Unify clang/llvm attributes for asan/tsan/msan (LLVM part)
[oota-llvm.git] / lib / AsmParser / LLParser.cpp
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "LLParser.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/AutoUpgrade.h"
17 #include "llvm/IR/CallingConv.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/InlineAsm.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/IR/Operator.h"
24 #include "llvm/IR/ValueSymbolTable.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/raw_ostream.h"
27 using namespace llvm;
28
29 static std::string getTypeString(Type *T) {
30   std::string Result;
31   raw_string_ostream Tmp(Result);
32   Tmp << *T;
33   return Tmp.str();
34 }
35
36 /// Run: module ::= toplevelentity*
37 bool LLParser::Run() {
38   // Prime the lexer.
39   Lex.Lex();
40
41   return ParseTopLevelEntities() ||
42          ValidateEndOfModule();
43 }
44
45 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
46 /// module.
47 bool LLParser::ValidateEndOfModule() {
48   // Handle any instruction metadata forward references.
49   if (!ForwardRefInstMetadata.empty()) {
50     for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
51          I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
52          I != E; ++I) {
53       Instruction *Inst = I->first;
54       const std::vector<MDRef> &MDList = I->second;
55
56       for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
57         unsigned SlotNo = MDList[i].MDSlot;
58
59         if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
60           return Error(MDList[i].Loc, "use of undefined metadata '!" +
61                        Twine(SlotNo) + "'");
62         Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
63       }
64     }
65     ForwardRefInstMetadata.clear();
66   }
67
68   // Handle any function attribute group forward references.
69   for (std::map<Value*, std::vector<unsigned> >::iterator
70          I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
71          I != E; ++I) {
72     Value *V = I->first;
73     std::vector<unsigned> &Vec = I->second;
74     AttrBuilder B;
75
76     for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
77          VI != VE; ++VI)
78       B.merge(NumberedAttrBuilders[*VI]);
79
80     if (Function *Fn = dyn_cast<Function>(V)) {
81       AttributeSet AS = Fn->getAttributes();
82       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
83       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
84                                AS.getFnAttributes());
85
86       FnAttrs.merge(B);
87
88       // If the alignment was parsed as an attribute, move to the alignment
89       // field.
90       if (FnAttrs.hasAlignmentAttr()) {
91         Fn->setAlignment(FnAttrs.getAlignment());
92         FnAttrs.removeAttribute(Attribute::Alignment);
93       }
94
95       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
96                             AttributeSet::get(Context,
97                                               AttributeSet::FunctionIndex,
98                                               FnAttrs));
99       Fn->setAttributes(AS);
100     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
101       AttributeSet AS = CI->getAttributes();
102       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
103       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
104                                AS.getFnAttributes());
105       FnAttrs.merge(B);
106       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
107                             AttributeSet::get(Context,
108                                               AttributeSet::FunctionIndex,
109                                               FnAttrs));
110       CI->setAttributes(AS);
111     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
112       AttributeSet AS = II->getAttributes();
113       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
114       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
115                                AS.getFnAttributes());
116       FnAttrs.merge(B);
117       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
118                             AttributeSet::get(Context,
119                                               AttributeSet::FunctionIndex,
120                                               FnAttrs));
121       II->setAttributes(AS);
122     } else {
123       llvm_unreachable("invalid object with forward attribute group reference");
124     }
125   }
126
127   // If there are entries in ForwardRefBlockAddresses at this point, they are
128   // references after the function was defined.  Resolve those now.
129   while (!ForwardRefBlockAddresses.empty()) {
130     // Okay, we are referencing an already-parsed function, resolve them now.
131     Function *TheFn = 0;
132     const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
133     if (Fn.Kind == ValID::t_GlobalName)
134       TheFn = M->getFunction(Fn.StrVal);
135     else if (Fn.UIntVal < NumberedVals.size())
136       TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
137
138     if (TheFn == 0)
139       return Error(Fn.Loc, "unknown function referenced by blockaddress");
140
141     // Resolve all these references.
142     if (ResolveForwardRefBlockAddresses(TheFn,
143                                       ForwardRefBlockAddresses.begin()->second,
144                                         0))
145       return true;
146
147     ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
148   }
149
150   for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
151     if (NumberedTypes[i].second.isValid())
152       return Error(NumberedTypes[i].second,
153                    "use of undefined type '%" + Twine(i) + "'");
154
155   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
156        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
157     if (I->second.second.isValid())
158       return Error(I->second.second,
159                    "use of undefined type named '" + I->getKey() + "'");
160
161   if (!ForwardRefVals.empty())
162     return Error(ForwardRefVals.begin()->second.second,
163                  "use of undefined value '@" + ForwardRefVals.begin()->first +
164                  "'");
165
166   if (!ForwardRefValIDs.empty())
167     return Error(ForwardRefValIDs.begin()->second.second,
168                  "use of undefined value '@" +
169                  Twine(ForwardRefValIDs.begin()->first) + "'");
170
171   if (!ForwardRefMDNodes.empty())
172     return Error(ForwardRefMDNodes.begin()->second.second,
173                  "use of undefined metadata '!" +
174                  Twine(ForwardRefMDNodes.begin()->first) + "'");
175
176
177   // Look for intrinsic functions and CallInst that need to be upgraded
178   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
179     UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
180
181   return false;
182 }
183
184 bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
185                              std::vector<std::pair<ValID, GlobalValue*> > &Refs,
186                                                PerFunctionState *PFS) {
187   // Loop over all the references, resolving them.
188   for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
189     BasicBlock *Res;
190     if (PFS) {
191       if (Refs[i].first.Kind == ValID::t_LocalName)
192         Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
193       else
194         Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
195     } else if (Refs[i].first.Kind == ValID::t_LocalID) {
196       return Error(Refs[i].first.Loc,
197        "cannot take address of numeric label after the function is defined");
198     } else {
199       Res = dyn_cast_or_null<BasicBlock>(
200                      TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
201     }
202
203     if (Res == 0)
204       return Error(Refs[i].first.Loc,
205                    "referenced value is not a basic block");
206
207     // Get the BlockAddress for this and update references to use it.
208     BlockAddress *BA = BlockAddress::get(TheFn, Res);
209     Refs[i].second->replaceAllUsesWith(BA);
210     Refs[i].second->eraseFromParent();
211   }
212   return false;
213 }
214
215
216 //===----------------------------------------------------------------------===//
217 // Top-Level Entities
218 //===----------------------------------------------------------------------===//
219
220 bool LLParser::ParseTopLevelEntities() {
221   while (1) {
222     switch (Lex.getKind()) {
223     default:         return TokError("expected top-level entity");
224     case lltok::Eof: return false;
225     case lltok::kw_declare: if (ParseDeclare()) return true; break;
226     case lltok::kw_define:  if (ParseDefine()) return true; break;
227     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
228     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
229     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
230     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
231     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
232     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
233     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
234     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
235     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
236
237     // The Global variable production with no name can have many different
238     // optional leading prefixes, the production is:
239     // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
240     //               OptionalAddrSpace OptionalUnNammedAddr
241     //               ('constant'|'global') ...
242     case lltok::kw_private:             // OptionalLinkage
243     case lltok::kw_linker_private:      // OptionalLinkage
244     case lltok::kw_linker_private_weak: // OptionalLinkage
245     case lltok::kw_linker_private_weak_def_auto: // FIXME: backwards compat.
246     case lltok::kw_internal:            // OptionalLinkage
247     case lltok::kw_weak:                // OptionalLinkage
248     case lltok::kw_weak_odr:            // OptionalLinkage
249     case lltok::kw_linkonce:            // OptionalLinkage
250     case lltok::kw_linkonce_odr:        // OptionalLinkage
251     case lltok::kw_linkonce_odr_auto_hide: // OptionalLinkage
252     case lltok::kw_appending:           // OptionalLinkage
253     case lltok::kw_dllexport:           // OptionalLinkage
254     case lltok::kw_common:              // OptionalLinkage
255     case lltok::kw_dllimport:           // OptionalLinkage
256     case lltok::kw_extern_weak:         // OptionalLinkage
257     case lltok::kw_external: {          // OptionalLinkage
258       unsigned Linkage, Visibility;
259       if (ParseOptionalLinkage(Linkage) ||
260           ParseOptionalVisibility(Visibility) ||
261           ParseGlobal("", SMLoc(), Linkage, true, Visibility))
262         return true;
263       break;
264     }
265     case lltok::kw_default:       // OptionalVisibility
266     case lltok::kw_hidden:        // OptionalVisibility
267     case lltok::kw_protected: {   // OptionalVisibility
268       unsigned Visibility;
269       if (ParseOptionalVisibility(Visibility) ||
270           ParseGlobal("", SMLoc(), 0, false, Visibility))
271         return true;
272       break;
273     }
274
275     case lltok::kw_thread_local:  // OptionalThreadLocal
276     case lltok::kw_addrspace:     // OptionalAddrSpace
277     case lltok::kw_constant:      // GlobalType
278     case lltok::kw_global:        // GlobalType
279       if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
280       break;
281
282     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
283     }
284   }
285 }
286
287
288 /// toplevelentity
289 ///   ::= 'module' 'asm' STRINGCONSTANT
290 bool LLParser::ParseModuleAsm() {
291   assert(Lex.getKind() == lltok::kw_module);
292   Lex.Lex();
293
294   std::string AsmStr;
295   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
296       ParseStringConstant(AsmStr)) return true;
297
298   M->appendModuleInlineAsm(AsmStr);
299   return false;
300 }
301
302 /// toplevelentity
303 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
304 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
305 bool LLParser::ParseTargetDefinition() {
306   assert(Lex.getKind() == lltok::kw_target);
307   std::string Str;
308   switch (Lex.Lex()) {
309   default: return TokError("unknown target property");
310   case lltok::kw_triple:
311     Lex.Lex();
312     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
313         ParseStringConstant(Str))
314       return true;
315     M->setTargetTriple(Str);
316     return false;
317   case lltok::kw_datalayout:
318     Lex.Lex();
319     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
320         ParseStringConstant(Str))
321       return true;
322     M->setDataLayout(Str);
323     return false;
324   }
325 }
326
327 /// toplevelentity
328 ///   ::= 'deplibs' '=' '[' ']'
329 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
330 /// FIXME: Remove in 4.0. Currently parse, but ignore.
331 bool LLParser::ParseDepLibs() {
332   assert(Lex.getKind() == lltok::kw_deplibs);
333   Lex.Lex();
334   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
335       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
336     return true;
337
338   if (EatIfPresent(lltok::rsquare))
339     return false;
340
341   do {
342     std::string Str;
343     if (ParseStringConstant(Str)) return true;
344   } while (EatIfPresent(lltok::comma));
345
346   return ParseToken(lltok::rsquare, "expected ']' at end of list");
347 }
348
349 /// ParseUnnamedType:
350 ///   ::= LocalVarID '=' 'type' type
351 bool LLParser::ParseUnnamedType() {
352   LocTy TypeLoc = Lex.getLoc();
353   unsigned TypeID = Lex.getUIntVal();
354   Lex.Lex(); // eat LocalVarID;
355
356   if (ParseToken(lltok::equal, "expected '=' after name") ||
357       ParseToken(lltok::kw_type, "expected 'type' after '='"))
358     return true;
359
360   if (TypeID >= NumberedTypes.size())
361     NumberedTypes.resize(TypeID+1);
362
363   Type *Result = 0;
364   if (ParseStructDefinition(TypeLoc, "",
365                             NumberedTypes[TypeID], Result)) return true;
366
367   if (!isa<StructType>(Result)) {
368     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
369     if (Entry.first)
370       return Error(TypeLoc, "non-struct types may not be recursive");
371     Entry.first = Result;
372     Entry.second = SMLoc();
373   }
374
375   return false;
376 }
377
378
379 /// toplevelentity
380 ///   ::= LocalVar '=' 'type' type
381 bool LLParser::ParseNamedType() {
382   std::string Name = Lex.getStrVal();
383   LocTy NameLoc = Lex.getLoc();
384   Lex.Lex();  // eat LocalVar.
385
386   if (ParseToken(lltok::equal, "expected '=' after name") ||
387       ParseToken(lltok::kw_type, "expected 'type' after name"))
388     return true;
389
390   Type *Result = 0;
391   if (ParseStructDefinition(NameLoc, Name,
392                             NamedTypes[Name], Result)) return true;
393
394   if (!isa<StructType>(Result)) {
395     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
396     if (Entry.first)
397       return Error(NameLoc, "non-struct types may not be recursive");
398     Entry.first = Result;
399     Entry.second = SMLoc();
400   }
401
402   return false;
403 }
404
405
406 /// toplevelentity
407 ///   ::= 'declare' FunctionHeader
408 bool LLParser::ParseDeclare() {
409   assert(Lex.getKind() == lltok::kw_declare);
410   Lex.Lex();
411
412   Function *F;
413   return ParseFunctionHeader(F, false);
414 }
415
416 /// toplevelentity
417 ///   ::= 'define' FunctionHeader '{' ...
418 bool LLParser::ParseDefine() {
419   assert(Lex.getKind() == lltok::kw_define);
420   Lex.Lex();
421
422   Function *F;
423   return ParseFunctionHeader(F, true) ||
424          ParseFunctionBody(*F);
425 }
426
427 /// ParseGlobalType
428 ///   ::= 'constant'
429 ///   ::= 'global'
430 bool LLParser::ParseGlobalType(bool &IsConstant) {
431   if (Lex.getKind() == lltok::kw_constant)
432     IsConstant = true;
433   else if (Lex.getKind() == lltok::kw_global)
434     IsConstant = false;
435   else {
436     IsConstant = false;
437     return TokError("expected 'global' or 'constant'");
438   }
439   Lex.Lex();
440   return false;
441 }
442
443 /// ParseUnnamedGlobal:
444 ///   OptionalVisibility ALIAS ...
445 ///   OptionalLinkage OptionalVisibility ...   -> global variable
446 ///   GlobalID '=' OptionalVisibility ALIAS ...
447 ///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
448 bool LLParser::ParseUnnamedGlobal() {
449   unsigned VarID = NumberedVals.size();
450   std::string Name;
451   LocTy NameLoc = Lex.getLoc();
452
453   // Handle the GlobalID form.
454   if (Lex.getKind() == lltok::GlobalID) {
455     if (Lex.getUIntVal() != VarID)
456       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
457                    Twine(VarID) + "'");
458     Lex.Lex(); // eat GlobalID;
459
460     if (ParseToken(lltok::equal, "expected '=' after name"))
461       return true;
462   }
463
464   bool HasLinkage;
465   unsigned Linkage, Visibility;
466   if (ParseOptionalLinkage(Linkage, HasLinkage) ||
467       ParseOptionalVisibility(Visibility))
468     return true;
469
470   if (HasLinkage || Lex.getKind() != lltok::kw_alias)
471     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
472   return ParseAlias(Name, NameLoc, Visibility);
473 }
474
475 /// ParseNamedGlobal:
476 ///   GlobalVar '=' OptionalVisibility ALIAS ...
477 ///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
478 bool LLParser::ParseNamedGlobal() {
479   assert(Lex.getKind() == lltok::GlobalVar);
480   LocTy NameLoc = Lex.getLoc();
481   std::string Name = Lex.getStrVal();
482   Lex.Lex();
483
484   bool HasLinkage;
485   unsigned Linkage, Visibility;
486   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
487       ParseOptionalLinkage(Linkage, HasLinkage) ||
488       ParseOptionalVisibility(Visibility))
489     return true;
490
491   if (HasLinkage || Lex.getKind() != lltok::kw_alias)
492     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
493   return ParseAlias(Name, NameLoc, Visibility);
494 }
495
496 // MDString:
497 //   ::= '!' STRINGCONSTANT
498 bool LLParser::ParseMDString(MDString *&Result) {
499   std::string Str;
500   if (ParseStringConstant(Str)) return true;
501   Result = MDString::get(Context, Str);
502   return false;
503 }
504
505 // MDNode:
506 //   ::= '!' MDNodeNumber
507 //
508 /// This version of ParseMDNodeID returns the slot number and null in the case
509 /// of a forward reference.
510 bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
511   // !{ ..., !42, ... }
512   if (ParseUInt32(SlotNo)) return true;
513
514   // Check existing MDNode.
515   if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
516     Result = NumberedMetadata[SlotNo];
517   else
518     Result = 0;
519   return false;
520 }
521
522 bool LLParser::ParseMDNodeID(MDNode *&Result) {
523   // !{ ..., !42, ... }
524   unsigned MID = 0;
525   if (ParseMDNodeID(Result, MID)) return true;
526
527   // If not a forward reference, just return it now.
528   if (Result) return false;
529
530   // Otherwise, create MDNode forward reference.
531   MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>());
532   ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
533
534   if (NumberedMetadata.size() <= MID)
535     NumberedMetadata.resize(MID+1);
536   NumberedMetadata[MID] = FwdNode;
537   Result = FwdNode;
538   return false;
539 }
540
541 /// ParseNamedMetadata:
542 ///   !foo = !{ !1, !2 }
543 bool LLParser::ParseNamedMetadata() {
544   assert(Lex.getKind() == lltok::MetadataVar);
545   std::string Name = Lex.getStrVal();
546   Lex.Lex();
547
548   if (ParseToken(lltok::equal, "expected '=' here") ||
549       ParseToken(lltok::exclaim, "Expected '!' here") ||
550       ParseToken(lltok::lbrace, "Expected '{' here"))
551     return true;
552
553   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
554   if (Lex.getKind() != lltok::rbrace)
555     do {
556       if (ParseToken(lltok::exclaim, "Expected '!' here"))
557         return true;
558
559       MDNode *N = 0;
560       if (ParseMDNodeID(N)) return true;
561       NMD->addOperand(N);
562     } while (EatIfPresent(lltok::comma));
563
564   if (ParseToken(lltok::rbrace, "expected end of metadata node"))
565     return true;
566
567   return false;
568 }
569
570 /// ParseStandaloneMetadata:
571 ///   !42 = !{...}
572 bool LLParser::ParseStandaloneMetadata() {
573   assert(Lex.getKind() == lltok::exclaim);
574   Lex.Lex();
575   unsigned MetadataID = 0;
576
577   LocTy TyLoc;
578   Type *Ty = 0;
579   SmallVector<Value *, 16> Elts;
580   if (ParseUInt32(MetadataID) ||
581       ParseToken(lltok::equal, "expected '=' here") ||
582       ParseType(Ty, TyLoc) ||
583       ParseToken(lltok::exclaim, "Expected '!' here") ||
584       ParseToken(lltok::lbrace, "Expected '{' here") ||
585       ParseMDNodeVector(Elts, NULL) ||
586       ParseToken(lltok::rbrace, "expected end of metadata node"))
587     return true;
588
589   MDNode *Init = MDNode::get(Context, Elts);
590
591   // See if this was forward referenced, if so, handle it.
