Taints the non-acquire RMW's store address with the load part
[oota-llvm.git] / lib / Analysis / ScalarEvolutionExpander.cpp
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution expander,
11 // which is used to generate the code corresponding to a given scalar evolution
12 // expression.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Analysis/ScalarEvolutionExpander.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30
31 using namespace llvm;
32 using namespace PatternMatch;
33
34 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
35 /// reusing an existing cast if a suitable one exists, moving an existing
36 /// cast if a suitable one exists but isn't in the right place, or
37 /// creating a new one.
38 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
39                                        Instruction::CastOps Op,
40                                        BasicBlock::iterator IP) {
41   // This function must be called with the builder having a valid insertion
42   // point. It doesn't need to be the actual IP where the uses of the returned
43   // cast will be added, but it must dominate such IP.
44   // We use this precondition to produce a cast that will dominate all its
45   // uses. In particular, this is crucial for the case where the builder's
46   // insertion point *is* the point where we were asked to put the cast.
47   // Since we don't know the builder's insertion point is actually
48   // where the uses will be added (only that it dominates it), we are
49   // not allowed to move it.
50   BasicBlock::iterator BIP = Builder.GetInsertPoint();
51
52   Instruction *Ret = nullptr;
53
54   // Check to see if there is already a cast!
55   for (User *U : V->users())
56     if (U->getType() == Ty)
57       if (CastInst *CI = dyn_cast<CastInst>(U))
58         if (CI->getOpcode() == Op) {
59           // If the cast isn't where we want it, create a new cast at IP.
60           // Likewise, do not reuse a cast at BIP because it must dominate
61           // instructions that might be inserted before BIP.
62           if (BasicBlock::iterator(CI) != IP || BIP == IP) {
63             // Create a new cast, and leave the old cast in place in case
64             // it is being used as an insert point. Clear its operand
65             // so that it doesn't hold anything live.
66             Ret = CastInst::Create(Op, V, Ty, "", &*IP);
67             Ret->takeName(CI);
68             CI->replaceAllUsesWith(Ret);
69             CI->setOperand(0, UndefValue::get(V->getType()));
70             break;
71           }
72           Ret = CI;
73           break;
74         }
75
76   // Create a new cast.
77   if (!Ret)
78     Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP);
79
80   // We assert at the end of the function since IP might point to an
81   // instruction with different dominance properties than a cast
82   // (an invoke for example) and not dominate BIP (but the cast does).
83   assert(SE.DT.dominates(Ret, &*BIP));
84
85   rememberInstruction(Ret);
86   return Ret;
87 }
88
89 static BasicBlock::iterator findInsertPointAfter(Instruction *I,
90                                                  BasicBlock *MustDominate) {
91   BasicBlock::iterator IP = ++I->getIterator();
92   if (auto *II = dyn_cast<InvokeInst>(I))
93     IP = II->getNormalDest()->begin();
94
95   while (isa<PHINode>(IP))
96     ++IP;
97
98   while (IP->isEHPad()) {
99     if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
100       ++IP;
101     } else if (isa<CatchSwitchInst>(IP)) {
102       IP = MustDominate->getFirstInsertionPt();
103     } else {
104       llvm_unreachable("unexpected eh pad!");
105     }
106   }
107
108   return IP;
109 }
110
111 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
112 /// which must be possible with a noop cast, doing what we can to share
113 /// the casts.
114 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
115   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
116   assert((Op == Instruction::BitCast ||
117           Op == Instruction::PtrToInt ||
118           Op == Instruction::IntToPtr) &&
119          "InsertNoopCastOfTo cannot perform non-noop casts!");
120   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
121          "InsertNoopCastOfTo cannot change sizes!");
122
123   // Short-circuit unnecessary bitcasts.
124   if (Op == Instruction::BitCast) {
125     if (V->getType() == Ty)
126       return V;
127     if (CastInst *CI = dyn_cast<CastInst>(V)) {
128       if (CI->getOperand(0)->getType() == Ty)
129         return CI->getOperand(0);
130     }
131   }
132   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
133   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
134       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
135     if (CastInst *CI = dyn_cast<CastInst>(V))
136       if ((CI->getOpcode() == Instruction::PtrToInt ||
137            CI->getOpcode() == Instruction::IntToPtr) &&
138           SE.getTypeSizeInBits(CI->getType()) ==
139           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
140         return CI->getOperand(0);
141     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
142       if ((CE->getOpcode() == Instruction::PtrToInt ||
143            CE->getOpcode() == Instruction::IntToPtr) &&
144           SE.getTypeSizeInBits(CE->getType()) ==
145           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
146         return CE->getOperand(0);
147   }
148
149   // Fold a cast of a constant.
150   if (Constant *C = dyn_cast<Constant>(V))
151     return ConstantExpr::getCast(Op, C, Ty);
152
153   // Cast the argument at the beginning of the entry block, after
154   // any bitcasts of other arguments.
155   if (Argument *A = dyn_cast<Argument>(V)) {
156     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
157     while ((isa<BitCastInst>(IP) &&
158             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
159             cast<BitCastInst>(IP)->getOperand(0) != A) ||
160            isa<DbgInfoIntrinsic>(IP))
161       ++IP;
162     return ReuseOrCreateCast(A, Ty, Op, IP);
163   }
164
165   // Cast the instruction immediately after the instruction.
166   Instruction *I = cast<Instruction>(V);
167   BasicBlock::iterator IP = findInsertPointAfter(I, Builder.GetInsertBlock());
168   return ReuseOrCreateCast(I, Ty, Op, IP);
169 }
170
171 /// InsertBinop - Insert the specified binary operator, doing a small amount
172 /// of work to avoid inserting an obviously redundant operation.
173 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
174                                  Value *LHS, Value *RHS) {
175   // Fold a binop with constant operands.
176   if (Constant *CLHS = dyn_cast<Constant>(LHS))
177     if (Constant *CRHS = dyn_cast<Constant>(RHS))
178       return ConstantExpr::get(Opcode, CLHS, CRHS);
179
180   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
181   unsigned ScanLimit = 6;
182   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
183   // Scanning starts from the last instruction before the insertion point.
184   BasicBlock::iterator IP = Builder.GetInsertPoint();
185   if (IP != BlockBegin) {
186     --IP;
187     for (; ScanLimit; --IP, --ScanLimit) {
188       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
189       // generated code.
190       if (isa<DbgInfoIntrinsic>(IP))
191         ScanLimit++;
192       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
193           IP->getOperand(1) == RHS)
194         return &*IP;
195       if (IP == BlockBegin) break;
196     }
197   }
198
199   // Save the original insertion point so we can restore it when we're done.
200   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
201   BuilderType::InsertPointGuard Guard(Builder);
202
203   // Move the insertion point out of as many loops as we can.
204   while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
205     if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
206     BasicBlock *Preheader = L->getLoopPreheader();
207     if (!Preheader) break;
208
209     // Ok, move up a level.
210     Builder.SetInsertPoint(Preheader->getTerminator());
211   }
212
213   // If we haven't found this binop, insert it.
214   Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
215   BO->setDebugLoc(Loc);
216   rememberInstruction(BO);
217
218   return BO;
219 }
220
221 /// FactorOutConstant - Test if S is divisible by Factor, using signed
222 /// division. If so, update S with Factor divided out and return true.
223 /// S need not be evenly divisible if a reasonable remainder can be
224 /// computed.
225 /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
226 /// unnecessary; in its place, just signed-divide Ops[i] by the scale and
227 /// check to see if the divide was folded.
228 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
229                               const SCEV *Factor, ScalarEvolution &SE,
230                               const DataLayout &DL) {
231   // Everything is divisible by one.
232   if (Factor->isOne())
233     return true;
234
235   // x/x == 1.
236   if (S == Factor) {
237     S = SE.getConstant(S->getType(), 1);
238     return true;
239   }
240
241   // For a Constant, check for a multiple of the given factor.
242   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
243     // 0/x == 0.
244     if (C->isZero())
245       return true;
246     // Check for divisibility.
247     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
248       ConstantInt *CI =
249           ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
250       // If the quotient is zero and the remainder is non-zero, reject
251       // the value at this scale. It will be considered for subsequent
252       // smaller scales.
253       if (!CI->isZero()) {
254         const SCEV *Div = SE.getConstant(CI);
255         S = Div;
256         Remainder = SE.getAddExpr(
257             Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
258         return true;
259       }
260     }
261   }
262
263   // In a Mul, check if there is a constant operand which is a multiple
264   // of the given factor.
265   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
266     // Size is known, check if there is a constant operand which is a multiple
267     // of the given factor. If so, we can factor it.
