Revert "[SCEV] Look at backedge dominating conditions."
[oota-llvm.git] / lib / Analysis / ScalarEvolution.cpp
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library.  First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
19 //
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
25 //
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression.  These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
30 //
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
34 //
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
37 //
38 //===----------------------------------------------------------------------===//
39 //
40 // There are several good references for the techniques used in this analysis.
41 //
42 //  Chains of recurrences -- a method to expedite the evaluation
43 //  of closed-form functions
44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 //
46 //  On computational properties of chains of recurrences
47 //  Eugene V. Zima
48 //
49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 //  Robert A. van Engelen
51 //
52 //  Efficient Symbolic Analysis for Optimizing Compilers
53 //  Robert A. van Engelen
54 //
55 //  Using the chains of recurrences algebra for data dependence testing and
56 //  induction variable substitution
57 //  MS Thesis, Johnie Birch
58 //
59 //===----------------------------------------------------------------------===//
60
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/ADT/Optional.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/Statistic.h"
66 #include "llvm/Analysis/AssumptionCache.h"
67 #include "llvm/Analysis/ConstantFolding.h"
68 #include "llvm/Analysis/InstructionSimplify.h"
69 #include "llvm/Analysis/LoopInfo.h"
70 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
71 #include "llvm/Analysis/TargetLibraryInfo.h"
72 #include "llvm/Analysis/ValueTracking.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/GetElementPtrTypeIterator.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalVariable.h"
81 #include "llvm/IR/InstIterator.h"
82 #include "llvm/IR/Instructions.h"
83 #include "llvm/IR/LLVMContext.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Operator.h"
86 #include "llvm/Support/CommandLine.h"
87 #include "llvm/Support/Debug.h"
88 #include "llvm/Support/ErrorHandling.h"
89 #include "llvm/Support/MathExtras.h"
90 #include "llvm/Support/raw_ostream.h"
91 #include <algorithm>
92 using namespace llvm;
93
94 #define DEBUG_TYPE "scalar-evolution"
95
96 STATISTIC(NumArrayLenItCounts,
97           "Number of trip counts computed with array length");
98 STATISTIC(NumTripCountsComputed,
99           "Number of loops with predictable loop counts");
100 STATISTIC(NumTripCountsNotComputed,
101           "Number of loops without predictable loop counts");
102 STATISTIC(NumBruteForceTripCountsComputed,
103           "Number of loops with trip counts computed by force");
104
105 static cl::opt<unsigned>
106 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
107                         cl::desc("Maximum number of iterations SCEV will "
108                                  "symbolically execute a constant "
109                                  "derived loop"),
110                         cl::init(100));
111
112 // FIXME: Enable this with XDEBUG when the test suite is clean.
113 static cl::opt<bool>
114 VerifySCEV("verify-scev",
115            cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
116
117 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
118                 "Scalar Evolution Analysis", false, true)
119 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
120 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
121 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
122 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
123 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
124                 "Scalar Evolution Analysis", false, true)
125 char ScalarEvolution::ID = 0;
126
127 //===----------------------------------------------------------------------===//
128 //                           SCEV class definitions
129 //===----------------------------------------------------------------------===//
130
131 //===----------------------------------------------------------------------===//
132 // Implementation of the SCEV class.
133 //
134
135 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
136 void SCEV::dump() const {
137   print(dbgs());
138   dbgs() << '\n';
139 }
140 #endif
141
142 void SCEV::print(raw_ostream &OS) const {
143   switch (static_cast<SCEVTypes>(getSCEVType())) {
144   case scConstant:
145     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
146     return;
147   case scTruncate: {
148     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
149     const SCEV *Op = Trunc->getOperand();
150     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
151        << *Trunc->getType() << ")";
152     return;
153   }
154   case scZeroExtend: {
155     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
156     const SCEV *Op = ZExt->getOperand();
157     OS << "(zext " << *Op->getType() << " " << *Op << " to "
158        << *ZExt->getType() << ")";
159     return;
160   }
161   case scSignExtend: {
162     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
163     const SCEV *Op = SExt->getOperand();
164     OS << "(sext " << *Op->getType() << " " << *Op << " to "
165        << *SExt->getType() << ")";
166     return;
167   }
168   case scAddRecExpr: {
169     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
170     OS << "{" << *AR->getOperand(0);
171     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
172       OS << ",+," << *AR->getOperand(i);
173     OS << "}<";
174     if (AR->getNoWrapFlags(FlagNUW))
175       OS << "nuw><";
176     if (AR->getNoWrapFlags(FlagNSW))
177       OS << "nsw><";
178     if (AR->getNoWrapFlags(FlagNW) &&
179         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
180       OS << "nw><";
181     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
182     OS << ">";
183     return;
184   }
185   case scAddExpr:
186   case scMulExpr:
187   case scUMaxExpr:
188   case scSMaxExpr: {
189     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
190     const char *OpStr = nullptr;
191     switch (NAry->getSCEVType()) {
192     case scAddExpr: OpStr = " + "; break;
193     case scMulExpr: OpStr = " * "; break;
194     case scUMaxExpr: OpStr = " umax "; break;
195     case scSMaxExpr: OpStr = " smax "; break;
196     }
197     OS << "(";
198     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
199          I != E; ++I) {
200       OS << **I;
201       if (std::next(I) != E)
202         OS << OpStr;
203     }
204     OS << ")";
205     switch (NAry->getSCEVType()) {
206     case scAddExpr:
207     case scMulExpr:
208       if (NAry->getNoWrapFlags(FlagNUW))
209         OS << "<nuw>";
210       if (NAry->getNoWrapFlags(FlagNSW))
211         OS << "<nsw>";
212     }
213     return;
214   }
215   case scUDivExpr: {
216     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
217     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
218     return;
219   }
220   case scUnknown: {
221     const SCEVUnknown *U = cast<SCEVUnknown>(this);
222     Type *AllocTy;
223     if (U->isSizeOf(AllocTy)) {
224       OS << "sizeof(" << *AllocTy << ")";
225       return;
226     }
227     if (U->isAlignOf(AllocTy)) {
228       OS << "alignof(" << *AllocTy << ")";
229       return;
230     }
231
232     Type *CTy;
233     Constant *FieldNo;
234     if (U->isOffsetOf(CTy, FieldNo)) {
235       OS << "offsetof(" << *CTy << ", ";
236       FieldNo->printAsOperand(OS, false);
237       OS << ")";
238       return;
239     }
240
241     // Otherwise just print it normally.
242     U->getValue()->printAsOperand(OS, false);
243     return;
244   }
245   case scCouldNotCompute:
246     OS << "***COULDNOTCOMPUTE***";
247     return;
248   }
249   llvm_unreachable("Unknown SCEV kind!");
250 }
251
252 Type *SCEV::getType() const {
253   switch (static_cast<SCEVTypes>(getSCEVType())) {
254   case scConstant:
255     return cast<SCEVConstant>(this)->getType();
256   case scTruncate:
257   case scZeroExtend:
258   case scSignExtend:
259     return cast<SCEVCastExpr>(this)->getType();
260   case scAddRecExpr:
261   case scMulExpr:
262   case scUMaxExpr:
263   case scSMaxExpr:
264     return cast<SCEVNAryExpr>(this)->getType();
265   case scAddExpr:
266     return cast<SCEVAddExpr>(this)->getType();
267   case scUDivExpr:
268     return cast<SCEVUDivExpr>(this)->getType();
269   case scUnknown:
270     return cast<SCEVUnknown>(this)->getType();
271   case scCouldNotCompute:
272     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
273   }
274   llvm_unreachable("Unknown SCEV kind!");
275 }
276
277 bool SCEV::isZero() const {
278   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
279     return SC->getValue()->isZero();
280   return false;
281 }
282
283 bool SCEV::isOne() const {
284   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
285     return SC->getValue()->isOne();
286   return false;
287 }
288
289 bool SCEV::isAllOnesValue() const {
290   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
291     return SC->getValue()->isAllOnesValue();
292   return false;
293 }
294
295 /// isNonConstantNegative - Return true if the specified scev is negated, but
296 /// not a constant.
297 bool SCEV::isNonConstantNegative() const {
298   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
299   if (!Mul) return false;
300
301   // If there is a constant factor, it will be first.
302   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
303   if (!SC) return false;
304
305   // Return true if the value is negative, this matches things like (-42 * V).
306   return SC->getValue()->getValue().isNegative();
307 }
308
309 SCEVCouldNotCompute::SCEVCouldNotCompute() :
310   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
311
312 bool SCEVCouldNotCompute::classof(const SCEV *S) {
313   return S->getSCEVType() == scCouldNotCompute;
314 }
315
316 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
317   FoldingSetNodeID ID;
318   ID.AddInteger(scConstant);
319   ID.AddPointer(V);
320   void *IP = nullptr;
321   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
322   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
323   UniqueSCEVs.InsertNode(S, IP);
324   return S;
325 }
326
327 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
328   return getConstant(ConstantInt::get(getContext(), Val));
329 }
330
331 const SCEV *
332 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
333   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
334   return getConstant(ConstantInt::get(ITy, V, isSigned));
335 }
336
337 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
338                            unsigned SCEVTy, const SCEV *op, Type *ty)
339   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
340
341 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
342                                    const SCEV *op, Type *ty)
343   : SCEVCastExpr(ID, scTruncate, op, ty) {
344   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
345          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
346          "Cannot truncate non-integer value!");
347 }
348
349 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
350                                        const SCEV *op, Type *ty)
351   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
352   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
353          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
354          "Cannot zero extend non-integer value!");
355 }
356
357 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
358                                        const SCEV *op, Type *ty)
359   : SCEVCastExpr(ID, scSignExtend, op, ty) {
360   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
361          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
362          "Cannot sign extend non-integer value!");
363 }
364
365 void SCEVUnknown::deleted() {
366   // Clear this SCEVUnknown from various maps.
367   SE->forgetMemoizedResults(this);
368
369   // Remove this SCEVUnknown from the uniquing map.
370   SE->UniqueSCEVs.RemoveNode(this);
371
372   // Release the value.
373   setValPtr(nullptr);
374 }
375
376 void SCEVUnknown::allUsesReplacedWith(Value *New) {
377   // Clear this SCEVUnknown from various maps.
378   SE->forgetMemoizedResults(this);
379
380   // Remove this SCEVUnknown from the uniquing map.
381   SE->UniqueSCEVs.RemoveNode(this);
382
383   // Update this SCEVUnknown to point to the new value. This is needed
384   // because there may still be outstanding SCEVs which still point to
385   // this SCEVUnknown.
386   setValPtr(New);
387 }
388
389 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
390   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
391     if (VCE->getOpcode() == Instruction::PtrToInt)
392       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
393         if (CE->getOpcode() == Instruction::GetElementPtr &&
394             CE->getOperand(0)->isNullValue() &&
395             CE->getNumOperands() == 2)
396           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
397             if (CI->isOne()) {
398               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
399                                  ->getElementType();
400               return true;
401             }
402
403   return false;
404 }
405
406 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
407   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
408     if (VCE->getOpcode() == Instruction::PtrToInt)
409       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
410         if (CE->getOpcode() == Instruction::GetElementPtr &&
411             CE->getOperand(0)->isNullValue()) {
412           Type *Ty =
413             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
414           if (StructType *STy = dyn_cast<StructType>(Ty))
415             if (!STy->isPacked() &&
416                 CE->getNumOperands() == 3 &&
417                 CE->getOperand(1)->isNullValue()) {
418               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
419                 if (CI->isOne() &&
420                     STy->getNumElements() == 2 &&
421                     STy->getElementType(0)->isIntegerTy(1)) {
422                   AllocTy = STy->getElementType(1);
423                   return true;
424                 }
425             }
426         }
427
428   return false;
429 }
430
431 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
432   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
433     if (VCE->getOpcode() == Instruction::PtrToInt)
434       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
435         if (CE->getOpcode() == Instruction::GetElementPtr &&
436             CE->getNumOperands() == 3 &&
437             CE->getOperand(0)->isNullValue() &&
438             CE->getOperand(1)->isNullValue()) {
439           Type *Ty =
440             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
441           // Ignore vector types here so that ScalarEvolutionExpander doesn't
442           // emit getelementptrs that index into vectors.
443           if (Ty->isStructTy() || Ty->isArrayTy()) {
444             CTy = Ty;
445             FieldNo = CE->getOperand(2);
446             return true;
447           }
448         }
449
450   return false;
451 }
452
453 //===----------------------------------------------------------------------===//
454 //                               SCEV Utilities
455 //===----------------------------------------------------------------------===//
456
457 namespace {
458   /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
459   /// than the complexity of the RHS.  This comparator is used to canonicalize
460   /// expressions.
461   class SCEVComplexityCompare {
462     const LoopInfo *const LI;
463   public:
464     explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
465
466     // Return true or false if LHS is less than, or at least RHS, respectively.
467     bool operator()(const SCEV *LHS, const SCEV *RHS) const {
468       return compare(LHS, RHS) < 0;
469     }
470
471     // Return negative, zero, or positive, if LHS is less than, equal to, or
472     // greater than RHS, respectively. A three-way result allows recursive
473     // comparisons to be more efficient.
474     int compare(const SCEV *LHS, const SCEV *RHS) const {
475       // Fast-path: SCEVs are uniqued so we can do a quick equality check.
476       if (LHS == RHS)
477         return 0;
478
479       // Primarily, sort the SCEVs by their getSCEVType().
480       unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
481       if (LType != RType)
482         return (int)LType - (int)RType;
483
484       // Aside from the getSCEVType() ordering, the particular ordering
485       // isn't very important except that it's beneficial to be consistent,
486       // so that (a + b) and (b + a) don't end up as different expressions.
487       switch (static_cast<SCEVTypes>(LType)) {
488       case scUnknown: {
489         const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
490         const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
491
492         // Sort SCEVUnknown values with some loose heuristics. TODO: This is
493         // not as complete as it could be.
494         const Value *LV = LU->getValue(), *RV = RU->getValue();
495
496         // Order pointer values after integer values. This helps SCEVExpander
497         // form GEPs.
498         bool LIsPointer = LV->getType()->isPointerTy(),
499              RIsPointer = RV->getType()->isPointerTy();
500         if (LIsPointer != RIsPointer)
501           return (int)LIsPointer - (int)RIsPointer;
502
503         // Compare getValueID values.
504         unsigned LID = LV->getValueID(),
505                  RID = RV->getValueID();
506         if (LID != RID)
507           return (int)LID - (int)RID;
508
509         // Sort arguments by their position.
510         if (const Argument *LA = dyn_cast<Argument>(LV)) {
511           const Argument *RA = cast<Argument>(RV);
512           unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
513           return (int)LArgNo - (int)RArgNo;
514         }
515
516         // For instructions, compare their loop depth, and their operand
517         // count.  This is pretty loose.
518         if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
519           const Instruction *RInst = cast<Instruction>(RV);
520
521           // Compare loop depths.
522           const BasicBlock *LParent = LInst->getParent(),
523                            *RParent = RInst->getParent();
524           if (LParent != RParent) {
525             unsigned LDepth = LI->getLoopDepth(LParent),
526                      RDepth = LI->getLoopDepth(RParent);
527             if (LDepth != RDepth)
528               return (int)LDepth - (int)RDepth;
529           }
530
531           // Compare the number of operands.
532           unsigned LNumOps = LInst->getNumOperands(),
533                    RNumOps = RInst->getNumOperands();
534           return (int)LNumOps - (int)RNumOps;
535         }
536
537         return 0;
538       }
539
540       case scConstant: {
541         const SCEVConstant *LC = cast<SCEVConstant>(LHS);
542         const SCEVConstant *RC = cast<SCEVConstant>(RHS);
543
544         // Compare constant values.
545         const APInt &LA = LC->getValue()->getValue();
546         const APInt &RA = RC->getValue()->getValue();
547         unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
548         if (LBitWidth != RBitWidth)
549           return (int)LBitWidth - (int)RBitWidth;
550         return LA.ult(RA) ? -1 : 1;
551       }
552
553       case scAddRecExpr: {
554         const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
555         const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
556
557         // Compare addrec loop depths.
558         const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
559         if (LLoop != RLoop) {
560           unsigned LDepth = LLoop->getLoopDepth(),
561                    RDepth = RLoop->getLoopDepth();
562           if (LDepth != RDepth)
563             return (int)LDepth - (int)RDepth;
564         }
565
566         // Addrec complexity grows with operand count.
567         unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
568         if (LNumOps != RNumOps)
569           return (int)LNumOps - (int)RNumOps;
570
571         // Lexicographically compare.
572         for (unsigned i = 0; i != LNumOps; ++i) {
573           long X = compare(LA->getOperand(i), RA->getOperand(i));
574           if (X != 0)
575             return X;
576         }
577
578         return 0;
579       }
580
581       case scAddExpr:
582       case scMulExpr:
583       case scSMaxExpr:
584       case scUMaxExpr: {
585         const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
586         const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
587
588         // Lexicographically compare n-ary expressions.
589         unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
590         if (LNumOps != RNumOps)
591           return (int)LNumOps - (int)RNumOps;
592
593         for (unsigned i = 0; i != LNumOps; ++i) {
594           if (i >= RNumOps)
595             return 1;
596           long X = compare(LC->getOperand(i), RC->getOperand(i));
597           if (X != 0)
598             return X;
599         }
600         return (int)LNumOps - (int)RNumOps;
601       }
602
603       case scUDivExpr: {
604         const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
605         const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
606
607         // Lexicographically compare udiv expressions.
608         long X = compare(LC->getLHS(), RC->getLHS());
609         if (X != 0)
610           return X;
611         return compare(LC->getRHS(), RC->getRHS());
612       }
613
614       case scTruncate:
615       case scZeroExtend:
616       case scSignExtend: {
617         const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
618         const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
619
620         // Compare cast expressions by operand.
621         return compare(LC->getOperand(), RC->getOperand());
622       }
623
624       case scCouldNotCompute:
625         llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
626       }
627       llvm_unreachable("Unknown SCEV kind!");
628     }
629   };
630 }
631
632 /// GroupByComplexity - Given a list of SCEV objects, order them by their
633 /// complexity, and group objects of the same complexity together by value.
634 /// When this routine is finished, we know that any duplicates in the vector are
635 /// consecutive and that complexity is monotonically increasing.
636 ///
637 /// Note that we go take special precautions to ensure that we get deterministic
638 /// results from this routine.  In other words, we don't want the results of
639 /// this to depend on where the addresses of various SCEV objects happened to
640 /// land in memory.
641 ///
642 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
643                               LoopInfo *LI) {
644   if (Ops.size() < 2) return;  // Noop
645   if (Ops.size() == 2) {
646     // This is the common case, which also happens to be trivially simple.
647     // Special case it.
648     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
649     if (SCEVComplexityCompare(LI)(RHS, LHS))
650       std::swap(LHS, RHS);
651     return;
652   }
653
654   // Do the rough sort by complexity.
655   std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
656
657   // Now that we are sorted by complexity, group elements of the same
658   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
659   // be extremely short in practice.  Note that we take this approach because we
660   // do not want to depend on the addresses of the objects we are grouping.
661   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
662     const SCEV *S = Ops[i];
663     unsigned Complexity = S->getSCEVType();
664
665     // If there are any objects of the same complexity and same value as this
666     // one, group them.
667     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
668       if (Ops[j] == S) { // Found a duplicate.
669         // Move it to immediately after i'th element.
670         std::swap(Ops[i+1], Ops[j]);
671         ++i;   // no need to rescan it.
672         if (i == e-2) return;  // Done!
673       }
674     }
675   }
676 }
677
678 namespace {
679 struct FindSCEVSize {
680   int Size;
681   FindSCEVSize() : Size(0) {}
682
683   bool follow(const SCEV *S) {
684     ++Size;
685     // Keep looking at all operands of S.
686     return true;
687   }
688   bool isDone() const {
689     return false;
690   }
691 };
692 }
693
694 // Returns the size of the SCEV S.
695 static inline int sizeOfSCEV(const SCEV *S) {
696   FindSCEVSize F;
697   SCEVTraversal<FindSCEVSize> ST(F);
698   ST.visitAll(S);
699   return F.Size;
700 }
701
702 namespace {
703
704 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
705 public:
706   // Computes the Quotient and Remainder of the division of Numerator by
707   // Denominator.
708   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
709                      const SCEV *Denominator, const SCEV **Quotient,
710                      const SCEV **Remainder) {
711     assert(Numerator && Denominator && "Uninitialized SCEV");
712
713     SCEVDivision D(SE, Numerator, Denominator);
714
715     // Check for the trivial case here to avoid having to check for it in the
716     // rest of the code.
717     if (Numerator == Denominator) {
718       *Quotient = D.One;
719       *Remainder = D.Zero;
720       return;
721     }
722
723     if (Numerator->isZero()) {
724       *Quotient = D.Zero;
725       *Remainder = D.Zero;
726       return;
727     }
728
729     // Split the Denominator when it is a product.
730     if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
731       const SCEV *Q, *R;
732       *Quotient = Numerator;
733       for (const SCEV *Op : T->operands()) {
734         divide(SE, *Quotient, Op, &Q, &R);
735         *Quotient = Q;
736
737         // Bail out when the Numerator is not divisible by one of the terms of
738         // the Denominator.
739         if (!R->isZero()) {
740           *Quotient = D.Zero;
741           *Remainder = Numerator;
742           return;
743         }
744       }
745       *Remainder = D.Zero;
746       return;
747     }
748
749     D.visit(Numerator);
750     *Quotient = D.Quotient;
751     *Remainder = D.Remainder;
752   }
753
754   // Except in the trivial case described above, we do not know how to divide
755   // Expr by Denominator for the following functions with empty implementation.
756   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
757   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
758   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
759   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
760   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
761   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
762   void visitUnknown(const SCEVUnknown *Numerator) {}
763   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
764
765   void visitConstant(const SCEVConstant *Numerator) {
766     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
767       APInt NumeratorVal = Numerator->getValue()->getValue();
768       APInt DenominatorVal = D->getValue()->getValue();
769       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
770       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
771
772       if (NumeratorBW > DenominatorBW)
773         DenominatorVal = DenominatorVal.sext(NumeratorBW);
774       else if (NumeratorBW < DenominatorBW)
775         NumeratorVal = NumeratorVal.sext(DenominatorBW);
776
777       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
778       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
779       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
780       Quotient = SE.getConstant(QuotientVal);
781       Remainder = SE.getConstant(RemainderVal);
782       return;
783     }
784   }
785
786   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
787     const SCEV *StartQ, *StartR, *StepQ, *StepR;
788     assert(Numerator->isAffine() && "Numerator should be affine");
789     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
790     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
791     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
792                                 Numerator->getNoWrapFlags());
793     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
794                                  Numerator->getNoWrapFlags());
795   }
796
797   void visitAddExpr(const SCEVAddExpr *Numerator) {
798     SmallVector<const SCEV *, 2> Qs, Rs;
799     Type *Ty = Denominator->getType();
800
801     for (const SCEV *Op : Numerator->operands()) {
802       const SCEV *Q, *R;
803       divide(SE, Op, Denominator, &Q, &R);
804
805       // Bail out if types do not match.
806       if (Ty != Q->getType() || Ty != R->getType()) {
807         Quotient = Zero;
808         Remainder = Numerator;
809         return;
810       }
811
812       Qs.push_back(Q);
813       Rs.push_back(R);
814     }
815
816     if (Qs.size() == 1) {
817       Quotient = Qs[0];
818       Remainder = Rs[0];
819       return;
820     }
821
822     Quotient = SE.getAddExpr(Qs);
823     Remainder = SE.getAddExpr(Rs);
824   }
825
826   void visitMulExpr(const SCEVMulExpr *Numerator) {
827     SmallVector<const SCEV *, 2> Qs;
828     Type *Ty = Denominator->getType();
829
830     bool FoundDenominatorTerm = false;
831     for (const SCEV *Op : Numerator->operands()) {
832       // Bail out if types do not match.
833       if (Ty != Op->getType()) {
834         Quotient = Zero;
835         Remainder = Numerator;
836         return;
837       }
838
839       if (FoundDenominatorTerm) {
840         Qs.push_back(Op);
841         continue;
842       }
843
844       // Check whether Denominator divides one of the product operands.
845       const SCEV *Q, *R;
846       divide(SE, Op, Denominator, &Q, &R);
847       if (!R->isZero()) {
848         Qs.push_back(Op);
849         continue;
850       }
851
852       // Bail out if types do not match.
853       if (Ty != Q->getType()) {
854         Quotient = Zero;
855         Remainder = Numerator;
856         return;
857       }
858
859       FoundDenominatorTerm = true;
860       Qs.push_back(Q);
861     }
862
863     if (FoundDenominatorTerm) {
864       Remainder = Zero;
865       if (Qs.size() == 1)
866         Quotient = Qs[0];
867       else
868         Quotient = SE.getMulExpr(Qs);
869       return;
870     }
871
872     if (!isa<SCEVUnknown>(Denominator)) {
873       Quotient = Zero;
874       Remainder = Numerator;
875       return;
876     }
877
878     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
879     ValueToValueMap RewriteMap;
880     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
881         cast<SCEVConstant>(Zero)->getValue();
882     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
883
884     if (Remainder->isZero()) {
885       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
886       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
887           cast<SCEVConstant>(One)->getValue();
888       Quotient =
889           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
890       return;
891     }
892
893     // Quotient is (Numerator - Remainder) divided by Denominator.
894     const SCEV *Q, *R;
895     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
896     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
897       // This SCEV does not seem to simplify: fail the division here.
898       Quotient = Zero;
899       Remainder = Numerator;
900       return;
901     }
902     divide(SE, Diff, Denominator, &Q, &R);
903     assert(R == Zero &&
904            "(Numerator - Remainder) should evenly divide Denominator");
905     Quotient = Q;
906   }
907
908 private:
909   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
910                const SCEV *Denominator)
911       : SE(S), Denominator(Denominator) {
912     Zero = SE.getConstant(Denominator->getType(), 0);
913     One = SE.getConstant(Denominator->getType(), 1);
914
915     // By default, we don't know how to divide Expr by Denominator.