592   std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
593     FI = ForwardRefMDNodes.find(MetadataID);
594   if (FI != ForwardRefMDNodes.end()) {
595     MDNode *Temp = FI->second.first;
596     Temp->replaceAllUsesWith(Init);
597     MDNode::deleteTemporary(Temp);
598     ForwardRefMDNodes.erase(FI);
599
600     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
601   } else {
602     if (MetadataID >= NumberedMetadata.size())
603       NumberedMetadata.resize(MetadataID+1);
604
605     if (NumberedMetadata[MetadataID] != 0)
606       return TokError("Metadata id is already used");
607     NumberedMetadata[MetadataID] = Init;
608   }
609
610   return false;
611 }
612
613 /// ParseAlias:
614 ///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
615 /// Aliasee
616 ///   ::= TypeAndValue
617 ///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
618 ///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
619 ///
620 /// Everything through visibility has already been parsed.
621 ///
622 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
623                           unsigned Visibility) {
624   assert(Lex.getKind() == lltok::kw_alias);
625   Lex.Lex();
626   unsigned Linkage;
627   LocTy LinkageLoc = Lex.getLoc();
628   if (ParseOptionalLinkage(Linkage))
629     return true;
630
631   if (Linkage != GlobalValue::ExternalLinkage &&
632       Linkage != GlobalValue::WeakAnyLinkage &&
633       Linkage != GlobalValue::WeakODRLinkage &&
634       Linkage != GlobalValue::InternalLinkage &&
635       Linkage != GlobalValue::PrivateLinkage &&
636       Linkage != GlobalValue::LinkerPrivateLinkage &&
637       Linkage != GlobalValue::LinkerPrivateWeakLinkage)
638     return Error(LinkageLoc, "invalid linkage type for alias");
639
640   Constant *Aliasee;
641   LocTy AliaseeLoc = Lex.getLoc();
642   if (Lex.getKind() != lltok::kw_bitcast &&
643       Lex.getKind() != lltok::kw_getelementptr) {
644     if (ParseGlobalTypeAndValue(Aliasee)) return true;
645   } else {
646     // The bitcast dest type is not present, it is implied by the dest type.
647     ValID ID;
648     if (ParseValID(ID)) return true;
649     if (ID.Kind != ValID::t_Constant)
650       return Error(AliaseeLoc, "invalid aliasee");
651     Aliasee = ID.ConstantVal;
652   }
653
654   if (!Aliasee->getType()->isPointerTy())
655     return Error(AliaseeLoc, "alias must have pointer type");
656
657   // Okay, create the alias but do not insert it into the module yet.
658   GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
659                                     (GlobalValue::LinkageTypes)Linkage, Name,
660                                     Aliasee);
661   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
662
663   // See if this value already exists in the symbol table.  If so, it is either
664   // a redefinition or a definition of a forward reference.
665   if (GlobalValue *Val = M->getNamedValue(Name)) {
666     // See if this was a redefinition.  If so, there is no entry in
667     // ForwardRefVals.
668     std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
669       I = ForwardRefVals.find(Name);
670     if (I == ForwardRefVals.end())
671       return Error(NameLoc, "redefinition of global named '@" + Name + "'");
672
673     // Otherwise, this was a definition of forward ref.  Verify that types
674     // agree.
675     if (Val->getType() != GA->getType())
676       return Error(NameLoc,
677               "forward reference and definition of alias have different types");
678
679     // If they agree, just RAUW the old value with the alias and remove the
680     // forward ref info.
681     Val->replaceAllUsesWith(GA);
682     Val->eraseFromParent();
683     ForwardRefVals.erase(I);
684   }
685
686   // Insert into the module, we know its name won't collide now.
687   M->getAliasList().push_back(GA);
688   assert(GA->getName() == Name && "Should not be a name conflict!");
689
690   return false;
691 }
692
693 /// ParseGlobal
694 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
695 ///       OptionalAddrSpace OptionalUnNammedAddr
696 ///       OptionalExternallyInitialized GlobalType Type Const
697 ///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
698 ///       OptionalAddrSpace OptionalUnNammedAddr
699 ///       OptionalExternallyInitialized GlobalType Type Const
700 ///
701 /// Everything through visibility has been parsed already.
702 ///
703 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
704                            unsigned Linkage, bool HasLinkage,
705                            unsigned Visibility) {
706   unsigned AddrSpace;
707   bool IsConstant, UnnamedAddr, IsExternallyInitialized;
708   GlobalVariable::ThreadLocalMode TLM;
709   LocTy UnnamedAddrLoc;
710   LocTy IsExternallyInitializedLoc;
711   LocTy TyLoc;
712
713   Type *Ty = 0;
714   if (ParseOptionalThreadLocal(TLM) ||
715       ParseOptionalAddrSpace(AddrSpace) ||
716       ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
717                          &UnnamedAddrLoc) ||
718       ParseOptionalToken(lltok::kw_externally_initialized,
719                          IsExternallyInitialized,
720                          &IsExternallyInitializedLoc) ||
721       ParseGlobalType(IsConstant) ||
722       ParseType(Ty, TyLoc))
723     return true;
724
725   // If the linkage is specified and is external, then no initializer is
726   // present.
727   Constant *Init = 0;
728   if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
729                       Linkage != GlobalValue::ExternalWeakLinkage &&
730                       Linkage != GlobalValue::ExternalLinkage)) {
731     if (ParseGlobalValue(Ty, Init))
732       return true;
733   }
734
735   if (Ty->isFunctionTy() || Ty->isLabelTy())
736     return Error(TyLoc, "invalid type for global variable");
737
738   GlobalVariable *GV = 0;
739
740   // See if the global was forward referenced, if so, use the global.
741   if (!Name.empty()) {
742     if (GlobalValue *GVal = M->getNamedValue(Name)) {
743       if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
744         return Error(NameLoc, "redefinition of global '@" + Name + "'");
745       GV = cast<GlobalVariable>(GVal);
746     }
747   } else {
748     std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
749       I = ForwardRefValIDs.find(NumberedVals.size());
750     if (I != ForwardRefValIDs.end()) {
751       GV = cast<GlobalVariable>(I->second.first);
752       ForwardRefValIDs.erase(I);
753     }
754   }
755
756   if (GV == 0) {
757     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
758                             Name, 0, GlobalVariable::NotThreadLocal,
759                             AddrSpace);
760   } else {
761     if (GV->getType()->getElementType() != Ty)
762       return Error(TyLoc,
763             "forward reference and definition of global have different types");
764
765     // Move the forward-reference to the correct spot in the module.
766     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
767   }
768
769   if (Name.empty())
770     NumberedVals.push_back(GV);
771
772   // Set the parsed properties on the global.
773   if (Init)
774     GV->setInitializer(Init);
775   GV->setConstant(IsConstant);
776   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
777   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
778   GV->setExternallyInitialized(IsExternallyInitialized);
779   GV->setThreadLocalMode(TLM);
780   GV->setUnnamedAddr(UnnamedAddr);
781
782   // Parse attributes on the global.
783   while (Lex.getKind() == lltok::comma) {
784     Lex.Lex();
785
786     if (Lex.getKind() == lltok::kw_section) {
787       Lex.Lex();
788       GV->setSection(Lex.getStrVal());
789       if (ParseToken(lltok::StringConstant, "expected global section string"))
790         return true;
791     } else if (Lex.getKind() == lltok::kw_align) {
792       unsigned Alignment;
793       if (ParseOptionalAlignment(Alignment)) return true;
794       GV->setAlignment(Alignment);
795     } else {
796       TokError("unknown global variable property!");
797     }
798   }
799
800   return false;
801 }
802
803 /// ParseUnnamedAttrGrp
804 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
805 bool LLParser::ParseUnnamedAttrGrp() {
806   assert(Lex.getKind() == lltok::kw_attributes);
807   LocTy AttrGrpLoc = Lex.getLoc();
808   Lex.Lex();
809
810   assert(Lex.getKind() == lltok::AttrGrpID);
811   unsigned VarID = Lex.getUIntVal();
812   std::vector<unsigned> unused;
813   LocTy NoBuiltinLoc;
814   Lex.Lex();
815
816   if (ParseToken(lltok::equal, "expected '=' here") ||
817       ParseToken(lltok::lbrace, "expected '{' here") ||
818       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
819                                  NoBuiltinLoc) ||
820       ParseToken(lltok::rbrace, "expected end of attribute group"))
821     return true;
822
823   if (!NumberedAttrBuilders[VarID].hasAttributes())
824     return Error(AttrGrpLoc, "attribute group has no attributes");
825
826   return false;
827 }
828
829 /// ParseFnAttributeValuePairs
830 ///   ::= <attr> | <attr> '=' <value>
831 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
832                                           std::vector<unsigned> &FwdRefAttrGrps,
833                                           bool inAttrGrp, LocTy &NoBuiltinLoc) {
834   bool HaveError = false;
835
836   B.clear();
837
838   while (true) {
839     lltok::Kind Token = Lex.getKind();
840     if (Token == lltok::kw_nobuiltin)
841       NoBuiltinLoc = Lex.getLoc();
842     switch (Token) {
843     default:
844       if (!inAttrGrp) return HaveError;
845       return Error(Lex.getLoc(), "unterminated attribute group");
846     case lltok::rbrace:
847       // Finished.
848       return false;
849
850     case lltok::AttrGrpID: {
851       // Allow a function to reference an attribute group:
852       //
853       //   define void @foo() #1 { ... }
854       if (inAttrGrp)
855         HaveError |=
856           Error(Lex.getLoc(),
857               "cannot have an attribute group reference in an attribute group");
858
859       unsigned AttrGrpNum = Lex.getUIntVal();
860       if (inAttrGrp) break;
861
862       // Save the reference to the attribute group. We'll fill it in later.
863       FwdRefAttrGrps.push_back(AttrGrpNum);
864       break;
865     }
866     // Target-dependent attributes:
867     case lltok::StringConstant: {
868       std::string Attr = Lex.getStrVal();
869       Lex.Lex();
870       std::string Val;
871       if (EatIfPresent(lltok::equal) &&
872           ParseStringConstant(Val))
873         return true;
874
875       B.addAttribute(Attr, Val);
876       continue;
877     }
878
879     // Target-independent attributes:
880     case lltok::kw_align: {
881       // As a hack, we allow "align 2" on functions as a synonym for "alignstack
882       // 2".
883       unsigned Alignment;
884       if (inAttrGrp) {
885         Lex.Lex();
886         if (ParseToken(lltok::equal, "expected '=' here") ||
887             ParseUInt32(Alignment))
888           return true;
889       } else {
890         if (ParseOptionalAlignment(Alignment))
891           return true;
892       }
893       B.addAlignmentAttr(Alignment);
894       continue;
895     }
896     case lltok::kw_alignstack: {
897       unsigned Alignment;
898       if (inAttrGrp) {
899         Lex.Lex();
900         if (ParseToken(lltok::equal, "expected '=' here") ||
901             ParseUInt32(Alignment))
902           return true;
903       } else {
904         if (ParseOptionalStackAlignment(Alignment))
905           return true;
906       }
907       B.addStackAlignmentAttr(Alignment);
908       continue;
909     }
910     case lltok::kw_alwaysinline:      B.addAttribute(Attribute::AlwaysInline); break;
911     case lltok::kw_inlinehint:        B.addAttribute(Attribute::InlineHint); break;
912     case lltok::kw_minsize:           B.addAttribute(Attribute::MinSize); break;
913     case lltok::kw_naked:             B.addAttribute(Attribute::Naked); break;
914     case lltok::kw_nobuiltin:         B.addAttribute(Attribute::NoBuiltin); break;
915     case lltok::kw_noduplicate:       B.addAttribute(Attribute::NoDuplicate); break;
916     case lltok::kw_noimplicitfloat:   B.addAttribute(Attribute::NoImplicitFloat); break;
917     case lltok::kw_noinline:          B.addAttribute(Attribute::NoInline); break;
918     case lltok::kw_nonlazybind:       B.addAttribute(Attribute::NonLazyBind); break;
919     case lltok::kw_noredzone:         B.addAttribute(Attribute::NoRedZone); break;
920     case lltok::kw_noreturn:          B.addAttribute(Attribute::NoReturn); break;
921     case lltok::kw_nounwind:          B.addAttribute(Attribute::NoUnwind); break;
922     case lltok::kw_optsize:           B.addAttribute(Attribute::OptimizeForSize); break;
923     case lltok::kw_readnone:          B.addAttribute(Attribute::ReadNone); break;
924     case lltok::kw_readonly:          B.addAttribute(Attribute::ReadOnly); break;
925     case lltok::kw_returns_twice:     B.addAttribute(Attribute::ReturnsTwice); break;
926     case lltok::kw_ssp:               B.addAttribute(Attribute::StackProtect); break;
927     case lltok::kw_sspreq:            B.addAttribute(Attribute::StackProtectReq); break;
928     case lltok::kw_sspstrong:         B.addAttribute(Attribute::StackProtectStrong); break;
929     case lltok::kw_sanitize_address:  B.addAttribute(Attribute::SanitizeAddress); break;
930     case lltok::kw_sanitize_thread:   B.addAttribute(Attribute::SanitizeThread); break;
931     case lltok::kw_sanitize_memory:   B.addAttribute(Attribute::SanitizeMemory); break;
932     case lltok::kw_uwtable:           B.addAttribute(Attribute::UWTable); break;
933
934     // Error handling.
935     case lltok::kw_inreg:
936     case lltok::kw_signext:
937     case lltok::kw_zeroext:
938       HaveError |=
939         Error(Lex.getLoc(),
940               "invalid use of attribute on a function");
941       break;
942     case lltok::kw_byval:
943     case lltok::kw_nest:
944     case lltok::kw_noalias:
945     case lltok::kw_nocapture:
946     case lltok::kw_sret:
947       HaveError |=
948         Error(Lex.getLoc(),
949               "invalid use of parameter-only attribute on a function");
950       break;
951     }
952
953     Lex.Lex();
954   }
955 }
956
957 //===----------------------------------------------------------------------===//
958 // GlobalValue Reference/Resolution Routines.
959 //===----------------------------------------------------------------------===//
960
961 /// GetGlobalVal - Get a value with the specified name or ID, creating a
962 /// forward reference record if needed.  This can return null if the value
963 /// exists but does not have the right type.
964 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
965                                     LocTy Loc) {
966   PointerType *PTy = dyn_cast<PointerType>(Ty);
967   if (PTy == 0) {
968     Error(Loc, "global variable reference must have pointer type");
969     return 0;
970   }
971
972   // Look this name up in the normal function symbol table.
973   GlobalValue *Val =
974     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
975
976   // If this is a forward reference for the value, see if we already created a
977   // forward ref record.
978   if (Val == 0) {
979     std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
980       I = ForwardRefVals.find(Name);
981     if (I != ForwardRefVals.end())
982       Val = I->second.first;
983   }
984
985   // If we have the value in the symbol table or fwd-ref table, return it.
986   if (Val) {
987     if (Val->getType() == Ty) return Val;
988     Error(Loc, "'@" + Name + "' defined with type '" +
989           getTypeString(Val->getType()) + "'");
990     return 0;
991   }
992
993   // Otherwise, create a new forward reference for this value and remember it.
994   GlobalValue *FwdVal;
995   if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
996     FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
997   else
998     FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
999                                 GlobalValue::ExternalWeakLinkage, 0, Name,
1000                                 0, GlobalVariable::NotThreadLocal,
1001                                 PTy->getAddressSpace());
1002
1003   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1004   return FwdVal;
1005 }
1006
1007 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1008   PointerType *PTy = dyn_cast<PointerType>(Ty);
1009   if (PTy == 0) {
1010     Error(Loc, "global variable reference must have pointer type");
1011     return 0;
1012   }
1013
1014   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1015
1016   // If this is a forward reference for the value, see if we already created a
1017   // forward ref record.
1018   if (Val == 0) {
1019     std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
1020       I = ForwardRefValIDs.find(ID);
1021     if (I != ForwardRefValIDs.end())
1022       Val = I->second.first;
1023   }
1024
1025   // If we have the value in the symbol table or fwd-ref table, return it.
1026   if (Val) {
1027     if (Val->getType() == Ty) return Val;
1028     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1029           getTypeString(Val->getType()) + "'");
1030     return 0;
1031   }
1032
1033   // Otherwise, create a new forward reference for this value and remember it.
1034   GlobalValue *FwdVal;
1035   if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1036     FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
1037   else
1038     FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
1039                                 GlobalValue::ExternalWeakLinkage, 0, "");
1040
1041   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1042   return FwdVal;
1043 }
1044
1045
1046 //===----------------------------------------------------------------------===//
1047 // Helper Routines.
1048 //===----------------------------------------------------------------------===//
1049
1050 /// ParseToken - If the current token has the specified kind, eat it and return
1051 /// success.  Otherwise, emit the specified error and return failure.