268     const SCEVConstant *FC = cast<SCEVConstant>(Factor);
269     if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
270       if (!C->getAPInt().srem(FC->getAPInt())) {
271         SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
272         NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
273         S = SE.getMulExpr(NewMulOps);
274         return true;
275       }
276   }
277
278   // In an AddRec, check if both start and step are divisible.
279   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
280     const SCEV *Step = A->getStepRecurrence(SE);
281     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
282     if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
283       return false;
284     if (!StepRem->isZero())
285       return false;
286     const SCEV *Start = A->getStart();
287     if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
288       return false;
289     S = SE.getAddRecExpr(Start, Step, A->getLoop(),
290                          A->getNoWrapFlags(SCEV::FlagNW));
291     return true;
292   }
293
294   return false;
295 }
296
297 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
298 /// is the number of SCEVAddRecExprs present, which are kept at the end of
299 /// the list.
300 ///
301 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
302                                 Type *Ty,
303                                 ScalarEvolution &SE) {
304   unsigned NumAddRecs = 0;
305   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
306     ++NumAddRecs;
307   // Group Ops into non-addrecs and addrecs.
308   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
309   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
310   // Let ScalarEvolution sort and simplify the non-addrecs list.
311   const SCEV *Sum = NoAddRecs.empty() ?
312                     SE.getConstant(Ty, 0) :
313                     SE.getAddExpr(NoAddRecs);
314   // If it returned an add, use the operands. Otherwise it simplified
315   // the sum into a single value, so just use that.
316   Ops.clear();
317   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
318     Ops.append(Add->op_begin(), Add->op_end());
319   else if (!Sum->isZero())
320     Ops.push_back(Sum);
321   // Then append the addrecs.
322   Ops.append(AddRecs.begin(), AddRecs.end());
323 }
324
325 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
326 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
327 /// This helps expose more opportunities for folding parts of the expressions
328 /// into GEP indices.
329 ///
330 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
331                          Type *Ty,
332                          ScalarEvolution &SE) {
333   // Find the addrecs.
334   SmallVector<const SCEV *, 8> AddRecs;
335   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
336     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
337       const SCEV *Start = A->getStart();
338       if (Start->isZero()) break;
339       const SCEV *Zero = SE.getConstant(Ty, 0);
340       AddRecs.push_back(SE.getAddRecExpr(Zero,
341                                          A->getStepRecurrence(SE),
342                                          A->getLoop(),
343                                          A->getNoWrapFlags(SCEV::FlagNW)));
344       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
345         Ops[i] = Zero;
346         Ops.append(Add->op_begin(), Add->op_end());
347         e += Add->getNumOperands();
348       } else {
349         Ops[i] = Start;
350       }
351     }
352   if (!AddRecs.empty()) {
353     // Add the addrecs onto the end of the list.
354     Ops.append(AddRecs.begin(), AddRecs.end());
355     // Resort the operand list, moving any constants to the front.
356     SimplifyAddOperands(Ops, Ty, SE);
357   }
358 }
359
360 /// expandAddToGEP - Expand an addition expression with a pointer type into
361 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
362 /// BasicAliasAnalysis and other passes analyze the result. See the rules
363 /// for getelementptr vs. inttoptr in
364 /// http://llvm.org/docs/LangRef.html#pointeraliasing
365 /// for details.
366 ///
367 /// Design note: The correctness of using getelementptr here depends on
368 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
369 /// they may introduce pointer arithmetic which may not be safely converted
370 /// into getelementptr.
371 ///
372 /// Design note: It might seem desirable for this function to be more
373 /// loop-aware. If some of the indices are loop-invariant while others
374 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
375 /// loop-invariant portions of the overall computation outside the loop.
376 /// However, there are a few reasons this is not done here. Hoisting simple
377 /// arithmetic is a low-level optimization that often isn't very
378 /// important until late in the optimization process. In fact, passes
379 /// like InstructionCombining will combine GEPs, even if it means
380 /// pushing loop-invariant computation down into loops, so even if the
381 /// GEPs were split here, the work would quickly be undone. The
382 /// LoopStrengthReduction pass, which is usually run quite late (and
383 /// after the last InstructionCombining pass), takes care of hoisting
384 /// loop-invariant portions of expressions, after considering what
385 /// can be folded using target addressing modes.
386 ///
387 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
388                                     const SCEV *const *op_end,
389                                     PointerType *PTy,
390                                     Type *Ty,
391                                     Value *V) {
392   Type *OriginalElTy = PTy->getElementType();
393   Type *ElTy = OriginalElTy;
394   SmallVector<Value *, 4> GepIndices;
395   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
396   bool AnyNonZeroIndices = false;
397
398   // Split AddRecs up into parts as either of the parts may be usable
399   // without the other.
400   SplitAddRecs(Ops, Ty, SE);
401
402   Type *IntPtrTy = DL.getIntPtrType(PTy);
403
404   // Descend down the pointer's type and attempt to convert the other
405   // operands into GEP indices, at each level. The first index in a GEP
406   // indexes into the array implied by the pointer operand; the rest of
407   // the indices index into the element or field type selected by the
408   // preceding index.
409   for (;;) {
410     // If the scale size is not 0, attempt to factor out a scale for
411     // array indexing.
412     SmallVector<const SCEV *, 8> ScaledOps;
413     if (ElTy->isSized()) {
414       const SCEV *ElSize = SE.getSizeOfExpr(IntPtrTy, ElTy);
415       if (!ElSize->isZero()) {
416         SmallVector<const SCEV *, 8> NewOps;
417         for (const SCEV *Op : Ops) {
418           const SCEV *Remainder = SE.getConstant(Ty, 0);
419           if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
420             // Op now has ElSize factored out.
421             ScaledOps.push_back(Op);
422             if (!Remainder->isZero())
423               NewOps.push_back(Remainder);
424             AnyNonZeroIndices = true;
425           } else {
426             // The operand was not divisible, so add it to the list of operands
427             // we'll scan next iteration.
428             NewOps.push_back(Op);
429           }
430         }
431         // If we made any changes, update Ops.
432         if (!ScaledOps.empty()) {
433           Ops = NewOps;
434           SimplifyAddOperands(Ops, Ty, SE);
435         }
436       }
437     }
438
439     // Record the scaled array index for this level of the type. If
440     // we didn't find any operands that could be factored, tentatively
441     // assume that element zero was selected (since the zero offset
442     // would obviously be folded away).
443     Value *Scaled = ScaledOps.empty() ?
444                     Constant::getNullValue(Ty) :
445                     expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
446     GepIndices.push_back(Scaled);
447
448     // Collect struct field index operands.
449     while (StructType *STy = dyn_cast<StructType>(ElTy)) {
450       bool FoundFieldNo = false;
451       // An empty struct has no fields.
452       if (STy->getNumElements() == 0) break;
453       // Field offsets are known. See if a constant offset falls within any of
454       // the struct fields.
455       if (Ops.empty())
456         break;
457       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
458         if (SE.getTypeSizeInBits(C->getType()) <= 64) {
459           const StructLayout &SL = *DL.getStructLayout(STy);
460           uint64_t FullOffset = C->getValue()->getZExtValue();
461           if (FullOffset < SL.getSizeInBytes()) {
462             unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
463             GepIndices.push_back(
464                 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
465             ElTy = STy->getTypeAtIndex(ElIdx);
466             Ops[0] =
467                 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
468             AnyNonZeroIndices = true;
469             FoundFieldNo = true;
470           }
471         }
472       // If no struct field offsets were found, tentatively assume that
473       // field zero was selected (since the zero offset would obviously
474       // be folded away).
475       if (!FoundFieldNo) {
476         ElTy = STy->getTypeAtIndex(0u);
477         GepIndices.push_back(
478           Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
479       }
480     }
481
482     if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
483       ElTy = ATy->getElementType();
484     else
485       break;
486   }
487
488   // If none of the operands were convertible to proper GEP indices, cast
489   // the base to i8* and do an ugly getelementptr with that. It's still
490   // better than ptrtoint+arithmetic+inttoptr at least.
491   if (!AnyNonZeroIndices) {
492     // Cast the base to i8*.
493     V = InsertNoopCastOfTo(V,
494        Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
495
496     assert(!isa<Instruction>(V) ||
497            SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
498
499     // Expand the operands for a plain byte offset.
500     Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
501
502     // Fold a GEP with constant operands.
503     if (Constant *CLHS = dyn_cast<Constant>(V))
504       if (Constant *CRHS = dyn_cast<Constant>(Idx))
505         return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
506                                               CLHS, CRHS);
507
508     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
509     unsigned ScanLimit = 6;
510     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
511     // Scanning starts from the last instruction before the insertion point.