916     // Providing the default here simplifies the rest of the code.
917     Quotient = Zero;
918     Remainder = Numerator;
919   }
920
921   ScalarEvolution &SE;
922   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
923 };
924
925 }
926
927 //===----------------------------------------------------------------------===//
928 //                      Simple SCEV method implementations
929 //===----------------------------------------------------------------------===//
930
931 /// BinomialCoefficient - Compute BC(It, K).  The result has width W.
932 /// Assume, K > 0.
933 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
934                                        ScalarEvolution &SE,
935                                        Type *ResultTy) {
936   // Handle the simplest case efficiently.
937   if (K == 1)
938     return SE.getTruncateOrZeroExtend(It, ResultTy);
939
940   // We are using the following formula for BC(It, K):
941   //
942   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
943   //
944   // Suppose, W is the bitwidth of the return value.  We must be prepared for
945   // overflow.  Hence, we must assure that the result of our computation is
946   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
947   // safe in modular arithmetic.
948   //
949   // However, this code doesn't use exactly that formula; the formula it uses
950   // is something like the following, where T is the number of factors of 2 in
951   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
952   // exponentiation:
953   //
954   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
955   //
956   // This formula is trivially equivalent to the previous formula.  However,
957   // this formula can be implemented much more efficiently.  The trick is that
958   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
959   // arithmetic.  To do exact division in modular arithmetic, all we have
960   // to do is multiply by the inverse.  Therefore, this step can be done at
961   // width W.
962   //
963   // The next issue is how to safely do the division by 2^T.  The way this
964   // is done is by doing the multiplication step at a width of at least W + T
965   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
966   // when we perform the division by 2^T (which is equivalent to a right shift
967   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
968   // truncated out after the division by 2^T.
969   //
970   // In comparison to just directly using the first formula, this technique
971   // is much more efficient; using the first formula requires W * K bits,
972   // but this formula less than W + K bits. Also, the first formula requires
973   // a division step, whereas this formula only requires multiplies and shifts.
974   //
975   // It doesn't matter whether the subtraction step is done in the calculation
976   // width or the input iteration count's width; if the subtraction overflows,
977   // the result must be zero anyway.  We prefer here to do it in the width of
978   // the induction variable because it helps a lot for certain cases; CodeGen
979   // isn't smart enough to ignore the overflow, which leads to much less
980   // efficient code if the width of the subtraction is wider than the native
981   // register width.
982   //
983   // (It's possible to not widen at all by pulling out factors of 2 before
984   // the multiplication; for example, K=2 can be calculated as
985   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
986   // extra arithmetic, so it's not an obvious win, and it gets
987   // much more complicated for K > 3.)
988
989   // Protection from insane SCEVs; this bound is conservative,
990   // but it probably doesn't matter.
991   if (K > 1000)
992     return SE.getCouldNotCompute();
993
994   unsigned W = SE.getTypeSizeInBits(ResultTy);
995
996   // Calculate K! / 2^T and T; we divide out the factors of two before
997   // multiplying for calculating K! / 2^T to avoid overflow.
998   // Other overflow doesn't matter because we only care about the bottom
999   // W bits of the result.
1000   APInt OddFactorial(W, 1);
1001   unsigned T = 1;
1002   for (unsigned i = 3; i <= K; ++i) {
1003     APInt Mult(W, i);
1004     unsigned TwoFactors = Mult.countTrailingZeros();
1005     T += TwoFactors;
1006     Mult = Mult.lshr(TwoFactors);
1007     OddFactorial *= Mult;
1008   }
1009
1010   // We need at least W + T bits for the multiplication step
1011   unsigned CalculationBits = W + T;
1012
1013   // Calculate 2^T, at width T+W.
1014   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1015
1016   // Calculate the multiplicative inverse of K! / 2^T;
1017   // this multiplication factor will perform the exact division by
1018   // K! / 2^T.
1019   APInt Mod = APInt::getSignedMinValue(W+1);
1020   APInt MultiplyFactor = OddFactorial.zext(W+1);
1021   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1022   MultiplyFactor = MultiplyFactor.trunc(W);
1023
1024   // Calculate the product, at width T+W
1025   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1026                                                       CalculationBits);
1027   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1028   for (unsigned i = 1; i != K; ++i) {
1029     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1030     Dividend = SE.getMulExpr(Dividend,
1031                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1032   }
1033
1034   // Divide by 2^T
1035   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1036
1037   // Truncate the result, and divide by K! / 2^T.
1038
1039   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1040                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1041 }
1042
1043 /// evaluateAtIteration - Return the value of this chain of recurrences at
1044 /// the specified iteration number.  We can evaluate this recurrence by
1045 /// multiplying each element in the chain by the binomial coefficient
1046 /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
1047 ///
1048 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1049 ///
1050 /// where BC(It, k) stands for binomial coefficient.
1051 ///
1052 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1053                                                 ScalarEvolution &SE) const {
1054   const SCEV *Result = getStart();
1055   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1056     // The computation is correct in the face of overflow provided that the
1057     // multiplication is performed _after_ the evaluation of the binomial
1058     // coefficient.
1059     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1060     if (isa<SCEVCouldNotCompute>(Coeff))
1061       return Coeff;
1062
1063     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1064   }
1065   return Result;
1066 }
1067
1068 //===----------------------------------------------------------------------===//
1069 //                    SCEV Expression folder implementations
1070 //===----------------------------------------------------------------------===//
1071
1072 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1073                                              Type *Ty) {
1074   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1075          "This is not a truncating conversion!");
1076   assert(isSCEVable(Ty) &&
1077          "This is not a conversion to a SCEVable type!");
1078   Ty = getEffectiveSCEVType(Ty);
1079
1080   FoldingSetNodeID ID;
1081   ID.AddInteger(scTruncate);
1082   ID.AddPointer(Op);
1083   ID.AddPointer(Ty);
1084   void *IP = nullptr;
1085   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1086
1087   // Fold if the operand is constant.
1088   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1089     return getConstant(
1090       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1091
1092   // trunc(trunc(x)) --> trunc(x)
1093   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1094     return getTruncateExpr(ST->getOperand(), Ty);
1095
1096   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1097   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1098     return getTruncateOrSignExtend(SS->getOperand(), Ty);
1099
1100   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1101   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1102     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1103
1104   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1105   // eliminate all the truncates, or we replace other casts with truncates.
1106   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1107     SmallVector<const SCEV *, 4> Operands;
1108     bool hasTrunc = false;
1109     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1110       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1111       if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1112         hasTrunc = isa<SCEVTruncateExpr>(S);
1113       Operands.push_back(S);
1114     }
1115     if (!hasTrunc)
1116       return getAddExpr(Operands);
1117     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1118   }
1119
1120   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1121   // eliminate all the truncates, or we replace other casts with truncates.
1122   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1123     SmallVector<const SCEV *, 4> Operands;
1124     bool hasTrunc = false;
1125     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1126       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1127       if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1128         hasTrunc = isa<SCEVTruncateExpr>(S);
1129       Operands.push_back(S);
1130     }
1131     if (!hasTrunc)
1132       return getMulExpr(Operands);
1133     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1134   }
1135
1136   // If the input value is a chrec scev, truncate the chrec's operands.
1137   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1138     SmallVector<const SCEV *, 4> Operands;
1139     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1140       Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
1141     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1142   }
1143
1144   // The cast wasn't folded; create an explicit cast node. We can reuse
1145   // the existing insert position since if we get here, we won't have
1146   // made any changes which would invalidate it.
1147   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1148                                                  Op, Ty);
1149   UniqueSCEVs.InsertNode(S, IP);
1150   return S;
1151 }
1152
1153 // Get the limit of a recurrence such that incrementing by Step cannot cause
1154 // signed overflow as long as the value of the recurrence within the
1155 // loop does not exceed this limit before incrementing.
1156 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1157                                                  ICmpInst::Predicate *Pred,
1158                                                  ScalarEvolution *SE) {
1159   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1160   if (SE->isKnownPositive(Step)) {
1161     *Pred = ICmpInst::ICMP_SLT;
1162     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1163                            SE->getSignedRange(Step).getSignedMax());
1164   }
1165   if (SE->isKnownNegative(Step)) {
1166     *Pred = ICmpInst::ICMP_SGT;
1167     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1168                            SE->getSignedRange(Step).getSignedMin());
1169   }
1170   return nullptr;
1171 }
1172
1173 // Get the limit of a recurrence such that incrementing by Step cannot cause
1174 // unsigned overflow as long as the value of the recurrence within the loop does
1175 // not exceed this limit before incrementing.
1176 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1177                                                    ICmpInst::Predicate *Pred,
1178                                                    ScalarEvolution *SE) {
1179   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1180   *Pred = ICmpInst::ICMP_ULT;
1181
1182   return SE->getConstant(APInt::getMinValue(BitWidth) -
1183                          SE->getUnsignedRange(Step).getUnsignedMax());
1184 }
1185
1186 namespace {
1187
1188 struct ExtendOpTraitsBase {
1189   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1190 };
1191
1192 // Used to make code generic over signed and unsigned overflow.
1193 template <typename ExtendOp> struct ExtendOpTraits {
1194   // Members present:
1195   //
1196   // static const SCEV::NoWrapFlags WrapType;
1197   //
1198   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1199   //
1200   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1201   //                                           ICmpInst::Predicate *Pred,
1202   //                                           ScalarEvolution *SE);
1203 };
1204
1205 template <>
1206 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1207   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1208
1209   static const GetExtendExprTy GetExtendExpr;
1210
1211   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1212                                              ICmpInst::Predicate *Pred,
1213                                              ScalarEvolution *SE) {
1214     return getSignedOverflowLimitForStep(Step, Pred, SE);
1215   }
1216 };
1217
1218 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1219     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1220
1221 template <>
1222 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1223   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1224
1225   static const GetExtendExprTy GetExtendExpr;
1226
1227   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1228                                              ICmpInst::Predicate *Pred,
1229                                              ScalarEvolution *SE) {
1230     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1231   }
1232 };
1233
1234 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1235     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1236 }
1237
1238 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1239 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1240 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1241 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1242 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1243 // expression "Step + sext/zext(PreIncAR)" is congruent with
1244 // "sext/zext(PostIncAR)"
1245 template <typename ExtendOpTy>
1246 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1247                                         ScalarEvolution *SE) {
1248   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1249   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1250
1251   const Loop *L = AR->getLoop();
1252   const SCEV *Start = AR->getStart();
1253   const SCEV *Step = AR->getStepRecurrence(*SE);
1254
1255   // Check for a simple looking step prior to loop entry.
1256   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1257   if (!SA)
1258     return nullptr;
1259
1260   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1261   // subtraction is expensive. For this purpose, perform a quick and dirty
1262   // difference, by checking for Step in the operand list.
1263   SmallVector<const SCEV *, 4> DiffOps;
1264   for (const SCEV *Op : SA->operands())
1265     if (Op != Step)
1266       DiffOps.push_back(Op);
1267
1268   if (DiffOps.size() == SA->getNumOperands())
1269     return nullptr;
1270
1271   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1272   // `Step`:
1273
1274   // 1. NSW/NUW flags on the step increment.
1275   const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
1276   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1277       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1278
1279   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1280   // "S+X does not sign/unsign-overflow".
1281   //
1282
1283   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1284   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1285       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1286     return PreStart;
1287
1288   // 2. Direct overflow check on the step operation's expression.
1289   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1290   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1291   const SCEV *OperandExtendedStart =
1292       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1293                      (SE->*GetExtendExpr)(Step, WideTy));
1294   if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1295     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1296       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1297       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1298       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1299       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1300     }
1301     return PreStart;
1302   }
1303
1304   // 3. Loop precondition.
1305   ICmpInst::Predicate Pred;
1306   const SCEV *OverflowLimit =
1307       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1308
1309   if (OverflowLimit &&
1310       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1311     return PreStart;
1312   }
1313   return nullptr;
1314 }
1315
1316 // Get the normalized zero or sign extended expression for this AddRec's Start.
1317 template <typename ExtendOpTy>
1318 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1319                                         ScalarEvolution *SE) {
1320   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1321
1322   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1323   if (!PreStart)
1324     return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1325
1326   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1327                         (SE->*GetExtendExpr)(PreStart, Ty));
1328 }
1329
1330 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1331 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1332 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1333 //
1334 // Formally:
1335 //
1336 //     {S,+,X} == {S-T,+,X} + T
1337 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1338 //
1339 // If ({S-T,+,X} + T) does not overflow  ... (1)
1340 //
1341 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1342 //
1343 // If {S-T,+,X} does not overflow  ... (2)
1344 //
1345 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1346 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1347 //
1348 // If (S-T)+T does not overflow  ... (3)
1349 //
1350 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1351 //      == {Ext(S),+,Ext(X)} == LHS
1352 //
1353 // Thus, if (1), (2) and (3) are true for some T, then
1354 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1355 //
1356 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1357 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1358 // to check for (1) and (2).
1359 //
1360 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1361 // is `Delta` (defined below).
1362 //
1363 template <typename ExtendOpTy>
1364 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1365                                                 const SCEV *Step,
1366                                                 const Loop *L) {
1367   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1368
1369   // We restrict `Start` to a constant to prevent SCEV from spending too much
1370   // time here.  It is correct (but more expensive) to continue with a
1371   // non-constant `Start` and do a general SCEV subtraction to compute
1372   // `PreStart` below.
1373   //
1374   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1375   if (!StartC)
1376     return false;
1377
1378   APInt StartAI = StartC->getValue()->getValue();
1379
1380   for (unsigned Delta : {-2, -1, 1, 2}) {
1381     const SCEV *PreStart = getConstant(StartAI - Delta);
1382
1383     // Give up if we don't already have the add recurrence we need because
1384     // actually constructing an add recurrence is relatively expensive.
1385     const SCEVAddRecExpr *PreAR = [&]() {
1386       FoldingSetNodeID ID;
1387       ID.AddInteger(scAddRecExpr);
1388       ID.AddPointer(PreStart);
1389       ID.AddPointer(Step);
1390       ID.AddPointer(L);
1391       void *IP = nullptr;
1392       return static_cast<SCEVAddRecExpr *>(
1393           this->UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1394     }();
1395
1396     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1397       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1398       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1399       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1400           DeltaS, &Pred, this);
1401       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1402         return true;
1403     }
1404   }
1405
1406   return false;
1407 }
1408
1409 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
1410                                                Type *Ty) {
1411   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1412          "This is not an extending conversion!");
1413   assert(isSCEVable(Ty) &&
1414          "This is not a conversion to a SCEVable type!");
1415   Ty = getEffectiveSCEVType(Ty);
1416
1417   // Fold if the operand is constant.
1418   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1419     return getConstant(
1420       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1421
1422   // zext(zext(x)) --> zext(x)
1423   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1424     return getZeroExtendExpr(SZ->getOperand(), Ty);
1425
1426   // Before doing any expensive analysis, check to see if we've already
1427   // computed a SCEV for this Op and Ty.
1428   FoldingSetNodeID ID;
1429   ID.AddInteger(scZeroExtend);
1430   ID.AddPointer(Op);
1431   ID.AddPointer(Ty);
1432   void *IP = nullptr;
1433   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1434
1435   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1436   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1437     // It's possible the bits taken off by the truncate were all zero bits. If
1438     // so, we should be able to simplify this further.
1439     const SCEV *X = ST->getOperand();
1440     ConstantRange CR = getUnsignedRange(X);
1441     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1442     unsigned NewBits = getTypeSizeInBits(Ty);
1443     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1444             CR.zextOrTrunc(NewBits)))
1445       return getTruncateOrZeroExtend(X, Ty);
1446   }
1447
1448   // If the input value is a chrec scev, and we can prove that the value
1449   // did not overflow the old, smaller, value, we can zero extend all of the
1450   // operands (often constants).  This allows analysis of something like
1451   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1452   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1453     if (AR->isAffine()) {
1454       const SCEV *Start = AR->getStart();
1455       const SCEV *Step = AR->getStepRecurrence(*this);
1456       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1457       const Loop *L = AR->getLoop();
1458
1459       // If we have special knowledge that this addrec won't overflow,
1460       // we don't need to do any further analysis.
1461       if (AR->getNoWrapFlags(SCEV::FlagNUW))
1462         return getAddRecExpr(
1463             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1464             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1465
1466       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1467       // Note that this serves two purposes: It filters out loops that are
1468       // simply not analyzable, and it covers the case where this code is
1469       // being called from within backedge-taken count analysis, such that
1470       // attempting to ask for the backedge-taken count would likely result
1471       // in infinite recursion. In the later case, the analysis code will
1472       // cope with a conservative value, and it will take care to purge
1473       // that value once it has finished.
1474       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1475       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1476         // Manually compute the final value for AR, checking for
1477         // overflow.
1478
1479         // Check whether the backedge-taken count can be losslessly casted to
1480         // the addrec's type. The count is always unsigned.
1481         const SCEV *CastedMaxBECount =
1482           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1483         const SCEV *RecastedMaxBECount =
1484           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1485         if (MaxBECount == RecastedMaxBECount) {
1486           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1487           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1488           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1489           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1490           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1491           const SCEV *WideMaxBECount =
1492             getZeroExtendExpr(CastedMaxBECount, WideTy);
1493           const SCEV *OperandExtendedAdd =
1494             getAddExpr(WideStart,
1495                        getMulExpr(WideMaxBECount,
1496                                   getZeroExtendExpr(Step, WideTy)));
1497           if (ZAdd == OperandExtendedAdd) {
1498             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1499             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1500             // Return the expression with the addrec on the outside.
1501             return getAddRecExpr(
1502                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1503                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1504           }
1505           // Similar to above, only this time treat the step value as signed.
1506           // This covers loops that count down.
1507           OperandExtendedAdd =
1508             getAddExpr(WideStart,
1509                        getMulExpr(WideMaxBECount,
1510                                   getSignExtendExpr(Step, WideTy)));
1511           if (ZAdd == OperandExtendedAdd) {
1512             // Cache knowledge of AR NW, which is propagated to this AddRec.
1513             // Negative step causes unsigned wrap, but it still can't self-wrap.
1514             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1515             // Return the expression with the addrec on the outside.
1516             return getAddRecExpr(
1517                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1518                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1519           }
1520         }
1521
1522         // If the backedge is guarded by a comparison with the pre-inc value
1523         // the addrec is safe. Also, if the entry is guarded by a comparison
1524         // with the start value and the backedge is guarded by a comparison
1525         // with the post-inc value, the addrec is safe.
1526         if (isKnownPositive(Step)) {
1527           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1528                                       getUnsignedRange(Step).getUnsignedMax());
1529           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1530               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1531                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1532                                            AR->getPostIncExpr(*this), N))) {
1533             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1534             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1535             // Return the expression with the addrec on the outside.
1536             return getAddRecExpr(
1537                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1538                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1539           }
1540         } else if (isKnownNegative(Step)) {
1541           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1542                                       getSignedRange(Step).getSignedMin());
1543           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1544               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1545                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1546                                            AR->getPostIncExpr(*this), N))) {
1547             // Cache knowledge of AR NW, which is propagated to this AddRec.
1548             // Negative step causes unsigned wrap, but it still can't self-wrap.
1549             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1550             // Return the expression with the addrec on the outside.
1551             return getAddRecExpr(
1552                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1553                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1554           }
1555         }
1556       }
1557
1558       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1559         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1560         return getAddRecExpr(
1561             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1562             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1563       }
1564     }
1565
1566   // The cast wasn't folded; create an explicit cast node.
1567   // Recompute the insert position, as it may have been invalidated.
1568   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1569   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1570                                                    Op, Ty);
1571   UniqueSCEVs.InsertNode(S, IP);
1572   return S;
1573 }
1574
1575 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1576                                                Type *Ty) {
1577   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1578          "This is not an extending conversion!");
1579   assert(isSCEVable(Ty) &&
1580          "This is not a conversion to a SCEVable type!");
1581   Ty = getEffectiveSCEVType(Ty);
1582
1583   // Fold if the operand is constant.
1584   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1585     return getConstant(
1586       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1587
1588   // sext(sext(x)) --> sext(x)
1589   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1590     return getSignExtendExpr(SS->getOperand(), Ty);
1591
1592   // sext(zext(x)) --> zext(x)
1593   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1594     return getZeroExtendExpr(SZ->getOperand(), Ty);
1595
1596   // Before doing any expensive analysis, check to see if we've already
1597   // computed a SCEV for this Op and Ty.
1598   FoldingSetNodeID ID;
1599   ID.AddInteger(scSignExtend);
1600   ID.AddPointer(Op);
1601   ID.AddPointer(Ty);
1602   void *IP = nullptr;
1603   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1604
1605   // If the input value is provably positive, build a zext instead.
1606   if (isKnownNonNegative(Op))
1607     return getZeroExtendExpr(Op, Ty);
1608
1609   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1610   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1611     // It's possible the bits taken off by the truncate were all sign bits. If
1612     // so, we should be able to simplify this further.
1613     const SCEV *X = ST->getOperand();
1614     ConstantRange CR = getSignedRange(X);
1615     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1616     unsigned NewBits = getTypeSizeInBits(Ty);
1617     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1618             CR.sextOrTrunc(NewBits)))
1619       return getTruncateOrSignExtend(X, Ty);
1620   }
1621
1622   // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1623   if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
1624     if (SA->getNumOperands() == 2) {
1625       auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1626       auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1627       if (SMul && SC1) {
1628         if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1629           const APInt &C1 = SC1->getValue()->getValue();
1630           const APInt &C2 = SC2->getValue()->getValue();
1631           if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1632               C2.ugt(C1) && C2.isPowerOf2())
1633             return getAddExpr(getSignExtendExpr(SC1, Ty),
1634                               getSignExtendExpr(SMul, Ty));
1635         }
1636       }
1637     }
1638   }
1639   // If the input value is a chrec scev, and we can prove that the value
1640   // did not overflow the old, smaller, value, we can sign extend all of the
1641   // operands (often constants).  This allows analysis of something like
1642   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1643   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1644     if (AR->isAffine()) {
1645       const SCEV *Start = AR->getStart();
1646       const SCEV *Step = AR->getStepRecurrence(*this);
1647       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1648       const Loop *L = AR->getLoop();
1649
1650       // If we have special knowledge that this addrec won't overflow,
1651       // we don't need to do any further analysis.
1652       if (AR->getNoWrapFlags(SCEV::FlagNSW))
1653         return getAddRecExpr(
1654             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1655             getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
1656
1657       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1658       // Note that this serves two purposes: It filters out loops that are
1659       // simply not analyzable, and it covers the case where this code is
1660       // being called from within backedge-taken count analysis, such that
1661       // attempting to ask for the backedge-taken count would likely result
1662       // in infinite recursion. In the later case, the analysis code will
1663       // cope with a conservative value, and it will take care to purge
1664       // that value once it has finished.
1665       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1666       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1667         // Manually compute the final value for AR, checking for
1668         // overflow.
1669
1670         // Check whether the backedge-taken count can be losslessly casted to
1671         // the addrec's type. The count is always unsigned.
1672         const SCEV *CastedMaxBECount =
1673           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1674         const SCEV *RecastedMaxBECount =
1675           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1676         if (MaxBECount == RecastedMaxBECount) {
1677           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1678           // Check whether Start+Step*MaxBECount has no signed overflow.
1679           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1680           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1681           const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1682           const SCEV *WideMaxBECount =
1683             getZeroExtendExpr(CastedMaxBECount, WideTy);
1684           const SCEV *OperandExtendedAdd =
1685             getAddExpr(WideStart,
1686                        getMulExpr(WideMaxBECount,
1687                                   getSignExtendExpr(Step, WideTy)));
1688           if (SAdd == OperandExtendedAdd) {
1689             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1690             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1691             // Return the expression with the addrec on the outside.
1692             return getAddRecExpr(
1693                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1694                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1695           }
1696           // Similar to above, only this time treat the step value as unsigned.
1697           // This covers loops that count up with an unsigned step.
1698           OperandExtendedAdd =
1699             getAddExpr(WideStart,
1700                        getMulExpr(WideMaxBECount,
1701                                   getZeroExtendExpr(Step, WideTy)));
1702           if (SAdd == OperandExtendedAdd) {
1703             // If AR wraps around then
1704             //
1705             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1706             // => SAdd != OperandExtendedAdd
1707             //
1708             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1709             // (SAdd == OperandExtendedAdd => AR is NW)
1710
1711             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1712
1713             // Return the expression with the addrec on the outside.
1714             return getAddRecExpr(
1715                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1716                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1717           }
1718         }
1719
1720         // If the backedge is guarded by a comparison with the pre-inc value
1721         // the addrec is safe. Also, if the entry is guarded by a comparison
1722         // with the start value and the backedge is guarded by a comparison
1723         // with the post-inc value, the addrec is safe.
1724         ICmpInst::Predicate Pred;
1725         const SCEV *OverflowLimit =
1726             getSignedOverflowLimitForStep(Step, &Pred, this);
1727         if (OverflowLimit &&
1728             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1729              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1730               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1731                                           OverflowLimit)))) {
1732           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1733           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1734           return getAddRecExpr(
1735               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1736               getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1737         }
1738       }
1739       // If Start and Step are constants, check if we can apply this
1740       // transformation:
1741       // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1742       auto SC1 = dyn_cast<SCEVConstant>(Start);
1743       auto SC2 = dyn_cast<SCEVConstant>(Step);
1744       if (SC1 && SC2) {
1745         const APInt &C1 = SC1->getValue()->getValue();
1746         const APInt &C2 = SC2->getValue()->getValue();
1747         if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1748             C2.isPowerOf2()) {
1749           Start = getSignExtendExpr(Start, Ty);
1750           const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
1751                                             L, AR->getNoWrapFlags());
1752           return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1753         }
1754       }
1755
1756       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1757         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1758         return getAddRecExpr(
1759             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1760             getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1761       }
1762     }
1763
1764   // The cast wasn't folded; create an explicit cast node.