1052 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1053   if (Lex.getKind() != T)
1054     return TokError(ErrMsg);
1055   Lex.Lex();
1056   return false;
1057 }
1058
1059 /// ParseStringConstant
1060 ///   ::= StringConstant
1061 bool LLParser::ParseStringConstant(std::string &Result) {
1062   if (Lex.getKind() != lltok::StringConstant)
1063     return TokError("expected string constant");
1064   Result = Lex.getStrVal();
1065   Lex.Lex();
1066   return false;
1067 }
1068
1069 /// ParseUInt32
1070 ///   ::= uint32
1071 bool LLParser::ParseUInt32(unsigned &Val) {
1072   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1073     return TokError("expected integer");
1074   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1075   if (Val64 != unsigned(Val64))
1076     return TokError("expected 32-bit integer (too large)");
1077   Val = Val64;
1078   Lex.Lex();
1079   return false;
1080 }
1081
1082 /// ParseTLSModel
1083 ///   := 'localdynamic'
1084 ///   := 'initialexec'
1085 ///   := 'localexec'
1086 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1087   switch (Lex.getKind()) {
1088     default:
1089       return TokError("expected localdynamic, initialexec or localexec");
1090     case lltok::kw_localdynamic:
1091       TLM = GlobalVariable::LocalDynamicTLSModel;
1092       break;
1093     case lltok::kw_initialexec:
1094       TLM = GlobalVariable::InitialExecTLSModel;
1095       break;
1096     case lltok::kw_localexec:
1097       TLM = GlobalVariable::LocalExecTLSModel;
1098       break;
1099   }
1100
1101   Lex.Lex();
1102   return false;
1103 }
1104
1105 /// ParseOptionalThreadLocal
1106 ///   := /*empty*/
1107 ///   := 'thread_local'
1108 ///   := 'thread_local' '(' tlsmodel ')'
1109 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1110   TLM = GlobalVariable::NotThreadLocal;
1111   if (!EatIfPresent(lltok::kw_thread_local))
1112     return false;
1113
1114   TLM = GlobalVariable::GeneralDynamicTLSModel;
1115   if (Lex.getKind() == lltok::lparen) {
1116     Lex.Lex();
1117     return ParseTLSModel(TLM) ||
1118       ParseToken(lltok::rparen, "expected ')' after thread local model");
1119   }
1120   return false;
1121 }
1122
1123 /// ParseOptionalAddrSpace
1124 ///   := /*empty*/
1125 ///   := 'addrspace' '(' uint32 ')'
1126 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1127   AddrSpace = 0;
1128   if (!EatIfPresent(lltok::kw_addrspace))
1129     return false;
1130   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1131          ParseUInt32(AddrSpace) ||
1132          ParseToken(lltok::rparen, "expected ')' in address space");
1133 }
1134
1135 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1136 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1137   bool HaveError = false;
1138
1139   B.clear();
1140
1141   while (1) {
1142     lltok::Kind Token = Lex.getKind();
1143     switch (Token) {
1144     default:  // End of attributes.
1145       return HaveError;
1146     case lltok::kw_align: {
1147       unsigned Alignment;
1148       if (ParseOptionalAlignment(Alignment))
1149         return true;
1150       B.addAlignmentAttr(Alignment);
1151       continue;
1152     }
1153     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1154     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1155     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1156     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1157     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1158     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1159     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1160     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1161
1162     case lltok::kw_alignstack:      case lltok::kw_nounwind:
1163     case lltok::kw_alwaysinline:    case lltok::kw_optsize:
1164     case lltok::kw_inlinehint:      case lltok::kw_readnone:
1165     case lltok::kw_minsize:         case lltok::kw_readonly:
1166     case lltok::kw_naked:           case lltok::kw_returns_twice:
1167     case lltok::kw_nobuiltin:       case lltok::kw_sanitize_address:
1168     case lltok::kw_noimplicitfloat: case lltok::kw_sanitize_memory:
1169     case lltok::kw_noinline:        case lltok::kw_sanitize_thread:
1170     case lltok::kw_nonlazybind:     case lltok::kw_ssp:
1171     case lltok::kw_noredzone:       case lltok::kw_sspreq:
1172     case lltok::kw_noreturn:        case lltok::kw_uwtable:
1173       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1174       break;
1175     }
1176
1177     Lex.Lex();
1178   }
1179 }
1180
1181 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1182 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1183   bool HaveError = false;
1184
1185   B.clear();
1186
1187   while (1) {
1188     lltok::Kind Token = Lex.getKind();
1189     switch (Token) {
1190     default:  // End of attributes.
1191       return HaveError;
1192     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1193     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1194     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1195     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1196
1197     // Error handling.
1198     case lltok::kw_sret:  case lltok::kw_nocapture:
1199     case lltok::kw_byval: case lltok::kw_nest:
1200       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1201       break;
1202
1203     case lltok::kw_align:                 case lltok::kw_noreturn:
1204     case lltok::kw_alignstack:            case lltok::kw_nounwind:
1205     case lltok::kw_alwaysinline:          case lltok::kw_optsize:
1206     case lltok::kw_inlinehint:            case lltok::kw_readnone:
1207     case lltok::kw_minsize:               case lltok::kw_readonly:
1208     case lltok::kw_naked:                 case lltok::kw_returns_twice:
1209     case lltok::kw_nobuiltin:             case lltok::kw_sanitize_address:
1210     case lltok::kw_noduplicate:           case lltok::kw_sanitize_memory:
1211     case lltok::kw_noimplicitfloat:       case lltok::kw_sanitize_thread:
1212     case lltok::kw_noinline:              case lltok::kw_ssp:
1213     case lltok::kw_nonlazybind:           case lltok::kw_sspreq:
1214     case lltok::kw_noredzone:             case lltok::kw_sspstrong:
1215                                           case lltok::kw_uwtable:
1216       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1217       break;
1218     }
1219
1220     Lex.Lex();
1221   }
1222 }
1223
1224 /// ParseOptionalLinkage
1225 ///   ::= /*empty*/
1226 ///   ::= 'private'
1227 ///   ::= 'linker_private'
1228 ///   ::= 'linker_private_weak'
1229 ///   ::= 'internal'
1230 ///   ::= 'weak'
1231 ///   ::= 'weak_odr'
1232 ///   ::= 'linkonce'
1233 ///   ::= 'linkonce_odr'
1234 ///   ::= 'linkonce_odr_auto_hide'
1235 ///   ::= 'available_externally'
1236 ///   ::= 'appending'
1237 ///   ::= 'dllexport'
1238 ///   ::= 'common'
1239 ///   ::= 'dllimport'
1240 ///   ::= 'extern_weak'
1241 ///   ::= 'external'
1242 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1243   HasLinkage = false;
1244   switch (Lex.getKind()) {
1245   default:                       Res=GlobalValue::ExternalLinkage; return false;
1246   case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1247   case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1248   case lltok::kw_linker_private_weak:
1249     Res = GlobalValue::LinkerPrivateWeakLinkage;
1250     break;
1251   case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1252   case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1253   case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1254   case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1255   case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1256   case lltok::kw_linkonce_odr_auto_hide:
1257   case lltok::kw_linker_private_weak_def_auto: // FIXME: For backwards compat.
1258     Res = GlobalValue::LinkOnceODRAutoHideLinkage;
1259     break;
1260   case lltok::kw_available_externally:
1261     Res = GlobalValue::AvailableExternallyLinkage;
1262     break;
1263   case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1264   case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
1265   case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1266   case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
1267   case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1268   case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1269   }
1270   Lex.Lex();
1271   HasLinkage = true;
1272   return false;
1273 }
1274
1275 /// ParseOptionalVisibility
1276 ///   ::= /*empty*/
1277 ///   ::= 'default'
1278 ///   ::= 'hidden'
1279 ///   ::= 'protected'
1280 ///
1281 bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1282   switch (Lex.getKind()) {
1283   default:                  Res = GlobalValue::DefaultVisibility; return false;
1284   case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1285   case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1286   case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1287   }
1288   Lex.Lex();
1289   return false;
1290 }
1291
1292 /// ParseOptionalCallingConv
1293 ///   ::= /*empty*/
1294 ///   ::= 'ccc'
1295 ///   ::= 'fastcc'
1296 ///   ::= 'kw_intel_ocl_bicc'
1297 ///   ::= 'coldcc'
1298 ///   ::= 'x86_stdcallcc'
1299 ///   ::= 'x86_fastcallcc'
1300 ///   ::= 'x86_thiscallcc'
1301 ///   ::= 'arm_apcscc'
1302 ///   ::= 'arm_aapcscc'
1303 ///   ::= 'arm_aapcs_vfpcc'
1304 ///   ::= 'msp430_intrcc'
1305 ///   ::= 'ptx_kernel'
1306 ///   ::= 'ptx_device'
1307 ///   ::= 'spir_func'
1308 ///   ::= 'spir_kernel'
1309 ///   ::= 'cc' UINT
1310 ///
1311 bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1312   switch (Lex.getKind()) {
1313   default:                       CC = CallingConv::C; return false;
1314   case lltok::kw_ccc:            CC = CallingConv::C; break;
1315   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1316   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1317   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1318   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1319   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1320   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1321   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1322   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1323   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1324   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1325   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1326   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1327   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1328   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1329   case lltok::kw_cc: {
1330       unsigned ArbitraryCC;
1331       Lex.Lex();
1332       if (ParseUInt32(ArbitraryCC))
1333         return true;
1334       CC = static_cast<CallingConv::ID>(ArbitraryCC);
1335       return false;
1336     }
1337   }
1338
1339   Lex.Lex();
1340   return false;
1341 }
1342
1343 /// ParseInstructionMetadata
1344 ///   ::= !dbg !42 (',' !dbg !57)*
1345 bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1346                                         PerFunctionState *PFS) {
1347   do {
1348     if (Lex.getKind() != lltok::MetadataVar)
1349       return TokError("expected metadata after comma");
1350
1351     std::string Name = Lex.getStrVal();
1352     unsigned MDK = M->getMDKindID(Name);
1353     Lex.Lex();
1354
1355     MDNode *Node;
1356     SMLoc Loc = Lex.getLoc();
1357
1358     if (ParseToken(lltok::exclaim, "expected '!' here"))
1359       return true;
1360
1361     // This code is similar to that of ParseMetadataValue, however it needs to
1362     // have special-case code for a forward reference; see the comments on
1363     // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1364     // at the top level here.
1365     if (Lex.getKind() == lltok::lbrace) {
1366       ValID ID;
1367       if (ParseMetadataListValue(ID, PFS))
1368         return true;
1369       assert(ID.Kind == ValID::t_MDNode);
1370       Inst->setMetadata(MDK, ID.MDNodeVal);
1371     } else {
1372       unsigned NodeID = 0;
1373       if (ParseMDNodeID(Node, NodeID))
1374         return true;
1375       if (Node) {
1376         // If we got the node, add it to the instruction.
1377         Inst->setMetadata(MDK, Node);
1378       } else {
1379         MDRef R = { Loc, MDK, NodeID };
1380         // Otherwise, remember that this should be resolved later.
1381         ForwardRefInstMetadata[Inst].push_back(R);
1382       }
1383     }
1384
1385     // If this is the end of the list, we're done.
1386   } while (EatIfPresent(lltok::comma));
1387   return false;
1388 }
1389
1390 /// ParseOptionalAlignment
1391 ///   ::= /* empty */
1392 ///   ::= 'align' 4
1393 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1394   Alignment = 0;
1395   if (!EatIfPresent(lltok::kw_align))
1396     return false;
1397   LocTy AlignLoc = Lex.getLoc();
1398   if (ParseUInt32(Alignment)) return true;
1399   if (!isPowerOf2_32(Alignment))
1400     return Error(AlignLoc, "alignment is not a power of two");
1401   if (Alignment > Value::MaximumAlignment)
1402     return Error(AlignLoc, "huge alignments are not supported yet");
1403   return false;
1404 }
1405
1406 /// ParseOptionalCommaAlign
1407 ///   ::=
1408 ///   ::= ',' align 4
1409 ///
1410 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1411 /// end.
1412 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1413                                        bool &AteExtraComma) {
1414   AteExtraComma = false;
1415   while (EatIfPresent(lltok::comma)) {
1416     // Metadata at the end is an early exit.
1417     if (Lex.getKind() == lltok::MetadataVar) {
1418       AteExtraComma = true;
1419       return false;
1420     }
1421
1422     if (Lex.getKind() != lltok::kw_align)
1423       return Error(Lex.getLoc(), "expected metadata or 'align'");
1424
1425     if (ParseOptionalAlignment(Alignment)) return true;
1426   }
1427
1428   return false;
1429 }
1430
1431 /// ParseScopeAndOrdering
1432 ///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1433 ///   else: ::=
1434 ///
1435 /// This sets Scope and Ordering to the parsed values.
1436 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1437                                      AtomicOrdering &Ordering) {
1438   if (!isAtomic)
1439     return false;
1440
1441   Scope = CrossThread;
1442   if (EatIfPresent(lltok::kw_singlethread))
1443     Scope = SingleThread;
1444   switch (Lex.getKind()) {
1445   default: return TokError("Expected ordering on atomic instruction");
1446   case lltok::kw_unordered: Ordering = Unordered; break;
1447   case lltok::kw_monotonic: Ordering = Monotonic; break;
1448   case lltok::kw_acquire: Ordering = Acquire; break;
1449   case lltok::kw_release: Ordering = Release; break;
1450   case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1451   case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1452   }
1453   Lex.Lex();
1454   return false;
1455 }
1456
1457 /// ParseOptionalStackAlignment
1458 ///   ::= /* empty */
1459 ///   ::= 'alignstack' '(' 4 ')'
1460 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1461   Alignment = 0;
1462   if (!EatIfPresent(lltok::kw_alignstack))
1463     return false;
1464   LocTy ParenLoc = Lex.getLoc();
1465   if (!EatIfPresent(lltok::lparen))
1466     return Error(ParenLoc, "expected '('");
1467   LocTy AlignLoc = Lex.getLoc();
1468   if (ParseUInt32(Alignment)) return true;
1469   ParenLoc = Lex.getLoc();
1470   if (!EatIfPresent(lltok::rparen))
1471     return Error(ParenLoc, "expected ')'");
1472   if (!isPowerOf2_32(Alignment))
1473     return Error(AlignLoc, "stack alignment is not a power of two");
1474   return false;
1475 }
1476
1477 /// ParseIndexList - This parses the index list for an insert/extractvalue
1478 /// instruction.  This sets AteExtraComma in the case where we eat an extra
1479 /// comma at the end of the line and find that it is followed by metadata.
1480 /// Clients that don't allow metadata can call the version of this function that
1481 /// only takes one argument.
1482 ///
1483 /// ParseIndexList
1484 ///    ::=  (',' uint32)+
1485 ///
1486 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1487                               bool &AteExtraComma) {
1488   AteExtraComma = false;
1489
1490   if (Lex.getKind() != lltok::comma)
1491     return TokError("expected ',' as start of index list");
1492
1493   while (EatIfPresent(lltok::comma)) {
1494     if (Lex.getKind() == lltok::MetadataVar) {
1495       AteExtraComma = true;
1496       return false;
1497     }
1498     unsigned Idx = 0;
1499     if (ParseUInt32(Idx)) return true;
1500     Indices.push_back(Idx);
1501   }
1502
1503   return false;
1504 }
1505
1506 //===----------------------------------------------------------------------===//
1507 // Type Parsing.
1508 //===----------------------------------------------------------------------===//
1509
1510 /// ParseType - Parse a type.
1511 bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
1512   SMLoc TypeLoc = Lex.getLoc();
1513   switch (Lex.getKind()) {
1514   default:
1515     return TokError("expected type");
1516   case lltok::Type:
1517     // Type ::= 'float' | 'void' (etc)
1518     Result = Lex.getTyVal();
1519     Lex.Lex();
1520     break;
1521   case lltok::lbrace:
1522     // Type ::= StructType
1523     if (ParseAnonStructType(Result, false))
1524       return true;
1525     break;
1526   case lltok::lsquare:
1527     // Type ::= '[' ... ']'
1528     Lex.Lex(); // eat the lsquare.
1529     if (ParseArrayVectorType(Result, false))
1530       return true;
1531     break;
1532   case lltok::less: // Either vector or packed struct.
1533     // Type ::= '<' ... '>'
1534     Lex.Lex();
1535     if (Lex.getKind() == lltok::lbrace) {
1536       if (ParseAnonStructType(Result, true) ||
1537           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1538         return true;
1539     } else if (ParseArrayVectorType(Result, true))
1540       return true;
1541     break;
1542   case lltok::LocalVar: {
1543     // Type ::= %foo
1544     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1545
1546     // If the type hasn't been defined yet, create a forward definition and
1547     // remember where that forward def'n was seen (in case it never is defined).
1548     if (Entry.first == 0) {
1549       Entry.first = StructType::create(Context, Lex.getStrVal());
1550       Entry.second = Lex.getLoc();
1551     }
1552     Result = Entry.first;
1553     Lex.Lex();
1554     break;
1555   }
1556
1557   case lltok::LocalVarID: {
1558     // Type ::= %4
1559     if (Lex.getUIntVal() >= NumberedTypes.size())
1560       NumberedTypes.resize(Lex.getUIntVal()+1);
1561     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1562
1563     // If the type hasn't been defined yet, create a forward definition and
1564     // remember where that forward def'n was seen (in case it never is defined).
1565     if (Entry.first == 0) {
1566       Entry.first = StructType::create(Context);
1567       Entry.second = Lex.getLoc();
1568     }
1569     Result = Entry.first;
1570     Lex.Lex();
1571     break;
1572   }
1573   }
1574
1575   // Parse the type suffixes.
1576   while (1) {
1577     switch (Lex.getKind()) {
1578     // End of type.
1579     default:
1580       if (!AllowVoid && Result->isVoidTy())
1581         return Error(TypeLoc, "void type only allowed for function results");
1582       return false;
1583
1584     // Type ::= Type '*'
1585     case lltok::star:
1586       if (Result->isLabelTy())
1587         return TokError("basic block pointers are invalid");
1588       if (Result->isVoidTy())
1589         return TokError("pointers to void are invalid - use i8* instead");
1590       if (!PointerType::isValidElementType(Result))
1591         return TokError("pointer to this type is invalid");
1592       Result = PointerType::getUnqual(Result);
1593       Lex.Lex();
1594       break;
1595
1596     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1597     case lltok::kw_addrspace: {
1598       if (Result->isLabelTy())
1599         return TokError("basic block pointers are invalid");
1600       if (Result->isVoidTy())
1601         return TokError("pointers to void are invalid; use i8* instead");
1602       if (!PointerType::isValidElementType(Result))
1603         return TokError("pointer to this type is invalid");
1604       unsigned AddrSpace;
1605       if (ParseOptionalAddrSpace(AddrSpace) ||
1606           ParseToken(lltok::star, "expected '*' in address space"))
1607         return true;
1608
1609       Result = PointerType::get(Result, AddrSpace);
1610       break;
1611     }
1612
1613     /// Types '(' ArgTypeListI ')' OptFuncAttrs
1614     case lltok::lparen:
1615       if (ParseFunctionType(Result))
1616         return true;
1617       break;
1618     }
1619   }
1620 }
1621
1622 /// ParseParameterList
1623 ///    ::= '(' ')'
1624 ///    ::= '(' Arg (',' Arg)* ')'
1625 ///  Arg
1626 ///    ::= Type OptionalAttributes Value OptionalAttributes
1627 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1628                                   PerFunctionState &PFS) {
1629   if (ParseToken(lltok::lparen, "expected '(' in call"))
1630     return true;
1631
1632   unsigned AttrIndex = 1;
1633   while (Lex.getKind() != lltok::rparen) {
1634     // If this isn't the first argument, we need a comma.