512     BasicBlock::iterator IP = Builder.GetInsertPoint();
513     if (IP != BlockBegin) {
514       --IP;
515       for (; ScanLimit; --IP, --ScanLimit) {
516         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
517         // generated code.
518         if (isa<DbgInfoIntrinsic>(IP))
519           ScanLimit++;
520         if (IP->getOpcode() == Instruction::GetElementPtr &&
521             IP->getOperand(0) == V && IP->getOperand(1) == Idx)
522           return &*IP;
523         if (IP == BlockBegin) break;
524       }
525     }
526
527     // Save the original insertion point so we can restore it when we're done.
528     BuilderType::InsertPointGuard Guard(Builder);
529
530     // Move the insertion point out of as many loops as we can.
531     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
532       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
533       BasicBlock *Preheader = L->getLoopPreheader();
534       if (!Preheader) break;
535
536       // Ok, move up a level.
537       Builder.SetInsertPoint(Preheader->getTerminator());
538     }
539
540     // Emit a GEP.
541     Value *GEP = Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
542     rememberInstruction(GEP);
543
544     return GEP;
545   }
546
547   // Save the original insertion point so we can restore it when we're done.
548   BuilderType::InsertPoint SaveInsertPt = Builder.saveIP();
549
550   // Move the insertion point out of as many loops as we can.
551   while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
552     if (!L->isLoopInvariant(V)) break;
553
554     bool AnyIndexNotLoopInvariant =
555         std::any_of(GepIndices.begin(), GepIndices.end(),
556                     [L](Value *Op) { return !L->isLoopInvariant(Op); });
557
558     if (AnyIndexNotLoopInvariant)
559       break;
560
561     BasicBlock *Preheader = L->getLoopPreheader();
562     if (!Preheader) break;
563
564     // Ok, move up a level.
565     Builder.SetInsertPoint(Preheader->getTerminator());
566   }
567
568   // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
569   // because ScalarEvolution may have changed the address arithmetic to
570   // compute a value which is beyond the end of the allocated object.
571   Value *Casted = V;
572   if (V->getType() != PTy)
573     Casted = InsertNoopCastOfTo(Casted, PTy);
574   Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep");
575   Ops.push_back(SE.getUnknown(GEP));
576   rememberInstruction(GEP);
577
578   // Restore the original insert point.
579   Builder.restoreIP(SaveInsertPt);
580
581   return expand(SE.getAddExpr(Ops));
582 }
583
584 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
585 /// SCEV expansion. If they are nested, this is the most nested. If they are
586 /// neighboring, pick the later.
587 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
588                                         DominatorTree &DT) {
589   if (!A) return B;
590   if (!B) return A;
591   if (A->contains(B)) return B;
592   if (B->contains(A)) return A;
593   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
594   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
595   return A; // Arbitrarily break the tie.
596 }
597
598 /// getRelevantLoop - Get the most relevant loop associated with the given
599 /// expression, according to PickMostRelevantLoop.
600 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
601   // Test whether we've already computed the most relevant loop for this SCEV.
602   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
603   if (!Pair.second)
604     return Pair.first->second;
605
606   if (isa<SCEVConstant>(S))
607     // A constant has no relevant loops.
608     return nullptr;
609   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
610     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
611       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
612     // A non-instruction has no relevant loops.
613     return nullptr;
614   }
615   if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
616     const Loop *L = nullptr;
617     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
618       L = AR->getLoop();
619     for (const SCEV *Op : N->operands())
620       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
621     return RelevantLoops[N] = L;
622   }
623   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
624     const Loop *Result = getRelevantLoop(C->getOperand());
625     return RelevantLoops[C] = Result;
626   }
627   if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
628     const Loop *Result = PickMostRelevantLoop(
629         getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
630     return RelevantLoops[D] = Result;
631   }
632   llvm_unreachable("Unexpected SCEV type!");
633 }
634
635 namespace {
636
637 /// LoopCompare - Compare loops by PickMostRelevantLoop.
638 class LoopCompare {
639   DominatorTree &DT;
640 public:
641   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
642
643   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
644                   std::pair<const Loop *, const SCEV *> RHS) const {
645     // Keep pointer operands sorted at the end.
646     if (LHS.second->getType()->isPointerTy() !=
647         RHS.second->getType()->isPointerTy())
648       return LHS.second->getType()->isPointerTy();
649
650     // Compare loops with PickMostRelevantLoop.
651     if (LHS.first != RHS.first)
652       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
653
654     // If one operand is a non-constant negative and the other is not,
655     // put the non-constant negative on the right so that a sub can
656     // be used instead of a negate and add.
657     if (LHS.second->isNonConstantNegative()) {
658       if (!RHS.second->isNonConstantNegative())
659         return false;
660     } else if (RHS.second->isNonConstantNegative())
661       return true;
662
663     // Otherwise they are equivalent according to this comparison.
664     return false;
665   }
666 };
667
668 }
669
670 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
671   Type *Ty = SE.getEffectiveSCEVType(S->getType());
672
673   // Collect all the add operands in a loop, along with their associated loops.
674   // Iterate in reverse so that constants are emitted last, all else equal, and
675   // so that pointer operands are inserted first, which the code below relies on
676   // to form more involved GEPs.
677   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
678   for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
679        E(S->op_begin()); I != E; ++I)
680     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
681
682   // Sort by loop. Use a stable sort so that constants follow non-constants and
683   // pointer operands precede non-pointer operands.
684   std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(SE.DT));
685
686   // Emit instructions to add all the operands. Hoist as much as possible
687   // out of loops, and form meaningful getelementptrs where possible.
688   Value *Sum = nullptr;
689   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
690     const Loop *CurLoop = I->first;
691     const SCEV *Op = I->second;
692     if (!Sum) {
693       // This is the first operand. Just expand it.
694       Sum = expand(Op);
695       ++I;
696     } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
697       // The running sum expression is a pointer. Try to form a getelementptr
698       // at this level with that as the base.
699       SmallVector<const SCEV *, 4> NewOps;
700       for (; I != E && I->first == CurLoop; ++I) {
701         // If the operand is SCEVUnknown and not instructions, peek through
702         // it, to enable more of it to be folded into the GEP.
703         const SCEV *X = I->second;
704         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
705           if (!isa<Instruction>(U->getValue()))
706             X = SE.getSCEV(U->getValue());
707         NewOps.push_back(X);
708       }
709       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
710     } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
711       // The running sum is an integer, and there's a pointer at this level.
712       // Try to form a getelementptr. If the running sum is instructions,
713       // use a SCEVUnknown to avoid re-analyzing them.
714       SmallVector<const SCEV *, 4> NewOps;
715       NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
716                                                SE.getSCEV(Sum));
717       for (++I; I != E && I->first == CurLoop; ++I)
718         NewOps.push_back(I->second);
719       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
720     } else if (Op->isNonConstantNegative()) {
721       // Instead of doing a negate and add, just do a subtract.
722       Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
723       Sum = InsertNoopCastOfTo(Sum, Ty);
724       Sum = InsertBinop(Instruction::Sub, Sum, W);
725       ++I;
726     } else {
727       // A simple add.
728       Value *W = expandCodeFor(Op, Ty);
729       Sum = InsertNoopCastOfTo(Sum, Ty);
730       // Canonicalize a constant to the RHS.
731       if (isa<Constant>(Sum)) std::swap(Sum, W);
732       Sum = InsertBinop(Instruction::Add, Sum, W);
733       ++I;
734     }
735   }
736
737   return Sum;
738 }
739
740 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
741   Type *Ty = SE.getEffectiveSCEVType(S->getType());
742
743   // Collect all the mul operands in a loop, along with their associated loops.
744   // Iterate in reverse so that constants are emitted last, all else equal.
745   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
746   for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
747        E(S->op_begin()); I != E; ++I)
748     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
749
750   // Sort by loop. Use a stable sort so that constants follow non-constants.
751   std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(SE.DT));
752
753   // Emit instructions to mul all the operands. Hoist as much as possible
754   // out of loops.
755   Value *Prod = nullptr;
756   for (const auto &I : OpsAndLoops) {
757     const SCEV *Op = I.second;
758     if (!Prod) {
759       // This is the first operand. Just expand it.
760       Prod = expand(Op);
761     } else if (Op->isAllOnesValue()) {
762       // Instead of doing a multiply by negative one, just do a negate.
763       Prod = InsertNoopCastOfTo(Prod, Ty);
764       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
765     } else {
766       // A simple mul.
767       Value *W = expandCodeFor(Op, Ty);
768       Prod = InsertNoopCastOfTo(Prod, Ty);
769       // Canonicalize a constant to the RHS.