1765   // Recompute the insert position, as it may have been invalidated.
1766   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1767   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1768                                                    Op, Ty);
1769   UniqueSCEVs.InsertNode(S, IP);
1770   return S;
1771 }
1772
1773 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1774 /// unspecified bits out to the given type.
1775 ///
1776 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1777                                               Type *Ty) {
1778   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1779          "This is not an extending conversion!");
1780   assert(isSCEVable(Ty) &&
1781          "This is not a conversion to a SCEVable type!");
1782   Ty = getEffectiveSCEVType(Ty);
1783
1784   // Sign-extend negative constants.
1785   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1786     if (SC->getValue()->getValue().isNegative())
1787       return getSignExtendExpr(Op, Ty);
1788
1789   // Peel off a truncate cast.
1790   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1791     const SCEV *NewOp = T->getOperand();
1792     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1793       return getAnyExtendExpr(NewOp, Ty);
1794     return getTruncateOrNoop(NewOp, Ty);
1795   }
1796
1797   // Next try a zext cast. If the cast is folded, use it.
1798   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1799   if (!isa<SCEVZeroExtendExpr>(ZExt))
1800     return ZExt;
1801
1802   // Next try a sext cast. If the cast is folded, use it.
1803   const SCEV *SExt = getSignExtendExpr(Op, Ty);
1804   if (!isa<SCEVSignExtendExpr>(SExt))
1805     return SExt;
1806
1807   // Force the cast to be folded into the operands of an addrec.
1808   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1809     SmallVector<const SCEV *, 4> Ops;
1810     for (const SCEV *Op : AR->operands())
1811       Ops.push_back(getAnyExtendExpr(Op, Ty));
1812     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1813   }
1814
1815   // If the expression is obviously signed, use the sext cast value.
1816   if (isa<SCEVSMaxExpr>(Op))
1817     return SExt;
1818
1819   // Absent any other information, use the zext cast value.
1820   return ZExt;
1821 }
1822
1823 /// CollectAddOperandsWithScales - Process the given Ops list, which is
1824 /// a list of operands to be added under the given scale, update the given
1825 /// map. This is a helper function for getAddRecExpr. As an example of
1826 /// what it does, given a sequence of operands that would form an add
1827 /// expression like this:
1828 ///
1829 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1830 ///
1831 /// where A and B are constants, update the map with these values:
1832 ///
1833 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1834 ///
1835 /// and add 13 + A*B*29 to AccumulatedConstant.
1836 /// This will allow getAddRecExpr to produce this:
1837 ///
1838 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1839 ///
1840 /// This form often exposes folding opportunities that are hidden in
1841 /// the original operand list.
1842 ///
1843 /// Return true iff it appears that any interesting folding opportunities
1844 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1845 /// the common case where no interesting opportunities are present, and
1846 /// is also used as a check to avoid infinite recursion.
1847 ///
1848 static bool
1849 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1850                              SmallVectorImpl<const SCEV *> &NewOps,
1851                              APInt &AccumulatedConstant,
1852                              const SCEV *const *Ops, size_t NumOperands,
1853                              const APInt &Scale,
1854                              ScalarEvolution &SE) {
1855   bool Interesting = false;
1856
1857   // Iterate over the add operands. They are sorted, with constants first.
1858   unsigned i = 0;
1859   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1860     ++i;
1861     // Pull a buried constant out to the outside.
1862     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1863       Interesting = true;
1864     AccumulatedConstant += Scale * C->getValue()->getValue();
1865   }
1866
1867   // Next comes everything else. We're especially interested in multiplies
1868   // here, but they're in the middle, so just visit the rest with one loop.
1869   for (; i != NumOperands; ++i) {
1870     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1871     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1872       APInt NewScale =
1873         Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1874       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1875         // A multiplication of a constant with another add; recurse.
1876         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1877         Interesting |=
1878           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1879                                        Add->op_begin(), Add->getNumOperands(),
1880                                        NewScale, SE);
1881       } else {
1882         // A multiplication of a constant with some other value. Update
1883         // the map.
1884         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1885         const SCEV *Key = SE.getMulExpr(MulOps);
1886         std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1887           M.insert(std::make_pair(Key, NewScale));
1888         if (Pair.second) {
1889           NewOps.push_back(Pair.first->first);
1890         } else {
1891           Pair.first->second += NewScale;
1892           // The map already had an entry for this value, which may indicate
1893           // a folding opportunity.
1894           Interesting = true;
1895         }
1896       }
1897     } else {
1898       // An ordinary operand. Update the map.
1899       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1900         M.insert(std::make_pair(Ops[i], Scale));
1901       if (Pair.second) {
1902         NewOps.push_back(Pair.first->first);
1903       } else {
1904         Pair.first->second += Scale;
1905         // The map already had an entry for this value, which may indicate
1906         // a folding opportunity.
1907         Interesting = true;
1908       }
1909     }
1910   }
1911
1912   return Interesting;
1913 }
1914
1915 namespace {
1916   struct APIntCompare {
1917     bool operator()(const APInt &LHS, const APInt &RHS) const {
1918       return LHS.ult(RHS);
1919     }
1920   };
1921 }
1922
1923 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1924 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
1925 // can't-overflow flags for the operation if possible.
1926 static SCEV::NoWrapFlags
1927 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1928                       const SmallVectorImpl<const SCEV *> &Ops,
1929                       SCEV::NoWrapFlags OldFlags) {
1930   using namespace std::placeholders;
1931
1932   bool CanAnalyze =
1933       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1934   (void)CanAnalyze;
1935   assert(CanAnalyze && "don't call from other places!");
1936
1937   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1938   SCEV::NoWrapFlags SignOrUnsignWrap =
1939       ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask);
1940
1941   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1942   auto IsKnownNonNegative =
1943     std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1);
1944
1945   if (SignOrUnsignWrap == SCEV::FlagNSW &&
1946       std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative))
1947     return ScalarEvolution::setFlags(OldFlags,
1948                                      (SCEV::NoWrapFlags)SignOrUnsignMask);
1949
1950   return OldFlags;
1951 }
1952
1953 /// getAddExpr - Get a canonical add expression, or something simpler if
1954 /// possible.
1955 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1956                                         SCEV::NoWrapFlags Flags) {
1957   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1958          "only nuw or nsw allowed");
1959   assert(!Ops.empty() && "Cannot get empty add!");
1960   if (Ops.size() == 1) return Ops[0];
1961 #ifndef NDEBUG
1962   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1963   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1964     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1965            "SCEVAddExpr operand types don't match!");
1966 #endif
1967
1968   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
1969
1970   // Sort by complexity, this groups all similar expression types together.
1971   GroupByComplexity(Ops, LI);
1972
1973   // If there are any constants, fold them together.
1974   unsigned Idx = 0;
1975   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1976     ++Idx;
1977     assert(Idx < Ops.size());
1978     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1979       // We found two constants, fold them together!
1980       Ops[0] = getConstant(LHSC->getValue()->getValue() +
1981                            RHSC->getValue()->getValue());
1982       if (Ops.size() == 2) return Ops[0];
1983       Ops.erase(Ops.begin()+1);  // Erase the folded element
1984       LHSC = cast<SCEVConstant>(Ops[0]);
1985     }
1986
1987     // If we are left with a constant zero being added, strip it off.
1988     if (LHSC->getValue()->isZero()) {
1989       Ops.erase(Ops.begin());
1990       --Idx;
1991     }
1992
1993     if (Ops.size() == 1) return Ops[0];
1994   }
1995
1996   // Okay, check to see if the same value occurs in the operand list more than
1997   // once.  If so, merge them together into an multiply expression.  Since we
1998   // sorted the list, these values are required to be adjacent.
1999   Type *Ty = Ops[0]->getType();
2000   bool FoundMatch = false;
2001   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2002     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2003       // Scan ahead to count how many equal operands there are.
2004       unsigned Count = 2;
2005       while (i+Count != e && Ops[i+Count] == Ops[i])
2006         ++Count;
2007       // Merge the values into a multiply.
2008       const SCEV *Scale = getConstant(Ty, Count);
2009       const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2010       if (Ops.size() == Count)
2011         return Mul;
2012       Ops[i] = Mul;
2013       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2014       --i; e -= Count - 1;
2015       FoundMatch = true;
2016     }
2017   if (FoundMatch)
2018     return getAddExpr(Ops, Flags);
2019
2020   // Check for truncates. If all the operands are truncated from the same
2021   // type, see if factoring out the truncate would permit the result to be
2022   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2023   // if the contents of the resulting outer trunc fold to something simple.
2024   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2025     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
2026     Type *DstType = Trunc->getType();
2027     Type *SrcType = Trunc->getOperand()->getType();
2028     SmallVector<const SCEV *, 8> LargeOps;
2029     bool Ok = true;
2030     // Check all the operands to see if they can be represented in the
2031     // source type of the truncate.
2032     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2033       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2034         if (T->getOperand()->getType() != SrcType) {
2035           Ok = false;
2036           break;
2037         }
2038         LargeOps.push_back(T->getOperand());
2039       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2040         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2041       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2042         SmallVector<const SCEV *, 8> LargeMulOps;
2043         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2044           if (const SCEVTruncateExpr *T =
2045                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2046             if (T->getOperand()->getType() != SrcType) {
2047               Ok = false;
2048               break;
2049             }
2050             LargeMulOps.push_back(T->getOperand());
2051           } else if (const SCEVConstant *C =
2052                        dyn_cast<SCEVConstant>(M->getOperand(j))) {
2053             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2054           } else {
2055             Ok = false;
2056             break;
2057           }
2058         }
2059         if (Ok)
2060           LargeOps.push_back(getMulExpr(LargeMulOps));
2061       } else {
2062         Ok = false;
2063         break;
2064       }
2065     }
2066     if (Ok) {
2067       // Evaluate the expression in the larger type.
2068       const SCEV *Fold = getAddExpr(LargeOps, Flags);
2069       // If it folds to something simple, use it. Otherwise, don't.
2070       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2071         return getTruncateExpr(Fold, DstType);
2072     }
2073   }
2074
2075   // Skip past any other cast SCEVs.
2076   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2077     ++Idx;
2078
2079   // If there are add operands they would be next.
2080   if (Idx < Ops.size()) {
2081     bool DeletedAdd = false;
2082     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2083       // If we have an add, expand the add operands onto the end of the operands
2084       // list.
2085       Ops.erase(Ops.begin()+Idx);
2086       Ops.append(Add->op_begin(), Add->op_end());
2087       DeletedAdd = true;
2088     }
2089
2090     // If we deleted at least one add, we added operands to the end of the list,
2091     // and they are not necessarily sorted.  Recurse to resort and resimplify
2092     // any operands we just acquired.
2093     if (DeletedAdd)
2094       return getAddExpr(Ops);
2095   }
2096
2097   // Skip over the add expression until we get to a multiply.
2098   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2099     ++Idx;
2100
2101   // Check to see if there are any folding opportunities present with
2102   // operands multiplied by constant values.
2103   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2104     uint64_t BitWidth = getTypeSizeInBits(Ty);
2105     DenseMap<const SCEV *, APInt> M;
2106     SmallVector<const SCEV *, 8> NewOps;
2107     APInt AccumulatedConstant(BitWidth, 0);
2108     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2109                                      Ops.data(), Ops.size(),
2110                                      APInt(BitWidth, 1), *this)) {
2111       // Some interesting folding opportunity is present, so its worthwhile to
2112       // re-generate the operands list. Group the operands by constant scale,
2113       // to avoid multiplying by the same constant scale multiple times.
2114       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2115       for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
2116            E = NewOps.end(); I != E; ++I)
2117         MulOpLists[M.find(*I)->second].push_back(*I);
2118       // Re-generate the operands list.
2119       Ops.clear();
2120       if (AccumulatedConstant != 0)
2121         Ops.push_back(getConstant(AccumulatedConstant));
2122       for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
2123            I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
2124         if (I->first != 0)
2125           Ops.push_back(getMulExpr(getConstant(I->first),
2126                                    getAddExpr(I->second)));
2127       if (Ops.empty())
2128         return getConstant(Ty, 0);
2129       if (Ops.size() == 1)
2130         return Ops[0];
2131       return getAddExpr(Ops);
2132     }
2133   }
2134
2135   // If we are adding something to a multiply expression, make sure the
2136   // something is not already an operand of the multiply.  If so, merge it into
2137   // the multiply.
2138   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2139     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2140     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2141       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2142       if (isa<SCEVConstant>(MulOpSCEV))
2143         continue;
2144       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2145         if (MulOpSCEV == Ops[AddOp]) {
2146           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2147           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2148           if (Mul->getNumOperands() != 2) {
2149             // If the multiply has more than two operands, we must get the
2150             // Y*Z term.
2151             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2152                                                 Mul->op_begin()+MulOp);
2153             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2154             InnerMul = getMulExpr(MulOps);
2155           }
2156           const SCEV *One = getConstant(Ty, 1);
2157           const SCEV *AddOne = getAddExpr(One, InnerMul);
2158           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
2159           if (Ops.size() == 2) return OuterMul;
2160           if (AddOp < Idx) {
2161             Ops.erase(Ops.begin()+AddOp);
2162             Ops.erase(Ops.begin()+Idx-1);
2163           } else {
2164             Ops.erase(Ops.begin()+Idx);
2165             Ops.erase(Ops.begin()+AddOp-1);
2166           }
2167           Ops.push_back(OuterMul);
2168           return getAddExpr(Ops);
2169         }
2170
2171       // Check this multiply against other multiplies being added together.
2172       for (unsigned OtherMulIdx = Idx+1;
2173            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2174            ++OtherMulIdx) {
2175         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2176         // If MulOp occurs in OtherMul, we can fold the two multiplies
2177         // together.
2178         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2179              OMulOp != e; ++OMulOp)
2180           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2181             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2182             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2183             if (Mul->getNumOperands() != 2) {
2184               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2185                                                   Mul->op_begin()+MulOp);
2186               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2187               InnerMul1 = getMulExpr(MulOps);
2188             }
2189             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2190             if (OtherMul->getNumOperands() != 2) {
2191               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2192                                                   OtherMul->op_begin()+OMulOp);
2193               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2194               InnerMul2 = getMulExpr(MulOps);
2195             }
2196             const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2197             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
2198             if (Ops.size() == 2) return OuterMul;
2199             Ops.erase(Ops.begin()+Idx);
2200             Ops.erase(Ops.begin()+OtherMulIdx-1);
2201             Ops.push_back(OuterMul);
2202             return getAddExpr(Ops);
2203           }
2204       }
2205     }
2206   }
2207
2208   // If there are any add recurrences in the operands list, see if any other
2209   // added values are loop invariant.  If so, we can fold them into the
2210   // recurrence.
2211   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2212     ++Idx;
2213
2214   // Scan over all recurrences, trying to fold loop invariants into them.
2215   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2216     // Scan all of the other operands to this add and add them to the vector if
2217     // they are loop invariant w.r.t. the recurrence.
2218     SmallVector<const SCEV *, 8> LIOps;
2219     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2220     const Loop *AddRecLoop = AddRec->getLoop();
2221     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2222       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2223         LIOps.push_back(Ops[i]);
2224         Ops.erase(Ops.begin()+i);
2225         --i; --e;
2226       }
2227
2228     // If we found some loop invariants, fold them into the recurrence.
2229     if (!LIOps.empty()) {
2230       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2231       LIOps.push_back(AddRec->getStart());
2232
2233       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2234                                              AddRec->op_end());
2235       AddRecOps[0] = getAddExpr(LIOps);
2236
2237       // Build the new addrec. Propagate the NUW and NSW flags if both the
2238       // outer add and the inner addrec are guaranteed to have no overflow.
2239       // Always propagate NW.
2240       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2241       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2242
2243       // If all of the other operands were loop invariant, we are done.
2244       if (Ops.size() == 1) return NewRec;
2245
2246       // Otherwise, add the folded AddRec by the non-invariant parts.
2247       for (unsigned i = 0;; ++i)
2248         if (Ops[i] == AddRec) {
2249           Ops[i] = NewRec;
2250           break;
2251         }
2252       return getAddExpr(Ops);
2253     }
2254
2255     // Okay, if there weren't any loop invariants to be folded, check to see if
2256     // there are multiple AddRec's with the same loop induction variable being
2257     // added together.  If so, we can fold them.
2258     for (unsigned OtherIdx = Idx+1;
2259          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2260          ++OtherIdx)
2261       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2262         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2263         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2264                                                AddRec->op_end());
2265         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2266              ++OtherIdx)
2267           if (const SCEVAddRecExpr *OtherAddRec =
2268                 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2269             if (OtherAddRec->getLoop() == AddRecLoop) {
2270               for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2271                    i != e; ++i) {
2272                 if (i >= AddRecOps.size()) {
2273                   AddRecOps.append(OtherAddRec->op_begin()+i,
2274                                    OtherAddRec->op_end());
2275                   break;
2276                 }
2277                 AddRecOps[i] = getAddExpr(AddRecOps[i],
2278                                           OtherAddRec->getOperand(i));
2279               }
2280               Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2281             }
2282         // Step size has changed, so we cannot guarantee no self-wraparound.
2283         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2284         return getAddExpr(Ops);
2285       }
2286
2287     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2288     // next one.
2289   }
2290
2291   // Okay, it looks like we really DO need an add expr.  Check to see if we
2292   // already have one, otherwise create a new one.
2293   FoldingSetNodeID ID;
2294   ID.AddInteger(scAddExpr);
2295   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2296     ID.AddPointer(Ops[i]);
2297   void *IP = nullptr;
2298   SCEVAddExpr *S =
2299     static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2300   if (!S) {
2301     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2302     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2303     S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2304                                         O, Ops.size());
2305     UniqueSCEVs.InsertNode(S, IP);
2306   }
2307   S->setNoWrapFlags(Flags);
2308   return S;
2309 }
2310
2311 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2312   uint64_t k = i*j;
2313   if (j > 1 && k / j != i) Overflow = true;
2314   return k;
2315 }
2316
2317 /// Compute the result of "n choose k", the binomial coefficient.  If an
2318 /// intermediate computation overflows, Overflow will be set and the return will
2319 /// be garbage. Overflow is not cleared on absence of overflow.
2320 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2321   // We use the multiplicative formula:
2322   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2323   // At each iteration, we take the n-th term of the numeral and divide by the
2324   // (k-n)th term of the denominator.  This division will always produce an
2325   // integral result, and helps reduce the chance of overflow in the
2326   // intermediate computations. However, we can still overflow even when the
2327   // final result would fit.
2328
2329   if (n == 0 || n == k) return 1;
2330   if (k > n) return 0;
2331
2332   if (k > n/2)
2333     k = n-k;
2334
2335   uint64_t r = 1;
2336   for (uint64_t i = 1; i <= k; ++i) {
2337     r = umul_ov(r, n-(i-1), Overflow);
2338     r /= i;
2339   }
2340   return r;
2341 }
2342
2343 /// Determine if any of the operands in this SCEV are a constant or if
2344 /// any of the add or multiply expressions in this SCEV contain a constant.
2345 static bool containsConstantSomewhere(const SCEV *StartExpr) {
2346   SmallVector<const SCEV *, 4> Ops;
2347   Ops.push_back(StartExpr);
2348   while (!Ops.empty()) {
2349     const SCEV *CurrentExpr = Ops.pop_back_val();
2350     if (isa<SCEVConstant>(*CurrentExpr))
2351       return true;
2352
2353     if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2354       const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
2355       Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
2356     }
2357   }
2358   return false;
2359 }
2360
2361 /// getMulExpr - Get a canonical multiply expression, or something simpler if
2362 /// possible.
2363 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2364                                         SCEV::NoWrapFlags Flags) {
2365   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2366          "only nuw or nsw allowed");
2367   assert(!Ops.empty() && "Cannot get empty mul!");
2368   if (Ops.size() == 1) return Ops[0];
2369 #ifndef NDEBUG
2370   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2371   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2372     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2373            "SCEVMulExpr operand types don't match!");
2374 #endif
2375
2376   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2377
2378   // Sort by complexity, this groups all similar expression types together.
2379   GroupByComplexity(Ops, LI);
2380
2381   // If there are any constants, fold them together.
2382   unsigned Idx = 0;
2383   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2384
2385     // C1*(C2+V) -> C1*C2 + C1*V
2386     if (Ops.size() == 2)
2387         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2388           // If any of Add's ops are Adds or Muls with a constant,
2389           // apply this transformation as well.
2390           if (Add->getNumOperands() == 2)
2391             if (containsConstantSomewhere(Add))
2392               return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2393                                 getMulExpr(LHSC, Add->getOperand(1)));
2394
2395     ++Idx;
2396     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2397       // We found two constants, fold them together!
2398       ConstantInt *Fold = ConstantInt::get(getContext(),
2399                                            LHSC->getValue()->getValue() *
2400                                            RHSC->getValue()->getValue());
2401       Ops[0] = getConstant(Fold);
2402       Ops.erase(Ops.begin()+1);  // Erase the folded element
2403       if (Ops.size() == 1) return Ops[0];
2404       LHSC = cast<SCEVConstant>(Ops[0]);
2405     }
2406
2407     // If we are left with a constant one being multiplied, strip it off.
2408     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2409       Ops.erase(Ops.begin());
2410       --Idx;
2411     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2412       // If we have a multiply of zero, it will always be zero.
2413       return Ops[0];
2414     } else if (Ops[0]->isAllOnesValue()) {
2415       // If we have a mul by -1 of an add, try distributing the -1 among the
2416       // add operands.
2417       if (Ops.size() == 2) {
2418         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2419           SmallVector<const SCEV *, 4> NewOps;
2420           bool AnyFolded = false;
2421           for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
2422                  E = Add->op_end(); I != E; ++I) {
2423             const SCEV *Mul = getMulExpr(Ops[0], *I);
2424             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2425             NewOps.push_back(Mul);
2426           }
2427           if (AnyFolded)
2428             return getAddExpr(NewOps);
2429         }
2430         else if (const SCEVAddRecExpr *
2431                  AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2432           // Negation preserves a recurrence's no self-wrap property.
2433           SmallVector<const SCEV *, 4> Operands;
2434           for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
2435                  E = AddRec->op_end(); I != E; ++I) {
2436             Operands.push_back(getMulExpr(Ops[0], *I));
2437           }
2438           return getAddRecExpr(Operands, AddRec->getLoop(),
2439                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2440         }
2441       }
2442     }
2443
2444     if (Ops.size() == 1)
2445       return Ops[0];
2446   }
2447
2448   // Skip over the add expression until we get to a multiply.
2449   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2450     ++Idx;
2451
2452   // If there are mul operands inline them all into this expression.
2453   if (Idx < Ops.size()) {
2454     bool DeletedMul = false;
2455     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2456       // If we have an mul, expand the mul operands onto the end of the operands
2457       // list.
2458       Ops.erase(Ops.begin()+Idx);
2459       Ops.append(Mul->op_begin(), Mul->op_end());
2460       DeletedMul = true;
2461     }
2462
2463     // If we deleted at least one mul, we added operands to the end of the list,
2464     // and they are not necessarily sorted.  Recurse to resort and resimplify
2465     // any operands we just acquired.
2466     if (DeletedMul)
2467       return getMulExpr(Ops);
2468   }
2469
2470   // If there are any add recurrences in the operands list, see if any other
2471   // added values are loop invariant.  If so, we can fold them into the
2472   // recurrence.
2473   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2474     ++Idx;
2475
2476   // Scan over all recurrences, trying to fold loop invariants into them.
2477   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2478     // Scan all of the other operands to this mul and add them to the vector if
2479     // they are loop invariant w.r.t. the recurrence.
2480     SmallVector<const SCEV *, 8> LIOps;
2481     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2482     const Loop *AddRecLoop = AddRec->getLoop();
2483     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2484       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2485         LIOps.push_back(Ops[i]);
2486         Ops.erase(Ops.begin()+i);
2487         --i; --e;
2488       }
2489
2490     // If we found some loop invariants, fold them into the recurrence.
2491     if (!LIOps.empty()) {
2492       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2493       SmallVector<const SCEV *, 4> NewOps;
2494       NewOps.reserve(AddRec->getNumOperands());
2495       const SCEV *Scale = getMulExpr(LIOps);
2496       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2497         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2498
2499       // Build the new addrec. Propagate the NUW and NSW flags if both the
2500       // outer mul and the inner addrec are guaranteed to have no overflow.
2501       //
2502       // No self-wrap cannot be guaranteed after changing the step size, but
2503       // will be inferred if either NUW or NSW is true.
2504       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2505       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2506
2507       // If all of the other operands were loop invariant, we are done.
2508       if (Ops.size() == 1) return NewRec;
2509
2510       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2511       for (unsigned i = 0;; ++i)
2512         if (Ops[i] == AddRec) {
2513           Ops[i] = NewRec;
2514           break;
2515         }
2516       return getMulExpr(Ops);
2517     }
2518
2519     // Okay, if there weren't any loop invariants to be folded, check to see if
2520     // there are multiple AddRec's with the same loop induction variable being
2521     // multiplied together.  If so, we can fold them.
2522
2523     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2524     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2525     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2526     //   ]]],+,...up to x=2n}.
2527     // Note that the arguments to choose() are always integers with values
2528     // known at compile time, never SCEV objects.
2529     //
2530     // The implementation avoids pointless extra computations when the two
2531     // addrec's are of different length (mathematically, it's equivalent to
2532     // an infinite stream of zeros on the right).
