope = CrossThread;
5485   if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
5486     return true;
5487
5488   if (Ordering == Unordered)
5489     return TokError("fence cannot be unordered");
5490   if (Ordering == Monotonic)
5491     return TokError("fence cannot be monotonic");
5492
5493   Inst = new FenceInst(Context, Ordering, Scope);
5494   return InstNormal;
5495 }
5496
5497 /// ParseGetElementPtr
5498 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
5499 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
5500   Value *Ptr = nullptr;
5501   Value *Val = nullptr;
5502   LocTy Loc, EltLoc;
5503
5504   bool InBounds = EatIfPresent(lltok::kw_inbounds);
5505
5506   Type *Ty = nullptr;
5507   LocTy ExplicitTypeLoc = Lex.getLoc();
5508   if (ParseType(Ty) ||
5509       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
5510       ParseTypeAndValue(Ptr, Loc, PFS))
5511     return true;
5512
5513   Type *BaseType = Ptr->getType();
5514   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
5515   if (!BasePointerType)
5516     return Error(Loc, "base of getelementptr must be a pointer");
5517
5518   if (Ty != BasePointerType->getElementType())
5519     return Error(ExplicitTypeLoc,
5520                  "explicit pointee type doesn't match operand's pointee type");
5521
5522   SmallVector<Value*, 16> Indices;
5523   bool AteExtraComma = false;
5524   while (EatIfPresent(lltok::comma)) {
5525     if (Lex.getKind() == lltok::MetadataVar) {
5526       AteExtraComma = true;
5527       break;
5528     }
5529     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
5530     if (!Val->getType()->getScalarType()->isIntegerTy())
5531       return Error(EltLoc, "getelementptr index must be an integer");
5532     if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy())
5533       return Error(EltLoc, "getelementptr index type missmatch");
5534     if (Val->getType()->isVectorTy()) {
5535       unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements();
5536       unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements();
5537       if (ValNumEl != PtrNumEl)
5538         return Error(EltLoc,
5539           "getelementptr vector index has a wrong number of elements");
5540     }
5541     Indices.push_back(Val);
5542   }
5543
5544   SmallPtrSet<const Type*, 4> Visited;
5545   if (!Indices.empty() && !Ty->isSized(&Visited))
5546     return Error(Loc, "base element of getelementptr must be sized");
5547
5548   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
5549     return Error(Loc, "invalid getelementptr indices");
5550   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
5551   if (InBounds)
5552     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
5553   return AteExtraComma ? InstExtraComma : InstNormal;
5554 }
5555
5556 /// ParseExtractValue
5557 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
5558 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
5559   Value *Val; LocTy Loc;
5560   SmallVector<unsigned, 4> Indices;
5561   bool AteExtraComma;
5562   if (ParseTypeAndValue(Val, Loc, PFS) ||
5563       ParseIndexList(Indices, AteExtraComma))
5564     return true;
5565
5566   if (!Val->getType()->isAggregateType())
5567     return Error(Loc, "extractvalue operand must be aggregate type");
5568
5569   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
5570     return Error(Loc, "invalid indices for extractvalue");
5571   Inst = ExtractValueInst::Create(Val, Indices);
5572   return AteExtraComma ? InstExtraComma : InstNormal;
5573 }
5574
5575 /// ParseInsertValue
5576 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
5577 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
5578   Value *Val0, *Val1; LocTy Loc0, Loc1;
5579   SmallVector<unsigned, 4> Indices;
5580   bool AteExtraComma;
5581   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
5582       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
5583       ParseTypeAndValue(Val1, Loc1, PFS) ||
5584       ParseIndexList(Indices, AteExtraComma))
5585     return true;
5586
5587   if (!Val0->getType()->isAggregateType())
5588     return Error(Loc0, "insertvalue operand must be aggregate type");
5589
5590   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
5591   if (!IndexedType)
5592     return Error(Loc0, "invalid indices for insertvalue");
5593   if (IndexedType != Val1->getType())
5594     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
5595                            getTypeString(Val1->getType()) + "' instead of '" +
5596                            getTypeString(IndexedType) + "'");
5597   Inst = InsertValueInst::Create(Val0, Val1, Indices);
5598   return AteExtraComma ? InstExtraComma : InstNormal;
5599 }
5600
5601 //===----------------------------------------------------------------------===//
5602 // Embedded metadata.
5603 //===----------------------------------------------------------------------===//
5604
5605 /// ParseMDNodeVector
5606 ///   ::= { Element (',' Element)* }
5607 /// Element
5608 ///   ::= 'null' | TypeAndValue
5609 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
5610   if (ParseToken(lltok::lbrace, "expected '{' here"))
5611     return true;
5612
5613   // Check for an empty list.
5614   if (EatIfPresent(lltok::rbrace))
5615     return false;
5616
5617   do {
5618     // Null is a special case since it is typeless.