770       if (isa<Constant>(Prod)) std::swap(Prod, W);
771       const APInt *RHS;
772       if (match(W, m_Power2(RHS))) {
773         // Canonicalize Prod*(1<<C) to Prod<<C.
774         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
775         Prod = InsertBinop(Instruction::Shl, Prod,
776                            ConstantInt::get(Ty, RHS->logBase2()));
777       } else {
778         Prod = InsertBinop(Instruction::Mul, Prod, W);
779       }
780     }
781   }
782
783   return Prod;
784 }
785
786 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
787   Type *Ty = SE.getEffectiveSCEVType(S->getType());
788
789   Value *LHS = expandCodeFor(S->getLHS(), Ty);
790   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
791     const APInt &RHS = SC->getAPInt();
792     if (RHS.isPowerOf2())
793       return InsertBinop(Instruction::LShr, LHS,
794                          ConstantInt::get(Ty, RHS.logBase2()));
795   }
796
797   Value *RHS = expandCodeFor(S->getRHS(), Ty);
798   return InsertBinop(Instruction::UDiv, LHS, RHS);
799 }
800
801 /// Move parts of Base into Rest to leave Base with the minimal
802 /// expression that provides a pointer operand suitable for a
803 /// GEP expansion.
804 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
805                               ScalarEvolution &SE) {
806   while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
807     Base = A->getStart();
808     Rest = SE.getAddExpr(Rest,
809                          SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
810                                           A->getStepRecurrence(SE),
811                                           A->getLoop(),
812                                           A->getNoWrapFlags(SCEV::FlagNW)));
813   }
814   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
815     Base = A->getOperand(A->getNumOperands()-1);
816     SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
817     NewAddOps.back() = Rest;
818     Rest = SE.getAddExpr(NewAddOps);
819     ExposePointerBase(Base, Rest, SE);
820   }
821 }
822
823 /// Determine if this is a well-behaved chain of instructions leading back to
824 /// the PHI. If so, it may be reused by expanded expressions.
825 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
826                                          const Loop *L) {
827   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
828       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
829     return false;
830   // If any of the operands don't dominate the insert position, bail.
831   // Addrec operands are always loop-invariant, so this can only happen
832   // if there are instructions which haven't been hoisted.
833   if (L == IVIncInsertLoop) {
834     for (User::op_iterator OI = IncV->op_begin()+1,
835            OE = IncV->op_end(); OI != OE; ++OI)
836       if (Instruction *OInst = dyn_cast<Instruction>(OI))
837         if (!SE.DT.dominates(OInst, IVIncInsertPos))
838           return false;
839   }
840   // Advance to the next instruction.
841   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
842   if (!IncV)
843     return false;
844
845   if (IncV->mayHaveSideEffects())
846     return false;
847
848   if (IncV != PN)
849     return true;
850
851   return isNormalAddRecExprPHI(PN, IncV, L);
852 }
853
854 /// getIVIncOperand returns an induction variable increment's induction
855 /// variable operand.
856 ///
857 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
858 /// operands dominate InsertPos.
859 ///
860 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
861 /// simple patterns generated by getAddRecExprPHILiterally and
862 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
863 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
864                                            Instruction *InsertPos,
865                                            bool allowScale) {
866   if (IncV == InsertPos)
867     return nullptr;
868
869   switch (IncV->getOpcode()) {
870   default:
871     return nullptr;
872   // Check for a simple Add/Sub or GEP of a loop invariant step.
873   case Instruction::Add:
874   case Instruction::Sub: {
875     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
876     if (!OInst || SE.DT.dominates(OInst, InsertPos))
877       return dyn_cast<Instruction>(IncV->getOperand(0));
878     return nullptr;
879   }
880   case Instruction::BitCast:
881     return dyn_cast<Instruction>(IncV->getOperand(0));
882   case Instruction::GetElementPtr:
883     for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) {
884       if (isa<Constant>(*I))
885         continue;
886       if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
887         if (!SE.DT.dominates(OInst, InsertPos))
888           return nullptr;
889       }
890       if (allowScale) {
891         // allow any kind of GEP as long as it can be hoisted.
892         continue;
893       }
894       // This must be a pointer addition of constants (pretty), which is already
895       // handled, or some number of address-size elements (ugly). Ugly geps
896       // have 2 operands. i1* is used by the expander to represent an
897       // address-size element.
898       if (IncV->getNumOperands() != 2)
899         return nullptr;
900       unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
901       if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
902           && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
903         return nullptr;
904       break;
905     }
906     return dyn_cast<Instruction>(IncV->getOperand(0));
907   }
908 }
909
910 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
911 /// it available to other uses in this loop. Recursively hoist any operands,
912 /// until we reach a value that dominates InsertPos.
913 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
914   if (SE.DT.dominates(IncV, InsertPos))
915       return true;
916
917   // InsertPos must itself dominate IncV so that IncV's new position satisfies
918   // its existing users.
919   if (isa<PHINode>(InsertPos) ||
920       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
921     return false;
922
923   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
924     return false;
925
926   // Check that the chain of IV operands leading back to Phi can be hoisted.
927   SmallVector<Instruction*, 4> IVIncs;
928   for(;;) {
929     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
930     if (!Oper)
931       return false;
932     // IncV is safe to hoist.
933     IVIncs.push_back(IncV);
934     IncV = Oper;
935     if (SE.DT.dominates(IncV, InsertPos))
936       break;
937   }
938   for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) {
939     (*I)->moveBefore(InsertPos);
940   }
941   return true;
942 }
943
944 /// Determine if this cyclic phi is in a form that would have been generated by
945 /// LSR. We don't care if the phi was actually expanded in this pass, as long
946 /// as it is in a low-cost form, for example, no implied multiplication. This
947 /// should match any patterns generated by getAddRecExprPHILiterally and
948 /// expandAddtoGEP.
949 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
950                                            const Loop *L) {
951   for(Instruction *IVOper = IncV;
952       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
953                                 /*allowScale=*/false));) {
954     if (IVOper == PN)
955       return true;
956   }
957   return false;
958 }
959
960 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
961 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
962 /// need to materialize IV increments elsewhere to handle difficult situations.
963 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
964                                  Type *ExpandTy, Type *IntTy,
965                                  bool useSubtract) {
966   Value *IncV;
967   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
968   if (ExpandTy->isPointerTy()) {
969     PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
970     // If the step isn't constant, don't use an implicitly scaled GEP, because
971     // that would require a multiply inside the loop.
972     if (!isa<ConstantInt>(StepV))
973       GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
974                                   GEPPtrTy->getAddressSpace());
975     const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
976     IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
977     if (IncV->getType() != PN->getType()) {
978       IncV = Builder.CreateBitCast(IncV, PN->getType());
979       rememberInstruction(IncV);
980     }
981   } else {
982     IncV = useSubtract ?
983       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
984       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
985     rememberInstruction(IncV);
986   }
987   return IncV;
988 }
989
990 /// \brief Hoist the addrec instruction chain rooted in the loop phi above the
991 /// position. This routine assumes that this is possible (has been checked).
992 static void hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
993                            Instruction *Pos, PHINode *LoopPhi) {
994   do {
995     if (DT->dominates(InstToHoist, Pos))
996       break;
997     // Make sure the increment is where we want it. But don't move it
998     // down past a potential existing post-inc user.
999     InstToHoist->moveBefore(Pos);
1000     Pos = InstToHoist;
1001     InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
1002   } while (InstToHoist != LoopPhi);
1003 }
1004
1005 /// \brief Check whether we can cheaply express the requested SCEV in terms of
1006 /// the available PHI SCEV by truncation and/or inversion of the step.
1007 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
1008                                     const SCEVAddRecExpr *Phi,
1009                                     const SCEVAddRecExpr *Requested,
1010                                     bool &InvertStep) {
1011   Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
1012   Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
1013
1014   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
1015     return false;
1016
1017   // Try truncate it if necessary.
1018   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
1019   if (!Phi)
1020     return false;
1021
1022   // Check whether truncation will help.
1023   if (Phi == Requested) {
1024     InvertStep = false;
1025     return true;
1026   }
1027
1028   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1029   if (SE.getAddExpr(Requested->getStart(),
1030                     SE.getNegativeSCEV(Requested)) == Phi) {
1031     InvertStep = true;
1032     return true;
1033   }
1034
1035   return false;
1036 }
1037
1038 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1039   if (!isa<IntegerType>(AR->getType()))
1040     return false;
1041
1042   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1043   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1044   const SCEV *Step = AR->getStepRecurrence(SE);
1045   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
1046                                             SE.getSignExtendExpr(AR, WideTy));
1047   const SCEV *ExtendAfterOp =
1048     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1049   return ExtendAfterOp == OpAfterExtend;
1050 }
1051
1052 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1053   if (!isa<IntegerType>(AR->getType()))
1054     return false;
1055
1056   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1057   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1058   const SCEV *Step = AR->getStepRecurrence(SE);
1059   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
1060                                             SE.getZeroExtendExpr(AR, WideTy));
1061   const SCEV *ExtendAfterOp =
1062     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1063   return ExtendAfterOp == OpAfterExtend;
1064 }
1065
1066 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1067 /// the base addrec, which is the addrec without any non-loop-dominating
1068 /// values, and return the PHI.