1635     if (!ArgList.empty() &&
1636         ParseToken(lltok::comma, "expected ',' in argument list"))
1637       return true;
1638
1639     // Parse the argument.
1640     LocTy ArgLoc;
1641     Type *ArgTy = 0;
1642     AttrBuilder ArgAttrs;
1643     Value *V;
1644     if (ParseType(ArgTy, ArgLoc))
1645       return true;
1646
1647     // Otherwise, handle normal operands.
1648     if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
1649       return true;
1650     ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
1651                                                              AttrIndex++,
1652                                                              ArgAttrs)));
1653   }
1654
1655   Lex.Lex();  // Lex the ')'.
1656   return false;
1657 }
1658
1659
1660
1661 /// ParseArgumentList - Parse the argument list for a function type or function
1662 /// prototype.
1663 ///   ::= '(' ArgTypeListI ')'
1664 /// ArgTypeListI
1665 ///   ::= /*empty*/
1666 ///   ::= '...'
1667 ///   ::= ArgTypeList ',' '...'
1668 ///   ::= ArgType (',' ArgType)*
1669 ///
1670 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
1671                                  bool &isVarArg){
1672   isVarArg = false;
1673   assert(Lex.getKind() == lltok::lparen);
1674   Lex.Lex(); // eat the (.
1675
1676   if (Lex.getKind() == lltok::rparen) {
1677     // empty
1678   } else if (Lex.getKind() == lltok::dotdotdot) {
1679     isVarArg = true;
1680     Lex.Lex();
1681   } else {
1682     LocTy TypeLoc = Lex.getLoc();
1683     Type *ArgTy = 0;
1684     AttrBuilder Attrs;
1685     std::string Name;
1686
1687     if (ParseType(ArgTy) ||
1688         ParseOptionalParamAttrs(Attrs)) return true;
1689
1690     if (ArgTy->isVoidTy())
1691       return Error(TypeLoc, "argument can not have void type");
1692
1693     if (Lex.getKind() == lltok::LocalVar) {
1694       Name = Lex.getStrVal();
1695       Lex.Lex();
1696     }
1697
1698     if (!FunctionType::isValidArgumentType(ArgTy))
1699       return Error(TypeLoc, "invalid type for function argument");
1700
1701     unsigned AttrIndex = 1;
1702     ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1703                               AttributeSet::get(ArgTy->getContext(),
1704                                                 AttrIndex++, Attrs), Name));
1705
1706     while (EatIfPresent(lltok::comma)) {
1707       // Handle ... at end of arg list.
1708       if (EatIfPresent(lltok::dotdotdot)) {
1709         isVarArg = true;
1710         break;
1711       }
1712
1713       // Otherwise must be an argument type.
1714       TypeLoc = Lex.getLoc();
1715       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
1716
1717       if (ArgTy->isVoidTy())
1718         return Error(TypeLoc, "argument can not have void type");
1719
1720       if (Lex.getKind() == lltok::LocalVar) {
1721         Name = Lex.getStrVal();
1722         Lex.Lex();
1723       } else {
1724         Name = "";
1725       }
1726
1727       if (!ArgTy->isFirstClassType())
1728         return Error(TypeLoc, "invalid type for function argument");
1729
1730       ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1731                                 AttributeSet::get(ArgTy->getContext(),
1732                                                   AttrIndex++, Attrs),
1733                                 Name));
1734     }
1735   }
1736
1737   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1738 }
1739
1740 /// ParseFunctionType
1741 ///  ::= Type ArgumentList OptionalAttrs
1742 bool LLParser::ParseFunctionType(Type *&Result) {
1743   assert(Lex.getKind() == lltok::lparen);
1744
1745   if (!FunctionType::isValidReturnType(Result))
1746     return TokError("invalid function return type");
1747
1748   SmallVector<ArgInfo, 8> ArgList;
1749   bool isVarArg;
1750   if (ParseArgumentList(ArgList, isVarArg))
1751     return true;
1752
1753   // Reject names on the arguments lists.
1754   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1755     if (!ArgList[i].Name.empty())
1756       return Error(ArgList[i].Loc, "argument name invalid in function type");
1757     if (ArgList[i].Attrs.hasAttributes(i + 1))
1758       return Error(ArgList[i].Loc,
1759                    "argument attributes invalid in function type");
1760   }
1761
1762   SmallVector<Type*, 16> ArgListTy;
1763   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1764     ArgListTy.push_back(ArgList[i].Ty);
1765
1766   Result = FunctionType::get(Result, ArgListTy, isVarArg);
1767   return false;
1768 }
1769
1770 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1771 /// other structs.
1772 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
1773   SmallVector<Type*, 8> Elts;
1774   if (ParseStructBody(Elts)) return true;
1775
1776   Result = StructType::get(Context, Elts, Packed);
1777   return false;
1778 }
1779
1780 /// ParseStructDefinition - Parse a struct in a 'type' definition.
1781 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
1782                                      std::pair<Type*, LocTy> &Entry,
1783                                      Type *&ResultTy) {
1784   // If the type was already defined, diagnose the redefinition.
1785   if (Entry.first && !Entry.second.isValid())
1786     return Error(TypeLoc, "redefinition of type");
1787
1788   // If we have opaque, just return without filling in the definition for the
1789   // struct.  This counts as a definition as far as the .ll file goes.
1790   if (EatIfPresent(lltok::kw_opaque)) {
1791     // This type is being defined, so clear the location to indicate this.
1792     Entry.second = SMLoc();
1793
1794     // If this type number has never been uttered, create it.
1795     if (Entry.first == 0)
1796       Entry.first = StructType::create(Context, Name);
1797     ResultTy = Entry.first;
1798     return false;
1799   }
1800
1801   // If the type starts with '<', then it is either a packed struct or a vector.
1802   bool isPacked = EatIfPresent(lltok::less);
1803
1804   // If we don't have a struct, then we have a random type alias, which we
1805   // accept for compatibility with old files.  These types are not allowed to be
1806   // forward referenced and not allowed to be recursive.
1807   if (Lex.getKind() != lltok::lbrace) {
1808     if (Entry.first)
1809       return Error(TypeLoc, "forward references to non-struct type");
1810
1811     ResultTy = 0;
1812     if (isPacked)
1813       return ParseArrayVectorType(ResultTy, true);
1814     return ParseType(ResultTy);
1815   }
1816
1817   // This type is being defined, so clear the location to indicate this.
1818   Entry.second = SMLoc();
1819
1820   // If this type number has never been uttered, create it.
1821   if (Entry.first == 0)
1822     Entry.first = StructType::create(Context, Name);
1823
1824   StructType *STy = cast<StructType>(Entry.first);
1825
1826   SmallVector<Type*, 8> Body;
1827   if (ParseStructBody(Body) ||
1828       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
1829     return true;
1830
1831   STy->setBody(Body, isPacked);
1832   ResultTy = STy;
1833   return false;
1834 }
1835
1836
1837 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1838 ///   StructType
1839 ///     ::= '{' '}'
1840 ///     ::= '{' Type (',' Type)* '}'
1841 ///     ::= '<' '{' '}' '>'
1842 ///     ::= '<' '{' Type (',' Type)* '}' '>'
1843 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
1844   assert(Lex.getKind() == lltok::lbrace);
1845   Lex.Lex(); // Consume the '{'
1846
1847   // Handle the empty struct.
1848   if (EatIfPresent(lltok::rbrace))
1849     return false;
1850
1851   LocTy EltTyLoc = Lex.getLoc();
1852   Type *Ty = 0;
1853   if (ParseType(Ty)) return true;
1854   Body.push_back(Ty);
1855
1856   if (!StructType::isValidElementType(Ty))
1857     return Error(EltTyLoc, "invalid element type for struct");
1858
1859   while (EatIfPresent(lltok::comma)) {
1860     EltTyLoc = Lex.getLoc();
1861     if (ParseType(Ty)) return true;
1862
1863     if (!StructType::isValidElementType(Ty))
1864       return Error(EltTyLoc, "invalid element type for struct");
1865
1866     Body.push_back(Ty);
1867   }
1868
1869   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
1870 }
1871
1872 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
1873 /// token has already been consumed.
1874 ///   Type
1875 ///     ::= '[' APSINTVAL 'x' Types ']'
1876 ///     ::= '<' APSINTVAL 'x' Types '>'
1877 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
1878   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1879       Lex.getAPSIntVal().getBitWidth() > 64)
1880     return TokError("expected number in address space");
1881
1882   LocTy SizeLoc = Lex.getLoc();
1883   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1884   Lex.Lex();
1885
1886   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1887       return true;
1888
1889   LocTy TypeLoc = Lex.getLoc();
1890   Type *EltTy = 0;
1891   if (ParseType(EltTy)) return true;
1892
1893   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1894                  "expected end of sequential type"))
1895     return true;
1896
1897   if (isVector) {
1898     if (Size == 0)
1899       return Error(SizeLoc, "zero element vector is illegal");
1900     if ((unsigned)Size != Size)
1901       return Error(SizeLoc, "size too large for vector");
1902     if (!VectorType::isValidElementType(EltTy))
1903       return Error(TypeLoc, "invalid vector element type");
1904     Result = VectorType::get(EltTy, unsigned(Size));
1905   } else {
1906     if (!ArrayType::isValidElementType(EltTy))
1907       return Error(TypeLoc, "invalid array element type");
1908     Result = ArrayType::get(EltTy, Size);
1909   }
1910   return false;
1911 }
1912
1913 //===----------------------------------------------------------------------===//
1914 // Function Semantic Analysis.
1915 //===----------------------------------------------------------------------===//
1916
1917 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1918                                              int functionNumber)
1919   : P(p), F(f), FunctionNumber(functionNumber) {
1920
1921   // Insert unnamed arguments into the NumberedVals list.
1922   for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1923        AI != E; ++AI)
1924     if (!AI->hasName())
1925       NumberedVals.push_back(AI);
1926 }
1927
1928 LLParser::PerFunctionState::~PerFunctionState() {
1929   // If there were any forward referenced non-basicblock values, delete them.
1930   for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1931        I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1932     if (!isa<BasicBlock>(I->second.first)) {
1933       I->second.first->replaceAllUsesWith(
1934                            UndefValue::get(I->second.first->getType()));
1935       delete I->second.first;
1936       I->second.first = 0;
1937     }
1938
1939   for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1940        I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1941     if (!isa<BasicBlock>(I->second.first)) {
1942       I->second.first->replaceAllUsesWith(
1943                            UndefValue::get(I->second.first->getType()));
1944       delete I->second.first;
1945       I->second.first = 0;
1946     }
1947 }
1948
1949 bool LLParser::PerFunctionState::FinishFunction() {
1950   // Check to see if someone took the address of labels in this block.
1951   if (!P.ForwardRefBlockAddresses.empty()) {
1952     ValID FunctionID;
1953     if (!F.getName().empty()) {
1954       FunctionID.Kind = ValID::t_GlobalName;
1955       FunctionID.StrVal = F.getName();
1956     } else {
1957       FunctionID.Kind = ValID::t_GlobalID;
1958       FunctionID.UIntVal = FunctionNumber;
1959     }
1960
1961     std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1962       FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1963     if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1964       // Resolve all these references.
1965       if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1966         return true;
1967
1968       P.ForwardRefBlockAddresses.erase(FRBAI);
1969     }
1970   }
1971
1972   if (!ForwardRefVals.empty())
1973     return P.Error(ForwardRefVals.begin()->second.second,
1974                    "use of undefined value '%" + ForwardRefVals.begin()->first +
1975                    "'");
1976   if (!ForwardRefValIDs.empty())
1977     return P.Error(ForwardRefValIDs.begin()->second.second,
1978                    "use of undefined value '%" +
1979                    Twine(ForwardRefValIDs.begin()->first) + "'");
1980   return false;
1981 }
1982
1983
1984 /// GetVal - Get a value with the specified name or ID, creating a
1985 /// forward reference record if needed.  This can return null if the value
1986 /// exists but does not have the right type.
1987 Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1988                                           Type *Ty, LocTy Loc) {
1989   // Look this name up in the normal function symbol table.
1990   Value *Val = F.getValueSymbolTable().lookup(Name);
1991
1992   // If this is a forward reference for the value, see if we already created a
1993   // forward ref record.
1994   if (Val == 0) {
1995     std::map<std::string, std::pair<Value*, LocTy> >::iterator
1996       I = ForwardRefVals.find(Name);
1997     if (I != ForwardRefVals.end())
1998       Val = I->second.first;
1999   }
2000
2001   // If we have the value in the symbol table or fwd-ref table, return it.
2002   if (Val) {
2003     if (Val->getType() == Ty) return Val;
2004     if (Ty->isLabelTy())
2005       P.Error(Loc, "'%" + Name + "' is not a basic block");
2006     else
2007       P.Error(Loc, "'%" + Name + "' defined with type '" +
2008               getTypeString(Val->getType()) + "'");
2009     return 0;
2010   }
2011
2012   // Don't make placeholders with invalid type.
2013   if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
2014     P.Error(Loc, "invalid use of a non-first-class type");
2015     return 0;
2016   }
2017
2018   // Otherwise, create a new forward reference for this value and remember it.
2019   Value *FwdVal;
2020   if (Ty->isLabelTy())
2021     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2022   else
2023     FwdVal = new Argument(Ty, Name);
2024
2025   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2026   return FwdVal;
2027 }
2028
2029 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
2030                                           LocTy Loc) {
2031   // Look this name up in the normal function symbol table.
2032   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
2033
2034   // If this is a forward reference for the value, see if we already created a
2035   // forward ref record.
2036   if (Val == 0) {
2037     std::map<unsigned, std::pair<Value*, LocTy> >::iterator
2038       I = ForwardRefValIDs.find(ID);
2039     if (I != ForwardRefValIDs.end())
2040       Val = I->second.first;
2041   }
2042
2043   // If we have the value in the symbol table or fwd-ref table, return it.
2044   if (Val) {
2045     if (Val->getType() == Ty) return Val;
2046     if (Ty->isLabelTy())
2047       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2048     else
2049       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2050               getTypeString(Val->getType()) + "'");
2051     return 0;
2052   }
2053
2054   if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
2055     P.Error(Loc, "invalid use of a non-first-class type");
2056     return 0;
2057   }
2058
2059   // Otherwise, create a new forward reference for this value and remember it.
2060   Value *FwdVal;
2061   if (Ty->isLabelTy())
2062     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2063   else
2064     FwdVal = new Argument(Ty);
2065
2066   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2067   return FwdVal;
2068 }
2069
2070 /// SetInstName - After an instruction is parsed and inserted into its
2071 /// basic block, this installs its name.
2072 bool LLParser::PerFunctionState::SetInstName(int NameID,
2073                                              const std::string &NameStr,
2074                                              LocTy NameLoc, Instruction *Inst) {
2075   // If this instruction has void type, it cannot have a name or ID specified.
2076   if (Inst->getType()->isVoidTy()) {
2077     if (NameID != -1 || !NameStr.empty())
2078       return P.Error(NameLoc, "instructions returning void cannot have a name");
2079     return false;
2080   }
2081
2082   // If this was a numbered instruction, verify that the instruction is the
2083   // expected value and resolve any forward references.
2084   if (NameStr.empty()) {
2085     // If neither a name nor an ID was specified, just use the next ID.
2086     if (NameID == -1)
2087       NameID = NumberedVals.size();
2088
2089     if (unsigned(NameID) != NumberedVals.size())
2090       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2091                      Twine(NumberedVals.size()) + "'");
2092
2093     std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
2094       ForwardRefValIDs.find(NameID);
2095     if (FI != ForwardRefValIDs.end()) {
2096       if (FI->second.first->getType() != Inst->getType())
2097         return P.Error(NameLoc, "instruction forward referenced with type '" +
2098                        getTypeString(FI->second.first->getType()) + "'");
2099       FI->second.first->replaceAllUsesWith(Inst);
2100       delete FI->second.first;
2101       ForwardRefValIDs.erase(FI);
2102     }
2103
2104     NumberedVals.push_back(Inst);
2105     return false;
2106   }
2107
2108   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2109   std::map<std::string, std::pair<Value*, LocTy> >::iterator
2110     FI = ForwardRefVals.find(NameStr);
2111   if (FI != ForwardRefVals.end()) {
2112     if (FI->second.first->getType() != Inst->getType())
2113       return P.Error(NameLoc, "instruction forward referenced with type '" +
2114                      getTypeString(FI->second.first->getType()) + "'");
2115     FI->second.first->replaceAllUsesWith(Inst);
2116     delete FI->second.first;
2117     ForwardRefVals.erase(FI);
2118   }
2119
2120   // Set the name on the instruction.
2121   Inst->setName(NameStr);
2122
2123   if (Inst->getName() != NameStr)
2124     return P.Error(NameLoc, "multiple definition of local value named '" +
2125                    NameStr + "'");
2126   return false;
2127 }
2128
2129 /// GetBB - Get a basic block with the specified name or ID, creating a
2130 /// forward reference record if needed.
2131 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2132                                               LocTy Loc) {
2133   return cast_or_null<BasicBlock>(GetVal(Name,
2134                                         Type::getLabelTy(F.getContext()), Loc));
2135 }
2136
2137 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2138   return cast_or_null<BasicBlock>(GetVal(ID,
2139                                         Type::getLabelTy(F.getContext()), Loc));
2140 }
2141
2142 /// DefineBB - Define the specified basic block, which is either named or
2143 /// unnamed.  If there is an error, this returns null otherwise it returns
2144 /// the block being defined.
2145 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2146                                                  LocTy Loc) {
2147   BasicBlock *BB;
2148   if (Name.empty())
2149     BB = GetBB(NumberedVals.size(), Loc);
2150   else
2151     BB = GetBB(Name, Loc);
2152   if (BB == 0) return 0; // Already diagnosed error.
2153
2154   // Move the block to the end of the function.  Forward ref'd blocks are
2155   // inserted wherever they happen to be referenced.
2156   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2157
2158   // Remove the block from forward ref sets.
2159   if (Name.empty()) {
2160     ForwardRefValIDs.erase(NumberedVals.size());
2161     NumberedVals.push_back(BB);
2162   } else {
2163     // BB forward references are already in the function symbol table.