5619     if (EatIfPresent(lltok::kw_null)) {
5620       Elts.push_back(nullptr);
5621       continue;
5622     }
5623
5624     Metadata *MD;
5625     if (ParseMetadata(MD, nullptr))
5626       return true;
5627     Elts.push_back(MD);
5628   } while (EatIfPresent(lltok::comma));
5629
5630   return ParseToken(lltok::rbrace, "expected end of metadata node");
5631 }
5632
5633 //===----------------------------------------------------------------------===//
5634 // Use-list order directives.
5635 //===----------------------------------------------------------------------===//
5636 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
5637                                 SMLoc Loc) {
5638   if (V->use_empty())
5639     return Error(Loc, "value has no uses");
5640
5641   unsigned NumUses = 0;
5642   SmallDenseMap<const Use *, unsigned, 16> Order;
5643   for (const Use &U : V->uses()) {
5644     if (++NumUses > Indexes.size())
5645       break;
5646     Order[&U] = Indexes[NumUses - 1];
5647   }
5648   if (NumUses < 2)
5649     return Error(Loc, "value only has one use");
5650   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
5651     return Error(Loc, "wrong number of indexes, expected " +
5652                           Twine(std::distance(V->use_begin(), V->use_end())));
5653
5654   V->sortUseList([&](const Use &L, const Use &R) {
5655     return Order.lookup(&L) < Order.lookup(&R);
5656   });
5657   return false;
5658 }
5659
5660 /// ParseUseListOrderIndexes
5661 ///   ::= '{' uint32 (',' uint32)+ '}'
5662 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
5663   SMLoc Loc = Lex.getLoc();
5664   if (ParseToken(lltok::lbrace, "expected '{' here"))
5665     return true;
5666   if (Lex.getKind() == lltok::rbrace)
5667     return Lex.Error("expected non-empty list of uselistorder indexes");
5668
5669   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
5670   // indexes should be distinct numbers in the range [0, size-1], and should
5671   // not be in order.
5672   unsigned Offset = 0;
5673   unsigned Max = 0;
5674   bool IsOrdered = true;
5675   assert(Indexes.empty() && "Expected empty order vector");
5676   do {
5677     unsigned Index;
5678     if (ParseUInt32(Index))
5679       return true;
5680
5681     // Update consistency checks.
5682     Offset += Index - Indexes.size();
5683     Max = std::max(Max, Index);
5684     IsOrdered &= Index == Indexes.size();
5685
5686     Indexes.push_back(Index);
5687   } while (EatIfPresent(lltok::comma));
5688
5689   if (ParseToken(lltok::rbrace, "expected '}' here"))
5690     return true;
5691
5692   if (Indexes.size() < 2)
5693     return Error(Loc, "expected >= 2 uselistorder indexes");
5694   if (Offset != 0 || Max >= Indexes.size())
5695     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
5696   if (IsOrdered)
5697     return Error(Loc, "expected uselistorder indexes to change the order");
5698
5699   return false;
5700 }
5701
5702 /// ParseUseListOrder
5703 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
5704 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
5705   SMLoc Loc = Lex.getLoc();
5706   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
5707     return true;
5708
5709   Value *V;
5710   SmallVector<unsigned, 16> Indexes;
5711   if (ParseTypeAndValue(V, PFS) ||
5712       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
5713       ParseUseListOrderIndexes(Indexes))
5714     return true;
5715
5716   return sortUseListOrder(V, Indexes, Loc);
5717 }
5718
5719 /// ParseUseListOrderBB
5720 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
5721 bool LLParser::ParseUseListOrderBB() {
5722   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
5723   SMLoc Loc = Lex.getLoc();
5724   Lex.Lex();
5725
5726   ValID Fn, Label;
5727   SmallVector<unsigned, 16> Indexes;
5728   if (ParseValID(Fn) ||
5729       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
5730       ParseValID(Label) ||
5731       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
5732       ParseUseListOrderIndexes(Indexes))
5733     return true;
5734
5735   // Check the function.
5736   GlobalValue *GV;
5737   if (Fn.Kind == ValID::t_GlobalName)
5738     GV = M->getNamedValue(Fn.StrVal);
5739   else if (Fn.Kind == ValID::t_GlobalID)
5740     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
5741   else
5742     return Error(Fn.Loc, "expected function name in uselistorder_bb");
5743   if (!GV)
5744     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
5745   auto *F = dyn_cast<Function>(GV);
5746   if (!F)
5747     return Error(Fn.Loc, "expected function name in uselistorder_bb");
5748   if (F->isDeclaration())
5749     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
5750
5751   // Check the basic block.
5752   if (Label.Kind == ValID::t_LocalID)
5753     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
5754   if (Label.Kind != ValID::t_LocalName)
5755     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
5756   Value *V = F->getValueSymbolTable().lookup(Label.StrVal);
5757   if (!V)
5758     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
5759   if (!isa<BasicBlock>(V))
5760     return Error(Label.Loc, "expected basic block in uselistorder_bb");
5761
5762   return sortUseListOrder(V, Indexes, Loc);
5763 }