1069 PHINode *
1070 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1071                                         const Loop *L,
1072                                         Type *ExpandTy,
1073                                         Type *IntTy,
1074                                         Type *&TruncTy,
1075                                         bool &InvertStep) {
1076   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1077
1078   // Reuse a previously-inserted PHI, if present.
1079   BasicBlock *LatchBlock = L->getLoopLatch();
1080   if (LatchBlock) {
1081     PHINode *AddRecPhiMatch = nullptr;
1082     Instruction *IncV = nullptr;
1083     TruncTy = nullptr;
1084     InvertStep = false;
1085
1086     // Only try partially matching scevs that need truncation and/or
1087     // step-inversion if we know this loop is outside the current loop.
1088     bool TryNonMatchingSCEV =
1089         IVIncInsertLoop &&
1090         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
1091
1092     for (auto &I : *L->getHeader()) {
1093       auto *PN = dyn_cast<PHINode>(&I);
1094       if (!PN || !SE.isSCEVable(PN->getType()))
1095         continue;
1096
1097       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PN));
1098       if (!PhiSCEV)
1099         continue;
1100
1101       bool IsMatchingSCEV = PhiSCEV == Normalized;
1102       // We only handle truncation and inversion of phi recurrences for the
1103       // expanded expression if the expanded expression's loop dominates the
1104       // loop we insert to. Check now, so we can bail out early.
1105       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
1106           continue;
1107
1108       Instruction *TempIncV =
1109           cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
1110
1111       // Check whether we can reuse this PHI node.
1112       if (LSRMode) {
1113         if (!isExpandedAddRecExprPHI(PN, TempIncV, L))
1114           continue;
1115         if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
1116           continue;
1117       } else {
1118         if (!isNormalAddRecExprPHI(PN, TempIncV, L))
1119           continue;
1120       }
1121
1122       // Stop if we have found an exact match SCEV.
1123       if (IsMatchingSCEV) {
1124         IncV = TempIncV;
1125         TruncTy = nullptr;
1126         InvertStep = false;
1127         AddRecPhiMatch = PN;
1128         break;
1129       }
1130
1131       // Try whether the phi can be translated into the requested form
1132       // (truncated and/or offset by a constant).
1133       if ((!TruncTy || InvertStep) &&
1134           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1135         // Record the phi node. But don't stop we might find an exact match
1136         // later.
1137         AddRecPhiMatch = PN;
1138         IncV = TempIncV;
1139         TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
1140       }
1141     }
1142
1143     if (AddRecPhiMatch) {
1144       // Potentially, move the increment. We have made sure in
1145       // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
1146       if (L == IVIncInsertLoop)
1147         hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
1148
1149       // Ok, the add recurrence looks usable.
1150       // Remember this PHI, even in post-inc mode.
1151       InsertedValues.insert(AddRecPhiMatch);
1152       // Remember the increment.
1153       rememberInstruction(IncV);
1154       return AddRecPhiMatch;
1155     }
1156   }
1157
1158   // Save the original insertion point so we can restore it when we're done.
1159   BuilderType::InsertPointGuard Guard(Builder);
1160
1161   // Another AddRec may need to be recursively expanded below. For example, if
1162   // this AddRec is quadratic, the StepV may itself be an AddRec in this
1163   // loop. Remove this loop from the PostIncLoops set before expanding such
1164   // AddRecs. Otherwise, we cannot find a valid position for the step
1165   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1166   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1167   // so it's not worth implementing SmallPtrSet::swap.
1168   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1169   PostIncLoops.clear();
1170
1171   // Expand code for the start value.
1172   Value *StartV =
1173       expandCodeFor(Normalized->getStart(), ExpandTy, &L->getHeader()->front());
1174
1175   // StartV must be hoisted into L's preheader to dominate the new phi.
1176   assert(!isa<Instruction>(StartV) ||
1177          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1178                                  L->getHeader()));
1179
1180   // Expand code for the step value. Do this before creating the PHI so that PHI
1181   // reuse code doesn't see an incomplete PHI.
1182   const SCEV *Step = Normalized->getStepRecurrence(SE);
1183   // If the stride is negative, insert a sub instead of an add for the increment
1184   // (unless it's a constant, because subtracts of constants are canonicalized
1185   // to adds).
1186   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1187   if (useSubtract)
1188     Step = SE.getNegativeSCEV(Step);
1189   // Expand the step somewhere that dominates the loop header.
1190   Value *StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());
1191
1192   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1193   // we actually do emit an addition.  It does not apply if we emit a
1194   // subtraction.
1195   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1196   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1197
1198   // Create the PHI.
1199   BasicBlock *Header = L->getHeader();
1200   Builder.SetInsertPoint(Header, Header->begin());
1201   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1202   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1203                                   Twine(IVName) + ".iv");
1204   rememberInstruction(PN);
1205
1206   // Create the step instructions and populate the PHI.
1207   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1208     BasicBlock *Pred = *HPI;
1209
1210     // Add a start value.
1211     if (!L->contains(Pred)) {
1212       PN->addIncoming(StartV, Pred);
1213       continue;
1214     }
1215
1216     // Create a step value and add it to the PHI.
1217     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1218     // instructions at IVIncInsertPos.
1219     Instruction *InsertPos = L == IVIncInsertLoop ?
1220       IVIncInsertPos : Pred->getTerminator();
1221     Builder.SetInsertPoint(InsertPos);
1222     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1223
1224     if (isa<OverflowingBinaryOperator>(IncV)) {
1225       if (IncrementIsNUW)
1226         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1227       if (IncrementIsNSW)
1228         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1229     }
1230     PN->addIncoming(IncV, Pred);
1231   }
1232
1233   // After expanding subexpressions, restore the PostIncLoops set so the caller
1234   // can ensure that IVIncrement dominates the current uses.
1235   PostIncLoops = SavedPostIncLoops;
1236
1237   // Remember this PHI, even in post-inc mode.
1238   InsertedValues.insert(PN);
1239
1240   return PN;
1241 }
1242
1243 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1244   Type *STy = S->getType();
1245   Type *IntTy = SE.getEffectiveSCEVType(STy);
1246   const Loop *L = S->getLoop();
1247
1248   // Determine a normalized form of this expression, which is the expression
1249   // before any post-inc adjustment is made.
1250   const SCEVAddRecExpr *Normalized = S;
1251   if (PostIncLoops.count(L)) {
1252     PostIncLoopSet Loops;
1253     Loops.insert(L);
1254     Normalized = cast<SCEVAddRecExpr>(TransformForPostIncUse(
1255         Normalize, S, nullptr, nullptr, Loops, SE, SE.DT));
1256   }
1257
1258   // Strip off any non-loop-dominating component from the addrec start.
1259   const SCEV *Start = Normalized->getStart();
1260   const SCEV *PostLoopOffset = nullptr;
1261   if (!SE.properlyDominates(Start, L->getHeader())) {
1262     PostLoopOffset = Start;
1263     Start = SE.getConstant(Normalized->getType(), 0);
1264     Normalized = cast<SCEVAddRecExpr>(
1265       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1266                        Normalized->getLoop(),
1267                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
1268   }
1269
1270   // Strip off any non-loop-dominating component from the addrec step.
1271   const SCEV *Step = Normalized->getStepRecurrence(SE);
1272   const SCEV *PostLoopScale = nullptr;
1273   if (!SE.dominates(Step, L->getHeader())) {
1274     PostLoopScale = Step;
1275     Step = SE.getConstant(Normalized->getType(), 1);
1276     Normalized =
1277       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1278                              Start, Step, Normalized->getLoop(),
1279                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
1280   }
1281
1282   // Expand the core addrec. If we need post-loop scaling, force it to
1283   // expand to an integer type to avoid the need for additional casting.
1284   Type *ExpandTy = PostLoopScale ? IntTy : STy;
1285   // In some cases, we decide to reuse an existing phi node but need to truncate
1286   // it and/or invert the step.
1287   Type *TruncTy = nullptr;
1288   bool InvertStep = false;
1289   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy,
1290                                           TruncTy, InvertStep);
1291
1292   // Accommodate post-inc mode, if necessary.