2533     bool OpsModified = false;
2534     for (unsigned OtherIdx = Idx+1;
2535          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2536          ++OtherIdx) {
2537       const SCEVAddRecExpr *OtherAddRec =
2538         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2539       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2540         continue;
2541
2542       bool Overflow = false;
2543       Type *Ty = AddRec->getType();
2544       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2545       SmallVector<const SCEV*, 7> AddRecOps;
2546       for (int x = 0, xe = AddRec->getNumOperands() +
2547              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2548         const SCEV *Term = getConstant(Ty, 0);
2549         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2550           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2551           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2552                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2553                z < ze && !Overflow; ++z) {
2554             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2555             uint64_t Coeff;
2556             if (LargerThan64Bits)
2557               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2558             else
2559               Coeff = Coeff1*Coeff2;
2560             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2561             const SCEV *Term1 = AddRec->getOperand(y-z);
2562             const SCEV *Term2 = OtherAddRec->getOperand(z);
2563             Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2564           }
2565         }
2566         AddRecOps.push_back(Term);
2567       }
2568       if (!Overflow) {
2569         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2570                                               SCEV::FlagAnyWrap);
2571         if (Ops.size() == 2) return NewAddRec;
2572         Ops[Idx] = NewAddRec;
2573         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2574         OpsModified = true;
2575         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2576         if (!AddRec)
2577           break;
2578       }
2579     }
2580     if (OpsModified)
2581       return getMulExpr(Ops);
2582
2583     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2584     // next one.
2585   }
2586
2587   // Okay, it looks like we really DO need an mul expr.  Check to see if we
2588   // already have one, otherwise create a new one.
2589   FoldingSetNodeID ID;
2590   ID.AddInteger(scMulExpr);
2591   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2592     ID.AddPointer(Ops[i]);
2593   void *IP = nullptr;
2594   SCEVMulExpr *S =
2595     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2596   if (!S) {
2597     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2598     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2599     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2600                                         O, Ops.size());
2601     UniqueSCEVs.InsertNode(S, IP);
2602   }
2603   S->setNoWrapFlags(Flags);
2604   return S;
2605 }
2606
2607 /// getUDivExpr - Get a canonical unsigned division expression, or something
2608 /// simpler if possible.
2609 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2610                                          const SCEV *RHS) {
2611   assert(getEffectiveSCEVType(LHS->getType()) ==
2612          getEffectiveSCEVType(RHS->getType()) &&
2613          "SCEVUDivExpr operand types don't match!");
2614
2615   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2616     if (RHSC->getValue()->equalsInt(1))
2617       return LHS;                               // X udiv 1 --> x
2618     // If the denominator is zero, the result of the udiv is undefined. Don't
2619     // try to analyze it, because the resolution chosen here may differ from
2620     // the resolution chosen in other parts of the compiler.
2621     if (!RHSC->getValue()->isZero()) {
2622       // Determine if the division can be folded into the operands of
2623       // its operands.
2624       // TODO: Generalize this to non-constants by using known-bits information.
2625       Type *Ty = LHS->getType();
2626       unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
2627       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2628       // For non-power-of-two values, effectively round the value up to the
2629       // nearest power of two.
2630       if (!RHSC->getValue()->getValue().isPowerOf2())
2631         ++MaxShiftAmt;
2632       IntegerType *ExtTy =
2633         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2634       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2635         if (const SCEVConstant *Step =
2636             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2637           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2638           const APInt &StepInt = Step->getValue()->getValue();
2639           const APInt &DivInt = RHSC->getValue()->getValue();
2640           if (!StepInt.urem(DivInt) &&
2641               getZeroExtendExpr(AR, ExtTy) ==
2642               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2643                             getZeroExtendExpr(Step, ExtTy),
2644                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2645             SmallVector<const SCEV *, 4> Operands;
2646             for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2647               Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
2648             return getAddRecExpr(Operands, AR->getLoop(),
2649                                  SCEV::FlagNW);
2650           }
2651           /// Get a canonical UDivExpr for a recurrence.
2652           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2653           // We can currently only fold X%N if X is constant.
2654           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2655           if (StartC && !DivInt.urem(StepInt) &&
2656               getZeroExtendExpr(AR, ExtTy) ==
2657               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2658                             getZeroExtendExpr(Step, ExtTy),
2659                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2660             const APInt &StartInt = StartC->getValue()->getValue();
2661             const APInt &StartRem = StartInt.urem(StepInt);
2662             if (StartRem != 0)
2663               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2664                                   AR->getLoop(), SCEV::FlagNW);
2665           }
2666         }
2667       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2668       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2669         SmallVector<const SCEV *, 4> Operands;
2670         for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2671           Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2672         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2673           // Find an operand that's safely divisible.
2674           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2675             const SCEV *Op = M->getOperand(i);
2676             const SCEV *Div = getUDivExpr(Op, RHSC);
2677             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2678               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2679                                                       M->op_end());
2680               Operands[i] = Div;
2681               return getMulExpr(Operands);
2682             }
2683           }
2684       }
2685       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2686       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2687         SmallVector<const SCEV *, 4> Operands;
2688         for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2689           Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2690         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2691           Operands.clear();
2692           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2693             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2694             if (isa<SCEVUDivExpr>(Op) ||
2695                 getMulExpr(Op, RHS) != A->getOperand(i))
2696               break;
2697             Operands.push_back(Op);
2698           }
2699           if (Operands.size() == A->getNumOperands())
2700             return getAddExpr(Operands);
2701         }
2702       }
2703
2704       // Fold if both operands are constant.
2705       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2706         Constant *LHSCV = LHSC->getValue();
2707         Constant *RHSCV = RHSC->getValue();
2708         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2709                                                                    RHSCV)));
2710       }
2711     }
2712   }
2713
2714   FoldingSetNodeID ID;
2715   ID.AddInteger(scUDivExpr);
2716   ID.AddPointer(LHS);
2717   ID.AddPointer(RHS);
2718   void *IP = nullptr;
2719   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2720   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2721                                              LHS, RHS);
2722   UniqueSCEVs.InsertNode(S, IP);
2723   return S;
2724 }
2725
2726 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2727   APInt A = C1->getValue()->getValue().abs();
2728   APInt B = C2->getValue()->getValue().abs();
2729   uint32_t ABW = A.getBitWidth();
2730   uint32_t BBW = B.getBitWidth();
2731
2732   if (ABW > BBW)
2733     B = B.zext(ABW);
2734   else if (ABW < BBW)
2735     A = A.zext(BBW);
2736
2737   return APIntOps::GreatestCommonDivisor(A, B);
2738 }
2739
2740 /// getUDivExactExpr - Get a canonical unsigned division expression, or
2741 /// something simpler if possible. There is no representation for an exact udiv
2742 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2743 /// We can't do this when it's not exact because the udiv may be clearing bits.
2744 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2745                                               const SCEV *RHS) {
2746   // TODO: we could try to find factors in all sorts of things, but for now we
2747   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2748   // end of this file for inspiration.
2749
2750   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2751   if (!Mul)
2752     return getUDivExpr(LHS, RHS);
2753
2754   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2755     // If the mulexpr multiplies by a constant, then that constant must be the
2756     // first element of the mulexpr.
2757     if (const SCEVConstant *LHSCst =
2758             dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2759       if (LHSCst == RHSCst) {
2760         SmallVector<const SCEV *, 2> Operands;
2761         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2762         return getMulExpr(Operands);
2763       }
2764
2765       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2766       // that there's a factor provided by one of the other terms. We need to
2767       // check.
2768       APInt Factor = gcd(LHSCst, RHSCst);
2769       if (!Factor.isIntN(1)) {
2770         LHSCst = cast<SCEVConstant>(
2771             getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2772         RHSCst = cast<SCEVConstant>(
2773             getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2774         SmallVector<const SCEV *, 2> Operands;
2775         Operands.push_back(LHSCst);
2776         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2777         LHS = getMulExpr(Operands);
2778         RHS = RHSCst;
2779         Mul = dyn_cast<SCEVMulExpr>(LHS);
2780         if (!Mul)
2781           return getUDivExactExpr(LHS, RHS);
2782       }
2783     }
2784   }
2785
2786   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2787     if (Mul->getOperand(i) == RHS) {
2788       SmallVector<const SCEV *, 2> Operands;
2789       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2790       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2791       return getMulExpr(Operands);
2792     }
2793   }
2794
2795   return getUDivExpr(LHS, RHS);
2796 }
2797
2798 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2799 /// Simplify the expression as much as possible.
2800 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2801                                            const Loop *L,
2802                                            SCEV::NoWrapFlags Flags) {
2803   SmallVector<const SCEV *, 4> Operands;
2804   Operands.push_back(Start);
2805   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2806     if (StepChrec->getLoop() == L) {
2807       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2808       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2809     }
2810
2811   Operands.push_back(Step);
2812   return getAddRecExpr(Operands, L, Flags);
2813 }
2814
2815 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2816 /// Simplify the expression as much as possible.
2817 const SCEV *
2818 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2819                                const Loop *L, SCEV::NoWrapFlags Flags) {
2820   if (Operands.size() == 1) return Operands[0];
2821 #ifndef NDEBUG
2822   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2823   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2824     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2825            "SCEVAddRecExpr operand types don't match!");
2826   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2827     assert(isLoopInvariant(Operands[i], L) &&
2828            "SCEVAddRecExpr operand is not loop-invariant!");
2829 #endif
2830
2831   if (Operands.back()->isZero()) {
2832     Operands.pop_back();
2833     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2834   }
2835
2836   // It's tempting to want to call getMaxBackedgeTakenCount count here and
2837   // use that information to infer NUW and NSW flags. However, computing a
2838   // BE count requires calling getAddRecExpr, so we may not yet have a
2839   // meaningful BE count at this point (and if we don't, we'd be stuck
2840   // with a SCEVCouldNotCompute as the cached BE count).
2841
2842   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
2843
2844   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2845   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2846     const Loop *NestedLoop = NestedAR->getLoop();
2847     if (L->contains(NestedLoop) ?
2848         (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2849         (!NestedLoop->contains(L) &&
2850          DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2851       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2852                                                   NestedAR->op_end());
2853       Operands[0] = NestedAR->getStart();
2854       // AddRecs require their operands be loop-invariant with respect to their
2855       // loops. Don't perform this transformation if it would break this
2856       // requirement.
2857       bool AllInvariant = true;
2858       for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2859         if (!isLoopInvariant(Operands[i], L)) {
2860           AllInvariant = false;
2861           break;
2862         }
2863       if (AllInvariant) {
2864         // Create a recurrence for the outer loop with the same step size.
2865         //
2866         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2867         // inner recurrence has the same property.
2868         SCEV::NoWrapFlags OuterFlags =
2869           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2870
2871         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2872         AllInvariant = true;
2873         for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2874           if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
2875             AllInvariant = false;
2876             break;
2877           }
2878         if (AllInvariant) {
2879           // Ok, both add recurrences are valid after the transformation.
2880           //
2881           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2882           // the outer recurrence has the same property.
2883           SCEV::NoWrapFlags InnerFlags =
2884             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2885           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2886         }
2887       }
2888       // Reset Operands to its original state.
2889       Operands[0] = NestedAR;
2890     }
2891   }
2892
2893   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2894   // already have one, otherwise create a new one.
2895   FoldingSetNodeID ID;
2896   ID.AddInteger(scAddRecExpr);
2897   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2898     ID.AddPointer(Operands[i]);
2899   ID.AddPointer(L);
2900   void *IP = nullptr;
2901   SCEVAddRecExpr *S =
2902     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2903   if (!S) {
2904     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2905     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2906     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2907                                            O, Operands.size(), L);
2908     UniqueSCEVs.InsertNode(S, IP);
2909   }
2910   S->setNoWrapFlags(Flags);
2911   return S;
2912 }
2913
2914 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2915                                          const SCEV *RHS) {
2916   SmallVector<const SCEV *, 2> Ops;
2917   Ops.push_back(LHS);
2918   Ops.push_back(RHS);
2919   return getSMaxExpr(Ops);
2920 }
2921
2922 const SCEV *
2923 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2924   assert(!Ops.empty() && "Cannot get empty smax!");
2925   if (Ops.size() == 1) return Ops[0];
2926 #ifndef NDEBUG
2927   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2928   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2929     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2930            "SCEVSMaxExpr operand types don't match!");
2931 #endif
2932
2933   // Sort by complexity, this groups all similar expression types together.
2934   GroupByComplexity(Ops, LI);
2935
2936   // If there are any constants, fold them together.
2937   unsigned Idx = 0;
2938   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2939     ++Idx;
2940     assert(Idx < Ops.size());
2941     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2942       // We found two constants, fold them together!
2943       ConstantInt *Fold = ConstantInt::get(getContext(),
2944                               APIntOps::smax(LHSC->getValue()->getValue(),
2945                                              RHSC->getValue()->getValue()));
2946       Ops[0] = getConstant(Fold);
2947       Ops.erase(Ops.begin()+1);  // Erase the folded element
2948       if (Ops.size() == 1) return Ops[0];
2949       LHSC = cast<SCEVConstant>(Ops[0]);
2950     }
2951
2952     // If we are left with a constant minimum-int, strip it off.
2953     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2954       Ops.erase(Ops.begin());
2955       --Idx;
2956     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2957       // If we have an smax with a constant maximum-int, it will always be
2958       // maximum-int.
2959       return Ops[0];
2960     }
2961
2962     if (Ops.size() == 1) return Ops[0];
2963   }
2964
2965   // Find the first SMax
2966   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2967     ++Idx;
2968
2969   // Check to see if one of the operands is an SMax. If so, expand its operands
2970   // onto our operand list, and recurse to simplify.
2971   if (Idx < Ops.size()) {
2972     bool DeletedSMax = false;
2973     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2974       Ops.erase(Ops.begin()+Idx);
2975       Ops.append(SMax->op_begin(), SMax->op_end());
2976       DeletedSMax = true;
2977     }
2978
2979     if (DeletedSMax)
2980       return getSMaxExpr(Ops);
2981   }
2982
2983   // Okay, check to see if the same value occurs in the operand list twice.  If
2984   // so, delete one.  Since we sorted the list, these values are required to
2985   // be adjacent.
2986   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2987     //  X smax Y smax Y  -->  X smax Y
2988     //  X smax Y         -->  X, if X is always greater than Y
2989     if (Ops[i] == Ops[i+1] ||
2990         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2991       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2992       --i; --e;
2993     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2994       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2995       --i; --e;
2996     }
2997
2998   if (Ops.size() == 1) return Ops[0];
2999
3000   assert(!Ops.empty() && "Reduced smax down to nothing!");
3001
3002   // Okay, it looks like we really DO need an smax expr.  Check to see if we
3003   // already have one, otherwise create a new one.
3004   FoldingSetNodeID ID;
3005   ID.AddInteger(scSMaxExpr);
3006   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3007     ID.AddPointer(Ops[i]);
3008   void *IP = nullptr;
3009   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3010   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3011   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3012   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3013                                              O, Ops.size());
3014   UniqueSCEVs.InsertNode(S, IP);
3015   return S;
3016 }
3017
3018 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3019                                          const SCEV *RHS) {
3020   SmallVector<const SCEV *, 2> Ops;
3021   Ops.push_back(LHS);
3022   Ops.push_back(RHS);
3023   return getUMaxExpr(Ops);
3024 }
3025
3026 const SCEV *
3027 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3028   assert(!Ops.empty() && "Cannot get empty umax!");
3029   if (Ops.size() == 1) return Ops[0];
3030 #ifndef NDEBUG
3031   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3032   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3033     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3034            "SCEVUMaxExpr operand types don't match!");
3035 #endif
3036
3037   // Sort by complexity, this groups all similar expression types together.
3038   GroupByComplexity(Ops, LI);
3039
3040   // If there are any constants, fold them together.
3041   unsigned Idx = 0;
3042   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3043     ++Idx;
3044     assert(Idx < Ops.size());
3045     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3046       // We found two constants, fold them together!
3047       ConstantInt *Fold = ConstantInt::get(getContext(),
3048                               APIntOps::umax(LHSC->getValue()->getValue(),
3049                                              RHSC->getValue()->getValue()));
3050       Ops[0] = getConstant(Fold);
3051       Ops.erase(Ops.begin()+1);  // Erase the folded element
3052       if (Ops.size() == 1) return Ops[0];
3053       LHSC = cast<SCEVConstant>(Ops[0]);
3054     }
3055
3056     // If we are left with a constant minimum-int, strip it off.
3057     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3058       Ops.erase(Ops.begin());
3059       --Idx;
3060     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3061       // If we have an umax with a constant maximum-int, it will always be
3062       // maximum-int.
3063       return Ops[0];
3064     }
3065
3066     if (Ops.size() == 1) return Ops[0];
3067   }
3068
3069   // Find the first UMax
3070   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3071     ++Idx;
3072
3073   // Check to see if one of the operands is a UMax. If so, expand its operands
3074   // onto our operand list, and recurse to simplify.
3075   if (Idx < Ops.size()) {
3076     bool DeletedUMax = false;
3077     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3078       Ops.erase(Ops.begin()+Idx);
3079       Ops.append(UMax->op_begin(), UMax->op_end());
3080       DeletedUMax = true;
3081     }
3082
3083     if (DeletedUMax)
3084       return getUMaxExpr(Ops);
3085   }
3086
3087   // Okay, check to see if the same value occurs in the operand list twice.  If
3088   // so, delete one.  Since we sorted the list, these values are required to
3089   // be adjacent.
3090   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3091     //  X umax Y umax Y  -->  X umax Y
3092     //  X umax Y         -->  X, if X is always greater than Y
3093     if (Ops[i] == Ops[i+1] ||
3094         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3095       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3096       --i; --e;
3097     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
3098       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3099       --i; --e;
3100     }
3101
3102   if (Ops.size() == 1) return Ops[0];
3103
3104   assert(!Ops.empty() && "Reduced umax down to nothing!");
3105
3106   // Okay, it looks like we really DO need a umax expr.  Check to see if we
3107   // already have one, otherwise create a new one.
3108   FoldingSetNodeID ID;
3109   ID.AddInteger(scUMaxExpr);
3110   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3111     ID.AddPointer(Ops[i]);
3112   void *IP = nullptr;
3113   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3114   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3115   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3116   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3117                                              O, Ops.size());
3118   UniqueSCEVs.InsertNode(S, IP);
3119   return S;
3120 }
3121
3122 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3123                                          const SCEV *RHS) {
3124   // ~smax(~x, ~y) == smin(x, y).
3125   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3126 }
3127
3128 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3129                                          const SCEV *RHS) {
3130   // ~umax(~x, ~y) == umin(x, y)
3131   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3132 }
3133
3134 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3135   // We can bypass creating a target-independent
3136   // constant expression and then folding it back into a ConstantInt.
3137   // This is just a compile-time optimization.
3138   return getConstant(IntTy,
3139                      F->getParent()->getDataLayout().getTypeAllocSize(AllocTy));
3140 }
3141
3142 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3143                                              StructType *STy,
3144                                              unsigned FieldNo) {
3145   // We can bypass creating a target-independent
3146   // constant expression and then folding it back into a ConstantInt.
3147   // This is just a compile-time optimization.
3148   return getConstant(
3149       IntTy,
3150       F->getParent()->getDataLayout().getStructLayout(STy)->getElementOffset(
3151           FieldNo));
3152 }
3153
3154 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3155   // Don't attempt to do anything other than create a SCEVUnknown object
3156   // here.  createSCEV only calls getUnknown after checking for all other
3157   // interesting possibilities, and any other code that calls getUnknown
3158   // is doing so in order to hide a value from SCEV canonicalization.
3159
3160   FoldingSetNodeID ID;
3161   ID.AddInteger(scUnknown);
3162   ID.AddPointer(V);
3163   void *IP = nullptr;
3164   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3165     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3166            "Stale SCEVUnknown in uniquing map!");
3167     return S;
3168   }
3169   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3170                                             FirstUnknown);
3171   FirstUnknown = cast<SCEVUnknown>(S);
3172   UniqueSCEVs.InsertNode(S, IP);
3173   return S;
3174 }
3175
3176 //===----------------------------------------------------------------------===//
3177 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3178 //
3179
3180 /// isSCEVable - Test if values of the given type are analyzable within
3181 /// the SCEV framework. This primarily includes integer types, and it
3182 /// can optionally include pointer types if the ScalarEvolution class
3183 /// has access to target-specific information.
3184 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3185   // Integers and pointers are always SCEVable.
3186   return Ty->isIntegerTy() || Ty->isPointerTy();
3187 }
3188
3189 /// getTypeSizeInBits - Return the size in bits of the specified type,
3190 /// for which isSCEVable must return true.
3191 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3192   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3193   return F->getParent()->getDataLayout().getTypeSizeInBits(Ty);
3194 }
3195
3196 /// getEffectiveSCEVType - Return a type with the same bitwidth as
3197 /// the given type and which represents how SCEV will treat the given
3198 /// type, for which isSCEVable must return true. For pointer types,
3199 /// this is the pointer-sized integer type.
3200 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3201   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3202
3203   if (Ty->isIntegerTy()) {
3204     return Ty;
3205   }
3206
3207   // The only other support type is pointer.
3208   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3209   return F->getParent()->getDataLayout().getIntPtrType(Ty);
3210 }
3211
3212 const SCEV *ScalarEvolution::getCouldNotCompute() {
3213   return &CouldNotCompute;
3214 }
3215
3216 namespace {
3217   // Helper class working with SCEVTraversal to figure out if a SCEV contains
3218   // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3219   // is set iff if find such SCEVUnknown.
3220   //
3221   struct FindInvalidSCEVUnknown {
3222     bool FindOne;
3223     FindInvalidSCEVUnknown() { FindOne = false; }
3224     bool follow(const SCEV *S) {
3225       switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3226       case scConstant:
3227         return false;
3228       case scUnknown:
3229         if (!cast<SCEVUnknown>(S)->getValue())
3230           FindOne = true;
3231         return false;
3232       default:
3233         return true;
3234       }
3235     }
3236     bool isDone() const { return FindOne; }
3237   };
3238 }
3239
3240 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3241   FindInvalidSCEVUnknown F;
3242   SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3243   ST.visitAll(S);
3244
3245   return !F.FindOne;
3246 }
3247
3248 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3249 /// expression and create a new one.
3250 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3251   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3252
3253   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3254   if (I != ValueExprMap.end()) {
3255     const SCEV *S = I->second;
3256     if (checkValidity(S))
3257       return S;
3258     else
3259       ValueExprMap.erase(I);
3260   }
3261   const SCEV *S = createSCEV(V);
3262
3263   // The process of creating a SCEV for V may have caused other SCEVs
3264   // to have been created, so it's necessary to insert the new entry
3265   // from scratch, rather than trying to remember the insert position
3266   // above.
3267   ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
3268   return S;
3269 }
3270
3271 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3272 ///
3273 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
3274   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3275     return getConstant(
3276                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3277
3278   Type *Ty = V->getType();
3279   Ty = getEffectiveSCEVType(Ty);
3280   return getMulExpr(V,
3281                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
3282 }
3283
3284 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
3285 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3286   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3287     return getConstant(
3288                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3289
3290   Type *Ty = V->getType();
3291   Ty = getEffectiveSCEVType(Ty);
3292   const SCEV *AllOnes =
3293                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3294   return getMinusSCEV(AllOnes, V);
3295 }
3296
3297 /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
3298 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3299                                           SCEV::NoWrapFlags Flags) {
3300   assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
3301
3302   // Fast path: X - X --> 0.
3303   if (LHS == RHS)
3304     return getConstant(LHS->getType(), 0);
3305
3306   // X - Y --> X + -Y.
3307   // X -(nsw || nuw) Y --> X + -Y.
3308   return getAddExpr(LHS, getNegativeSCEV(RHS));
3309 }
3310
3311 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3312 /// input value to the specified type.  If the type must be extended, it is zero
3313 /// extended.
3314 const SCEV *
3315 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3316   Type *SrcTy = V->getType();
3317   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3318          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3319          "Cannot truncate or zero extend with non-integer arguments!");
3320   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3321     return V;  // No conversion
3322   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3323     return getTruncateExpr(V, Ty);
3324   return getZeroExtendExpr(V, Ty);
3325 }
3326
3327 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3328 /// input value to the specified type.  If the type must be extended, it is sign
3329 /// extended.
3330 const SCEV *
3331 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
3332                                          Type *Ty) {
3333   Type *SrcTy = V->getType();
3334   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3335          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3336          "Cannot truncate or zero extend with non-integer arguments!");
3337   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3338     return V;  // No conversion
3339   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3340     return getTruncateExpr(V, Ty);
3341   return getSignExtendExpr(V, Ty);
3342 }
3343
3344 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3345 /// input value to the specified type.  If the type must be extended, it is zero
3346 /// extended.  The conversion must not be narrowing.
3347 const SCEV *
3348 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3349   Type *SrcTy = V->getType();
3350   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3351          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3352          "Cannot noop or zero extend with non-integer arguments!");
3353   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3354          "getNoopOrZeroExtend cannot truncate!");
3355   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3356     return V;  // No conversion
3357   return getZeroExtendExpr(V, Ty);
3358 }
3359
3360 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3361 /// input value to the specified type.  If the type must be extended, it is sign
3362 /// extended.  The conversion must not be narrowing.
3363 const SCEV *
3364 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3365   Type *SrcTy = V->getType();
3366   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3367          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3368          "Cannot noop or sign extend with non-integer arguments!");
3369   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3370          "getNoopOrSignExtend cannot truncate!");
3371   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3372     return V;  // No conversion
3373   return getSignExtendExpr(V, Ty);
3374 }
3375
3376 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3377 /// the input value to the specified type. If the type must be extended,
3378 /// it is extended with unspecified bits. The conversion must not be
3379 /// narrowing.
3380 const SCEV *
3381 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3382   Type *SrcTy = V->getType();
3383   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3384          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3385          "Cannot noop or any extend with non-integer arguments!");
3386   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3387          "getNoopOrAnyExtend cannot truncate!");
3388   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3389     return V;  // No conversion
3390   return getAnyExtendExpr(V, Ty);
3391 }
3392
3393 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3394 /// input value to the specified type.  The conversion must not be widening.
3395 const SCEV *
3396 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3397   Type *SrcTy = V->getType();
3398   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3399          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3400          "Cannot truncate or noop with non-integer arguments!");
3401   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3402          "getTruncateOrNoop cannot extend!");
3403   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3404     return V;  // No conversion
3405   return getTruncateExpr(V, Ty);
3406 }
3407
3408 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3409 /// the types using zero-extension, and then perform a umax operation
3410 /// with them.