2164     ForwardRefVals.erase(Name);
2165   }
2166
2167   return BB;
2168 }
2169
2170 //===----------------------------------------------------------------------===//
2171 // Constants.
2172 //===----------------------------------------------------------------------===//
2173
2174 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2175 /// type implied.  For example, if we parse "4" we don't know what integer type
2176 /// it has.  The value will later be combined with its type and checked for
2177 /// sanity.  PFS is used to convert function-local operands of metadata (since
2178 /// metadata operands are not just parsed here but also converted to values).
2179 /// PFS can be null when we are not parsing metadata values inside a function.
2180 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2181   ID.Loc = Lex.getLoc();
2182   switch (Lex.getKind()) {
2183   default: return TokError("expected value token");
2184   case lltok::GlobalID:  // @42
2185     ID.UIntVal = Lex.getUIntVal();
2186     ID.Kind = ValID::t_GlobalID;
2187     break;
2188   case lltok::GlobalVar:  // @foo
2189     ID.StrVal = Lex.getStrVal();
2190     ID.Kind = ValID::t_GlobalName;
2191     break;
2192   case lltok::LocalVarID:  // %42
2193     ID.UIntVal = Lex.getUIntVal();
2194     ID.Kind = ValID::t_LocalID;
2195     break;
2196   case lltok::LocalVar:  // %foo
2197     ID.StrVal = Lex.getStrVal();
2198     ID.Kind = ValID::t_LocalName;
2199     break;
2200   case lltok::exclaim:   // !42, !{...}, or !"foo"
2201     return ParseMetadataValue(ID, PFS);
2202   case lltok::APSInt:
2203     ID.APSIntVal = Lex.getAPSIntVal();
2204     ID.Kind = ValID::t_APSInt;
2205     break;
2206   case lltok::APFloat:
2207     ID.APFloatVal = Lex.getAPFloatVal();
2208     ID.Kind = ValID::t_APFloat;
2209     break;
2210   case lltok::kw_true:
2211     ID.ConstantVal = ConstantInt::getTrue(Context);
2212     ID.Kind = ValID::t_Constant;
2213     break;
2214   case lltok::kw_false:
2215     ID.ConstantVal = ConstantInt::getFalse(Context);
2216     ID.Kind = ValID::t_Constant;
2217     break;
2218   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2219   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2220   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2221
2222   case lltok::lbrace: {
2223     // ValID ::= '{' ConstVector '}'
2224     Lex.Lex();
2225     SmallVector<Constant*, 16> Elts;
2226     if (ParseGlobalValueVector(Elts) ||
2227         ParseToken(lltok::rbrace, "expected end of struct constant"))
2228       return true;
2229
2230     ID.ConstantStructElts = new Constant*[Elts.size()];
2231     ID.UIntVal = Elts.size();
2232     memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2233     ID.Kind = ValID::t_ConstantStruct;
2234     return false;
2235   }
2236   case lltok::less: {
2237     // ValID ::= '<' ConstVector '>'         --> Vector.
2238     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2239     Lex.Lex();
2240     bool isPackedStruct = EatIfPresent(lltok::lbrace);
2241
2242     SmallVector<Constant*, 16> Elts;
2243     LocTy FirstEltLoc = Lex.getLoc();
2244     if (ParseGlobalValueVector(Elts) ||
2245         (isPackedStruct &&
2246          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2247         ParseToken(lltok::greater, "expected end of constant"))
2248       return true;
2249
2250     if (isPackedStruct) {
2251       ID.ConstantStructElts = new Constant*[Elts.size()];
2252       memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2253       ID.UIntVal = Elts.size();
2254       ID.Kind = ValID::t_PackedConstantStruct;
2255       return false;
2256     }
2257
2258     if (Elts.empty())
2259       return Error(ID.Loc, "constant vector must not be empty");
2260
2261     if (!Elts[0]->getType()->isIntegerTy() &&
2262         !Elts[0]->getType()->isFloatingPointTy() &&
2263         !Elts[0]->getType()->isPointerTy())
2264       return Error(FirstEltLoc,
2265             "vector elements must have integer, pointer or floating point type");
2266
2267     // Verify that all the vector elements have the same type.
2268     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2269       if (Elts[i]->getType() != Elts[0]->getType())
2270         return Error(FirstEltLoc,
2271                      "vector element #" + Twine(i) +
2272                     " is not of type '" + getTypeString(Elts[0]->getType()));
2273
2274     ID.ConstantVal = ConstantVector::get(Elts);
2275     ID.Kind = ValID::t_Constant;
2276     return false;
2277   }
2278   case lltok::lsquare: {   // Array Constant
2279     Lex.Lex();
2280     SmallVector<Constant*, 16> Elts;
2281     LocTy FirstEltLoc = Lex.getLoc();
2282     if (ParseGlobalValueVector(Elts) ||
2283         ParseToken(lltok::rsquare, "expected end of array constant"))
2284       return true;
2285
2286     // Handle empty element.
2287     if (Elts.empty()) {
2288       // Use undef instead of an array because it's inconvenient to determine
2289       // the element type at this point, there being no elements to examine.
2290       ID.Kind = ValID::t_EmptyArray;
2291       return false;
2292     }
2293
2294     if (!Elts[0]->getType()->isFirstClassType())
2295       return Error(FirstEltLoc, "invalid array element type: " +
2296                    getTypeString(Elts[0]->getType()));
2297
2298     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2299
2300     // Verify all elements are correct type!
2301     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2302       if (Elts[i]->getType() != Elts[0]->getType())
2303         return Error(FirstEltLoc,
2304                      "array element #" + Twine(i) +
2305                      " is not of type '" + getTypeString(Elts[0]->getType()));
2306     }
2307
2308     ID.ConstantVal = ConstantArray::get(ATy, Elts);
2309     ID.Kind = ValID::t_Constant;
2310     return false;
2311   }
2312   case lltok::kw_c:  // c "foo"
2313     Lex.Lex();
2314     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2315                                                   false);
2316     if (ParseToken(lltok::StringConstant, "expected string")) return true;
2317     ID.Kind = ValID::t_Constant;
2318     return false;
2319
2320   case lltok::kw_asm: {
2321     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2322     //             STRINGCONSTANT
2323     bool HasSideEffect, AlignStack, AsmDialect;
2324     Lex.Lex();
2325     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2326         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2327         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2328         ParseStringConstant(ID.StrVal) ||
2329         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2330         ParseToken(lltok::StringConstant, "expected constraint string"))
2331       return true;
2332     ID.StrVal2 = Lex.getStrVal();
2333     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2334       (unsigned(AsmDialect)<<2);
2335     ID.Kind = ValID::t_InlineAsm;
2336     return false;
2337   }
2338
2339   case lltok::kw_blockaddress: {
2340     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2341     Lex.Lex();
2342
2343     ValID Fn, Label;
2344     LocTy FnLoc, LabelLoc;
2345
2346     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2347         ParseValID(Fn) ||
2348         ParseToken(lltok::comma, "expected comma in block address expression")||
2349         ParseValID(Label) ||
2350         ParseToken(lltok::rparen, "expected ')' in block address expression"))
2351       return true;
2352
2353     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2354       return Error(Fn.Loc, "expected function name in blockaddress");
2355     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2356       return Error(Label.Loc, "expected basic block name in blockaddress");
2357
2358     // Make a global variable as a placeholder for this reference.
2359     GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2360                                            false, GlobalValue::InternalLinkage,
2361                                                 0, "");
2362     ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2363     ID.ConstantVal = FwdRef;
2364     ID.Kind = ValID::t_Constant;
2365     return false;
2366   }
2367
2368   case lltok::kw_trunc:
2369   case lltok::kw_zext:
2370   case lltok::kw_sext:
2371   case lltok::kw_fptrunc:
2372   case lltok::kw_fpext:
2373   case lltok::kw_bitcast:
2374   case lltok::kw_uitofp:
2375   case lltok::kw_sitofp:
2376   case lltok::kw_fptoui:
2377   case lltok::kw_fptosi:
2378   case lltok::kw_inttoptr:
2379   case lltok::kw_ptrtoint: {
2380     unsigned Opc = Lex.getUIntVal();
2381     Type *DestTy = 0;
2382     Constant *SrcVal;
2383     Lex.Lex();
2384     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2385         ParseGlobalTypeAndValue(SrcVal) ||
2386         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2387         ParseType(DestTy) ||
2388         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2389       return true;
2390     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2391       return Error(ID.Loc, "invalid cast opcode for cast from '" +
2392                    getTypeString(SrcVal->getType()) + "' to '" +
2393                    getTypeString(DestTy) + "'");
2394     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2395                                                  SrcVal, DestTy);
2396     ID.Kind = ValID::t_Constant;
2397     return false;
2398   }
2399   case lltok::kw_extractvalue: {
2400     Lex.Lex();
2401     Constant *Val;
2402     SmallVector<unsigned, 4> Indices;
2403     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2404         ParseGlobalTypeAndValue(Val) ||
2405         ParseIndexList(Indices) ||
2406         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2407       return true;
2408
2409     if (!Val->getType()->isAggregateType())
2410       return Error(ID.Loc, "extractvalue operand must be aggregate type");
2411     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2412       return Error(ID.Loc, "invalid indices for extractvalue");
2413     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2414     ID.Kind = ValID::t_Constant;
2415     return false;
2416   }
2417   case lltok::kw_insertvalue: {
2418     Lex.Lex();
2419     Constant *Val0, *Val1;
2420     SmallVector<unsigned, 4> Indices;
2421     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2422         ParseGlobalTypeAndValue(Val0) ||
2423         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2424         ParseGlobalTypeAndValue(Val1) ||
2425         ParseIndexList(Indices) ||
2426         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2427       return true;
2428     if (!Val0->getType()->isAggregateType())
2429       return Error(ID.Loc, "insertvalue operand must be aggregate type");
2430     if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
2431       return Error(ID.Loc, "invalid indices for insertvalue");
2432     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2433     ID.Kind = ValID::t_Constant;
2434     return false;
2435   }
2436   case lltok::kw_icmp:
2437   case lltok::kw_fcmp: {
2438     unsigned PredVal, Opc = Lex.getUIntVal();
2439     Constant *Val0, *Val1;
2440     Lex.Lex();
2441     if (ParseCmpPredicate(PredVal, Opc) ||
2442         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2443         ParseGlobalTypeAndValue(Val0) ||
2444         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2445         ParseGlobalTypeAndValue(Val1) ||
2446         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2447       return true;
2448
2449     if (Val0->getType() != Val1->getType())
2450       return Error(ID.Loc, "compare operands must have the same type");
2451
2452     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2453
2454     if (Opc == Instruction::FCmp) {
2455       if (!Val0->getType()->isFPOrFPVectorTy())
2456         return Error(ID.Loc, "fcmp requires floating point operands");
2457       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2458     } else {
2459       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2460       if (!Val0->getType()->isIntOrIntVectorTy() &&
2461           !Val0->getType()->getScalarType()->isPointerTy())
2462         return Error(ID.Loc, "icmp requires pointer or integer operands");
2463       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2464     }
2465     ID.Kind = ValID::t_Constant;
2466     return false;
2467   }
2468
2469   // Binary Operators.
2470   case lltok::kw_add:
2471   case lltok::kw_fadd:
2472   case lltok::kw_sub:
2473   case lltok::kw_fsub:
2474   case lltok::kw_mul:
2475   case lltok::kw_fmul:
2476   case lltok::kw_udiv:
2477   case lltok::kw_sdiv:
2478   case lltok::kw_fdiv:
2479   case lltok::kw_urem:
2480   case lltok::kw_srem:
2481   case lltok::kw_frem:
2482   case lltok::kw_shl:
2483   case lltok::kw_lshr:
2484   case lltok::kw_ashr: {
2485     bool NUW = false;
2486     bool NSW = false;
2487     bool Exact = false;
2488     unsigned Opc = Lex.getUIntVal();
2489     Constant *Val0, *Val1;
2490     Lex.Lex();
2491     LocTy ModifierLoc = Lex.getLoc();
2492     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2493         Opc == Instruction::Mul || Opc == Instruction::Shl) {
2494       if (EatIfPresent(lltok::kw_nuw))
2495         NUW = true;
2496       if (EatIfPresent(lltok::kw_nsw)) {
2497         NSW = true;
2498         if (EatIfPresent(lltok::kw_nuw))
2499           NUW = true;
2500       }
2501     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2502                Opc == Instruction::LShr || Opc == Instruction::AShr) {
2503       if (EatIfPresent(lltok::kw_exact))
2504         Exact = true;
2505     }
2506     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2507         ParseGlobalTypeAndValue(Val0) ||
2508         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2509         ParseGlobalTypeAndValue(Val1) ||
2510         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2511       return true;
2512     if (Val0->getType() != Val1->getType())
2513       return Error(ID.Loc, "operands of constexpr must have same type");
2514     if (!Val0->getType()->isIntOrIntVectorTy()) {
2515       if (NUW)
2516         return Error(ModifierLoc, "nuw only applies to integer operations");
2517       if (NSW)
2518         return Error(ModifierLoc, "nsw only applies to integer operations");
2519     }
2520     // Check that the type is valid for the operator.
2521     switch (Opc) {
2522     case Instruction::Add:
2523     case Instruction::Sub:
2524     case Instruction::Mul:
2525     case Instruction::UDiv:
2526     case Instruction::SDiv:
2527     case Instruction::URem:
2528     case Instruction::SRem:
2529     case Instruction::Shl:
2530     case Instruction::AShr:
2531     case Instruction::LShr:
2532       if (!Val0->getType()->isIntOrIntVectorTy())
2533         return Error(ID.Loc, "constexpr requires integer operands");
2534       break;
2535     case Instruction::FAdd:
2536     case Instruction::FSub:
2537     case Instruction::FMul:
2538     case Instruction::FDiv:
2539     case Instruction::FRem:
2540       if (!Val0->getType()->isFPOrFPVectorTy())
2541         return Error(ID.Loc, "constexpr requires fp operands");
2542       break;
2543     default: llvm_unreachable("Unknown binary operator!");
2544     }
2545     unsigned Flags = 0;
2546     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2547     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2548     if (Exact) Flags |= PossiblyExactOperator::IsExact;
2549     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2550     ID.ConstantVal = C;
2551     ID.Kind = ValID::t_Constant;
2552     return false;
2553   }
2554
2555   // Logical Operations
2556   case lltok::kw_and:
2557   case lltok::kw_or:
2558   case lltok::kw_xor: {
2559     unsigned Opc = Lex.getUIntVal();
2560     Constant *Val0, *Val1;
2561     Lex.Lex();
2562     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2563         ParseGlobalTypeAndValue(Val0) ||
2564         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2565         ParseGlobalTypeAndValue(Val1) ||
2566         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2567       return true;
2568     if (Val0->getType() != Val1->getType())
2569       return Error(ID.Loc, "operands of constexpr must have same type");
2570     if (!Val0->getType()->isIntOrIntVectorTy())
2571       return Error(ID.Loc,
2572                    "constexpr requires integer or integer vector operands");
2573     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2574     ID.Kind = ValID::t_Constant;
2575     return false;
2576   }
2577
2578   case lltok::kw_getelementptr:
2579   case lltok::kw_shufflevector:
2580   case lltok::kw_insertelement:
2581   case lltok::kw_extractelement:
2582   case lltok::kw_select: {
2583     unsigned Opc = Lex.getUIntVal();
2584     SmallVector<Constant*, 16> Elts;
2585     bool InBounds = false;
2586     Lex.Lex();
2587     if (Opc == Instruction::GetElementPtr)
2588       InBounds = EatIfPresent(lltok::kw_inbounds);
2589     if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2590         ParseGlobalValueVector(Elts) ||
2591         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2592       return true;
2593
2594     if (Opc == Instruction::GetElementPtr) {
2595       if (Elts.size() == 0 ||
2596           !Elts[0]->getType()->getScalarType()->isPointerTy())
2597         return Error(ID.Loc, "getelementptr requires pointer operand");
2598
2599       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2600       if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
2601         return Error(ID.Loc, "invalid indices for getelementptr");
2602       ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
2603                                                       InBounds);
2604     } else if (Opc == Instruction::Select) {
2605       if (Elts.size() != 3)
2606         return Error(ID.Loc, "expected three operands to select");
2607       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2608                                                               Elts[2]))
2609         return Error(ID.Loc, Reason);
2610       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2611     } else if (Opc == Instruction::ShuffleVector) {
2612       if (Elts.size() != 3)
2613         return Error(ID.Loc, "expected three operands to shufflevector");
2614       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2615         return Error(ID.Loc, "invalid operands to shufflevector");
2616       ID.ConstantVal =
2617                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2618     } else if (Opc == Instruction::ExtractElement) {
2619       if (Elts.size() != 2)
2620         return Error(ID.Loc, "expected two operands to extractelement");
2621       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2622         return Error(ID.Loc, "invalid extractelement operands");
2623       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2624     } else {
2625       assert(Opc == Instruction::InsertElement && "Unknown opcode");
2626       if (Elts.size() != 3)
2627       return Error(ID.Loc, "expected three operands to insertelement");
2628       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2629         return Error(ID.Loc, "invalid insertelement operands");
2630       ID.ConstantVal =
2631                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2632     }
2633
2634     ID.Kind = ValID::t_Constant;
2635     return false;
2636   }
2637   }
2638
2639   Lex.Lex();
2640   return false;
2641 }
2642
2643 /// ParseGlobalValue - Parse a global value with the specified type.
2644 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
2645   C = 0;
2646   ValID ID;
2647   Value *V = NULL;
2648   bool Parsed = ParseValID(ID) ||
2649                 ConvertValIDToValue(Ty, ID, V, NULL);
2650   if (V && !(C = dyn_cast<Constant>(V)))
2651     return Error(ID.Loc, "global values must be constants");
2652   return Parsed;
2653 }
2654
2655 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2656   Type *Ty = 0;
2657   return ParseType(Ty) ||
2658          ParseGlobalValue(Ty, V);
2659 }
2660
2661 /// ParseGlobalValueVector
2662 ///   ::= /*empty*/
2663 ///   ::= TypeAndValue (',' TypeAndValue)*
2664 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2665   // Empty list.