1293   Value *Result;
1294   if (!PostIncLoops.count(L))
1295     Result = PN;
1296   else {
1297     // In PostInc mode, use the post-incremented value.
1298     BasicBlock *LatchBlock = L->getLoopLatch();
1299     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1300     Result = PN->getIncomingValueForBlock(LatchBlock);
1301
1302     // For an expansion to use the postinc form, the client must call
1303     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1304     // or dominated by IVIncInsertPos.
1305     if (isa<Instruction>(Result) &&
1306         !SE.DT.dominates(cast<Instruction>(Result),
1307                          &*Builder.GetInsertPoint())) {
1308       // The induction variable's postinc expansion does not dominate this use.
1309       // IVUsers tries to prevent this case, so it is rare. However, it can
1310       // happen when an IVUser outside the loop is not dominated by the latch
1311       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1312       // all cases. Consider a phi outide whose operand is replaced during
1313       // expansion with the value of the postinc user. Without fundamentally
1314       // changing the way postinc users are tracked, the only remedy is
1315       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1316       // but hopefully expandCodeFor handles that.
1317       bool useSubtract =
1318         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1319       if (useSubtract)
1320         Step = SE.getNegativeSCEV(Step);
1321       Value *StepV;
1322       {
1323         // Expand the step somewhere that dominates the loop header.
1324         BuilderType::InsertPointGuard Guard(Builder);
1325         StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());
1326       }
1327       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1328     }
1329   }
1330
1331   // We have decided to reuse an induction variable of a dominating loop. Apply
1332   // truncation and/or invertion of the step.
1333   if (TruncTy) {
1334     Type *ResTy = Result->getType();
1335     // Normalize the result type.
1336     if (ResTy != SE.getEffectiveSCEVType(ResTy))
1337       Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1338     // Truncate the result.
1339     if (TruncTy != Result->getType()) {
1340       Result = Builder.CreateTrunc(Result, TruncTy);
1341       rememberInstruction(Result);
1342     }
1343     // Invert the result.
1344     if (InvertStep) {
1345       Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy),
1346                                  Result);
1347       rememberInstruction(Result);
1348     }
1349   }
1350
1351   // Re-apply any non-loop-dominating scale.
1352   if (PostLoopScale) {
1353     assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1354     Result = InsertNoopCastOfTo(Result, IntTy);
1355     Result = Builder.CreateMul(Result,
1356                                expandCodeFor(PostLoopScale, IntTy));
1357     rememberInstruction(Result);
1358   }
1359
1360   // Re-apply any non-loop-dominating offset.
1361   if (PostLoopOffset) {
1362     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1363       const SCEV *const OffsetArray[1] = { PostLoopOffset };
1364       Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
1365     } else {
1366       Result = InsertNoopCastOfTo(Result, IntTy);
1367       Result = Builder.CreateAdd(Result,
1368                                  expandCodeFor(PostLoopOffset, IntTy));
1369       rememberInstruction(Result);
1370     }
1371   }
1372
1373   return Result;
1374 }
1375
1376 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1377   if (!CanonicalMode) return expandAddRecExprLiterally(S);
1378
1379   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1380   const Loop *L = S->getLoop();
1381
1382   // First check for an existing canonical IV in a suitable type.
1383   PHINode *CanonicalIV = nullptr;
1384   if (PHINode *PN = L->getCanonicalInductionVariable())
1385     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1386       CanonicalIV = PN;
1387
1388   // Rewrite an AddRec in terms of the canonical induction variable, if
1389   // its type is more narrow.
1390   if (CanonicalIV &&
1391       SE.getTypeSizeInBits(CanonicalIV->getType()) >
1392       SE.getTypeSizeInBits(Ty)) {
1393     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1394     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1395       NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1396     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1397                                        S->getNoWrapFlags(SCEV::FlagNW)));
1398     BasicBlock::iterator NewInsertPt =
1399         findInsertPointAfter(cast<Instruction>(V), Builder.GetInsertBlock());
1400     V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1401                       &*NewInsertPt);
1402     return V;
1403   }
1404
1405   // {X,+,F} --> X + {0,+,F}
1406   if (!S->getStart()->isZero()) {
1407     SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1408     NewOps[0] = SE.getConstant(Ty, 0);
1409     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1410                                         S->getNoWrapFlags(SCEV::FlagNW));
1411
1412     // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1413     // comments on expandAddToGEP for details.
1414     const SCEV *Base = S->getStart();
1415     const SCEV *RestArray[1] = { Rest };
1416     // Dig into the expression to find the pointer base for a GEP.
1417     ExposePointerBase(Base, RestArray[0], SE);
1418     // If we found a pointer, expand the AddRec with a GEP.
1419     if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1420       // Make sure the Base isn't something exotic, such as a multiplied
1421       // or divided pointer value. In those cases, the result type isn't
1422       // actually a pointer type.
1423       if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1424         Value *StartV = expand(Base);
1425         assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1426         return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
1427       }
1428     }
1429
1430     // Just do a normal add. Pre-expand the operands to suppress folding.
1431     return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
1432                                 SE.getUnknown(expand(Rest))));
1433   }
1434
1435   // If we don't yet have a canonical IV, create one.
1436   if (!CanonicalIV) {
1437     // Create and insert the PHI node for the induction variable in the
1438     // specified loop.
1439     BasicBlock *Header = L->getHeader();
1440     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1441     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1442                                   &Header->front());
1443     rememberInstruction(CanonicalIV);
1444
1445     SmallSet<BasicBlock *, 4> PredSeen;
1446     Constant *One = ConstantInt::get(Ty, 1);
1447     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1448       BasicBlock *HP = *HPI;
1449       if (!PredSeen.insert(HP).second) {
1450         // There must be an incoming value for each predecessor, even the
1451         // duplicates!
1452         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1453         continue;
1454       }
1455
1456       if (L->contains(HP)) {
1457         // Insert a unit add instruction right before the terminator
1458         // corresponding to the back-edge.
1459         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1460                                                      "indvar.next",
1461                                                      HP->getTerminator());
1462         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1463         rememberInstruction(Add);
1464         CanonicalIV->addIncoming(Add, HP);
1465       } else {
1466         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1467       }
1468     }
1469   }
1470
1471   // {0,+,1} --> Insert a canonical induction variable into the loop!
1472   if (S->isAffine() && S->getOperand(1)->isOne()) {
1473     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1474            "IVs with types different from the canonical IV should "
1475            "already have been handled!");
1476     return CanonicalIV;
1477   }
1478
1479   // {0,+,F} --> {0,+,1} * F
1480
1481   // If this is a simple linear addrec, emit it now as a special case.
1482   if (S->isAffine())    // {0,+,F} --> i*F
1483     return
1484       expand(SE.getTruncateOrNoop(
1485         SE.getMulExpr(SE.getUnknown(CanonicalIV),
1486                       SE.getNoopOrAnyExtend(S->getOperand(1),
1487                                             CanonicalIV->getType())),
1488         Ty));
1489
1490   // If this is a chain of recurrences, turn it into a closed form, using the
1491   // folders, then expandCodeFor the closed form.  This allows the folders to
1492   // simplify the expression without having to build a bunch of special code
1493   // into this folder.
1494   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1495
1496   // Promote S up to the canonical IV type, if the cast is foldable.
1497   const SCEV *NewS = S;
1498   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1499   if (isa<SCEVAddRecExpr>(Ext))
1500     NewS = Ext;
1501
1502   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1503   //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1504
1505   // Truncate the result down to the original type, if needed.
1506   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1507   return expand(T);
1508 }
1509
1510 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1511   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1512   Value *V = expandCodeFor(S->getOperand(),
1513                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
1514   Value *I = Builder.CreateTrunc(V, Ty);
1515   rememberInstruction(I);
1516   return I;
1517 }
1518
1519 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1520   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1521   Value *V = expandCodeFor(S->getOperand(),
1522                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
1523   Value *I = Builder.CreateZExt(V, Ty);
1524   rememberInstruction(I);
1525   return I;
1526 }
1527
1528 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1529   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1530   Value *V = expandCodeFor(S->getOperand(),
1531                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
1532   Value *I = Builder.CreateSExt(V, Ty);
1533   rememberInstruction(I);
1534   return I;
1535 }
1536
1537 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1538   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1539   Type *Ty = LHS->getType();
1540   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1541     // In the case of mixed integer and pointer types, do the
1542     // rest of the comparisons as integer.
1543     if (S->getOperand(i)->getType() != Ty) {
1544       Ty = SE.getEffectiveSCEVType(Ty);
1545       LHS = InsertNoopCastOfTo(LHS, Ty);
1546     }
1547     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1548     Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1549     rememberInstruction(ICmp);
1550     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1551     rememberInstruction(Sel);
1552     LHS = Sel;
1553   }
1554   // In the case of mixed integer and pointer types, cast the
1555   // final result back to the pointer type.