3411 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3412                                                         const SCEV *RHS) {
3413   const SCEV *PromotedLHS = LHS;
3414   const SCEV *PromotedRHS = RHS;
3415
3416   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3417     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3418   else
3419     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3420
3421   return getUMaxExpr(PromotedLHS, PromotedRHS);
3422 }
3423
3424 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
3425 /// the types using zero-extension, and then perform a umin operation
3426 /// with them.
3427 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3428                                                         const SCEV *RHS) {
3429   const SCEV *PromotedLHS = LHS;
3430   const SCEV *PromotedRHS = RHS;
3431
3432   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3433     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3434   else
3435     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3436
3437   return getUMinExpr(PromotedLHS, PromotedRHS);
3438 }
3439
3440 /// getPointerBase - Transitively follow the chain of pointer-type operands
3441 /// until reaching a SCEV that does not have a single pointer operand. This
3442 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3443 /// but corner cases do exist.
3444 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3445   // A pointer operand may evaluate to a nonpointer expression, such as null.
3446   if (!V->getType()->isPointerTy())
3447     return V;
3448
3449   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3450     return getPointerBase(Cast->getOperand());
3451   }
3452   else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3453     const SCEV *PtrOp = nullptr;
3454     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3455          I != E; ++I) {
3456       if ((*I)->getType()->isPointerTy()) {
3457         // Cannot find the base of an expression with multiple pointer operands.
3458         if (PtrOp)
3459           return V;
3460         PtrOp = *I;
3461       }
3462     }
3463     if (!PtrOp)
3464       return V;
3465     return getPointerBase(PtrOp);
3466   }
3467   return V;
3468 }
3469
3470 /// PushDefUseChildren - Push users of the given Instruction
3471 /// onto the given Worklist.
3472 static void
3473 PushDefUseChildren(Instruction *I,
3474                    SmallVectorImpl<Instruction *> &Worklist) {
3475   // Push the def-use children onto the Worklist stack.
3476   for (User *U : I->users())
3477     Worklist.push_back(cast<Instruction>(U));
3478 }
3479
3480 /// ForgetSymbolicValue - This looks up computed SCEV values for all
3481 /// instructions that depend on the given instruction and removes them from
3482 /// the ValueExprMapType map if they reference SymName. This is used during PHI
3483 /// resolution.
3484 void
3485 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3486   SmallVector<Instruction *, 16> Worklist;
3487   PushDefUseChildren(PN, Worklist);
3488
3489   SmallPtrSet<Instruction *, 8> Visited;
3490   Visited.insert(PN);
3491   while (!Worklist.empty()) {
3492     Instruction *I = Worklist.pop_back_val();
3493     if (!Visited.insert(I).second)
3494       continue;
3495
3496     ValueExprMapType::iterator It =
3497       ValueExprMap.find_as(static_cast<Value *>(I));
3498     if (It != ValueExprMap.end()) {
3499       const SCEV *Old = It->second;
3500
3501       // Short-circuit the def-use traversal if the symbolic name
3502       // ceases to appear in expressions.
3503       if (Old != SymName && !hasOperand(Old, SymName))
3504         continue;
3505
3506       // SCEVUnknown for a PHI either means that it has an unrecognized
3507       // structure, it's a PHI that's in the progress of being computed
3508       // by createNodeForPHI, or it's a single-value PHI. In the first case,
3509       // additional loop trip count information isn't going to change anything.
3510       // In the second case, createNodeForPHI will perform the necessary
3511       // updates on its own when it gets to that point. In the third, we do
3512       // want to forget the SCEVUnknown.
3513       if (!isa<PHINode>(I) ||
3514           !isa<SCEVUnknown>(Old) ||
3515           (I != PN && Old == SymName)) {
3516         forgetMemoizedResults(Old);
3517         ValueExprMap.erase(It);
3518       }
3519     }
3520
3521     PushDefUseChildren(I, Worklist);
3522   }
3523 }
3524
3525 /// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
3526 /// a loop header, making it a potential recurrence, or it doesn't.
3527 ///
3528 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
3529   if (const Loop *L = LI->getLoopFor(PN->getParent()))
3530     if (L->getHeader() == PN->getParent()) {
3531       // The loop may have multiple entrances or multiple exits; we can analyze
3532       // this phi as an addrec if it has a unique entry value and a unique
3533       // backedge value.
3534       Value *BEValueV = nullptr, *StartValueV = nullptr;
3535       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3536         Value *V = PN->getIncomingValue(i);
3537         if (L->contains(PN->getIncomingBlock(i))) {
3538           if (!BEValueV) {
3539             BEValueV = V;
3540           } else if (BEValueV != V) {
3541             BEValueV = nullptr;
3542             break;
3543           }
3544         } else if (!StartValueV) {
3545           StartValueV = V;
3546         } else if (StartValueV != V) {
3547           StartValueV = nullptr;
3548           break;
3549         }
3550       }
3551       if (BEValueV && StartValueV) {
3552         // While we are analyzing this PHI node, handle its value symbolically.
3553         const SCEV *SymbolicName = getUnknown(PN);
3554         assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3555                "PHI node already processed?");
3556         ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
3557
3558         // Using this symbolic name for the PHI, analyze the value coming around
3559         // the back-edge.
3560         const SCEV *BEValue = getSCEV(BEValueV);
3561
3562         // NOTE: If BEValue is loop invariant, we know that the PHI node just
3563         // has a special value for the first iteration of the loop.
3564
3565         // If the value coming around the backedge is an add with the symbolic
3566         // value we just inserted, then we found a simple induction variable!
3567         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3568           // If there is a single occurrence of the symbolic value, replace it
3569           // with a recurrence.
3570           unsigned FoundIndex = Add->getNumOperands();
3571           for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3572             if (Add->getOperand(i) == SymbolicName)
3573               if (FoundIndex == e) {
3574                 FoundIndex = i;
3575                 break;
3576               }
3577
3578           if (FoundIndex != Add->getNumOperands()) {
3579             // Create an add with everything but the specified operand.
3580             SmallVector<const SCEV *, 8> Ops;
3581             for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3582               if (i != FoundIndex)
3583                 Ops.push_back(Add->getOperand(i));
3584             const SCEV *Accum = getAddExpr(Ops);
3585
3586             // This is not a valid addrec if the step amount is varying each
3587             // loop iteration, but is not itself an addrec in this loop.
3588             if (isLoopInvariant(Accum, L) ||
3589                 (isa<SCEVAddRecExpr>(Accum) &&
3590                  cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3591               SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3592
3593               // If the increment doesn't overflow, then neither the addrec nor
3594               // the post-increment will overflow.
3595               if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3596                 if (OBO->getOperand(0) == PN) {
3597                   if (OBO->hasNoUnsignedWrap())
3598                     Flags = setFlags(Flags, SCEV::FlagNUW);
3599                   if (OBO->hasNoSignedWrap())
3600                     Flags = setFlags(Flags, SCEV::FlagNSW);
3601                 }
3602               } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3603                 // If the increment is an inbounds GEP, then we know the address
3604                 // space cannot be wrapped around. We cannot make any guarantee
3605                 // about signed or unsigned overflow because pointers are
3606                 // unsigned but we may have a negative index from the base
3607                 // pointer. We can guarantee that no unsigned wrap occurs if the
3608                 // indices form a positive value.
3609                 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
3610                   Flags = setFlags(Flags, SCEV::FlagNW);
3611
3612                   const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3613                   if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3614                     Flags = setFlags(Flags, SCEV::FlagNUW);
3615                 }
3616
3617                 // We cannot transfer nuw and nsw flags from subtraction
3618                 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3619                 // for instance.
3620               }
3621
3622               const SCEV *StartVal = getSCEV(StartValueV);
3623               const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3624
3625               // Since the no-wrap flags are on the increment, they apply to the
3626               // post-incremented value as well.
3627               if (isLoopInvariant(Accum, L))
3628                 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
3629                                     Accum, L, Flags);
3630
3631               // Okay, for the entire analysis of this edge we assumed the PHI
3632               // to be symbolic.  We now need to go back and purge all of the
3633               // entries for the scalars that use the symbolic expression.
3634               ForgetSymbolicName(PN, SymbolicName);
3635               ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3636               return PHISCEV;
3637             }
3638           }
3639         } else if (const SCEVAddRecExpr *AddRec =
3640                      dyn_cast<SCEVAddRecExpr>(BEValue)) {
3641           // Otherwise, this could be a loop like this:
3642           //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
3643           // In this case, j = {1,+,1}  and BEValue is j.
3644           // Because the other in-value of i (0) fits the evolution of BEValue
3645           // i really is an addrec evolution.
3646           if (AddRec->getLoop() == L && AddRec->isAffine()) {
3647             const SCEV *StartVal = getSCEV(StartValueV);
3648
3649             // If StartVal = j.start - j.stride, we can use StartVal as the
3650             // initial step of the addrec evolution.
3651             if (StartVal == getMinusSCEV(AddRec->getOperand(0),
3652                                          AddRec->getOperand(1))) {
3653               // FIXME: For constant StartVal, we should be able to infer
3654               // no-wrap flags.
3655               const SCEV *PHISCEV =
3656                 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3657                               SCEV::FlagAnyWrap);
3658
3659               // Okay, for the entire analysis of this edge we assumed the PHI
3660               // to be symbolic.  We now need to go back and purge all of the
3661               // entries for the scalars that use the symbolic expression.
3662               ForgetSymbolicName(PN, SymbolicName);
3663               ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3664               return PHISCEV;
3665             }
3666           }
3667         }
3668       }
3669     }
3670
3671   // If the PHI has a single incoming value, follow that value, unless the
3672   // PHI's incoming blocks are in a different loop, in which case doing so
3673   // risks breaking LCSSA form. Instcombine would normally zap these, but
3674   // it doesn't have DominatorTree information, so it may miss cases.
3675   if (Value *V =
3676           SimplifyInstruction(PN, F->getParent()->getDataLayout(), TLI, DT, AC))
3677     if (LI->replacementPreservesLCSSAForm(PN, V))
3678       return getSCEV(V);
3679
3680   // If it's not a loop phi, we can't handle it yet.
3681   return getUnknown(PN);
3682 }
3683
3684 /// createNodeForGEP - Expand GEP instructions into add and multiply
3685 /// operations. This allows them to be analyzed by regular SCEV code.
3686 ///
3687 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
3688   Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
3689   Value *Base = GEP->getOperand(0);
3690   // Don't attempt to analyze GEPs over unsized objects.
3691   if (!Base->getType()->getPointerElementType()->isSized())
3692     return getUnknown(GEP);
3693
3694   // Don't blindly transfer the inbounds flag from the GEP instruction to the
3695   // Add expression, because the Instruction may be guarded by control flow
3696   // and the no-overflow bits may not be valid for the expression in any
3697   // context.
3698   SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3699
3700   const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
3701   gep_type_iterator GTI = gep_type_begin(GEP);
3702   for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
3703                                       E = GEP->op_end();
3704        I != E; ++I) {
3705     Value *Index = *I;
3706     // Compute the (potentially symbolic) offset in bytes for this index.
3707     if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
3708       // For a struct, add the member offset.
3709       unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
3710       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3711
3712       // Add the field offset to the running total offset.
3713       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3714     } else {
3715       // For an array, add the element offset, explicitly scaled.
3716       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
3717       const SCEV *IndexS = getSCEV(Index);
3718       // Getelementptr indices are signed.
3719       IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3720
3721       // Multiply the index by the element size to compute the element offset.
3722       const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
3723
3724       // Add the element offset to the running total offset.
3725       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3726     }
3727   }
3728
3729   // Get the SCEV for the GEP base.
3730   const SCEV *BaseS = getSCEV(Base);
3731
3732   // Add the total offset from all the GEP indices to the base.
3733   return getAddExpr(BaseS, TotalOffset, Wrap);
3734 }
3735
3736 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3737 /// guaranteed to end in (at every loop iteration).  It is, at the same time,
3738 /// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
3739 /// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
3740 uint32_t
3741 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
3742   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3743     return C->getValue()->getValue().countTrailingZeros();
3744
3745   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
3746     return std::min(GetMinTrailingZeros(T->getOperand()),
3747                     (uint32_t)getTypeSizeInBits(T->getType()));
3748
3749   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
3750     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3751     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3752              getTypeSizeInBits(E->getType()) : OpRes;
3753   }
3754
3755   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
3756     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3757     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3758              getTypeSizeInBits(E->getType()) : OpRes;
3759   }
3760
3761   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
3762     // The result is the min of all operands results.
3763     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3764     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3765       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3766     return MinOpRes;
3767   }
3768
3769   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
3770     // The result is the sum of all operands results.
3771     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3772     uint32_t BitWidth = getTypeSizeInBits(M->getType());
3773     for (unsigned i = 1, e = M->getNumOperands();
3774          SumOpRes != BitWidth && i != e; ++i)
3775       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
3776                           BitWidth);
3777     return SumOpRes;
3778   }
3779
3780   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
3781     // The result is the min of all operands results.
3782     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3783     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3784       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3785     return MinOpRes;
3786   }
3787
3788   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
3789     // The result is the min of all operands results.
3790     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3791     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3792       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3793     return MinOpRes;
3794   }
3795
3796   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
3797     // The result is the min of all operands results.
3798     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3799     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3800       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3801     return MinOpRes;
3802   }
3803
3804   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3805     // For a SCEVUnknown, ask ValueTracking.
3806     unsigned BitWidth = getTypeSizeInBits(U->getType());
3807     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3808     computeKnownBits(U->getValue(), Zeros, Ones,
3809                      F->getParent()->getDataLayout(), 0, AC, nullptr, DT);
3810     return Zeros.countTrailingOnes();
3811   }
3812
3813   // SCEVUDivExpr
3814   return 0;
3815 }
3816
3817 /// GetRangeFromMetadata - Helper method to assign a range to V from
3818 /// metadata present in the IR.
3819 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
3820   if (Instruction *I = dyn_cast<Instruction>(V)) {
3821     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) {
3822       ConstantRange TotalRange(
3823           cast<IntegerType>(I->getType())->getBitWidth(), false);
3824
3825       unsigned NumRanges = MD->getNumOperands() / 2;
3826       assert(NumRanges >= 1);
3827
3828       for (unsigned i = 0; i < NumRanges; ++i) {
3829         ConstantInt *Lower =
3830             mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0));
3831         ConstantInt *Upper =
3832             mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1));
3833         ConstantRange Range(Lower->getValue(), Upper->getValue());
3834         TotalRange = TotalRange.unionWith(Range);
3835       }
3836
3837       return TotalRange;
3838     }
3839   }
3840
3841   return None;
3842 }
3843
3844 /// getRange - Determine the range for a particular SCEV.  If SignHint is
3845 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
3846 /// with a "cleaner" unsigned (resp. signed) representation.
3847 ///
3848 ConstantRange
3849 ScalarEvolution::getRange(const SCEV *S,
3850                           ScalarEvolution::RangeSignHint SignHint) {
3851   DenseMap<const SCEV *, ConstantRange> &Cache =
3852       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
3853                                                        : SignedRanges;
3854
3855   // See if we've computed this range already.
3856   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
3857   if (I != Cache.end())
3858     return I->second;
3859
3860   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3861     return setRange(C, SignHint, ConstantRange(C->getValue()->getValue()));
3862
3863   unsigned BitWidth = getTypeSizeInBits(S->getType());
3864   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3865
3866   // If the value has known zeros, the maximum value will have those known zeros
3867   // as well.
3868   uint32_t TZ = GetMinTrailingZeros(S);
3869   if (TZ != 0) {
3870     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
3871       ConservativeResult =
3872           ConstantRange(APInt::getMinValue(BitWidth),
3873                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3874     else
3875       ConservativeResult = ConstantRange(
3876           APInt::getSignedMinValue(BitWidth),
3877           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3878   }
3879
3880   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3881     ConstantRange X = getRange(Add->getOperand(0), SignHint);
3882     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3883       X = X.add(getRange(Add->getOperand(i), SignHint));
3884     return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
3885   }
3886
3887   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3888     ConstantRange X = getRange(Mul->getOperand(0), SignHint);
3889     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3890       X = X.multiply(getRange(Mul->getOperand(i), SignHint));
3891     return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
3892   }
3893
3894   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3895     ConstantRange X = getRange(SMax->getOperand(0), SignHint);
3896     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3897       X = X.smax(getRange(SMax->getOperand(i), SignHint));
3898     return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
3899   }
3900
3901   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3902     ConstantRange X = getRange(UMax->getOperand(0), SignHint);
3903     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3904       X = X.umax(getRange(UMax->getOperand(i), SignHint));
3905     return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
3906   }
3907
3908   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3909     ConstantRange X = getRange(UDiv->getLHS(), SignHint);
3910     ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
3911     return setRange(UDiv, SignHint,
3912                     ConservativeResult.intersectWith(X.udiv(Y)));
3913   }
3914
3915   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3916     ConstantRange X = getRange(ZExt->getOperand(), SignHint);
3917     return setRange(ZExt, SignHint,
3918                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3919   }
3920
3921   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3922     ConstantRange X = getRange(SExt->getOperand(), SignHint);
3923     return setRange(SExt, SignHint,
3924                     ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3925   }
3926
3927   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3928     ConstantRange X = getRange(Trunc->getOperand(), SignHint);
3929     return setRange(Trunc, SignHint,
3930                     ConservativeResult.intersectWith(X.truncate(BitWidth)));
3931   }
3932
3933   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3934     // If there's no unsigned wrap, the value will never be less than its
3935     // initial value.
3936     if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
3937       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3938         if (!C->getValue()->isZero())
3939           ConservativeResult =
3940             ConservativeResult.intersectWith(
3941               ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3942
3943     // If there's no signed wrap, and all the operands have the same sign or
3944     // zero, the value won't ever change sign.
3945     if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
3946       bool AllNonNeg = true;
3947       bool AllNonPos = true;
3948       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3949         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3950         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3951       }
3952       if (AllNonNeg)
3953         ConservativeResult = ConservativeResult.intersectWith(
3954           ConstantRange(APInt(BitWidth, 0),
3955                         APInt::getSignedMinValue(BitWidth)));
3956       else if (AllNonPos)
3957         ConservativeResult = ConservativeResult.intersectWith(
3958           ConstantRange(APInt::getSignedMinValue(BitWidth),
3959                         APInt(BitWidth, 1)));
3960     }
3961
3962     // TODO: non-affine addrec
3963     if (AddRec->isAffine()) {
3964       Type *Ty = AddRec->getType();
3965       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3966       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3967           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3968
3969         // Check for overflow.  This must be done with ConstantRange arithmetic
3970         // because we could be called from within the ScalarEvolution overflow
3971         // checking code.
3972
3973         MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3974         ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3975         ConstantRange ZExtMaxBECountRange =
3976             MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
3977
3978         const SCEV *Start = AddRec->getStart();
3979         const SCEV *Step = AddRec->getStepRecurrence(*this);
3980         ConstantRange StepSRange = getSignedRange(Step);
3981         ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
3982
3983         ConstantRange StartURange = getUnsignedRange(Start);
3984         ConstantRange EndURange =
3985             StartURange.add(MaxBECountRange.multiply(StepSRange));
3986
3987         // Check for unsigned overflow.
3988         ConstantRange ZExtStartURange =
3989             StartURange.zextOrTrunc(BitWidth * 2 + 1);
3990         ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
3991         if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
3992             ZExtEndURange) {
3993           APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
3994                                      EndURange.getUnsignedMin());
3995           APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
3996                                      EndURange.getUnsignedMax());
3997           bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
3998           if (!IsFullRange)
3999             ConservativeResult =
4000                 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4001         }
4002
4003         ConstantRange StartSRange = getSignedRange(Start);
4004         ConstantRange EndSRange =
4005             StartSRange.add(MaxBECountRange.multiply(StepSRange));
4006
4007         // Check for signed overflow. This must be done with ConstantRange
4008         // arithmetic because we could be called from within the ScalarEvolution
4009         // overflow checking code.
4010         ConstantRange SExtStartSRange =
4011             StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4012         ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4013         if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4014             SExtEndSRange) {
4015           APInt Min = APIntOps::smin(StartSRange.getSignedMin(),
4016                                      EndSRange.getSignedMin());
4017           APInt Max = APIntOps::smax(StartSRange.getSignedMax(),
4018                                      EndSRange.getSignedMax());
4019           bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4020           if (!IsFullRange)
4021             ConservativeResult =
4022                 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4023         }
4024       }
4025     }
4026
4027     return setRange(AddRec, SignHint, ConservativeResult);
4028   }
4029
4030   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4031     // Check if the IR explicitly contains !range metadata.
4032     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4033     if (MDRange.hasValue())
4034       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4035
4036     // Split here to avoid paying the compile-time cost of calling both
4037     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
4038     // if needed.
4039     const DataLayout &DL = F->getParent()->getDataLayout();
4040     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4041       // For a SCEVUnknown, ask ValueTracking.
4042       APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4043       computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT);
4044       if (Ones != ~Zeros + 1)
4045         ConservativeResult =
4046             ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4047     } else {
4048       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4049              "generalize as needed!");
4050       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AC, nullptr, DT);
4051       if (NS > 1)
4052         ConservativeResult = ConservativeResult.intersectWith(
4053             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4054                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
4055     }
4056
4057     return setRange(U, SignHint, ConservativeResult);
4058   }
4059
4060   return setRange(S, SignHint, ConservativeResult);
4061 }
4062
4063 /// createSCEV - We know that there is no SCEV for the specified value.
4064 /// Analyze the expression.
4065 ///
4066 const SCEV *ScalarEvolution::createSCEV(Value *V) {
4067   if (!isSCEVable(V->getType()))
4068     return getUnknown(V);
4069
4070   unsigned Opcode = Instruction::UserOp1;
4071   if (Instruction *I = dyn_cast<Instruction>(V)) {
4072     Opcode = I->getOpcode();
4073
4074     // Don't attempt to analyze instructions in blocks that aren't
4075     // reachable. Such instructions don't matter, and they aren't required
4076     // to obey basic rules for definitions dominating uses which this
4077     // analysis depends on.
4078     if (!DT->isReachableFromEntry(I->getParent()))
4079       return getUnknown(V);
4080   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
4081     Opcode = CE->getOpcode();
4082   else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4083     return getConstant(CI);
4084   else if (isa<ConstantPointerNull>(V))
4085     return getConstant(V->getType(), 0);
4086   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4087     return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
4088   else
4089     return getUnknown(V);
4090
4091   Operator *U = cast<Operator>(V);
4092   switch (Opcode) {
4093   case Instruction::Add: {
4094     // The simple thing to do would be to just call getSCEV on both operands
4095     // and call getAddExpr with the result. However if we're looking at a
4096     // bunch of things all added together, this can be quite inefficient,
4097     // because it leads to N-1 getAddExpr calls for N ultimate operands.
4098     // Instead, gather up all the operands and make a single getAddExpr call.
4099     // LLVM IR canonical form means we need only traverse the left operands.
4100     //
4101     // Don't apply this instruction's NSW or NUW flags to the new
4102     // expression. The instruction may be guarded by control flow that the
4103     // no-wrap behavior depends on. Non-control-equivalent instructions can be
4104     // mapped to the same SCEV expression, and it would be incorrect to transfer
4105     // NSW/NUW semantics to those operations.
4106     SmallVector<const SCEV *, 4> AddOps;
4107     AddOps.push_back(getSCEV(U->getOperand(1)));
4108     for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
4109       unsigned Opcode = Op->getValueID() - Value::InstructionVal;
4110       if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
4111         break;
4112       U = cast<Operator>(Op);
4113       const SCEV *Op1 = getSCEV(U->getOperand(1));
4114       if (Opcode == Instruction::Sub)
4115         AddOps.push_back(getNegativeSCEV(Op1));
4116       else
4117         AddOps.push_back(Op1);
4118     }
4119     AddOps.push_back(getSCEV(U->getOperand(0)));
4120     return getAddExpr(AddOps);
4121   }
4122   case Instruction::Mul: {
4123     // Don't transfer NSW/NUW for the same reason as AddExpr.
4124     SmallVector<const SCEV *, 4> MulOps;
4125     MulOps.push_back(getSCEV(U->getOperand(1)));
4126     for (Value *Op = U->getOperand(0);
4127          Op->getValueID() == Instruction::Mul + Value::InstructionVal;
4128          Op = U->getOperand(0)) {
4129       U = cast<Operator>(Op);
4130       MulOps.push_back(getSCEV(U->getOperand(1)));
4131     }
4132     MulOps.push_back(getSCEV(U->getOperand(0)));
4133     return getMulExpr(MulOps);
4134   }
4135   case Instruction::UDiv:
4136     return getUDivExpr(getSCEV(U->getOperand(0)),
4137                        getSCEV(U->getOperand(1)));
4138   case Instruction::Sub:
4139     return getMinusSCEV(getSCEV(U->getOperand(0)),
4140                         getSCEV(U->getOperand(1)));
4141   case Instruction::And:
4142     // For an expression like x&255 that merely masks off the high bits,
4143     // use zext(trunc(x)) as the SCEV expression.
4144     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4145       if (CI->isNullValue())
4146         return getSCEV(U->getOperand(1));
4147       if (CI->isAllOnesValue())
4148         return getSCEV(U->getOperand(0));
4149       const APInt &A = CI->getValue();
4150
4151       // Instcombine's ShrinkDemandedConstant may strip bits out of
4152       // constants, obscuring what would otherwise be a low-bits mask.
4153       // Use computeKnownBits to compute what ShrinkDemandedConstant
4154       // knew about to reconstruct a low-bits mask value.