2666   if (Lex.getKind() == lltok::rbrace ||
2667       Lex.getKind() == lltok::rsquare ||
2668       Lex.getKind() == lltok::greater ||
2669       Lex.getKind() == lltok::rparen)
2670     return false;
2671
2672   Constant *C;
2673   if (ParseGlobalTypeAndValue(C)) return true;
2674   Elts.push_back(C);
2675
2676   while (EatIfPresent(lltok::comma)) {
2677     if (ParseGlobalTypeAndValue(C)) return true;
2678     Elts.push_back(C);
2679   }
2680
2681   return false;
2682 }
2683
2684 bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2685   assert(Lex.getKind() == lltok::lbrace);
2686   Lex.Lex();
2687
2688   SmallVector<Value*, 16> Elts;
2689   if (ParseMDNodeVector(Elts, PFS) ||
2690       ParseToken(lltok::rbrace, "expected end of metadata node"))
2691     return true;
2692
2693   ID.MDNodeVal = MDNode::get(Context, Elts);
2694   ID.Kind = ValID::t_MDNode;
2695   return false;
2696 }
2697
2698 /// ParseMetadataValue
2699 ///  ::= !42
2700 ///  ::= !{...}
2701 ///  ::= !"string"
2702 bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2703   assert(Lex.getKind() == lltok::exclaim);
2704   Lex.Lex();
2705
2706   // MDNode:
2707   // !{ ... }
2708   if (Lex.getKind() == lltok::lbrace)
2709     return ParseMetadataListValue(ID, PFS);
2710
2711   // Standalone metadata reference
2712   // !42
2713   if (Lex.getKind() == lltok::APSInt) {
2714     if (ParseMDNodeID(ID.MDNodeVal)) return true;
2715     ID.Kind = ValID::t_MDNode;
2716     return false;
2717   }
2718
2719   // MDString:
2720   //   ::= '!' STRINGCONSTANT
2721   if (ParseMDString(ID.MDStringVal)) return true;
2722   ID.Kind = ValID::t_MDString;
2723   return false;
2724 }
2725
2726
2727 //===----------------------------------------------------------------------===//
2728 // Function Parsing.
2729 //===----------------------------------------------------------------------===//
2730
2731 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
2732                                    PerFunctionState *PFS) {
2733   if (Ty->isFunctionTy())
2734     return Error(ID.Loc, "functions are not values, refer to them as pointers");
2735
2736   switch (ID.Kind) {
2737   case ValID::t_LocalID:
2738     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2739     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2740     return (V == 0);
2741   case ValID::t_LocalName:
2742     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2743     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2744     return (V == 0);
2745   case ValID::t_InlineAsm: {
2746     PointerType *PTy = dyn_cast<PointerType>(Ty);
2747     FunctionType *FTy =
2748       PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2749     if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2750       return Error(ID.Loc, "invalid type for inline asm constraint string");
2751     V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1,
2752                        (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2)));
2753     return false;
2754   }
2755   case ValID::t_MDNode:
2756     if (!Ty->isMetadataTy())
2757       return Error(ID.Loc, "metadata value must have metadata type");
2758     V = ID.MDNodeVal;
2759     return false;
2760   case ValID::t_MDString:
2761     if (!Ty->isMetadataTy())
2762       return Error(ID.Loc, "metadata value must have metadata type");
2763     V = ID.MDStringVal;
2764     return false;
2765   case ValID::t_GlobalName:
2766     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2767     return V == 0;
2768   case ValID::t_GlobalID:
2769     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2770     return V == 0;
2771   case ValID::t_APSInt:
2772     if (!Ty->isIntegerTy())
2773       return Error(ID.Loc, "integer constant must have integer type");
2774     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2775     V = ConstantInt::get(Context, ID.APSIntVal);
2776     return false;
2777   case ValID::t_APFloat:
2778     if (!Ty->isFloatingPointTy() ||
2779         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2780       return Error(ID.Loc, "floating point constant invalid for type");
2781
2782     // The lexer has no type info, so builds all half, float, and double FP
2783     // constants as double.  Fix this here.  Long double does not need this.
2784     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
2785       bool Ignored;
2786       if (Ty->isHalfTy())
2787         ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
2788                               &Ignored);
2789       else if (Ty->isFloatTy())
2790         ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2791                               &Ignored);
2792     }
2793     V = ConstantFP::get(Context, ID.APFloatVal);
2794
2795     if (V->getType() != Ty)
2796       return Error(ID.Loc, "floating point constant does not have type '" +
2797                    getTypeString(Ty) + "'");
2798
2799     return false;
2800   case ValID::t_Null:
2801     if (!Ty->isPointerTy())
2802       return Error(ID.Loc, "null must be a pointer type");
2803     V = ConstantPointerNull::get(cast<PointerType>(Ty));
2804     return false;
2805   case ValID::t_Undef:
2806     // FIXME: LabelTy should not be a first-class type.
2807     if (!Ty->isFirstClassType() || Ty->isLabelTy())
2808       return Error(ID.Loc, "invalid type for undef constant");
2809     V = UndefValue::get(Ty);
2810     return false;
2811   case ValID::t_EmptyArray:
2812     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2813       return Error(ID.Loc, "invalid empty array initializer");
2814     V = UndefValue::get(Ty);
2815     return false;
2816   case ValID::t_Zero:
2817     // FIXME: LabelTy should not be a first-class type.
2818     if (!Ty->isFirstClassType() || Ty->isLabelTy())
2819       return Error(ID.Loc, "invalid type for null constant");
2820     V = Constant::getNullValue(Ty);
2821     return false;
2822   case ValID::t_Constant:
2823     if (ID.ConstantVal->getType() != Ty)
2824       return Error(ID.Loc, "constant expression type mismatch");
2825
2826     V = ID.ConstantVal;
2827     return false;
2828   case ValID::t_ConstantStruct:
2829   case ValID::t_PackedConstantStruct:
2830     if (StructType *ST = dyn_cast<StructType>(Ty)) {
2831       if (ST->getNumElements() != ID.UIntVal)
2832         return Error(ID.Loc,
2833                      "initializer with struct type has wrong # elements");
2834       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
2835         return Error(ID.Loc, "packed'ness of initializer and type don't match");
2836
2837       // Verify that the elements are compatible with the structtype.
2838       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
2839         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
2840           return Error(ID.Loc, "element " + Twine(i) +
2841                     " of struct initializer doesn't match struct element type");
2842
2843       V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
2844                                                ID.UIntVal));
2845     } else
2846       return Error(ID.Loc, "constant expression type mismatch");
2847     return false;
2848   }
2849   llvm_unreachable("Invalid ValID");
2850 }
2851
2852 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
2853   V = 0;
2854   ValID ID;
2855   return ParseValID(ID, PFS) ||
2856          ConvertValIDToValue(Ty, ID, V, PFS);
2857 }
2858
2859 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
2860   Type *Ty = 0;
2861   return ParseType(Ty) ||
2862          ParseValue(Ty, V, PFS);
2863 }
2864
2865 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2866                                       PerFunctionState &PFS) {
2867   Value *V;
2868   Loc = Lex.getLoc();
2869   if (ParseTypeAndValue(V, PFS)) return true;
2870   if (!isa<BasicBlock>(V))
2871     return Error(Loc, "expected a basic block");
2872   BB = cast<BasicBlock>(V);
2873   return false;
2874 }
2875
2876
2877 /// FunctionHeader
2878 ///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2879 ///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2880 ///       OptionalAlign OptGC
2881 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2882   // Parse the linkage.
2883   LocTy LinkageLoc = Lex.getLoc();
2884   unsigned Linkage;
2885
2886   unsigned Visibility;
2887   AttrBuilder RetAttrs;
2888   CallingConv::ID CC;
2889   Type *RetType = 0;
2890   LocTy RetTypeLoc = Lex.getLoc();
2891   if (ParseOptionalLinkage(Linkage) ||
2892       ParseOptionalVisibility(Visibility) ||
2893       ParseOptionalCallingConv(CC) ||
2894       ParseOptionalReturnAttrs(RetAttrs) ||
2895       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2896     return true;
2897
2898   // Verify that the linkage is ok.
2899   switch ((GlobalValue::LinkageTypes)Linkage) {
2900   case GlobalValue::ExternalLinkage:
2901     break; // always ok.
2902   case GlobalValue::DLLImportLinkage:
2903   case GlobalValue::ExternalWeakLinkage:
2904     if (isDefine)
2905       return Error(LinkageLoc, "invalid linkage for function definition");
2906     break;
2907   case GlobalValue::PrivateLinkage:
2908   case GlobalValue::LinkerPrivateLinkage:
2909   case GlobalValue::LinkerPrivateWeakLinkage:
2910   case GlobalValue::InternalLinkage:
2911   case GlobalValue::AvailableExternallyLinkage:
2912   case GlobalValue::LinkOnceAnyLinkage:
2913   case GlobalValue::LinkOnceODRLinkage:
2914   case GlobalValue::LinkOnceODRAutoHideLinkage:
2915   case GlobalValue::WeakAnyLinkage:
2916   case GlobalValue::WeakODRLinkage:
2917   case GlobalValue::DLLExportLinkage:
2918     if (!isDefine)
2919       return Error(LinkageLoc, "invalid linkage for function declaration");
2920     break;
2921   case GlobalValue::AppendingLinkage:
2922   case GlobalValue::CommonLinkage:
2923     return Error(LinkageLoc, "invalid function linkage type");
2924   }
2925
2926   if (!FunctionType::isValidReturnType(RetType))
2927     return Error(RetTypeLoc, "invalid function return type");
2928
2929   LocTy NameLoc = Lex.getLoc();
2930
2931   std::string FunctionName;
2932   if (Lex.getKind() == lltok::GlobalVar) {
2933     FunctionName = Lex.getStrVal();
2934   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2935     unsigned NameID = Lex.getUIntVal();
2936
2937     if (NameID != NumberedVals.size())
2938       return TokError("function expected to be numbered '%" +
2939                       Twine(NumberedVals.size()) + "'");
2940   } else {
2941     return TokError("expected function name");
2942   }
2943
2944   Lex.Lex();
2945
2946   if (Lex.getKind() != lltok::lparen)
2947     return TokError("expected '(' in function argument list");
2948
2949   SmallVector<ArgInfo, 8> ArgList;
2950   bool isVarArg;
2951   AttrBuilder FuncAttrs;
2952   std::vector<unsigned> FwdRefAttrGrps;
2953   LocTy NoBuiltinLoc;
2954   std::string Section;
2955   unsigned Alignment;
2956   std::string GC;
2957   bool UnnamedAddr;
2958   LocTy UnnamedAddrLoc;
2959
2960   if (ParseArgumentList(ArgList, isVarArg) ||
2961       ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
2962                          &UnnamedAddrLoc) ||
2963       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
2964                                  NoBuiltinLoc) ||
2965       (EatIfPresent(lltok::kw_section) &&
2966        ParseStringConstant(Section)) ||
2967       ParseOptionalAlignment(Alignment) ||
2968       (EatIfPresent(lltok::kw_gc) &&
2969        ParseStringConstant(GC)))
2970     return true;
2971
2972   if (FuncAttrs.contains(Attribute::NoBuiltin))
2973     return Error(NoBuiltinLoc, "'nobuiltin' attribute not valid on function");
2974
2975   // If the alignment was parsed as an attribute, move to the alignment field.
2976   if (FuncAttrs.hasAlignmentAttr()) {
2977     Alignment = FuncAttrs.getAlignment();
2978     FuncAttrs.removeAttribute(Attribute::Alignment);
2979   }
2980
2981   // Okay, if we got here, the function is syntactically valid.  Convert types
2982   // and do semantic checks.
2983   std::vector<Type*> ParamTypeList;
2984   SmallVector<AttributeSet, 8> Attrs;
2985
2986   if (RetAttrs.hasAttributes())
2987     Attrs.push_back(AttributeSet::get(RetType->getContext(),
2988                                       AttributeSet::ReturnIndex,
2989                                       RetAttrs));
2990
2991   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2992     ParamTypeList.push_back(ArgList[i].Ty);
2993     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
2994       AttrBuilder B(ArgList[i].Attrs, i + 1);
2995       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
2996     }
2997   }
2998
2999   if (FuncAttrs.hasAttributes())
3000     Attrs.push_back(AttributeSet::get(RetType->getContext(),
3001                                       AttributeSet::FunctionIndex,
3002                                       FuncAttrs));
3003
3004   AttributeSet PAL = AttributeSet::get(Context, Attrs);
3005
3006   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
3007     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
3008
3009   FunctionType *FT =
3010     FunctionType::get(RetType, ParamTypeList, isVarArg);
3011   PointerType *PFT = PointerType::getUnqual(FT);
3012
3013   Fn = 0;
3014   if (!FunctionName.empty()) {
3015     // If this was a definition of a forward reference, remove the definition
3016     // from the forward reference table and fill in the forward ref.
3017     std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
3018       ForwardRefVals.find(FunctionName);
3019     if (FRVI != ForwardRefVals.end()) {
3020       Fn = M->getFunction(FunctionName);
3021       if (!Fn)
3022         return Error(FRVI->second.second, "invalid forward reference to "
3023                      "function as global value!");
3024       if (Fn->getType() != PFT)
3025         return Error(FRVI->second.second, "invalid forward reference to "
3026                      "function '" + FunctionName + "' with wrong type!");
3027
3028       ForwardRefVals.erase(FRVI);
3029     } else if ((Fn = M->getFunction(FunctionName))) {
3030       // Reject redefinitions.
3031       return Error(NameLoc, "invalid redefinition of function '" +
3032                    FunctionName + "'");
3033     } else if (M->getNamedValue(FunctionName)) {
3034       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
3035     }
3036
3037   } else {
3038     // If this is a definition of a forward referenced function, make sure the
3039     // types agree.
3040     std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
3041       = ForwardRefValIDs.find(NumberedVals.size());
3042     if (I != ForwardRefValIDs.end()) {
3043       Fn = cast<Function>(I->second.first);
3044       if (Fn->getType() != PFT)
3045         return Error(NameLoc, "type of definition and forward reference of '@" +
3046                      Twine(NumberedVals.size()) + "' disagree");
3047       ForwardRefValIDs.erase(I);
3048     }
3049   }
3050
3051   if (Fn == 0)
3052     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
3053   else // Move the forward-reference to the correct spot in the module.
3054     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
3055
3056   if (FunctionName.empty())
3057     NumberedVals.push_back(Fn);
3058
3059   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
3060   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
3061   Fn->setCallingConv(CC);
3062   Fn->setAttributes(PAL);
3063   Fn->setUnnamedAddr(UnnamedAddr);
3064   Fn->setAlignment(Alignment);
3065   Fn->setSection(Section);
3066   if (!GC.empty()) Fn->setGC(GC.c_str());
3067   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
3068
3069   // Add all of the arguments we parsed to the function.
3070   Function::arg_iterator ArgIt = Fn->arg_begin();
3071   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
3072     // If the argument has a name, insert it into the argument symbol table.
3073     if (ArgList[i].Name.empty()) continue;
3074
3075     // Set the name, if it conflicted, it will be auto-renamed.
3076     ArgIt->setName(ArgList[i].Name);
3077
3078     if (ArgIt->getName() != ArgList[i].Name)
3079       return Error(ArgList[i].Loc, "redefinition of argument '%" +
3080                    ArgList[i].Name + "'");
3081   }
3082
3083   return false;
3084 }
3085
3086
3087 /// ParseFunctionBody
3088 ///   ::= '{' BasicBlock+ '}'
3089 ///
3090 bool LLParser::ParseFunctionBody(Function &Fn) {
3091   if (Lex.getKind() != lltok::lbrace)
3092     return TokError("expected '{' in function body");
3093   Lex.Lex();  // eat the {.
3094
3095   int FunctionNumber = -1;
3096   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
3097
3098   PerFunctionState PFS(*this, Fn, FunctionNumber);
3099
3100   // We need at least one basic block.
3101   if (Lex.getKind() == lltok::rbrace)
3102     return TokError("function body requires at least one basic block");
3103
3104   while (Lex.getKind() != lltok::rbrace)
3105     if (ParseBasicBlock(PFS)) return true;
3106
3107   // Eat the }.
3108   Lex.Lex();
3109
3110   // Verify function is ok.
3111   return PFS.FinishFunction();
3112 }
3113
3114 /// ParseBasicBlock
3115 ///   ::= LabelStr? Instruction*
3116 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
3117   // If this basic block starts out with a name, remember it.
3118   std::string Name;
3119   LocTy NameLoc = Lex.getLoc();
3120   if (Lex.getKind() == lltok::LabelStr) {
3121     Name = Lex.getStrVal();
3122     Lex.Lex();
3123   }
3124
3125   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
3126   if (BB == 0) return true;
3127
3128   std::string NameStr;
3129
3130   // Parse the instructions in this block until we get a terminator.
3131   Instruction *Inst;
3132   SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
3133   do {
3134     // This instruction may have three possibilities for a name: a) none
3135     // specified, b) name specified "%foo =", c) number specified: "%4 =".
3136     LocTy NameLoc = Lex.getLoc();
3137     int NameID = -1;
3138     NameStr = "";
3139
3140     if (Lex.getKind() == lltok::LocalVarID) {
3141       NameID = Lex.getUIntVal();
3142       Lex.Lex();
3143       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
3144         return true;
3145     } else if (Lex.getKind() == lltok::LocalVar) {
3146       NameStr = Lex.getStrVal();
3147       Lex.Lex();
3148       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
3149         return true;
3150     }
3151
3152     switch (ParseInstruction(Inst, BB, PFS)) {
3153     default: llvm_unreachable("Unknown ParseInstruction result!");
3154     case InstError: return true;
3155     case InstNormal:
3156       BB->getInstList().push_back(Inst);
3157
3158       // With a normal result, we check to see if the instruction is followed by
3159       // a comma and metadata.
3160       if (EatIfPresent(lltok::comma))
3161         if (ParseInstructionMetadata(Inst, &PFS))
3162           return true;
3163       break;
3164     case InstExtraComma:
3165       BB->getInstList().push_back(Inst);
3166
3167       // If the instruction parser ate an extra comma at the end of it, it
3168       // *must* be followed by metadata.
3169       if (ParseInstructionMetadata(Inst, &PFS))
3170         return true;
3171       break;
3172     }
3173
3174     // Set the name on the instruction.
3175     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
3176   } while (!isa<TerminatorInst>(Inst));
3177
3178   return false;
3179 }
3180
3181 //===----------------------------------------------------------------------===//
3182 // Instruction Parsing.
3183 //===----------------------------------------------------------------------===//
3184
3185 /// ParseInstruction - Parse one of the many different instructions.