1556   if (LHS->getType() != S->getType())
1557     LHS = InsertNoopCastOfTo(LHS, S->getType());
1558   return LHS;
1559 }
1560
1561 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1562   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1563   Type *Ty = LHS->getType();
1564   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1565     // In the case of mixed integer and pointer types, do the
1566     // rest of the comparisons as integer.
1567     if (S->getOperand(i)->getType() != Ty) {
1568       Ty = SE.getEffectiveSCEVType(Ty);
1569       LHS = InsertNoopCastOfTo(LHS, Ty);
1570     }
1571     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1572     Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1573     rememberInstruction(ICmp);
1574     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1575     rememberInstruction(Sel);
1576     LHS = Sel;
1577   }
1578   // In the case of mixed integer and pointer types, cast the
1579   // final result back to the pointer type.
1580   if (LHS->getType() != S->getType())
1581     LHS = InsertNoopCastOfTo(LHS, S->getType());
1582   return LHS;
1583 }
1584
1585 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1586                                    Instruction *IP) {
1587   assert(IP);
1588   Builder.SetInsertPoint(IP);
1589   return expandCodeFor(SH, Ty);
1590 }
1591
1592 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1593   // Expand the code for this SCEV.
1594   Value *V = expand(SH);
1595   if (Ty) {
1596     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1597            "non-trivial casts should be done with the SCEVs directly!");
1598     V = InsertNoopCastOfTo(V, Ty);
1599   }
1600   return V;
1601 }
1602
1603 Value *SCEVExpander::expand(const SCEV *S) {
1604   // Compute an insertion point for this SCEV object. Hoist the instructions
1605   // as far out in the loop nest as possible.
1606   Instruction *InsertPt = &*Builder.GetInsertPoint();
1607   for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1608        L = L->getParentLoop())
1609     if (SE.isLoopInvariant(S, L)) {
1610       if (!L) break;
1611       if (BasicBlock *Preheader = L->getLoopPreheader())
1612         InsertPt = Preheader->getTerminator();
1613       else {
1614         // LSR sets the insertion point for AddRec start/step values to the
1615         // block start to simplify value reuse, even though it's an invalid
1616         // position. SCEVExpander must correct for this in all cases.
1617         InsertPt = &*L->getHeader()->getFirstInsertionPt();
1618       }
1619     } else {
1620       // If the SCEV is computable at this level, insert it into the header
1621       // after the PHIs (and after any other instructions that we've inserted
1622       // there) so that it is guaranteed to dominate any user inside the loop.
1623       if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1624         InsertPt = &*L->getHeader()->getFirstInsertionPt();
1625       while (InsertPt != Builder.GetInsertPoint()
1626              && (isInsertedInstruction(InsertPt)
1627                  || isa<DbgInfoIntrinsic>(InsertPt))) {
1628         InsertPt = &*std::next(InsertPt->getIterator());
1629       }
1630       break;
1631     }
1632
1633   // Check to see if we already expanded this here.
1634   auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1635   if (I != InsertedExpressions.end())
1636     return I->second;
1637
1638   BuilderType::InsertPointGuard Guard(Builder);
1639   Builder.SetInsertPoint(InsertPt);
1640
1641   // Expand the expression into instructions.
1642   Value *V = visit(S);
1643
1644   // Remember the expanded value for this SCEV at this location.
1645   //
1646   // This is independent of PostIncLoops. The mapped value simply materializes
1647   // the expression at this insertion point. If the mapped value happened to be
1648   // a postinc expansion, it could be reused by a non-postinc user, but only if
1649   // its insertion point was already at the head of the loop.
1650   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1651   return V;
1652 }
1653
1654 void SCEVExpander::rememberInstruction(Value *I) {
1655   if (!PostIncLoops.empty())
1656     InsertedPostIncValues.insert(I);
1657   else
1658     InsertedValues.insert(I);
1659 }
1660
1661 /// getOrInsertCanonicalInductionVariable - This method returns the
1662 /// canonical induction variable of the specified type for the specified
1663 /// loop (inserting one if there is none).  A canonical induction variable
1664 /// starts at zero and steps by one on each iteration.
1665 PHINode *
1666 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1667                                                     Type *Ty) {
1668   assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1669
1670   // Build a SCEV for {0,+,1}<L>.
1671   // Conservatively use FlagAnyWrap for now.
1672   const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1673                                    SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
1674
1675   // Emit code for it.
1676   BuilderType::InsertPointGuard Guard(Builder);
1677   PHINode *V =
1678       cast<PHINode>(expandCodeFor(H, nullptr, &L->getHeader()->front()));
1679
1680   return V;
1681 }
1682
1683 /// replaceCongruentIVs - Check for congruent phis in this loop header and
1684 /// replace them with their most canonical representative. Return the number of
1685 /// phis eliminated.
1686 ///
1687 /// This does not depend on any SCEVExpander state but should be used in
1688 /// the same context that SCEVExpander is used.
1689 unsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1690                                            SmallVectorImpl<WeakVH> &DeadInsts,
1691                                            const TargetTransformInfo *TTI) {
1692   // Find integer phis in order of increasing width.
1693   SmallVector<PHINode*, 8> Phis;
1694   for (auto &I : *L->getHeader()) {
1695     if (auto *PN = dyn_cast<PHINode>(&I))
1696       Phis.push_back(PN);
1697     else
1698       break;
1699   }
1700
1701   if (TTI)
1702     std::sort(Phis.begin(), Phis.end(), [](Value *LHS, Value *RHS) {
1703       // Put pointers at the back and make sure pointer < pointer = false.
1704       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
1705         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
1706       return RHS->getType()->getPrimitiveSizeInBits() <
1707              LHS->getType()->getPrimitiveSizeInBits();
1708     });
1709
1710   unsigned NumElim = 0;
1711   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1712   // Process phis from wide to narrow. Map wide phis to their truncation
1713   // so narrow phis can reuse them.
1714   for (PHINode *Phi : Phis) {
1715     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
1716       if (Value *V = SimplifyInstruction(PN, DL, &SE.TLI, &SE.DT, &SE.AC))
1717         return V;
1718       if (!SE.isSCEVable(PN->getType()))
1719         return nullptr;
1720       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
1721       if (!Const)
1722         return nullptr;
1723       return Const->getValue();
1724     };
1725
1726     // Fold constant phis. They may be congruent to other constant phis and
1727     // would confuse the logic below that expects proper IVs.
1728     if (Value *V = SimplifyPHINode(Phi)) {
1729       if (V->getType() != Phi->getType())
1730         continue;
1731       Phi->replaceAllUsesWith(V);
1732       DeadInsts.emplace_back(Phi);
1733       ++NumElim;
1734       DEBUG_WITH_TYPE(DebugType, dbgs()
1735                       << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
1736       continue;
1737     }
1738
1739     if (!SE.isSCEVable(Phi->getType()))
1740       continue;
1741
1742     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1743     if (!OrigPhiRef) {
1744       OrigPhiRef = Phi;
1745       if (Phi->getType()->isIntegerTy() && TTI
1746           && TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
1747         // This phi can be freely truncated to the narrowest phi type. Map the
1748         // truncated expression to it so it will be reused for narrow types.
1749         const SCEV *TruncExpr =
1750           SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
1751         ExprToIVMap[TruncExpr] = Phi;
1752       }
1753       continue;
1754     }
1755
1756     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
1757     // sense.
1758     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
1759       continue;
1760
1761     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1762       Instruction *OrigInc =
1763         cast<Instruction>(OrigPhiRef->getIncomingValueForBlock(LatchBlock));
1764       Instruction *IsomorphicInc =
1765         cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1766
1767       // If this phi has the same width but is more canonical, replace the
1768       // original with it. As part of the "more canonical" determination,
1769       // respect a prior decision to use an IV chain.
1770       if (OrigPhiRef->getType() == Phi->getType()
1771           && !(ChainedPhis.count(Phi)
1772                || isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L))
1773           && (ChainedPhis.count(Phi)
1774               || isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
1775         std::swap(OrigPhiRef, Phi);
1776         std::swap(OrigInc, IsomorphicInc);
1777       }
1778       // Replacing the congruent phi is sufficient because acyclic redundancy
1779       // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
1780       // that a phi is congruent, it's often the head of an IV user cycle that
1781       // is isomorphic with the original phi. It's worth eagerly cleaning up the
1782       // common case of a single IV increment so that DeleteDeadPHIs can remove
1783       // cycles that had postinc uses.