4155       unsigned LZ = A.countLeadingZeros();
4156       unsigned TZ = A.countTrailingZeros();
4157       unsigned BitWidth = A.getBitWidth();
4158       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4159       computeKnownBits(U->getOperand(0), KnownZero, KnownOne,
4160                        F->getParent()->getDataLayout(), 0, AC, nullptr, DT);
4161
4162       APInt EffectiveMask =
4163           APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4164       if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4165         const SCEV *MulCount = getConstant(
4166             ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4167         return getMulExpr(
4168             getZeroExtendExpr(
4169                 getTruncateExpr(
4170                     getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4171                     IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4172                 U->getType()),
4173             MulCount);
4174       }
4175     }
4176     break;
4177
4178   case Instruction::Or:
4179     // If the RHS of the Or is a constant, we may have something like:
4180     // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
4181     // optimizations will transparently handle this case.
4182     //
4183     // In order for this transformation to be safe, the LHS must be of the
4184     // form X*(2^n) and the Or constant must be less than 2^n.
4185     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4186       const SCEV *LHS = getSCEV(U->getOperand(0));
4187       const APInt &CIVal = CI->getValue();
4188       if (GetMinTrailingZeros(LHS) >=
4189           (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4190         // Build a plain add SCEV.
4191         const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4192         // If the LHS of the add was an addrec and it has no-wrap flags,
4193         // transfer the no-wrap flags, since an or won't introduce a wrap.
4194         if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4195           const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
4196           const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4197             OldAR->getNoWrapFlags());
4198         }
4199         return S;
4200       }
4201     }
4202     break;
4203   case Instruction::Xor:
4204     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4205       // If the RHS of the xor is a signbit, then this is just an add.
4206       // Instcombine turns add of signbit into xor as a strength reduction step.
4207       if (CI->getValue().isSignBit())
4208         return getAddExpr(getSCEV(U->getOperand(0)),
4209                           getSCEV(U->getOperand(1)));
4210
4211       // If the RHS of xor is -1, then this is a not operation.
4212       if (CI->isAllOnesValue())
4213         return getNotSCEV(getSCEV(U->getOperand(0)));
4214
4215       // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4216       // This is a variant of the check for xor with -1, and it handles
4217       // the case where instcombine has trimmed non-demanded bits out
4218       // of an xor with -1.
4219       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4220         if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4221           if (BO->getOpcode() == Instruction::And &&
4222               LCI->getValue() == CI->getValue())
4223             if (const SCEVZeroExtendExpr *Z =
4224                   dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
4225               Type *UTy = U->getType();
4226               const SCEV *Z0 = Z->getOperand();
4227               Type *Z0Ty = Z0->getType();
4228               unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4229
4230               // If C is a low-bits mask, the zero extend is serving to
4231               // mask off the high bits. Complement the operand and
4232               // re-apply the zext.
4233               if (APIntOps::isMask(Z0TySize, CI->getValue()))
4234                 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4235
4236               // If C is a single bit, it may be in the sign-bit position
4237               // before the zero-extend. In this case, represent the xor
4238               // using an add, which is equivalent, and re-apply the zext.
4239               APInt Trunc = CI->getValue().trunc(Z0TySize);
4240               if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
4241                   Trunc.isSignBit())
4242                 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4243                                          UTy);
4244             }
4245     }
4246     break;
4247
4248   case Instruction::Shl:
4249     // Turn shift left of a constant amount into a multiply.
4250     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
4251       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
4252
4253       // If the shift count is not less than the bitwidth, the result of
4254       // the shift is undefined. Don't try to analyze it, because the
4255       // resolution chosen here may differ from the resolution chosen in
4256       // other parts of the compiler.
4257       if (SA->getValue().uge(BitWidth))
4258         break;
4259
4260       Constant *X = ConstantInt::get(getContext(),
4261         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4262       return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
4263     }
4264     break;
4265
4266   case Instruction::LShr:
4267     // Turn logical shift right of a constant into a unsigned divide.
4268     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
4269       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
4270
4271       // If the shift count is not less than the bitwidth, the result of
4272       // the shift is undefined. Don't try to analyze it, because the
4273       // resolution chosen here may differ from the resolution chosen in
4274       // other parts of the compiler.
4275       if (SA->getValue().uge(BitWidth))
4276         break;
4277
4278       Constant *X = ConstantInt::get(getContext(),
4279         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4280       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
4281     }
4282     break;
4283
4284   case Instruction::AShr:
4285     // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4286     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
4287       if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
4288         if (L->getOpcode() == Instruction::Shl &&
4289             L->getOperand(1) == U->getOperand(1)) {
4290           uint64_t BitWidth = getTypeSizeInBits(U->getType());
4291
4292           // If the shift count is not less than the bitwidth, the result of
4293           // the shift is undefined. Don't try to analyze it, because the
4294           // resolution chosen here may differ from the resolution chosen in
4295           // other parts of the compiler.
4296           if (CI->getValue().uge(BitWidth))
4297             break;
4298
4299           uint64_t Amt = BitWidth - CI->getZExtValue();
4300           if (Amt == BitWidth)
4301             return getSCEV(L->getOperand(0));       // shift by zero --> noop
4302           return
4303             getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
4304                                               IntegerType::get(getContext(),
4305                                                                Amt)),
4306                               U->getType());
4307         }
4308     break;
4309
4310   case Instruction::Trunc:
4311     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
4312
4313   case Instruction::ZExt:
4314     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
4315
4316   case Instruction::SExt:
4317     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
4318
4319   case Instruction::BitCast:
4320     // BitCasts are no-op casts so we just eliminate the cast.
4321     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
4322       return getSCEV(U->getOperand(0));
4323     break;
4324
4325   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4326   // lead to pointer expressions which cannot safely be expanded to GEPs,
4327   // because ScalarEvolution doesn't respect the GEP aliasing rules when
4328   // simplifying integer expressions.
4329
4330   case Instruction::GetElementPtr:
4331     return createNodeForGEP(cast<GEPOperator>(U));
4332
4333   case Instruction::PHI:
4334     return createNodeForPHI(cast<PHINode>(U));
4335
4336   case Instruction::Select:
4337     // This could be a smax or umax that was lowered earlier.
4338     // Try to recover it.
4339     if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
4340       Value *LHS = ICI->getOperand(0);
4341       Value *RHS = ICI->getOperand(1);
4342       switch (ICI->getPredicate()) {
4343       case ICmpInst::ICMP_SLT:
4344       case ICmpInst::ICMP_SLE:
4345         std::swap(LHS, RHS);
4346         // fall through
4347       case ICmpInst::ICMP_SGT:
4348       case ICmpInst::ICMP_SGE:
4349         // a >s b ? a+x : b+x  ->  smax(a, b)+x
4350         // a >s b ? b+x : a+x  ->  smin(a, b)+x
4351         if (getTypeSizeInBits(LHS->getType()) <=
4352             getTypeSizeInBits(U->getType())) {
4353           const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), U->getType());
4354           const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), U->getType());
4355           const SCEV *LA = getSCEV(U->getOperand(1));
4356           const SCEV *RA = getSCEV(U->getOperand(2));
4357           const SCEV *LDiff = getMinusSCEV(LA, LS);
4358           const SCEV *RDiff = getMinusSCEV(RA, RS);
4359           if (LDiff == RDiff)
4360             return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4361           LDiff = getMinusSCEV(LA, RS);
4362           RDiff = getMinusSCEV(RA, LS);
4363           if (LDiff == RDiff)
4364             return getAddExpr(getSMinExpr(LS, RS), LDiff);
4365         }
4366         break;
4367       case ICmpInst::ICMP_ULT:
4368       case ICmpInst::ICMP_ULE:
4369         std::swap(LHS, RHS);
4370         // fall through
4371       case ICmpInst::ICMP_UGT:
4372       case ICmpInst::ICMP_UGE:
4373         // a >u b ? a+x : b+x  ->  umax(a, b)+x
4374         // a >u b ? b+x : a+x  ->  umin(a, b)+x
4375         if (getTypeSizeInBits(LHS->getType()) <=
4376             getTypeSizeInBits(U->getType())) {
4377           const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
4378           const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), U->getType());
4379           const SCEV *LA = getSCEV(U->getOperand(1));
4380           const SCEV *RA = getSCEV(U->getOperand(2));
4381           const SCEV *LDiff = getMinusSCEV(LA, LS);
4382           const SCEV *RDiff = getMinusSCEV(RA, RS);
4383           if (LDiff == RDiff)
4384             return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4385           LDiff = getMinusSCEV(LA, RS);
4386           RDiff = getMinusSCEV(RA, LS);
4387           if (LDiff == RDiff)
4388             return getAddExpr(getUMinExpr(LS, RS), LDiff);
4389         }
4390         break;
4391       case ICmpInst::ICMP_NE:
4392         // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
4393         if (getTypeSizeInBits(LHS->getType()) <=
4394                 getTypeSizeInBits(U->getType()) &&
4395             isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4396           const SCEV *One = getConstant(U->getType(), 1);
4397           const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
4398           const SCEV *LA = getSCEV(U->getOperand(1));
4399           const SCEV *RA = getSCEV(U->getOperand(2));
4400           const SCEV *LDiff = getMinusSCEV(LA, LS);
4401           const SCEV *RDiff = getMinusSCEV(RA, One);
4402           if (LDiff == RDiff)
4403             return getAddExpr(getUMaxExpr(One, LS), LDiff);
4404         }
4405         break;
4406       case ICmpInst::ICMP_EQ:
4407         // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
4408         if (getTypeSizeInBits(LHS->getType()) <=
4409                 getTypeSizeInBits(U->getType()) &&
4410             isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4411           const SCEV *One = getConstant(U->getType(), 1);
4412           const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
4413           const SCEV *LA = getSCEV(U->getOperand(1));
4414           const SCEV *RA = getSCEV(U->getOperand(2));
4415           const SCEV *LDiff = getMinusSCEV(LA, One);
4416           const SCEV *RDiff = getMinusSCEV(RA, LS);
4417           if (LDiff == RDiff)
4418             return getAddExpr(getUMaxExpr(One, LS), LDiff);
4419         }
4420         break;
4421       default:
4422         break;
4423       }
4424     }
4425
4426   default: // We cannot analyze this expression.
4427     break;
4428   }
4429
4430   return getUnknown(V);
4431 }
4432
4433
4434
4435 //===----------------------------------------------------------------------===//
4436 //                   Iteration Count Computation Code
4437 //
4438
4439 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4440   if (BasicBlock *ExitingBB = L->getExitingBlock())
4441     return getSmallConstantTripCount(L, ExitingBB);
4442
4443   // No trip count information for multiple exits.
4444   return 0;
4445 }
4446
4447 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
4448 /// normal unsigned value. Returns 0 if the trip count is unknown or not
4449 /// constant. Will also return 0 if the maximum trip count is very large (>=
4450 /// 2^32).
4451 ///
4452 /// This "trip count" assumes that control exits via ExitingBlock. More
4453 /// precisely, it is the number of times that control may reach ExitingBlock
4454 /// before taking the branch. For loops with multiple exits, it may not be the
4455 /// number times that the loop header executes because the loop may exit
4456 /// prematurely via another branch.
4457 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4458                                                     BasicBlock *ExitingBlock) {
4459   assert(ExitingBlock && "Must pass a non-null exiting block!");
4460   assert(L->isLoopExiting(ExitingBlock) &&
4461          "Exiting block must actually branch out of the loop!");
4462   const SCEVConstant *ExitCount =
4463       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
4464   if (!ExitCount)
4465     return 0;
4466
4467   ConstantInt *ExitConst = ExitCount->getValue();
4468
4469   // Guard against huge trip counts.
4470   if (ExitConst->getValue().getActiveBits() > 32)
4471     return 0;
4472
4473   // In case of integer overflow, this returns 0, which is correct.
4474   return ((unsigned)ExitConst->getZExtValue()) + 1;
4475 }
4476
4477 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4478   if (BasicBlock *ExitingBB = L->getExitingBlock())
4479     return getSmallConstantTripMultiple(L, ExitingBB);
4480
4481   // No trip multiple information for multiple exits.
4482   return 0;
4483 }
4484
4485 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4486 /// trip count of this loop as a normal unsigned value, if possible. This
4487 /// means that the actual trip count is always a multiple of the returned
4488 /// value (don't forget the trip count could very well be zero as well!).
4489 ///
4490 /// Returns 1 if the trip count is unknown or not guaranteed to be the
4491 /// multiple of a constant (which is also the case if the trip count is simply
4492 /// constant, use getSmallConstantTripCount for that case), Will also return 1
4493 /// if the trip count is very large (>= 2^32).
4494 ///
4495 /// As explained in the comments for getSmallConstantTripCount, this assumes
4496 /// that control exits the loop via ExitingBlock.
4497 unsigned
4498 ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4499                                               BasicBlock *ExitingBlock) {
4500   assert(ExitingBlock && "Must pass a non-null exiting block!");
4501   assert(L->isLoopExiting(ExitingBlock) &&
4502          "Exiting block must actually branch out of the loop!");
4503   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
4504   if (ExitCount == getCouldNotCompute())
4505     return 1;
4506
4507   // Get the trip count from the BE count by adding 1.
4508   const SCEV *TCMul = getAddExpr(ExitCount,
4509                                  getConstant(ExitCount->getType(), 1));
4510   // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4511   // to factor simple cases.
4512   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4513     TCMul = Mul->getOperand(0);
4514
4515   const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4516   if (!MulC)
4517     return 1;
4518
4519   ConstantInt *Result = MulC->getValue();
4520
4521   // Guard against huge trip counts (this requires checking
4522   // for zero to handle the case where the trip count == -1 and the
4523   // addition wraps).
4524   if (!Result || Result->getValue().getActiveBits() > 32 ||
4525       Result->getValue().getActiveBits() == 0)
4526     return 1;
4527
4528   return (unsigned)Result->getZExtValue();
4529 }
4530
4531 // getExitCount - Get the expression for the number of loop iterations for which
4532 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return
4533 // SCEVCouldNotCompute.
4534 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4535   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
4536 }
4537
4538 /// getBackedgeTakenCount - If the specified loop has a predictable
4539 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4540 /// object. The backedge-taken count is the number of times the loop header
4541 /// will be branched to from within the loop. This is one less than the
4542 /// trip count of the loop, since it doesn't count the first iteration,
4543 /// when the header is branched to from outside the loop.
4544 ///
4545 /// Note that it is not valid to call this method on a loop without a
4546 /// loop-invariant backedge-taken count (see
4547 /// hasLoopInvariantBackedgeTakenCount).
4548 ///
4549 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
4550   return getBackedgeTakenInfo(L).getExact(this);
4551 }
4552
4553 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4554 /// return the least SCEV value that is known never to be less than the
4555 /// actual backedge taken count.
4556 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
4557   return getBackedgeTakenInfo(L).getMax(this);
4558 }
4559
4560 /// PushLoopPHIs - Push PHI nodes in the header of the given loop
4561 /// onto the given Worklist.
4562 static void
4563 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4564   BasicBlock *Header = L->getHeader();
4565
4566   // Push all Loop-header PHIs onto the Worklist stack.
4567   for (BasicBlock::iterator I = Header->begin();
4568        PHINode *PN = dyn_cast<PHINode>(I); ++I)
4569     Worklist.push_back(PN);
4570 }
4571
4572 const ScalarEvolution::BackedgeTakenInfo &
4573 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
4574   // Initially insert an invalid entry for this loop. If the insertion
4575   // succeeds, proceed to actually compute a backedge-taken count and
4576   // update the value. The temporary CouldNotCompute value tells SCEV
4577   // code elsewhere that it shouldn't attempt to request a new
4578   // backedge-taken count, which could result in infinite recursion.
4579   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
4580     BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
4581   if (!Pair.second)
4582     return Pair.first->second;
4583
4584   // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4585   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4586   // must be cleared in this scope.
4587   BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4588
4589   if (Result.getExact(this) != getCouldNotCompute()) {
4590     assert(isLoopInvariant(Result.getExact(this), L) &&
4591            isLoopInvariant(Result.getMax(this), L) &&
4592            "Computed backedge-taken count isn't loop invariant for loop!");
4593     ++NumTripCountsComputed;
4594   }
4595   else if (Result.getMax(this) == getCouldNotCompute() &&
4596            isa<PHINode>(L->getHeader()->begin())) {
4597     // Only count loops that have phi nodes as not being computable.
4598     ++NumTripCountsNotComputed;
4599   }
4600
4601   // Now that we know more about the trip count for this loop, forget any
4602   // existing SCEV values for PHI nodes in this loop since they are only
4603   // conservative estimates made without the benefit of trip count
4604   // information. This is similar to the code in forgetLoop, except that
4605   // it handles SCEVUnknown PHI nodes specially.
4606   if (Result.hasAnyInfo()) {
4607     SmallVector<Instruction *, 16> Worklist;
4608     PushLoopPHIs(L, Worklist);
4609
4610     SmallPtrSet<Instruction *, 8> Visited;
4611     while (!Worklist.empty()) {
4612       Instruction *I = Worklist.pop_back_val();
4613       if (!Visited.insert(I).second)
4614         continue;
4615
4616       ValueExprMapType::iterator It =
4617         ValueExprMap.find_as(static_cast<Value *>(I));
4618       if (It != ValueExprMap.end()) {
4619         const SCEV *Old = It->second;
4620
4621         // SCEVUnknown for a PHI either means that it has an unrecognized
4622         // structure, or it's a PHI that's in the progress of being computed
4623         // by createNodeForPHI.  In the former case, additional loop trip
4624         // count information isn't going to change anything. In the later
4625         // case, createNodeForPHI will perform the necessary updates on its
4626         // own when it gets to that point.
4627         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4628           forgetMemoizedResults(Old);
4629           ValueExprMap.erase(It);
4630         }
4631         if (PHINode *PN = dyn_cast<PHINode>(I))
4632           ConstantEvolutionLoopExitValue.erase(PN);
4633       }
4634
4635       PushDefUseChildren(I, Worklist);
4636     }
4637   }
4638
4639   // Re-lookup the insert position, since the call to
4640   // ComputeBackedgeTakenCount above could result in a
4641   // recusive call to getBackedgeTakenInfo (on a different
4642   // loop), which would invalidate the iterator computed
4643   // earlier.
4644   return BackedgeTakenCounts.find(L)->second = Result;
4645 }
4646
4647 /// forgetLoop - This method should be called by the client when it has
4648 /// changed a loop in a way that may effect ScalarEvolution's ability to
4649 /// compute a trip count, or if the loop is deleted.
4650 void ScalarEvolution::forgetLoop(const Loop *L) {
4651   // Drop any stored trip count value.
4652   DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4653     BackedgeTakenCounts.find(L);
4654   if (BTCPos != BackedgeTakenCounts.end()) {
4655     BTCPos->second.clear();
4656     BackedgeTakenCounts.erase(BTCPos);
4657   }
4658
4659   // Drop information about expressions based on loop-header PHIs.
4660   SmallVector<Instruction *, 16> Worklist;
4661   PushLoopPHIs(L, Worklist);
4662
4663   SmallPtrSet<Instruction *, 8> Visited;
4664   while (!Worklist.empty()) {
4665     Instruction *I = Worklist.pop_back_val();
4666     if (!Visited.insert(I).second)
4667       continue;
4668
4669     ValueExprMapType::iterator It =
4670       ValueExprMap.find_as(static_cast<Value *>(I));
4671     if (It != ValueExprMap.end()) {
4672       forgetMemoizedResults(It->second);
4673       ValueExprMap.erase(It);
4674       if (PHINode *PN = dyn_cast<PHINode>(I))
4675         ConstantEvolutionLoopExitValue.erase(PN);
4676     }
4677
4678     PushDefUseChildren(I, Worklist);
4679   }
4680
4681   // Forget all contained loops too, to avoid dangling entries in the
4682   // ValuesAtScopes map.
4683   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4684     forgetLoop(*I);
4685 }
4686
4687 /// forgetValue - This method should be called by the client when it has
4688 /// changed a value in a way that may effect its value, or which may
4689 /// disconnect it from a def-use chain linking it to a loop.
4690 void ScalarEvolution::forgetValue(Value *V) {
4691   Instruction *I = dyn_cast<Instruction>(V);
4692   if (!I) return;
4693
4694   // Drop information about expressions based on loop-header PHIs.
4695   SmallVector<Instruction *, 16> Worklist;
4696   Worklist.push_back(I);
4697
4698   SmallPtrSet<Instruction *, 8> Visited;
4699   while (!Worklist.empty()) {
4700     I = Worklist.pop_back_val();
4701     if (!Visited.insert(I).second)
4702       continue;
4703
4704     ValueExprMapType::iterator It =
4705       ValueExprMap.find_as(static_cast<Value *>(I));
4706     if (It != ValueExprMap.end()) {
4707       forgetMemoizedResults(It->second);
4708       ValueExprMap.erase(It);
4709       if (PHINode *PN = dyn_cast<PHINode>(I))
4710         ConstantEvolutionLoopExitValue.erase(PN);
4711     }
4712
4713     PushDefUseChildren(I, Worklist);
4714   }
4715 }
4716
4717 /// getExact - Get the exact loop backedge taken count considering all loop
4718 /// exits. A computable result can only be return for loops with a single exit.
4719 /// Returning the minimum taken count among all exits is incorrect because one
4720 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4721 /// the limit of each loop test is never skipped. This is a valid assumption as
4722 /// long as the loop exits via that test. For precise results, it is the
4723 /// caller's responsibility to specify the relevant loop exit using
4724 /// getExact(ExitingBlock, SE).
4725 const SCEV *
4726 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4727   // If any exits were not computable, the loop is not computable.
4728   if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4729
4730   // We need exactly one computable exit.
4731   if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
4732   assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4733
4734   const SCEV *BECount = nullptr;
4735   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4736        ENT != nullptr; ENT = ENT->getNextExit()) {
4737
4738     assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4739
4740     if (!BECount)
4741       BECount = ENT->ExactNotTaken;
4742     else if (BECount != ENT->ExactNotTaken)
4743       return SE->getCouldNotCompute();
4744   }
4745   assert(BECount && "Invalid not taken count for loop exit");
4746   return BECount;
4747 }
4748
4749 /// getExact - Get the exact not taken count for this loop exit.
4750 const SCEV *
4751 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
4752                                              ScalarEvolution *SE) const {
4753   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4754        ENT != nullptr; ENT = ENT->getNextExit()) {
4755
4756     if (ENT->ExitingBlock == ExitingBlock)
4757       return ENT->ExactNotTaken;
4758   }
4759   return SE->getCouldNotCompute();
4760 }
4761
4762 /// getMax - Get the max backedge taken count for the loop.
4763 const SCEV *
4764 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4765   return Max ? Max : SE->getCouldNotCompute();
4766 }
4767
4768 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4769                                                     ScalarEvolution *SE) const {
4770   if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4771     return true;
4772
4773   if (!ExitNotTaken.ExitingBlock)
4774     return false;
4775
4776   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4777        ENT != nullptr; ENT = ENT->getNextExit()) {
4778
4779     if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4780         && SE->hasOperand(ENT->ExactNotTaken, S)) {
4781       return true;
4782     }
4783   }
4784   return false;
4785 }
4786
4787 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4788 /// computable exit into a persistent ExitNotTakenInfo array.
4789 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4790   SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4791   bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4792
4793   if (!Complete)
4794     ExitNotTaken.setIncomplete();
4795
4796   unsigned NumExits = ExitCounts.size();
4797   if (NumExits == 0) return;
4798
4799   ExitNotTaken.ExitingBlock = ExitCounts[0].first;
4800   ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4801   if (NumExits == 1) return;
4802
4803   // Handle the rare case of multiple computable exits.
4804   ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4805
4806   ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4807   for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4808     PrevENT->setNextExit(ENT);
4809     ENT->ExitingBlock = ExitCounts[i].first;
4810     ENT->ExactNotTaken = ExitCounts[i].second;
4811   }
4812 }
4813
4814 /// clear - Invalidate this result and free the ExitNotTakenInfo array.
4815 void ScalarEvolution::BackedgeTakenInfo::clear() {
4816   ExitNotTaken.ExitingBlock = nullptr;
4817   ExitNotTaken.ExactNotTaken = nullptr;
4818   delete[] ExitNotTaken.getNextExit();
4819 }
4820
4821 /// ComputeBackedgeTakenCount - Compute the number of times the backedge
4822 /// of the specified loop will execute.
4823 ScalarEvolution::BackedgeTakenInfo
4824 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
4825   SmallVector<BasicBlock *, 8> ExitingBlocks;
4826   L->getExitingBlocks(ExitingBlocks);
4827
4828   SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
4829   bool CouldComputeBECount = true;
4830   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
4831   const SCEV *MustExitMaxBECount = nullptr;
4832   const SCEV *MayExitMaxBECount = nullptr;
4833
4834   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
4835   // and compute maxBECount.
4836   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
4837     BasicBlock *ExitBB = ExitingBlocks[i];
4838     ExitLimit EL = ComputeExitLimit(L, ExitBB);
4839
4840     // 1. For each exit that can be computed, add an entry to ExitCounts.
4841     // CouldComputeBECount is true only if all exits can be computed.
4842     if (EL.Exact == getCouldNotCompute())
4843       // We couldn't compute an exact value for this exit, so
4844       // we won't be able to compute an exact value for the loop.
4845       CouldComputeBECount = false;
4846     else
4847       ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
4848
4849     // 2. Derive the loop's MaxBECount from each exit's max number of
4850     // non-exiting iterations. Partition the loop exits into two kinds:
4851     // LoopMustExits and LoopMayExits.
4852     //
4853     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
4854     // is a LoopMayExit.  If any computable LoopMustExit is found, then
4855     // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
4856     // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
4857     // considered greater than any computable EL.Max.
4858     if (EL.Max != getCouldNotCompute() && Latch &&
4859         DT->dominates(ExitBB, Latch)) {
4860       if (!MustExitMaxBECount)
4861         MustExitMaxBECount = EL.Max;
4862       else {
4863         MustExitMaxBECount =
4864           getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
4865       }
4866     } else if (MayExitMaxBECount != getCouldNotCompute()) {
4867       if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
4868         MayExitMaxBECount = EL.Max;
4869       else {
4870         MayExitMaxBECount =
4871           getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
4872       }
4873     }
4874   }
4875   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
4876     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
4877   return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
4878 }
4879
4880 /// ComputeExitLimit - Compute the number of times the backedge of the specified
4881 /// loop will execute if it exits via the specified block.