3186 ///
3187 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
3188                                PerFunctionState &PFS) {
3189   lltok::Kind Token = Lex.getKind();
3190   if (Token == lltok::Eof)
3191     return TokError("found end of file when expecting more instructions");
3192   LocTy Loc = Lex.getLoc();
3193   unsigned KeywordVal = Lex.getUIntVal();
3194   Lex.Lex();  // Eat the keyword.
3195
3196   switch (Token) {
3197   default:                    return Error(Loc, "expected instruction opcode");
3198   // Terminator Instructions.
3199   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
3200   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
3201   case lltok::kw_br:          return ParseBr(Inst, PFS);
3202   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
3203   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
3204   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
3205   case lltok::kw_resume:      return ParseResume(Inst, PFS);
3206   // Binary Operators.
3207   case lltok::kw_add:
3208   case lltok::kw_sub:
3209   case lltok::kw_mul:
3210   case lltok::kw_shl: {
3211     bool NUW = EatIfPresent(lltok::kw_nuw);
3212     bool NSW = EatIfPresent(lltok::kw_nsw);
3213     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
3214
3215     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3216
3217     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
3218     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
3219     return false;
3220   }
3221   case lltok::kw_fadd:
3222   case lltok::kw_fsub:
3223   case lltok::kw_fmul:
3224   case lltok::kw_fdiv:
3225   case lltok::kw_frem: {
3226     FastMathFlags FMF = EatFastMathFlagsIfPresent();
3227     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
3228     if (Res != 0)
3229       return Res;
3230     if (FMF.any())
3231       Inst->setFastMathFlags(FMF);
3232     return 0;
3233   }
3234
3235   case lltok::kw_sdiv:
3236   case lltok::kw_udiv:
3237   case lltok::kw_lshr:
3238   case lltok::kw_ashr: {
3239     bool Exact = EatIfPresent(lltok::kw_exact);
3240
3241     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3242     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
3243     return false;
3244   }
3245
3246   case lltok::kw_urem:
3247   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
3248   case lltok::kw_and:
3249   case lltok::kw_or:
3250   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
3251   case lltok::kw_icmp:
3252   case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
3253   // Casts.
3254   case lltok::kw_trunc:
3255   case lltok::kw_zext:
3256   case lltok::kw_sext:
3257   case lltok::kw_fptrunc:
3258   case lltok::kw_fpext:
3259   case lltok::kw_bitcast:
3260   case lltok::kw_uitofp:
3261   case lltok::kw_sitofp:
3262   case lltok::kw_fptoui:
3263   case lltok::kw_fptosi:
3264   case lltok::kw_inttoptr:
3265   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
3266   // Other.
3267   case lltok::kw_select:         return ParseSelect(Inst, PFS);
3268   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
3269   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
3270   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
3271   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
3272   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
3273   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
3274   case lltok::kw_call:           return ParseCall(Inst, PFS, false);
3275   case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
3276   // Memory.
3277   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
3278   case lltok::kw_load:           return ParseLoad(Inst, PFS);
3279   case lltok::kw_store:          return ParseStore(Inst, PFS);
3280   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
3281   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
3282   case lltok::kw_fence:          return ParseFence(Inst, PFS);
3283   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
3284   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
3285   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
3286   }
3287 }
3288
3289 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
3290 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
3291   if (Opc == Instruction::FCmp) {
3292     switch (Lex.getKind()) {
3293     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
3294     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
3295     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
3296     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
3297     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
3298     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
3299     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
3300     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
3301     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
3302     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
3303     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
3304     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
3305     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
3306     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3307     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3308     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3309     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3310     }
3311   } else {
3312     switch (Lex.getKind()) {
3313     default: return TokError("expected icmp predicate (e.g. 'eq')");
3314     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3315     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3316     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3317     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3318     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3319     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3320     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3321     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3322     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3323     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3324     }
3325   }
3326   Lex.Lex();
3327   return false;
3328 }
3329
3330 //===----------------------------------------------------------------------===//
3331 // Terminator Instructions.
3332 //===----------------------------------------------------------------------===//
3333
3334 /// ParseRet - Parse a return instruction.
3335 ///   ::= 'ret' void (',' !dbg, !1)*
3336 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3337 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3338                         PerFunctionState &PFS) {
3339   SMLoc TypeLoc = Lex.getLoc();
3340   Type *Ty = 0;
3341   if (ParseType(Ty, true /*void allowed*/)) return true;
3342
3343   Type *ResType = PFS.getFunction().getReturnType();
3344
3345   if (Ty->isVoidTy()) {
3346     if (!ResType->isVoidTy())
3347       return Error(TypeLoc, "value doesn't match function result type '" +
3348                    getTypeString(ResType) + "'");
3349
3350     Inst = ReturnInst::Create(Context);
3351     return false;
3352   }
3353
3354   Value *RV;
3355   if (ParseValue(Ty, RV, PFS)) return true;
3356
3357   if (ResType != RV->getType())
3358     return Error(TypeLoc, "value doesn't match function result type '" +
3359                  getTypeString(ResType) + "'");
3360
3361   Inst = ReturnInst::Create(Context, RV);
3362   return false;
3363 }
3364
3365
3366 /// ParseBr
3367 ///   ::= 'br' TypeAndValue
3368 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3369 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3370   LocTy Loc, Loc2;
3371   Value *Op0;
3372   BasicBlock *Op1, *Op2;
3373   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3374
3375   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3376     Inst = BranchInst::Create(BB);
3377     return false;
3378   }
3379
3380   if (Op0->getType() != Type::getInt1Ty(Context))
3381     return Error(Loc, "branch condition must have 'i1' type");
3382
3383   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3384       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3385       ParseToken(lltok::comma, "expected ',' after true destination") ||
3386       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3387     return true;
3388
3389   Inst = BranchInst::Create(Op1, Op2, Op0);
3390   return false;
3391 }
3392
3393 /// ParseSwitch
3394 ///  Instruction
3395 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3396 ///  JumpTable
3397 ///    ::= (TypeAndValue ',' TypeAndValue)*
3398 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3399   LocTy CondLoc, BBLoc;
3400   Value *Cond;
3401   BasicBlock *DefaultBB;
3402   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3403       ParseToken(lltok::comma, "expected ',' after switch condition") ||
3404       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3405       ParseToken(lltok::lsquare, "expected '[' with switch table"))
3406     return true;
3407
3408   if (!Cond->getType()->isIntegerTy())
3409     return Error(CondLoc, "switch condition must have integer type");
3410
3411   // Parse the jump table pairs.
3412   SmallPtrSet<Value*, 32> SeenCases;
3413   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3414   while (Lex.getKind() != lltok::rsquare) {
3415     Value *Constant;
3416     BasicBlock *DestBB;
3417
3418     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3419         ParseToken(lltok::comma, "expected ',' after case value") ||
3420         ParseTypeAndBasicBlock(DestBB, PFS))
3421       return true;
3422
3423     if (!SeenCases.insert(Constant))
3424       return Error(CondLoc, "duplicate case value in switch");
3425     if (!isa<ConstantInt>(Constant))
3426       return Error(CondLoc, "case value is not a constant integer");
3427
3428     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3429   }
3430
3431   Lex.Lex();  // Eat the ']'.
3432
3433   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3434   for (unsigned i = 0, e = Table.size(); i != e; ++i)
3435     SI->addCase(Table[i].first, Table[i].second);
3436   Inst = SI;
3437   return false;
3438 }
3439
3440 /// ParseIndirectBr
3441 ///  Instruction
3442 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3443 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3444   LocTy AddrLoc;
3445   Value *Address;
3446   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3447       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3448       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3449     return true;
3450
3451   if (!Address->getType()->isPointerTy())
3452     return Error(AddrLoc, "indirectbr address must have pointer type");
3453
3454   // Parse the destination list.
3455   SmallVector<BasicBlock*, 16> DestList;
3456
3457   if (Lex.getKind() != lltok::rsquare) {
3458     BasicBlock *DestBB;
3459     if (ParseTypeAndBasicBlock(DestBB, PFS))
3460       return true;
3461     DestList.push_back(DestBB);
3462
3463     while (EatIfPresent(lltok::comma)) {
3464       if (ParseTypeAndBasicBlock(DestBB, PFS))
3465         return true;
3466       DestList.push_back(DestBB);
3467     }
3468   }
3469
3470   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3471     return true;
3472
3473   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3474   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3475     IBI->addDestination(DestList[i]);
3476   Inst = IBI;
3477   return false;
3478 }
3479
3480
3481 /// ParseInvoke
3482 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3483 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3484 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3485   LocTy CallLoc = Lex.getLoc();
3486   AttrBuilder RetAttrs, FnAttrs;
3487   std::vector<unsigned> FwdRefAttrGrps;
3488   LocTy NoBuiltinLoc;
3489   CallingConv::ID CC;
3490   Type *RetType = 0;
3491   LocTy RetTypeLoc;
3492   ValID CalleeID;
3493   SmallVector<ParamInfo, 16> ArgList;
3494
3495   BasicBlock *NormalBB, *UnwindBB;
3496   if (ParseOptionalCallingConv(CC) ||
3497       ParseOptionalReturnAttrs(RetAttrs) ||
3498       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3499       ParseValID(CalleeID) ||
3500       ParseParameterList(ArgList, PFS) ||
3501       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
3502                                  NoBuiltinLoc) ||
3503       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3504       ParseTypeAndBasicBlock(NormalBB, PFS) ||
3505       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3506       ParseTypeAndBasicBlock(UnwindBB, PFS))
3507     return true;
3508
3509   // If RetType is a non-function pointer type, then this is the short syntax
3510   // for the call, which means that RetType is just the return type.  Infer the
3511   // rest of the function argument types from the arguments that are present.
3512   PointerType *PFTy = 0;
3513   FunctionType *Ty = 0;
3514   if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3515       !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3516     // Pull out the types of all of the arguments...
3517     std::vector<Type*> ParamTypes;
3518     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3519       ParamTypes.push_back(ArgList[i].V->getType());
3520
3521     if (!FunctionType::isValidReturnType(RetType))
3522       return Error(RetTypeLoc, "Invalid result type for LLVM function");
3523
3524     Ty = FunctionType::get(RetType, ParamTypes, false);
3525     PFTy = PointerType::getUnqual(Ty);
3526   }
3527
3528   // Look up the callee.
3529   Value *Callee;
3530   if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3531
3532   // Set up the Attribute for the function.
3533   SmallVector<AttributeSet, 8> Attrs;
3534   if (RetAttrs.hasAttributes())
3535     Attrs.push_back(AttributeSet::get(RetType->getContext(),
3536                                       AttributeSet::ReturnIndex,
3537                                       RetAttrs));
3538
3539   SmallVector<Value*, 8> Args;
3540
3541   // Loop through FunctionType's arguments and ensure they are specified
3542   // correctly.  Also, gather any parameter attributes.
3543   FunctionType::param_iterator I = Ty->param_begin();
3544   FunctionType::param_iterator E = Ty->param_end();
3545   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3546     Type *ExpectedTy = 0;
3547     if (I != E) {
3548       ExpectedTy = *I++;
3549     } else if (!Ty->isVarArg()) {
3550       return Error(ArgList[i].Loc, "too many arguments specified");
3551     }
3552
3553     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3554       return Error(ArgList[i].Loc, "argument is not of expected type '" +
3555                    getTypeString(ExpectedTy) + "'");
3556     Args.push_back(ArgList[i].V);
3557     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
3558       AttrBuilder B(ArgList[i].Attrs, i + 1);
3559       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
3560     }
3561   }
3562
3563   if (I != E)
3564     return Error(CallLoc, "not enough parameters specified for call");
3565
3566   if (FnAttrs.hasAttributes())
3567     Attrs.push_back(AttributeSet::get(RetType->getContext(),
3568                                       AttributeSet::FunctionIndex,
3569                                       FnAttrs));
3570
3571   // Finish off the Attribute and check them
3572   AttributeSet PAL = AttributeSet::get(Context, Attrs);
3573
3574   InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
3575   II->setCallingConv(CC);
3576   II->setAttributes(PAL);
3577   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
3578   Inst = II;
3579   return false;
3580 }
3581
3582 /// ParseResume
3583 ///   ::= 'resume' TypeAndValue
3584 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
3585   Value *Exn; LocTy ExnLoc;
3586   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
3587     return true;
3588
3589   ResumeInst *RI = ResumeInst::Create(Exn);
3590   Inst = RI;
3591   return false;
3592 }
3593
3594 //===----------------------------------------------------------------------===//
3595 // Binary Operators.
3596 //===----------------------------------------------------------------------===//
3597
3598 /// ParseArithmetic
3599 ///  ::= ArithmeticOps TypeAndValue ',' Value
3600 ///
3601 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3602 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3603 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3604                                unsigned Opc, unsigned OperandType) {
3605   LocTy Loc; Value *LHS, *RHS;
3606   if (ParseTypeAndValue(LHS, Loc, PFS) ||
3607       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3608       ParseValue(LHS->getType(), RHS, PFS))
3609     return true;
3610
3611   bool Valid;
3612   switch (OperandType) {
3613   default: llvm_unreachable("Unknown operand type!");
3614   case 0: // int or FP.
3615     Valid = LHS->getType()->isIntOrIntVectorTy() ||
3616             LHS->getType()->isFPOrFPVectorTy();
3617     break;
3618   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3619   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3620   }
3621
3622   if (!Valid)
3623     return Error(Loc, "invalid operand type for instruction");
3624
3625   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3626   return false;
3627 }
3628
3629 /// ParseLogical
3630 ///  ::= ArithmeticOps TypeAndValue ',' Value {
3631 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3632                             unsigned Opc) {
3633   LocTy Loc; Value *LHS, *RHS;
3634   if (ParseTypeAndValue(LHS, Loc, PFS) ||
3635       ParseToken(lltok::comma, "expected ',' in logical operation") ||
3636       ParseValue(LHS->getType(), RHS, PFS))
3637     return true;
3638
3639   if (!LHS->getType()->isIntOrIntVectorTy())
3640     return Error(Loc,"instruction requires integer or integer vector operands");
3641
3642   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3643   return false;
3644 }
3645
3646
3647 /// ParseCompare
3648 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3649 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3650 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3651                             unsigned Opc) {
3652   // Parse the integer/fp comparison predicate.
3653   LocTy Loc;
3654   unsigned Pred;
3655   Value *LHS, *RHS;
3656   if (ParseCmpPredicate(Pred, Opc) ||
3657       ParseTypeAndValue(LHS, Loc, PFS) ||
3658       ParseToken(lltok::comma, "expected ',' after compare value") ||
3659       ParseValue(LHS->getType(), RHS, PFS))
3660     return true;
3661
3662   if (Opc == Instruction::FCmp) {
3663     if (!LHS->getType()->isFPOrFPVectorTy())
3664       return Error(Loc, "fcmp requires floating point operands");
3665     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3666   } else {
3667     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3668     if (!LHS->getType()->isIntOrIntVectorTy() &&
3669         !LHS->getType()->getScalarType()->isPointerTy())
3670       return Error(Loc, "icmp requires integer operands");
3671     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3672   }
3673   return false;
3674 }
3675
3676 //===----------------------------------------------------------------------===//
3677 // Other Instructions.
3678 //===----------------------------------------------------------------------===//
3679
3680
3681 /// ParseCast
3682 ///   ::= CastOpc TypeAndValue 'to' Type
3683 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3684                          unsigned Opc) {
3685   LocTy Loc;
3686   Value *Op;
3687   Type *DestTy = 0;
3688   if (ParseTypeAndValue(Op, Loc, PFS) ||
3689       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3690       ParseType(DestTy))
3691     return true;
3692
3693   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3694     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3695     return Error(Loc, "invalid cast opcode for cast from '" +
3696                  getTypeString(Op->getType()) + "' to '" +
3697                  getTypeString(DestTy) + "'");
3698   }
3699   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3700   return false;
3701 }
3702
3703 /// ParseSelect
3704 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3705 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3706   LocTy Loc;
3707   Value *Op0, *Op1, *Op2;
3708   if (ParseTypeAndValue(Op0, Loc, PFS) ||
3709       ParseToken(lltok::comma, "expected ',' after select condition") ||
3710       ParseTypeAndValue(Op1, PFS) ||
3711       ParseToken(lltok::comma, "expected ',' after select value") ||
3712       ParseTypeAndValue(Op2, PFS))
3713     return true;
3714
3715   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3716     return Error(Loc, Reason);
3717
3718   Inst = SelectInst::Create(Op0, Op1, Op2);
3719   return false;
3720 }
3721
3722 /// ParseVA_Arg
3723 ///   ::= 'va_arg' TypeAndValue ',' Type
3724 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3725   Value *Op;
3726   Type *EltTy = 0;
3727   LocTy TypeLoc;
3728   if (ParseTypeAndValue(Op, PFS) ||
3729       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3730       ParseType(EltTy, TypeLoc))
3731     return true;
3732
3733   if (!EltTy->isFirstClassType())
3734     return Error(TypeLoc, "va_arg requires operand with first class type");
3735
3736   Inst = new VAArgInst(Op, EltTy);
3737   return false;
3738 }
3739
3740 /// ParseExtractElement
3741 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3742 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3743   LocTy Loc;
3744   Value *Op0, *Op1;
3745   if (ParseTypeAndValue(Op0, Loc, PFS) ||
3746       ParseToken(lltok::comma, "expected ',' after extract value") ||
3747       ParseTypeAndValue(Op1, PFS))
3748     return true;
3749
3750   if (!ExtractElementInst::isValidOperands(Op0, Op1))
3751     return Error(Loc, "invalid extractelement operands");
3752
3753   Inst = ExtractElementInst::Create(Op0, Op1);
3754   return false;
3755 }
3756
3757 /// ParseInsertElement
3758 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3759 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3760   LocTy Loc;
3761   Value *Op0, *Op1, *Op2;
3762   if (ParseTypeAndValue(Op0, Loc, PFS) ||
3763       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3764       ParseTypeAndValue(Op1, PFS) ||
3765       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3766       ParseTypeAndValue(Op2, PFS))
3767     return true;
3768
3769   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3770     return Error(Loc, "invalid insertelement operands");
3771
3772   Inst = InsertElementInst::Create(Op0, Op1, Op2);
3773   return false;
3774 }
3775
3776 /// ParseShuffleVector
3777 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3778 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3779   LocTy Loc;
3780   Value *Op0, *Op1, *Op2;
3781   if (ParseTypeAndValue(Op0, Loc, PFS) ||
3782       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3783       ParseTypeAndValue(Op1, PFS) ||
3784       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3785       ParseTypeAndValue(Op2, PFS))
3786     return true;
3787
3788   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3789     return Error(Loc, "invalid shufflevector operands");
3790
3791   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3792   return false;
3793 }
3794
3795 /// ParsePHI
3796 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3797 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3798   Type *Ty = 0;  LocTy TypeLoc;
3799   Value *Op0, *Op1;
3800
3801   if (ParseType(Ty, TypeLoc) ||
3802       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3803       ParseValue(Ty, Op0, PFS) ||
3804       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3805       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3806       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3807     return true;
3808
3809   bool AteExtraComma = false;
3810   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3811   while (1) {
3812     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3813
3814     if (!EatIfPresent(lltok::comma))
3815       break;
3816
3817     if (Lex.getKind() == lltok::MetadataVar) {
3818       AteExtraComma = true;
3819       break;
3820     }
3821
3822     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3823         ParseValue(Ty, Op0, PFS) ||
3824         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3825         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3826         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3827       return true;
3828   }
3829
3830   if (!Ty->isFirstClassType())
3831     return Error(TypeLoc, "phi node must have first class type");
3832
3833   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
3834   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3835     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3836   Inst = PN;
3837   return AteExtraComma ? InstExtraComma : InstNormal;
3838 }
3839
3840 /// ParseLandingPad
3841 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
3842 /// Clause
3843 ///   ::= 'catch' TypeAndValue
3844 ///   ::= 'filter'
3845 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
3846 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
3847   Type *Ty = 0; LocTy TyLoc;
3848   Value *PersFn; LocTy PersFnLoc;
3849
3850   if (ParseType(Ty, TyLoc) ||
3851       ParseToken(lltok::kw_personality, "expected 'personality'") ||
3852       ParseTypeAndValue(PersFn, PersFnLoc, PFS))
3853     return true;
3854
3855   LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
3856   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
3857
3858   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
3859     LandingPadInst::ClauseType CT;
3860     if (EatIfPresent(lltok::kw_catch))
3861       CT = LandingPadInst::Catch;
3862     else if (EatIfPresent(lltok::kw_filter))
3863       CT = LandingPadInst::Filter;
3864     else
3865       return TokError("expected 'catch' or 'filter' clause type");
3866
3867     Value *V; LocTy VLoc;
3868     if (ParseTypeAndValue(V, VLoc, PFS)) {
3869       delete LP;
3870       return true;
3871     }
3872
3873     // A 'catch' type expects a non-array constant. A filter clause expects an
3874     // array constant.