1784       const SCEV *TruncExpr = SE.getTruncateOrNoop(SE.getSCEV(OrigInc),
1785                                                    IsomorphicInc->getType());
1786       if (OrigInc != IsomorphicInc
1787           && TruncExpr == SE.getSCEV(IsomorphicInc)
1788           && ((isa<PHINode>(OrigInc) && isa<PHINode>(IsomorphicInc))
1789               || hoistIVInc(OrigInc, IsomorphicInc))) {
1790         DEBUG_WITH_TYPE(DebugType, dbgs()
1791                         << "INDVARS: Eliminated congruent iv.inc: "
1792                         << *IsomorphicInc << '\n');
1793         Value *NewInc = OrigInc;
1794         if (OrigInc->getType() != IsomorphicInc->getType()) {
1795           Instruction *IP = nullptr;
1796           if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
1797             IP = &*PN->getParent()->getFirstInsertionPt();
1798           else
1799             IP = OrigInc->getNextNode();
1800
1801           IRBuilder<> Builder(IP);
1802           Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
1803           NewInc = Builder.
1804             CreateTruncOrBitCast(OrigInc, IsomorphicInc->getType(), IVName);
1805         }
1806         IsomorphicInc->replaceAllUsesWith(NewInc);
1807         DeadInsts.emplace_back(IsomorphicInc);
1808       }
1809     }
1810     DEBUG_WITH_TYPE(DebugType, dbgs()
1811                     << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
1812     ++NumElim;
1813     Value *NewIV = OrigPhiRef;
1814     if (OrigPhiRef->getType() != Phi->getType()) {
1815       IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
1816       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
1817       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
1818     }
1819     Phi->replaceAllUsesWith(NewIV);
1820     DeadInsts.emplace_back(Phi);
1821   }
1822   return NumElim;
1823 }
1824
1825 Value *SCEVExpander::findExistingExpansion(const SCEV *S,
1826                                            const Instruction *At, Loop *L) {
1827   using namespace llvm::PatternMatch;
1828
1829   SmallVector<BasicBlock *, 4> ExitingBlocks;
1830   L->getExitingBlocks(ExitingBlocks);
1831
1832   // Look for suitable value in simple conditions at the loop exits.
1833   for (BasicBlock *BB : ExitingBlocks) {
1834     ICmpInst::Predicate Pred;
1835     Instruction *LHS, *RHS;
1836     BasicBlock *TrueBB, *FalseBB;
1837
1838     if (!match(BB->getTerminator(),
1839                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
1840                     TrueBB, FalseBB)))
1841       continue;
1842
1843     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
1844       return LHS;
1845
1846     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
1847       return RHS;
1848   }
1849
1850   // There is potential to make this significantly smarter, but this simple
1851   // heuristic already gets some interesting cases.
1852
1853   // Can not find suitable value.
1854   return nullptr;
1855 }
1856
1857 bool SCEVExpander::isHighCostExpansionHelper(
1858     const SCEV *S, Loop *L, const Instruction *At,
1859     SmallPtrSetImpl<const SCEV *> &Processed) {
1860
1861   // If we can find an existing value for this scev avaliable at the point "At"
1862   // then consider the expression cheap.
1863   if (At && findExistingExpansion(S, At, L) != nullptr)
1864     return false;
1865
1866   // Zero/One operand expressions
1867   switch (S->getSCEVType()) {
1868   case scUnknown:
1869   case scConstant:
1870     return false;
1871   case scTruncate:
1872     return isHighCostExpansionHelper(cast<SCEVTruncateExpr>(S)->getOperand(),
1873                                      L, At, Processed);
1874   case scZeroExtend:
1875     return isHighCostExpansionHelper(cast<SCEVZeroExtendExpr>(S)->getOperand(),
1876                                      L, At, Processed);
1877   case scSignExtend:
1878     return isHighCostExpansionHelper(cast<SCEVSignExtendExpr>(S)->getOperand(),
1879                                      L, At, Processed);
1880   }
1881
1882   if (!Processed.insert(S).second)
1883     return false;
1884
1885   if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) {
1886     // If the divisor is a power of two and the SCEV type fits in a native
1887     // integer, consider the division cheap irrespective of whether it occurs in
1888     // the user code since it can be lowered into a right shift.
1889     if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS()))
1890       if (SC->getAPInt().isPowerOf2()) {
1891         const DataLayout &DL =
1892             L->getHeader()->getParent()->getParent()->getDataLayout();
1893         unsigned Width = cast<IntegerType>(UDivExpr->getType())->getBitWidth();
1894         return DL.isIllegalInteger(Width);
1895       }
1896
1897     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
1898     // HowManyLessThans produced to compute a precise expression, rather than a
1899     // UDiv from the user's code. If we can't find a UDiv in the code with some
1900     // simple searching, assume the former consider UDivExpr expensive to
1901     // compute.
1902     BasicBlock *ExitingBB = L->getExitingBlock();
1903     if (!ExitingBB)
1904       return true;
1905
1906     // At the beginning of this function we already tried to find existing value
1907     // for plain 'S'. Now try to lookup 'S + 1' since it is common pattern
1908     // involving division. This is just a simple search heuristic.
1909     if (!At)
1910       At = &ExitingBB->back();
1911     if (!findExistingExpansion(
1912             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), At, L))
1913       return true;
1914   }
1915
1916   // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1917   // the exit condition.
1918   if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1919     return true;
1920
1921   // Recurse past nary expressions, which commonly occur in the
1922   // BackedgeTakenCount. They may already exist in program code, and if not,
1923   // they are not too expensive rematerialize.
1924   if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(S)) {
1925     for (auto *Op : NAry->operands())
1926       if (isHighCostExpansionHelper(Op, L, At, Processed))
1927         return true;
1928   }
1929
1930   // If we haven't recognized an expensive SCEV pattern, assume it's an
1931   // expression produced by program code.
1932   return false;
1933 }
1934
1935 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
1936                                             Instruction *IP) {
1937   assert(IP);
1938   switch (Pred->getKind()) {
1939   case SCEVPredicate::P_Union:
1940     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
1941   case SCEVPredicate::P_Equal:
1942     return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP);
1943   }
1944   llvm_unreachable("Unknown SCEV predicate type");
1945 }
1946
1947 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred,
1948                                           Instruction *IP) {
1949   Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP);
1950   Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP);
1951
1952   Builder.SetInsertPoint(IP);
1953   auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check");
1954   return I;
1955 }
1956
1957 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
1958                                           Instruction *IP) {
1959   auto *BoolType = IntegerType::get(IP->getContext(), 1);
1960   Value *Check = ConstantInt::getNullValue(BoolType);
1961
1962   // Loop over all checks in this set.
1963   for (auto Pred : Union->getPredicates()) {
1964     auto *NextCheck = expandCodeForPredicate(Pred, IP);
1965     Builder.SetInsertPoint(IP);
1966     Check = Builder.CreateOr(Check, NextCheck);
1967   }
1968
1969   return Check;
1970 }
1971
1972 namespace {
1973 // Search for a SCEV subexpression that is not safe to expand.  Any expression
1974 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
1975 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
1976 // instruction, but the important thing is that we prove the denominator is
1977 // nonzero before expansion.
1978 //
1979 // IVUsers already checks that IV-derived expressions are safe. So this check is
1980 // only needed when the expression includes some subexpression that is not IV
1981 // derived.
1982 //
1983 // Currently, we only allow division by a nonzero constant here. If this is
1984 // inadequate, we could easily allow division by SCEVUnknown by using
1985 // ValueTracking to check isKnownNonZero().
1986 //
1987 // We cannot generally expand recurrences unless the step dominates the loop
1988 // header. The expander handles the special case of affine recurrences by
1989 // scaling the recurrence outside the loop, but this technique isn't generally
1990 // applicable. Expanding a nested recurrence outside a loop requires computing
1991 // binomial coefficients. This could be done, but the recurrence has to be in a
1992 // perfectly reduced form, which can't be guaranteed.
1993 struct SCEVFindUnsafe {
1994   ScalarEvolution &SE;
1995   bool IsUnsafe;
1996
1997   SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
1998
1999   bool follow(const SCEV *S) {
2000     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2001       const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
2002       if (!SC || SC->getValue()->isZero()) {
2003         IsUnsafe = true;
2004         return false;
2005       }
2006     }
2007     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2008       const SCEV *Step = AR->getStepRecurrence(SE);
2009       if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2010         IsUnsafe = true;
2011         return false;
2012       }
2013     }
2014     return true;
2015   }
2016   bool isDone() const { return IsUnsafe; }
2017 };
2018 }
2019
2020 namespace llvm {
2021 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
2022   SCEVFindUnsafe Search(SE);
2023   visitAll(S, Search);
2024   return !Search.IsUnsafe;
2025 }
2026 }