4882 ScalarEvolution::ExitLimit
4883 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
4884
4885   // Okay, we've chosen an exiting block.  See what condition causes us to
4886   // exit at this block and remember the exit block and whether all other targets
4887   // lead to the loop header.
4888   bool MustExecuteLoopHeader = true;
4889   BasicBlock *Exit = nullptr;
4890   for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
4891        SI != SE; ++SI)
4892     if (!L->contains(*SI)) {
4893       if (Exit) // Multiple exit successors.
4894         return getCouldNotCompute();
4895       Exit = *SI;
4896     } else if (*SI != L->getHeader()) {
4897       MustExecuteLoopHeader = false;
4898     }
4899
4900   // At this point, we know we have a conditional branch that determines whether
4901   // the loop is exited.  However, we don't know if the branch is executed each
4902   // time through the loop.  If not, then the execution count of the branch will
4903   // not be equal to the trip count of the loop.
4904   //
4905   // Currently we check for this by checking to see if the Exit branch goes to
4906   // the loop header.  If so, we know it will always execute the same number of
4907   // times as the loop.  We also handle the case where the exit block *is* the
4908   // loop header.  This is common for un-rotated loops.
4909   //
4910   // If both of those tests fail, walk up the unique predecessor chain to the
4911   // header, stopping if there is an edge that doesn't exit the loop. If the
4912   // header is reached, the execution count of the branch will be equal to the
4913   // trip count of the loop.
4914   //
4915   //  More extensive analysis could be done to handle more cases here.
4916   //
4917   if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
4918     // The simple checks failed, try climbing the unique predecessor chain
4919     // up to the header.
4920     bool Ok = false;
4921     for (BasicBlock *BB = ExitingBlock; BB; ) {
4922       BasicBlock *Pred = BB->getUniquePredecessor();
4923       if (!Pred)
4924         return getCouldNotCompute();
4925       TerminatorInst *PredTerm = Pred->getTerminator();
4926       for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4927         BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4928         if (PredSucc == BB)
4929           continue;
4930         // If the predecessor has a successor that isn't BB and isn't
4931         // outside the loop, assume the worst.
4932         if (L->contains(PredSucc))
4933           return getCouldNotCompute();
4934       }
4935       if (Pred == L->getHeader()) {
4936         Ok = true;
4937         break;
4938       }
4939       BB = Pred;
4940     }
4941     if (!Ok)
4942       return getCouldNotCompute();
4943   }
4944
4945   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
4946   TerminatorInst *Term = ExitingBlock->getTerminator();
4947   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
4948     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
4949     // Proceed to the next level to examine the exit condition expression.
4950     return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
4951                                     BI->getSuccessor(1),
4952                                     /*ControlsExit=*/IsOnlyExit);
4953   }
4954
4955   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
4956     return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
4957                                                 /*ControlsExit=*/IsOnlyExit);
4958
4959   return getCouldNotCompute();
4960 }
4961
4962 /// ComputeExitLimitFromCond - Compute the number of times the
4963 /// backedge of the specified loop will execute if its exit condition
4964 /// were a conditional branch of ExitCond, TBB, and FBB.
4965 ///
4966 /// @param ControlsExit is true if ExitCond directly controls the exit
4967 /// branch. In this case, we can assume that the loop exits only if the
4968 /// condition is true and can infer that failing to meet the condition prior to
4969 /// integer wraparound results in undefined behavior.
4970 ScalarEvolution::ExitLimit
4971 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4972                                           Value *ExitCond,
4973                                           BasicBlock *TBB,
4974                                           BasicBlock *FBB,
4975                                           bool ControlsExit) {
4976   // Check if the controlling expression for this loop is an And or Or.
4977   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4978     if (BO->getOpcode() == Instruction::And) {
4979       // Recurse on the operands of the and.
4980       bool EitherMayExit = L->contains(TBB);
4981       ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4982                                                ControlsExit && !EitherMayExit);
4983       ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4984                                                ControlsExit && !EitherMayExit);
4985       const SCEV *BECount = getCouldNotCompute();
4986       const SCEV *MaxBECount = getCouldNotCompute();
4987       if (EitherMayExit) {
4988         // Both conditions must be true for the loop to continue executing.
4989         // Choose the less conservative count.
4990         if (EL0.Exact == getCouldNotCompute() ||
4991             EL1.Exact == getCouldNotCompute())
4992           BECount = getCouldNotCompute();
4993         else
4994           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4995         if (EL0.Max == getCouldNotCompute())
4996           MaxBECount = EL1.Max;
4997         else if (EL1.Max == getCouldNotCompute())
4998           MaxBECount = EL0.Max;
4999         else
5000           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5001       } else {
5002         // Both conditions must be true at the same time for the loop to exit.
5003         // For now, be conservative.
5004         assert(L->contains(FBB) && "Loop block has no successor in loop!");
5005         if (EL0.Max == EL1.Max)
5006           MaxBECount = EL0.Max;
5007         if (EL0.Exact == EL1.Exact)
5008           BECount = EL0.Exact;
5009       }
5010
5011       return ExitLimit(BECount, MaxBECount);
5012     }
5013     if (BO->getOpcode() == Instruction::Or) {
5014       // Recurse on the operands of the or.
5015       bool EitherMayExit = L->contains(FBB);
5016       ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5017                                                ControlsExit && !EitherMayExit);
5018       ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5019                                                ControlsExit && !EitherMayExit);
5020       const SCEV *BECount = getCouldNotCompute();
5021       const SCEV *MaxBECount = getCouldNotCompute();
5022       if (EitherMayExit) {
5023         // Both conditions must be false for the loop to continue executing.
5024         // Choose the less conservative count.
5025         if (EL0.Exact == getCouldNotCompute() ||
5026             EL1.Exact == getCouldNotCompute())
5027           BECount = getCouldNotCompute();
5028         else
5029           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5030         if (EL0.Max == getCouldNotCompute())
5031           MaxBECount = EL1.Max;
5032         else if (EL1.Max == getCouldNotCompute())
5033           MaxBECount = EL0.Max;
5034         else
5035           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5036       } else {
5037         // Both conditions must be false at the same time for the loop to exit.
5038         // For now, be conservative.
5039         assert(L->contains(TBB) && "Loop block has no successor in loop!");
5040         if (EL0.Max == EL1.Max)
5041           MaxBECount = EL0.Max;
5042         if (EL0.Exact == EL1.Exact)
5043           BECount = EL0.Exact;
5044       }
5045
5046       return ExitLimit(BECount, MaxBECount);
5047     }
5048   }
5049
5050   // With an icmp, it may be feasible to compute an exact backedge-taken count.
5051   // Proceed to the next level to examine the icmp.
5052   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
5053     return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
5054
5055   // Check for a constant condition. These are normally stripped out by
5056   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5057   // preserve the CFG and is temporarily leaving constant conditions
5058   // in place.
5059   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5060     if (L->contains(FBB) == !CI->getZExtValue())
5061       // The backedge is always taken.
5062       return getCouldNotCompute();
5063     else
5064       // The backedge is never taken.
5065       return getConstant(CI->getType(), 0);
5066   }
5067
5068   // If it's not an integer or pointer comparison then compute it the hard way.
5069   return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5070 }
5071
5072 /// ComputeExitLimitFromICmp - Compute the number of times the
5073 /// backedge of the specified loop will execute if its exit condition
5074 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
5075 ScalarEvolution::ExitLimit
5076 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
5077                                           ICmpInst *ExitCond,
5078                                           BasicBlock *TBB,
5079                                           BasicBlock *FBB,
5080                                           bool ControlsExit) {
5081
5082   // If the condition was exit on true, convert the condition to exit on false
5083   ICmpInst::Predicate Cond;
5084   if (!L->contains(FBB))
5085     Cond = ExitCond->getPredicate();
5086   else
5087     Cond = ExitCond->getInversePredicate();
5088
5089   // Handle common loops like: for (X = "string"; *X; ++X)
5090   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5091     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
5092       ExitLimit ItCnt =
5093         ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
5094       if (ItCnt.hasAnyInfo())
5095         return ItCnt;
5096     }
5097
5098   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5099   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
5100
5101   // Try to evaluate any dependencies out of the loop.
5102   LHS = getSCEVAtScope(LHS, L);
5103   RHS = getSCEVAtScope(RHS, L);
5104
5105   // At this point, we would like to compute how many iterations of the
5106   // loop the predicate will return true for these inputs.
5107   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
5108     // If there is a loop-invariant, force it into the RHS.
5109     std::swap(LHS, RHS);
5110     Cond = ICmpInst::getSwappedPredicate(Cond);
5111   }
5112
5113   // Simplify the operands before analyzing them.
5114   (void)SimplifyICmpOperands(Cond, LHS, RHS);
5115
5116   // If we have a comparison of a chrec against a constant, try to use value
5117   // ranges to answer this query.
5118   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5119     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
5120       if (AddRec->getLoop() == L) {
5121         // Form the constant range.
5122         ConstantRange CompRange(
5123             ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
5124
5125         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
5126         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
5127       }
5128
5129   switch (Cond) {
5130   case ICmpInst::ICMP_NE: {                     // while (X != Y)
5131     // Convert to: while (X-Y != 0)
5132     ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
5133     if (EL.hasAnyInfo()) return EL;
5134     break;
5135   }
5136   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
5137     // Convert to: while (X-Y == 0)
5138     ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5139     if (EL.hasAnyInfo()) return EL;
5140     break;
5141   }
5142   case ICmpInst::ICMP_SLT:
5143   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
5144     bool IsSigned = Cond == ICmpInst::ICMP_SLT;
5145     ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
5146     if (EL.hasAnyInfo()) return EL;
5147     break;
5148   }
5149   case ICmpInst::ICMP_SGT:
5150   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
5151     bool IsSigned = Cond == ICmpInst::ICMP_SGT;
5152     ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
5153     if (EL.hasAnyInfo()) return EL;
5154     break;
5155   }
5156   default:
5157 #if 0
5158     dbgs() << "ComputeBackedgeTakenCount ";
5159     if (ExitCond->getOperand(0)->getType()->isUnsigned())
5160       dbgs() << "[unsigned] ";
5161     dbgs() << *LHS << "   "
5162          << Instruction::getOpcodeName(Instruction::ICmp)
5163          << "   " << *RHS << "\n";
5164 #endif
5165     break;
5166   }
5167   return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5168 }
5169
5170 ScalarEvolution::ExitLimit
5171 ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
5172                                                       SwitchInst *Switch,
5173                                                       BasicBlock *ExitingBlock,
5174                                                       bool ControlsExit) {
5175   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5176
5177   // Give up if the exit is the default dest of a switch.
5178   if (Switch->getDefaultDest() == ExitingBlock)
5179     return getCouldNotCompute();
5180
5181   assert(L->contains(Switch->getDefaultDest()) &&
5182          "Default case must not exit the loop!");
5183   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5184   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5185
5186   // while (X != Y) --> while (X-Y != 0)
5187   ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
5188   if (EL.hasAnyInfo())
5189     return EL;
5190
5191   return getCouldNotCompute();
5192 }
5193
5194 static ConstantInt *
5195 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5196                                 ScalarEvolution &SE) {
5197   const SCEV *InVal = SE.getConstant(C);
5198   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
5199   assert(isa<SCEVConstant>(Val) &&
5200          "Evaluation of SCEV at constant didn't fold correctly?");
5201   return cast<SCEVConstant>(Val)->getValue();
5202 }
5203
5204 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of
5205 /// 'icmp op load X, cst', try to see if we can compute the backedge
5206 /// execution count.
5207 ScalarEvolution::ExitLimit
5208 ScalarEvolution::ComputeLoadConstantCompareExitLimit(
5209   LoadInst *LI,
5210   Constant *RHS,
5211   const Loop *L,
5212   ICmpInst::Predicate predicate) {
5213
5214   if (LI->isVolatile()) return getCouldNotCompute();
5215
5216   // Check to see if the loaded pointer is a getelementptr of a global.
5217   // TODO: Use SCEV instead of manually grubbing with GEPs.
5218   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
5219   if (!GEP) return getCouldNotCompute();
5220
5221   // Make sure that it is really a constant global we are gepping, with an
5222   // initializer, and make sure the first IDX is really 0.
5223   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
5224   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
5225       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5226       !cast<Constant>(GEP->getOperand(1))->isNullValue())
5227     return getCouldNotCompute();
5228
5229   // Okay, we allow one non-constant index into the GEP instruction.
5230   Value *VarIdx = nullptr;
5231   std::vector<Constant*> Indexes;
5232   unsigned VarIdxNum = 0;
5233   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5234     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5235       Indexes.push_back(CI);
5236     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
5237       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
5238       VarIdx = GEP->getOperand(i);
5239       VarIdxNum = i-2;
5240       Indexes.push_back(nullptr);
5241     }
5242
5243   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5244   if (!VarIdx)
5245     return getCouldNotCompute();
5246
5247   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5248   // Check to see if X is a loop variant variable value now.
5249   const SCEV *Idx = getSCEV(VarIdx);
5250   Idx = getSCEVAtScope(Idx, L);
5251
5252   // We can only recognize very limited forms of loop index expressions, in
5253   // particular, only affine AddRec's like {C1,+,C2}.
5254   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
5255   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
5256       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5257       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
5258     return getCouldNotCompute();
5259
5260   unsigned MaxSteps = MaxBruteForceIterations;
5261   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
5262     ConstantInt *ItCst = ConstantInt::get(
5263                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
5264     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
5265
5266     // Form the GEP offset.
5267     Indexes[VarIdxNum] = Val;
5268
5269     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5270                                                          Indexes);
5271     if (!Result) break;  // Cannot compute!
5272
5273     // Evaluate the condition for this iteration.
5274     Result = ConstantExpr::getICmp(predicate, Result, RHS);
5275     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
5276     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
5277 #if 0
5278       dbgs() << "\n***\n*** Computed loop count " << *ItCst
5279              << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
5280              << "***\n";
5281 #endif
5282       ++NumArrayLenItCounts;
5283       return getConstant(ItCst);   // Found terminating iteration!
5284     }
5285   }
5286   return getCouldNotCompute();
5287 }
5288
5289
5290 /// CanConstantFold - Return true if we can constant fold an instruction of the
5291 /// specified type, assuming that all operands were constants.
5292 static bool CanConstantFold(const Instruction *I) {
5293   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
5294       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5295       isa<LoadInst>(I))
5296     return true;
5297
5298   if (const CallInst *CI = dyn_cast<CallInst>(I))
5299     if (const Function *F = CI->getCalledFunction())
5300       return canConstantFoldCallTo(F);
5301   return false;
5302 }
5303
5304 /// Determine whether this instruction can constant evolve within this loop
5305 /// assuming its operands can all constant evolve.
5306 static bool canConstantEvolve(Instruction *I, const Loop *L) {
5307   // An instruction outside of the loop can't be derived from a loop PHI.
5308   if (!L->contains(I)) return false;
5309
5310   if (isa<PHINode>(I)) {
5311     // We don't currently keep track of the control flow needed to evaluate
5312     // PHIs, so we cannot handle PHIs inside of loops.
5313     return L->getHeader() == I->getParent();
5314   }
5315
5316   // If we won't be able to constant fold this expression even if the operands
5317   // are constants, bail early.
5318   return CanConstantFold(I);
5319 }
5320
5321 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5322 /// recursing through each instruction operand until reaching a loop header phi.
5323 static PHINode *
5324 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
5325                                DenseMap<Instruction *, PHINode *> &PHIMap) {
5326
5327   // Otherwise, we can evaluate this instruction if all of its operands are
5328   // constant or derived from a PHI node themselves.
5329   PHINode *PHI = nullptr;
5330   for (Instruction::op_iterator OpI = UseInst->op_begin(),
5331          OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
5332
5333     if (isa<Constant>(*OpI)) continue;
5334
5335     Instruction *OpInst = dyn_cast<Instruction>(*OpI);
5336     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
5337
5338     PHINode *P = dyn_cast<PHINode>(OpInst);
5339     if (!P)
5340       // If this operand is already visited, reuse the prior result.
5341       // We may have P != PHI if this is the deepest point at which the
5342       // inconsistent paths meet.
5343       P = PHIMap.lookup(OpInst);
5344     if (!P) {
5345       // Recurse and memoize the results, whether a phi is found or not.
5346       // This recursive call invalidates pointers into PHIMap.
5347       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5348       PHIMap[OpInst] = P;
5349     }
5350     if (!P)
5351       return nullptr;  // Not evolving from PHI
5352     if (PHI && PHI != P)
5353       return nullptr;  // Evolving from multiple different PHIs.
5354     PHI = P;
5355   }
5356   // This is a expression evolving from a constant PHI!
5357   return PHI;
5358 }
5359
5360 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5361 /// in the loop that V is derived from.  We allow arbitrary operations along the
5362 /// way, but the operands of an operation must either be constants or a value
5363 /// derived from a constant PHI.  If this expression does not fit with these
5364 /// constraints, return null.
5365 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
5366   Instruction *I = dyn_cast<Instruction>(V);
5367   if (!I || !canConstantEvolve(I, L)) return nullptr;
5368
5369   if (PHINode *PN = dyn_cast<PHINode>(I)) {
5370     return PN;
5371   }
5372
5373   // Record non-constant instructions contained by the loop.
5374   DenseMap<Instruction *, PHINode *> PHIMap;
5375   return getConstantEvolvingPHIOperands(I, L, PHIMap);
5376 }
5377
5378 /// EvaluateExpression - Given an expression that passes the
5379 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5380 /// in the loop has the value PHIVal.  If we can't fold this expression for some
5381 /// reason, return null.
5382 static Constant *EvaluateExpression(Value *V, const Loop *L,
5383                                     DenseMap<Instruction *, Constant *> &Vals,
5384                                     const DataLayout &DL,
5385                                     const TargetLibraryInfo *TLI) {
5386   // Convenient constant check, but redundant for recursive calls.
5387   if (Constant *C = dyn_cast<Constant>(V)) return C;
5388   Instruction *I = dyn_cast<Instruction>(V);
5389   if (!I) return nullptr;
5390
5391   if (Constant *C = Vals.lookup(I)) return C;
5392
5393   // An instruction inside the loop depends on a value outside the loop that we
5394   // weren't given a mapping for, or a value such as a call inside the loop.
5395   if (!canConstantEvolve(I, L)) return nullptr;
5396
5397   // An unmapped PHI can be due to a branch or another loop inside this loop,
5398   // or due to this not being the initial iteration through a loop where we
5399   // couldn't compute the evolution of this particular PHI last time.
5400   if (isa<PHINode>(I)) return nullptr;
5401
5402   std::vector<Constant*> Operands(I->getNumOperands());
5403
5404   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5405     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5406     if (!Operand) {
5407       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
5408       if (!Operands[i]) return nullptr;
5409       continue;
5410     }
5411     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
5412     Vals[Operand] = C;
5413     if (!C) return nullptr;
5414     Operands[i] = C;
5415   }
5416
5417   if (CmpInst *CI = dyn_cast<CmpInst>(I))
5418     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
5419                                            Operands[1], DL, TLI);
5420   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5421     if (!LI->isVolatile())
5422       return ConstantFoldLoadFromConstPtr(Operands[0], DL);
5423   }
5424   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
5425                                   TLI);
5426 }
5427
5428 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5429 /// in the header of its containing loop, we know the loop executes a
5430 /// constant number of times, and the PHI node is just a recurrence
5431 /// involving constants, fold it.
5432 Constant *
5433 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
5434                                                    const APInt &BEs,
5435                                                    const Loop *L) {
5436   DenseMap<PHINode*, Constant*>::const_iterator I =
5437     ConstantEvolutionLoopExitValue.find(PN);
5438   if (I != ConstantEvolutionLoopExitValue.end())
5439     return I->second;
5440
5441   if (BEs.ugt(MaxBruteForceIterations))
5442     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
5443
5444   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5445
5446   DenseMap<Instruction *, Constant *> CurrentIterVals;
5447   BasicBlock *Header = L->getHeader();
5448   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5449
5450   // Since the loop is canonicalized, the PHI node must have two entries.  One
5451   // entry must be a constant (coming in from outside of the loop), and the
5452   // second must be derived from the same PHI.
5453   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
5454   PHINode *PHI = nullptr;
5455   for (BasicBlock::iterator I = Header->begin();
5456        (PHI = dyn_cast<PHINode>(I)); ++I) {
5457     Constant *StartCST =
5458       dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
5459     if (!StartCST) continue;
5460     CurrentIterVals[PHI] = StartCST;
5461   }
5462   if (!CurrentIterVals.count(PN))
5463     return RetVal = nullptr;
5464
5465   Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
5466
5467   // Execute the loop symbolically to determine the exit value.
5468   if (BEs.getActiveBits() >= 32)
5469     return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
5470
5471   unsigned NumIterations = BEs.getZExtValue(); // must be in range
5472   unsigned IterationNum = 0;
5473   const DataLayout &DL = F->getParent()->getDataLayout();
5474   for (; ; ++IterationNum) {
5475     if (IterationNum == NumIterations)
5476       return RetVal = CurrentIterVals[PN];  // Got exit value!
5477
5478     // Compute the value of the PHIs for the next iteration.
5479     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
5480     DenseMap<Instruction *, Constant *> NextIterVals;
5481     Constant *NextPHI =
5482         EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
5483     if (!NextPHI)
5484       return nullptr;        // Couldn't evaluate!
5485     NextIterVals[PN] = NextPHI;
5486
5487     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5488
5489     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
5490     // cease to be able to evaluate one of them or if they stop evolving,
5491     // because that doesn't necessarily prevent us from computing PN.
5492     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
5493     for (DenseMap<Instruction *, Constant *>::const_iterator
5494            I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5495       PHINode *PHI = dyn_cast<PHINode>(I->first);
5496       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
5497       PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5498     }
5499     // We use two distinct loops because EvaluateExpression may invalidate any
5500     // iterators into CurrentIterVals.
5501     for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5502              I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5503       PHINode *PHI = I->first;
5504       Constant *&NextPHI = NextIterVals[PHI];
5505       if (!NextPHI) {   // Not already computed.
5506         Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
5507         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
5508       }
5509       if (NextPHI != I->second)
5510         StoppedEvolving = false;
5511     }
5512
5513     // If all entries in CurrentIterVals == NextIterVals then we can stop
5514     // iterating, the loop can't continue to change.
5515     if (StoppedEvolving)
5516       return RetVal = CurrentIterVals[PN];
5517
5518     CurrentIterVals.swap(NextIterVals);
5519   }
5520 }
5521
5522 /// ComputeExitCountExhaustively - If the loop is known to execute a
5523 /// constant number of times (the condition evolves only from constants),
5524 /// try to evaluate a few iterations of the loop until we get the exit
5525 /// condition gets a value of ExitWhen (true or false).  If we cannot
5526 /// evaluate the trip count of the loop, return getCouldNotCompute().
5527 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5528                                                           Value *Cond,
5529                                                           bool ExitWhen) {
5530   PHINode *PN = getConstantEvolvingPHI(Cond, L);
5531   if (!PN) return getCouldNotCompute();
5532
5533   // If the loop is canonicalized, the PHI will have exactly two entries.
5534   // That's the only form we support here.
5535   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5536
5537   DenseMap<Instruction *, Constant *> CurrentIterVals;
5538   BasicBlock *Header = L->getHeader();
5539   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5540
5541   // One entry must be a constant (coming in from outside of the loop), and the
5542   // second must be derived from the same PHI.
5543   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
5544   PHINode *PHI = nullptr;
5545   for (BasicBlock::iterator I = Header->begin();
5546        (PHI = dyn_cast<PHINode>(I)); ++I) {
5547     Constant *StartCST =
5548       dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
5549     if (!StartCST) continue;
5550     CurrentIterVals[PHI] = StartCST;
5551   }
5552   if (!CurrentIterVals.count(PN))
5553     return getCouldNotCompute();
5554
5555   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
5556   // the loop symbolically to determine when the condition gets a value of
5557   // "ExitWhen".
5558   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
5559   const DataLayout &DL = F->getParent()->getDataLayout();
5560   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
5561     ConstantInt *CondVal = dyn_cast_or_null<ConstantInt>(
5562         EvaluateExpression(Cond, L, CurrentIterVals, DL, TLI));
5563
5564     // Couldn't symbolically evaluate.
5565     if (!CondVal) return getCouldNotCompute();
5566
5567     if (CondVal->getValue() == uint64_t(ExitWhen)) {
5568       ++NumBruteForceTripCountsComputed;
5569       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
5570     }
5571
5572     // Update all the PHI nodes for the next iteration.
5573     DenseMap<Instruction *, Constant *> NextIterVals;
5574
5575     // Create a list of which PHIs we need to compute. We want to do this before
5576     // calling EvaluateExpression on them because that may invalidate iterators
5577     // into CurrentIterVals.
5578     SmallVector<PHINode *, 8> PHIsToCompute;
5579     for (DenseMap<Instruction *, Constant *>::const_iterator
5580            I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5581       PHINode *PHI = dyn_cast<PHINode>(I->first);
5582       if (!PHI || PHI->getParent() != Header) continue;
5583       PHIsToCompute.push_back(PHI);
5584     }
5585     for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5586              E = PHIsToCompute.end(); I != E; ++I) {
5587       PHINode *PHI = *I;
5588       Constant *&NextPHI = NextIterVals[PHI];
5589       if (NextPHI) continue;    // Already computed!
5590
5591       Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
5592       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
5593     }
5594     CurrentIterVals.swap(NextIterVals);
5595   }
5596
5597   // Too many iterations were needed to evaluate.
5598   return getCouldNotCompute();
5599 }
5600
5601 /// getSCEVAtScope - Return a SCEV expression for the specified value
5602 /// at the specified scope in the program.  The L value specifies a loop
5603 /// nest to evaluate the expression at, where null is the top-level or a
5604 /// specified loop is immediately inside of the loop.