3875     if (CT == LandingPadInst::Catch) {
3876       if (isa<ArrayType>(V->getType()))
3877         Error(VLoc, "'catch' clause has an invalid type");
3878     } else {
3879       if (!isa<ArrayType>(V->getType()))
3880         Error(VLoc, "'filter' clause has an invalid type");
3881     }
3882
3883     LP->addClause(V);
3884   }
3885
3886   Inst = LP;
3887   return false;
3888 }
3889
3890 /// ParseCall
3891 ///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3892 ///       ParameterList OptionalAttrs
3893 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3894                          bool isTail) {
3895   AttrBuilder RetAttrs, FnAttrs;
3896   std::vector<unsigned> FwdRefAttrGrps;
3897   LocTy NoBuiltinLoc;
3898   CallingConv::ID CC;
3899   Type *RetType = 0;
3900   LocTy RetTypeLoc;
3901   ValID CalleeID;
3902   SmallVector<ParamInfo, 16> ArgList;
3903   LocTy CallLoc = Lex.getLoc();
3904
3905   if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3906       ParseOptionalCallingConv(CC) ||
3907       ParseOptionalReturnAttrs(RetAttrs) ||
3908       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3909       ParseValID(CalleeID) ||
3910       ParseParameterList(ArgList, PFS) ||
3911       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
3912                                  NoBuiltinLoc))
3913     return true;
3914
3915   // If RetType is a non-function pointer type, then this is the short syntax
3916   // for the call, which means that RetType is just the return type.  Infer the
3917   // rest of the function argument types from the arguments that are present.
3918   PointerType *PFTy = 0;
3919   FunctionType *Ty = 0;
3920   if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3921       !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3922     // Pull out the types of all of the arguments...
3923     std::vector<Type*> ParamTypes;
3924     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3925       ParamTypes.push_back(ArgList[i].V->getType());
3926
3927     if (!FunctionType::isValidReturnType(RetType))
3928       return Error(RetTypeLoc, "Invalid result type for LLVM function");
3929
3930     Ty = FunctionType::get(RetType, ParamTypes, false);
3931     PFTy = PointerType::getUnqual(Ty);
3932   }
3933
3934   // Look up the callee.
3935   Value *Callee;
3936   if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3937
3938   // Set up the Attribute for the function.
3939   SmallVector<AttributeSet, 8> Attrs;
3940   if (RetAttrs.hasAttributes())
3941     Attrs.push_back(AttributeSet::get(RetType->getContext(),
3942                                       AttributeSet::ReturnIndex,
3943                                       RetAttrs));
3944
3945   SmallVector<Value*, 8> Args;
3946
3947   // Loop through FunctionType's arguments and ensure they are specified
3948   // correctly.  Also, gather any parameter attributes.
3949   FunctionType::param_iterator I = Ty->param_begin();
3950   FunctionType::param_iterator E = Ty->param_end();
3951   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3952     Type *ExpectedTy = 0;
3953     if (I != E) {
3954       ExpectedTy = *I++;
3955     } else if (!Ty->isVarArg()) {
3956       return Error(ArgList[i].Loc, "too many arguments specified");
3957     }
3958
3959     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3960       return Error(ArgList[i].Loc, "argument is not of expected type '" +
3961                    getTypeString(ExpectedTy) + "'");
3962     Args.push_back(ArgList[i].V);
3963     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
3964       AttrBuilder B(ArgList[i].Attrs, i + 1);
3965       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
3966     }
3967   }
3968
3969   if (I != E)
3970     return Error(CallLoc, "not enough parameters specified for call");
3971
3972   if (FnAttrs.hasAttributes())
3973     Attrs.push_back(AttributeSet::get(RetType->getContext(),
3974                                       AttributeSet::FunctionIndex,
3975                                       FnAttrs));
3976
3977   // Finish off the Attribute and check them
3978   AttributeSet PAL = AttributeSet::get(Context, Attrs);
3979
3980   CallInst *CI = CallInst::Create(Callee, Args);
3981   CI->setTailCall(isTail);
3982   CI->setCallingConv(CC);
3983   CI->setAttributes(PAL);
3984   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
3985   Inst = CI;
3986   return false;
3987 }
3988
3989 //===----------------------------------------------------------------------===//
3990 // Memory Instructions.
3991 //===----------------------------------------------------------------------===//
3992
3993 /// ParseAlloc
3994 ///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3995 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
3996   Value *Size = 0;
3997   LocTy SizeLoc;
3998   unsigned Alignment = 0;
3999   Type *Ty = 0;
4000   if (ParseType(Ty)) return true;
4001
4002   bool AteExtraComma = false;
4003   if (EatIfPresent(lltok::comma)) {
4004     if (Lex.getKind() == lltok::kw_align) {
4005       if (ParseOptionalAlignment(Alignment)) return true;
4006     } else if (Lex.getKind() == lltok::MetadataVar) {
4007       AteExtraComma = true;
4008     } else {
4009       if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
4010           ParseOptionalCommaAlign(Alignment, AteExtraComma))
4011         return true;
4012     }
4013   }
4014
4015   if (Size && !Size->getType()->isIntegerTy())
4016     return Error(SizeLoc, "element count must have integer type");
4017
4018   Inst = new AllocaInst(Ty, Size, Alignment);
4019   return AteExtraComma ? InstExtraComma : InstNormal;
4020 }
4021
4022 /// ParseLoad
4023 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
4024 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
4025 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
4026 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
4027   Value *Val; LocTy Loc;
4028   unsigned Alignment = 0;
4029   bool AteExtraComma = false;
4030   bool isAtomic = false;
4031   AtomicOrdering Ordering = NotAtomic;
4032   SynchronizationScope Scope = CrossThread;
4033
4034   if (Lex.getKind() == lltok::kw_atomic) {
4035     isAtomic = true;
4036     Lex.Lex();
4037   }
4038
4039   bool isVolatile = false;
4040   if (Lex.getKind() == lltok::kw_volatile) {
4041     isVolatile = true;
4042     Lex.Lex();
4043   }
4044
4045   if (ParseTypeAndValue(Val, Loc, PFS) ||
4046       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
4047       ParseOptionalCommaAlign(Alignment, AteExtraComma))
4048     return true;
4049
4050   if (!Val->getType()->isPointerTy() ||
4051       !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
4052     return Error(Loc, "load operand must be a pointer to a first class type");
4053   if (isAtomic && !Alignment)
4054     return Error(Loc, "atomic load must have explicit non-zero alignment");
4055   if (Ordering == Release || Ordering == AcquireRelease)
4056     return Error(Loc, "atomic load cannot use Release ordering");
4057
4058   Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
4059   return AteExtraComma ? InstExtraComma : InstNormal;
4060 }
4061
4062 /// ParseStore
4063
4064 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
4065 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
4066 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
4067 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
4068   Value *Val, *Ptr; LocTy Loc, PtrLoc;
4069   unsigned Alignment = 0;
4070   bool AteExtraComma = false;
4071   bool isAtomic = false;
4072   AtomicOrdering Ordering = NotAtomic;
4073   SynchronizationScope Scope = CrossThread;
4074
4075   if (Lex.getKind() == lltok::kw_atomic) {
4076     isAtomic = true;
4077     Lex.Lex();
4078   }
4079
4080   bool isVolatile = false;
4081   if (Lex.getKind() == lltok::kw_volatile) {
4082     isVolatile = true;
4083     Lex.Lex();
4084   }
4085
4086   if (ParseTypeAndValue(Val, Loc, PFS) ||
4087       ParseToken(lltok::comma, "expected ',' after store operand") ||
4088       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4089       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
4090       ParseOptionalCommaAlign(Alignment, AteExtraComma))
4091     return true;
4092
4093   if (!Ptr->getType()->isPointerTy())
4094     return Error(PtrLoc, "store operand must be a pointer");
4095   if (!Val->getType()->isFirstClassType())
4096     return Error(Loc, "store operand must be a first class value");
4097   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
4098     return Error(Loc, "stored value and pointer type do not match");
4099   if (isAtomic && !Alignment)
4100     return Error(Loc, "atomic store must have explicit non-zero alignment");
4101   if (Ordering == Acquire || Ordering == AcquireRelease)
4102     return Error(Loc, "atomic store cannot use Acquire ordering");
4103
4104   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
4105   return AteExtraComma ? InstExtraComma : InstNormal;
4106 }
4107
4108 /// ParseCmpXchg
4109 ///   ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
4110 ///       'singlethread'? AtomicOrdering
4111 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
4112   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
4113   bool AteExtraComma = false;
4114   AtomicOrdering Ordering = NotAtomic;
4115   SynchronizationScope Scope = CrossThread;
4116   bool isVolatile = false;
4117
4118   if (EatIfPresent(lltok::kw_volatile))
4119     isVolatile = true;
4120
4121   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4122       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
4123       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
4124       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
4125       ParseTypeAndValue(New, NewLoc, PFS) ||
4126       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4127     return true;
4128
4129   if (Ordering == Unordered)
4130     return TokError("cmpxchg cannot be unordered");
4131   if (!Ptr->getType()->isPointerTy())
4132     return Error(PtrLoc, "cmpxchg operand must be a pointer");
4133   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
4134     return Error(CmpLoc, "compare value and pointer type do not match");
4135   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
4136     return Error(NewLoc, "new value and pointer type do not match");
4137   if (!New->getType()->isIntegerTy())
4138     return Error(NewLoc, "cmpxchg operand must be an integer");
4139   unsigned Size = New->getType()->getPrimitiveSizeInBits();
4140   if (Size < 8 || (Size & (Size - 1)))
4141     return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
4142                          " integer");
4143
4144   AtomicCmpXchgInst *CXI =
4145     new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
4146   CXI->setVolatile(isVolatile);
4147   Inst = CXI;
4148   return AteExtraComma ? InstExtraComma : InstNormal;
4149 }
4150
4151 /// ParseAtomicRMW
4152 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
4153 ///       'singlethread'? AtomicOrdering
4154 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
4155   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
4156   bool AteExtraComma = false;
4157   AtomicOrdering Ordering = NotAtomic;
4158   SynchronizationScope Scope = CrossThread;
4159   bool isVolatile = false;
4160   AtomicRMWInst::BinOp Operation;
4161
4162   if (EatIfPresent(lltok::kw_volatile))
4163     isVolatile = true;
4164
4165   switch (Lex.getKind()) {
4166   default: return TokError("expected binary operation in atomicrmw");
4167   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
4168   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
4169   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
4170   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
4171   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
4172   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
4173   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
4174   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
4175   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
4176   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
4177   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
4178   }
4179   Lex.Lex();  // Eat the operation.
4180
4181   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4182       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
4183       ParseTypeAndValue(Val, ValLoc, PFS) ||
4184       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4185     return true;
4186
4187   if (Ordering == Unordered)
4188     return TokError("atomicrmw cannot be unordered");
4189   if (!Ptr->getType()->isPointerTy())
4190     return Error(PtrLoc, "atomicrmw operand must be a pointer");
4191   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
4192     return Error(ValLoc, "atomicrmw value and pointer type do not match");
4193   if (!Val->getType()->isIntegerTy())
4194     return Error(ValLoc, "atomicrmw operand must be an integer");
4195   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
4196   if (Size < 8 || (Size & (Size - 1)))
4197     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
4198                          " integer");
4199
4200   AtomicRMWInst *RMWI =
4201     new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
4202   RMWI->setVolatile(isVolatile);
4203   Inst = RMWI;
4204   return AteExtraComma ? InstExtraComma : InstNormal;
4205 }
4206
4207 /// ParseFence
4208 ///   ::= 'fence' 'singlethread'? AtomicOrdering
4209 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
4210   AtomicOrdering Ordering = NotAtomic;
4211   SynchronizationScope Scope = CrossThread;
4212   if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4213     return true;
4214
4215   if (Ordering == Unordered)
4216     return TokError("fence cannot be unordered");
4217   if (Ordering == Monotonic)
4218     return TokError("fence cannot be monotonic");
4219
4220   Inst = new FenceInst(Context, Ordering, Scope);
4221   return InstNormal;
4222 }
4223
4224 /// ParseGetElementPtr
4225 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
4226 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
4227   Value *Ptr = 0;
4228   Value *Val = 0;
4229   LocTy Loc, EltLoc;
4230
4231   bool InBounds = EatIfPresent(lltok::kw_inbounds);
4232
4233   if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
4234
4235   if (!Ptr->getType()->getScalarType()->isPointerTy())
4236     return Error(Loc, "base of getelementptr must be a pointer");
4237
4238   SmallVector<Value*, 16> Indices;
4239   bool AteExtraComma = false;
4240   while (EatIfPresent(lltok::comma)) {
4241     if (Lex.getKind() == lltok::MetadataVar) {
4242       AteExtraComma = true;
4243       break;
4244     }
4245     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
4246     if (!Val->getType()->getScalarType()->isIntegerTy())
4247       return Error(EltLoc, "getelementptr index must be an integer");
4248     if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy())
4249       return Error(EltLoc, "getelementptr index type missmatch");
4250     if (Val->getType()->isVectorTy()) {
4251       unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements();
4252       unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements();
4253       if (ValNumEl != PtrNumEl)
4254         return Error(EltLoc,
4255           "getelementptr vector index has a wrong number of elements");
4256     }
4257     Indices.push_back(Val);
4258   }
4259
4260   if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices))
4261     return Error(Loc, "invalid getelementptr indices");
4262   Inst = GetElementPtrInst::Create(Ptr, Indices);
4263   if (InBounds)
4264     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
4265   return AteExtraComma ? InstExtraComma : InstNormal;
4266 }
4267
4268 /// ParseExtractValue
4269 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
4270 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
4271   Value *Val; LocTy Loc;
4272   SmallVector<unsigned, 4> Indices;
4273   bool AteExtraComma;
4274   if (ParseTypeAndValue(Val, Loc, PFS) ||
4275       ParseIndexList(Indices, AteExtraComma))
4276     return true;
4277
4278   if (!Val->getType()->isAggregateType())
4279     return Error(Loc, "extractvalue operand must be aggregate type");
4280
4281   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
4282     return Error(Loc, "invalid indices for extractvalue");
4283   Inst = ExtractValueInst::Create(Val, Indices);
4284   return AteExtraComma ? InstExtraComma : InstNormal;
4285 }
4286
4287 /// ParseInsertValue
4288 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
4289 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
4290   Value *Val0, *Val1; LocTy Loc0, Loc1;
4291   SmallVector<unsigned, 4> Indices;
4292   bool AteExtraComma;
4293   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
4294       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
4295       ParseTypeAndValue(Val1, Loc1, PFS) ||
4296       ParseIndexList(Indices, AteExtraComma))
4297     return true;
4298
4299   if (!Val0->getType()->isAggregateType())
4300     return Error(Loc0, "insertvalue operand must be aggregate type");
4301
4302   if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
4303     return Error(Loc0, "invalid indices for insertvalue");
4304   Inst = InsertValueInst::Create(Val0, Val1, Indices);
4305   return AteExtraComma ? InstExtraComma : InstNormal;
4306 }
4307
4308 //===----------------------------------------------------------------------===//
4309 // Embedded metadata.
4310 //===----------------------------------------------------------------------===//
4311
4312 /// ParseMDNodeVector
4313 ///   ::= Element (',' Element)*
4314 /// Element
4315 ///   ::= 'null' | TypeAndValue
4316 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
4317                                  PerFunctionState *PFS) {
4318   // Check for an empty list.
4319   if (Lex.getKind() == lltok::rbrace)
4320     return false;
4321
4322   do {
4323     // Null is a special case since it is typeless.
4324     if (EatIfPresent(lltok::kw_null)) {
4325       Elts.push_back(0);
4326       continue;
4327     }
4328
4329     Value *V = 0;
4330     if (ParseTypeAndValue(V, PFS)) return true;
4331     Elts.push_back(V);
4332   } while (EatIfPresent(lltok::comma));
4333
4334   return false;
4335 }