5605 ///
5606 /// This method can be used to compute the exit value for a variable defined
5607 /// in a loop by querying what the value will hold in the parent loop.
5608 ///
5609 /// In the case that a relevant loop exit value cannot be computed, the
5610 /// original value V is returned.
5611 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
5612   // Check to see if we've folded this expression at this loop before.
5613   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5614   for (unsigned u = 0; u < Values.size(); u++) {
5615     if (Values[u].first == L)
5616       return Values[u].second ? Values[u].second : V;
5617   }
5618   Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
5619   // Otherwise compute it.
5620   const SCEV *C = computeSCEVAtScope(V, L);
5621   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5622   for (unsigned u = Values2.size(); u > 0; u--) {
5623     if (Values2[u - 1].first == L) {
5624       Values2[u - 1].second = C;
5625       break;
5626     }
5627   }
5628   return C;
5629 }
5630
5631 /// This builds up a Constant using the ConstantExpr interface.  That way, we
5632 /// will return Constants for objects which aren't represented by a
5633 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5634 /// Returns NULL if the SCEV isn't representable as a Constant.
5635 static Constant *BuildConstantFromSCEV(const SCEV *V) {
5636   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
5637     case scCouldNotCompute:
5638     case scAddRecExpr:
5639       break;
5640     case scConstant:
5641       return cast<SCEVConstant>(V)->getValue();
5642     case scUnknown:
5643       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5644     case scSignExtend: {
5645       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5646       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5647         return ConstantExpr::getSExt(CastOp, SS->getType());
5648       break;
5649     }
5650     case scZeroExtend: {
5651       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5652       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5653         return ConstantExpr::getZExt(CastOp, SZ->getType());
5654       break;
5655     }
5656     case scTruncate: {
5657       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5658       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5659         return ConstantExpr::getTrunc(CastOp, ST->getType());
5660       break;
5661     }
5662     case scAddExpr: {
5663       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5664       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5665         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5666           unsigned AS = PTy->getAddressSpace();
5667           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5668           C = ConstantExpr::getBitCast(C, DestPtrTy);
5669         }
5670         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5671           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5672           if (!C2) return nullptr;
5673
5674           // First pointer!
5675           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5676             unsigned AS = C2->getType()->getPointerAddressSpace();
5677             std::swap(C, C2);
5678             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5679             // The offsets have been converted to bytes.  We can add bytes to an
5680             // i8* by GEP with the byte count in the first index.
5681             C = ConstantExpr::getBitCast(C, DestPtrTy);
5682           }
5683
5684           // Don't bother trying to sum two pointers. We probably can't
5685           // statically compute a load that results from it anyway.
5686           if (C2->getType()->isPointerTy())
5687             return nullptr;
5688
5689           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5690             if (PTy->getElementType()->isStructTy())
5691               C2 = ConstantExpr::getIntegerCast(
5692                   C2, Type::getInt32Ty(C->getContext()), true);
5693             C = ConstantExpr::getGetElementPtr(C, C2);
5694           } else
5695             C = ConstantExpr::getAdd(C, C2);
5696         }
5697         return C;
5698       }
5699       break;
5700     }
5701     case scMulExpr: {
5702       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5703       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5704         // Don't bother with pointers at all.
5705         if (C->getType()->isPointerTy()) return nullptr;
5706         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5707           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5708           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
5709           C = ConstantExpr::getMul(C, C2);
5710         }
5711         return C;
5712       }
5713       break;
5714     }
5715     case scUDivExpr: {
5716       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5717       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5718         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5719           if (LHS->getType() == RHS->getType())
5720             return ConstantExpr::getUDiv(LHS, RHS);
5721       break;
5722     }
5723     case scSMaxExpr:
5724     case scUMaxExpr:
5725       break; // TODO: smax, umax.
5726   }
5727   return nullptr;
5728 }
5729
5730 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
5731   if (isa<SCEVConstant>(V)) return V;
5732
5733   // If this instruction is evolved from a constant-evolving PHI, compute the
5734   // exit value from the loop without using SCEVs.
5735   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
5736     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
5737       const Loop *LI = (*this->LI)[I->getParent()];
5738       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
5739         if (PHINode *PN = dyn_cast<PHINode>(I))
5740           if (PN->getParent() == LI->getHeader()) {
5741             // Okay, there is no closed form solution for the PHI node.  Check
5742             // to see if the loop that contains it has a known backedge-taken
5743             // count.  If so, we may be able to force computation of the exit
5744             // value.
5745             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
5746             if (const SCEVConstant *BTCC =
5747                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
5748               // Okay, we know how many times the containing loop executes.  If
5749               // this is a constant evolving PHI node, get the final value at
5750               // the specified iteration number.
5751               Constant *RV = getConstantEvolutionLoopExitValue(PN,
5752                                                    BTCC->getValue()->getValue(),
5753                                                                LI);
5754               if (RV) return getSCEV(RV);
5755             }
5756           }
5757
5758       // Okay, this is an expression that we cannot symbolically evaluate
5759       // into a SCEV.  Check to see if it's possible to symbolically evaluate
5760       // the arguments into constants, and if so, try to constant propagate the
5761       // result.  This is particularly useful for computing loop exit values.
5762       if (CanConstantFold(I)) {
5763         SmallVector<Constant *, 4> Operands;
5764         bool MadeImprovement = false;
5765         for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5766           Value *Op = I->getOperand(i);
5767           if (Constant *C = dyn_cast<Constant>(Op)) {
5768             Operands.push_back(C);
5769             continue;
5770           }
5771
5772           // If any of the operands is non-constant and if they are
5773           // non-integer and non-pointer, don't even try to analyze them
5774           // with scev techniques.
5775           if (!isSCEVable(Op->getType()))
5776             return V;
5777
5778           const SCEV *OrigV = getSCEV(Op);
5779           const SCEV *OpV = getSCEVAtScope(OrigV, L);
5780           MadeImprovement |= OrigV != OpV;
5781
5782           Constant *C = BuildConstantFromSCEV(OpV);
5783           if (!C) return V;
5784           if (C->getType() != Op->getType())
5785             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5786                                                               Op->getType(),
5787                                                               false),
5788                                       C, Op->getType());
5789           Operands.push_back(C);
5790         }
5791
5792         // Check to see if getSCEVAtScope actually made an improvement.
5793         if (MadeImprovement) {
5794           Constant *C = nullptr;
5795           const DataLayout &DL = F->getParent()->getDataLayout();
5796           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5797             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
5798                                                 Operands[1], DL, TLI);
5799           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5800             if (!LI->isVolatile())
5801               C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
5802           } else
5803             C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands,
5804                                          DL, TLI);
5805           if (!C) return V;
5806           return getSCEV(C);
5807         }
5808       }
5809     }
5810
5811     // This is some other type of SCEVUnknown, just return it.
5812     return V;
5813   }
5814
5815   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
5816     // Avoid performing the look-up in the common case where the specified
5817     // expression has no loop-variant portions.
5818     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
5819       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5820       if (OpAtScope != Comm->getOperand(i)) {
5821         // Okay, at least one of these operands is loop variant but might be
5822         // foldable.  Build a new instance of the folded commutative expression.
5823         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5824                                             Comm->op_begin()+i);
5825         NewOps.push_back(OpAtScope);
5826
5827         for (++i; i != e; ++i) {
5828           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5829           NewOps.push_back(OpAtScope);
5830         }
5831         if (isa<SCEVAddExpr>(Comm))
5832           return getAddExpr(NewOps);
5833         if (isa<SCEVMulExpr>(Comm))
5834           return getMulExpr(NewOps);
5835         if (isa<SCEVSMaxExpr>(Comm))
5836           return getSMaxExpr(NewOps);
5837         if (isa<SCEVUMaxExpr>(Comm))
5838           return getUMaxExpr(NewOps);
5839         llvm_unreachable("Unknown commutative SCEV type!");
5840       }
5841     }
5842     // If we got here, all operands are loop invariant.
5843     return Comm;
5844   }
5845
5846   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
5847     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5848     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
5849     if (LHS == Div->getLHS() && RHS == Div->getRHS())
5850       return Div;   // must be loop invariant
5851     return getUDivExpr(LHS, RHS);
5852   }
5853
5854   // If this is a loop recurrence for a loop that does not contain L, then we
5855   // are dealing with the final value computed by the loop.
5856   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
5857     // First, attempt to evaluate each operand.
5858     // Avoid performing the look-up in the common case where the specified
5859     // expression has no loop-variant portions.
5860     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5861       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5862       if (OpAtScope == AddRec->getOperand(i))
5863         continue;
5864
5865       // Okay, at least one of these operands is loop variant but might be
5866       // foldable.  Build a new instance of the folded commutative expression.
5867       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5868                                           AddRec->op_begin()+i);
5869       NewOps.push_back(OpAtScope);
5870       for (++i; i != e; ++i)
5871         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5872
5873       const SCEV *FoldedRec =
5874         getAddRecExpr(NewOps, AddRec->getLoop(),
5875                       AddRec->getNoWrapFlags(SCEV::FlagNW));
5876       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
5877       // The addrec may be folded to a nonrecurrence, for example, if the
5878       // induction variable is multiplied by zero after constant folding. Go
5879       // ahead and return the folded value.
5880       if (!AddRec)
5881         return FoldedRec;
5882       break;
5883     }
5884
5885     // If the scope is outside the addrec's loop, evaluate it by using the
5886     // loop exit value of the addrec.
5887     if (!AddRec->getLoop()->contains(L)) {
5888       // To evaluate this recurrence, we need to know how many times the AddRec
5889       // loop iterates.  Compute this now.
5890       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
5891       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
5892
5893       // Then, evaluate the AddRec.
5894       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
5895     }
5896
5897     return AddRec;
5898   }
5899
5900   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
5901     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5902     if (Op == Cast->getOperand())
5903       return Cast;  // must be loop invariant
5904     return getZeroExtendExpr(Op, Cast->getType());
5905   }
5906
5907   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
5908     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5909     if (Op == Cast->getOperand())
5910       return Cast;  // must be loop invariant
5911     return getSignExtendExpr(Op, Cast->getType());
5912   }
5913
5914   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
5915     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5916     if (Op == Cast->getOperand())
5917       return Cast;  // must be loop invariant
5918     return getTruncateExpr(Op, Cast->getType());
5919   }
5920
5921   llvm_unreachable("Unknown SCEV type!");
5922 }
5923
5924 /// getSCEVAtScope - This is a convenience function which does
5925 /// getSCEVAtScope(getSCEV(V), L).
5926 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
5927   return getSCEVAtScope(getSCEV(V), L);
5928 }
5929
5930 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5931 /// following equation:
5932 ///
5933 ///     A * X = B (mod N)
5934 ///
5935 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5936 /// A and B isn't important.
5937 ///
5938 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
5939 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
5940                                                ScalarEvolution &SE) {
5941   uint32_t BW = A.getBitWidth();
5942   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5943   assert(A != 0 && "A must be non-zero.");
5944
5945   // 1. D = gcd(A, N)
5946   //
5947   // The gcd of A and N may have only one prime factor: 2. The number of
5948   // trailing zeros in A is its multiplicity
5949   uint32_t Mult2 = A.countTrailingZeros();
5950   // D = 2^Mult2
5951
5952   // 2. Check if B is divisible by D.
5953   //
5954   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5955   // is not less than multiplicity of this prime factor for D.
5956   if (B.countTrailingZeros() < Mult2)
5957     return SE.getCouldNotCompute();
5958
5959   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5960   // modulo (N / D).
5961   //
5962   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
5963   // bit width during computations.
5964   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
5965   APInt Mod(BW + 1, 0);
5966   Mod.setBit(BW - Mult2);  // Mod = N / D
5967   APInt I = AD.multiplicativeInverse(Mod);
5968
5969   // 4. Compute the minimum unsigned root of the equation:
5970   // I * (B / D) mod (N / D)
5971   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5972
5973   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5974   // bits.
5975   return SE.getConstant(Result.trunc(BW));
5976 }
5977
5978 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5979 /// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
5980 /// might be the same) or two SCEVCouldNotCompute objects.
5981 ///
5982 static std::pair<const SCEV *,const SCEV *>
5983 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
5984   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
5985   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5986   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5987   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
5988
5989   // We currently can only solve this if the coefficients are constants.
5990   if (!LC || !MC || !NC) {
5991     const SCEV *CNC = SE.getCouldNotCompute();
5992     return std::make_pair(CNC, CNC);
5993   }
5994
5995   uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
5996   const APInt &L = LC->getValue()->getValue();
5997   const APInt &M = MC->getValue()->getValue();
5998   const APInt &N = NC->getValue()->getValue();
5999   APInt Two(BitWidth, 2);
6000   APInt Four(BitWidth, 4);
6001
6002   {
6003     using namespace APIntOps;
6004     const APInt& C = L;
6005     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6006     // The B coefficient is M-N/2
6007     APInt B(M);
6008     B -= sdiv(N,Two);
6009
6010     // The A coefficient is N/2
6011     APInt A(N.sdiv(Two));
6012
6013     // Compute the B^2-4ac term.
6014     APInt SqrtTerm(B);
6015     SqrtTerm *= B;
6016     SqrtTerm -= Four * (A * C);
6017
6018     if (SqrtTerm.isNegative()) {
6019       // The loop is provably infinite.
6020       const SCEV *CNC = SE.getCouldNotCompute();
6021       return std::make_pair(CNC, CNC);
6022     }
6023
6024     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6025     // integer value or else APInt::sqrt() will assert.
6026     APInt SqrtVal(SqrtTerm.sqrt());
6027
6028     // Compute the two solutions for the quadratic formula.
6029     // The divisions must be performed as signed divisions.
6030     APInt NegB(-B);
6031     APInt TwoA(A << 1);
6032     if (TwoA.isMinValue()) {
6033       const SCEV *CNC = SE.getCouldNotCompute();
6034       return std::make_pair(CNC, CNC);
6035     }
6036
6037     LLVMContext &Context = SE.getContext();
6038
6039     ConstantInt *Solution1 =
6040       ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
6041     ConstantInt *Solution2 =
6042       ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
6043
6044     return std::make_pair(SE.getConstant(Solution1),
6045                           SE.getConstant(Solution2));
6046   } // end APIntOps namespace
6047 }
6048
6049 /// HowFarToZero - Return the number of times a backedge comparing the specified
6050 /// value to zero will execute.  If not computable, return CouldNotCompute.
6051 ///
6052 /// This is only used for loops with a "x != y" exit test. The exit condition is
6053 /// now expressed as a single expression, V = x-y. So the exit test is
6054 /// effectively V != 0.  We know and take advantage of the fact that this
6055 /// expression only being used in a comparison by zero context.
6056 ScalarEvolution::ExitLimit
6057 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
6058   // If the value is a constant
6059   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
6060     // If the value is already zero, the branch will execute zero times.
6061     if (C->getValue()->isZero()) return C;
6062     return getCouldNotCompute();  // Otherwise it will loop infinitely.
6063   }
6064
6065   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
6066   if (!AddRec || AddRec->getLoop() != L)
6067     return getCouldNotCompute();
6068
6069   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6070   // the quadratic equation to solve it.
6071   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6072     std::pair<const SCEV *,const SCEV *> Roots =
6073       SolveQuadraticEquation(AddRec, *this);
6074     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6075     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
6076     if (R1 && R2) {
6077 #if 0
6078       dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
6079              << "  sol#2: " << *R2 << "\n";
6080 #endif
6081       // Pick the smallest positive root value.
6082       if (ConstantInt *CB =
6083           dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6084                                                       R1->getValue(),
6085                                                       R2->getValue()))) {
6086         if (!CB->getZExtValue())
6087           std::swap(R1, R2);   // R1 is the minimum root now.
6088
6089         // We can only use this value if the chrec ends up with an exact zero
6090         // value at this index.  When solving for "X*X != 5", for example, we
6091         // should not accept a root of 2.
6092         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
6093         if (Val->isZero())
6094           return R1;  // We found a quadratic root!
6095       }
6096     }
6097     return getCouldNotCompute();
6098   }
6099
6100   // Otherwise we can only handle this if it is affine.
6101   if (!AddRec->isAffine())
6102     return getCouldNotCompute();
6103
6104   // If this is an affine expression, the execution count of this branch is
6105   // the minimum unsigned root of the following equation:
6106   //
6107   //     Start + Step*N = 0 (mod 2^BW)
6108   //
6109   // equivalent to:
6110   //
6111   //             Step*N = -Start (mod 2^BW)
6112   //
6113   // where BW is the common bit width of Start and Step.
6114
6115   // Get the initial value for the loop.
6116   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6117   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6118
6119   // For now we handle only constant steps.
6120   //
6121   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6122   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6123   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6124   // We have not yet seen any such cases.
6125   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
6126   if (!StepC || StepC->getValue()->equalsInt(0))
6127     return getCouldNotCompute();
6128
6129   // For positive steps (counting up until unsigned overflow):
6130   //   N = -Start/Step (as unsigned)
6131   // For negative steps (counting down to zero):
6132   //   N = Start/-Step
6133   // First compute the unsigned distance from zero in the direction of Step.
6134   bool CountDown = StepC->getValue()->getValue().isNegative();
6135   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
6136
6137   // Handle unitary steps, which cannot wraparound.
6138   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6139   //   N = Distance (as unsigned)
6140   if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6141     ConstantRange CR = getUnsignedRange(Start);
6142     const SCEV *MaxBECount;
6143     if (!CountDown && CR.getUnsignedMin().isMinValue())
6144       // When counting up, the worst starting value is 1, not 0.
6145       MaxBECount = CR.getUnsignedMax().isMinValue()
6146         ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6147         : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6148     else
6149       MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6150                                          : -CR.getUnsignedMin());
6151     return ExitLimit(Distance, MaxBECount);
6152   }
6153
6154   // As a special case, handle the instance where Step is a positive power of
6155   // two. In this case, determining whether Step divides Distance evenly can be
6156   // done by counting and comparing the number of trailing zeros of Step and
6157   // Distance.
6158   if (!CountDown) {
6159     const APInt &StepV = StepC->getValue()->getValue();
6160     // StepV.isPowerOf2() returns true if StepV is an positive power of two.  It
6161     // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6162     // case is not handled as this code is guarded by !CountDown.
6163     if (StepV.isPowerOf2() &&
6164         GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros())
6165       return getUDivExactExpr(Distance, Step);
6166   }
6167
6168   // If the condition controls loop exit (the loop exits only if the expression
6169   // is true) and the addition is no-wrap we can use unsigned divide to
6170   // compute the backedge count.  In this case, the step may not divide the
6171   // distance, but we don't care because if the condition is "missed" the loop
6172   // will have undefined behavior due to wrapping.
6173   if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6174     const SCEV *Exact =
6175         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6176     return ExitLimit(Exact, Exact);
6177   }
6178
6179   // Then, try to solve the above equation provided that Start is constant.
6180   if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6181     return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
6182                                         -StartC->getValue()->getValue(),
6183                                         *this);
6184   return getCouldNotCompute();
6185 }
6186
6187 /// HowFarToNonZero - Return the number of times a backedge checking the
6188 /// specified value for nonzero will execute.  If not computable, return
6189 /// CouldNotCompute
6190 ScalarEvolution::ExitLimit
6191 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
6192   // Loops that look like: while (X == 0) are very strange indeed.  We don't
6193   // handle them yet except for the trivial case.  This could be expanded in the
6194   // future as needed.
6195
6196   // If the value is a constant, check to see if it is known to be non-zero
6197   // already.  If so, the backedge will execute zero times.
6198   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
6199     if (!C->getValue()->isNullValue())
6200       return getConstant(C->getType(), 0);
6201     return getCouldNotCompute();  // Otherwise it will loop infinitely.
6202   }
6203
6204   // We could implement others, but I really doubt anyone writes loops like
6205   // this, and if they did, they would already be constant folded.
6206   return getCouldNotCompute();
6207 }
6208
6209 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6210 /// (which may not be an immediate predecessor) which has exactly one
6211 /// successor from which BB is reachable, or null if no such block is
6212 /// found.
6213 ///
6214 std::pair<BasicBlock *, BasicBlock *>
6215 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
6216   // If the block has a unique predecessor, then there is no path from the
6217   // predecessor to the block that does not go through the direct edge
6218   // from the predecessor to the block.
6219   if (BasicBlock *Pred = BB->getSinglePredecessor())
6220     return std::make_pair(Pred, BB);
6221
6222   // A loop's header is defined to be a block that dominates the loop.
6223   // If the header has a unique predecessor outside the loop, it must be
6224   // a block that has exactly one successor that can reach the loop.
6225   if (Loop *L = LI->getLoopFor(BB))
6226     return std::make_pair(L->getLoopPredecessor(), L->getHeader());
6227
6228   return std::pair<BasicBlock *, BasicBlock *>();
6229 }
6230
6231 /// HasSameValue - SCEV structural equivalence is usually sufficient for
6232 /// testing whether two expressions are equal, however for the purposes of
6233 /// looking for a condition guarding a loop, it can be useful to be a little
6234 /// more general, since a front-end may have replicated the controlling
6235 /// expression.
6236 ///
6237 static bool HasSameValue(const SCEV *A, const SCEV *B) {
6238   // Quick check to see if they are the same SCEV.
6239   if (A == B) return true;
6240
6241   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6242   // two different instructions with the same value. Check for this case.
6243   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6244     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6245       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6246         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
6247           if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
6248             return true;
6249
6250   // Otherwise assume they may have a different value.
6251   return false;
6252 }
6253
6254 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
6255 /// predicate Pred. Return true iff any changes were made.
6256 ///
6257 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
6258                                            const SCEV *&LHS, const SCEV *&RHS,
6259                                            unsigned Depth) {
6260   bool Changed = false;
6261
6262   // If we hit the max recursion limit bail out.
6263   if (Depth >= 3)
6264     return false;
6265
6266   // Canonicalize a constant to the right side.
6267   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6268     // Check for both operands constant.
6269     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6270       if (ConstantExpr::getICmp(Pred,
6271                                 LHSC->getValue(),
6272                                 RHSC->getValue())->isNullValue())
6273         goto trivially_false;
6274       else
6275         goto trivially_true;
6276     }
6277     // Otherwise swap the operands to put the constant on the right.
6278     std::swap(LHS, RHS);
6279     Pred = ICmpInst::getSwappedPredicate(Pred);
6280     Changed = true;
6281   }
6282
6283   // If we're comparing an addrec with a value which is loop-invariant in the
6284   // addrec's loop, put the addrec on the left. Also make a dominance check,
6285   // as both operands could be addrecs loop-invariant in each other's loop.
6286   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6287     const Loop *L = AR->getLoop();
6288     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
6289       std::swap(LHS, RHS);
6290       Pred = ICmpInst::getSwappedPredicate(Pred);
6291       Changed = true;
6292     }
6293   }
6294
6295   // If there's a constant operand, canonicalize comparisons with boundary
6296   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6297   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6298     const APInt &RA = RC->getValue()->getValue();
6299     switch (Pred) {
6300     default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6301     case ICmpInst::ICMP_EQ:
6302     case ICmpInst::ICMP_NE:
6303       // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6304       if (!RA)
6305         if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6306           if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
6307             if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6308                 ME->getOperand(0)->isAllOnesValue()) {
6309               RHS = AE->getOperand(1);
6310               LHS = ME->getOperand(1);
6311               Changed = true;
6312             }
6313       break;
6314     case ICmpInst::ICMP_UGE:
6315       if ((RA - 1).isMinValue()) {
6316         Pred = ICmpInst::ICMP_NE;
6317         RHS = getConstant(RA - 1);
6318         Changed = true;
6319         break;
6320       }
6321       if (RA.isMaxValue()) {
6322         Pred = ICmpInst::ICMP_EQ;
6323         Changed = true;
6324         break;
6325       }
6326       if (RA.isMinValue()) goto trivially_true;
6327
6328       Pred = ICmpInst::ICMP_UGT;
6329       RHS = getConstant(RA - 1);
6330       Changed = true;
6331       break;
6332     case ICmpInst::ICMP_ULE:
6333       if ((RA + 1).isMaxValue()) {
6334         Pred = ICmpInst::ICMP_NE;
6335         RHS = getConstant(RA + 1);
6336         Changed = true;
6337         break;
6338       }
6339       if (RA.isMinValue()) {
6340         Pred = ICmpInst::ICMP_EQ;
6341         Changed = true;
6342         break;
6343       }
6344       if (RA.isMaxValue()) goto trivially_true;
6345
6346       Pred = ICmpInst::ICMP_ULT;
6347       RHS = getConstant(RA + 1);
6348       Changed = true;
6349       break;
6350     case ICmpInst::ICMP_SGE:
6351       if ((RA - 1).isMinSignedValue()) {
6352         Pred = ICmpInst::ICMP_NE;
6353         RHS = getConstant(RA - 1);
6354         Changed = true;
6355         break;
6356       }
6357       if (RA.isMaxSignedValue()) {
6358         Pred = ICmpInst::ICMP_EQ;
6359         Changed = true;
6360         break;
6361       }
6362       if (RA.isMinSignedValue()) goto trivially_true;
6363
6364       Pred = ICmpInst::ICMP_SGT;
6365       RHS = getConstant(RA - 1);
6366       Changed = true;
6367       break;
6368     case ICmpInst::ICMP_SLE:
6369       if ((RA + 1).isMaxSignedValue()) {
6370         Pred = ICmpInst::ICMP_NE;
6371         RHS = getConstant(RA + 1);
6372         Changed = true;
6373         break;
6374       }
6375       if (RA.isMinSignedValue()) {
6376         Pred = ICmpInst::ICMP_EQ;
6377         Changed = true;
6378         break;
6379       }
6380       if (RA.isMaxSignedValue()) goto trivially_true;
6381
6382       Pred = ICmpInst::ICMP_SLT;
6383       RHS = getConstant(RA + 1);
6384       Changed = true;
6385       break;
6386     case ICmpInst::ICMP_UGT:
6387       if (RA.isMinValue()) {
6388         Pred = ICmpInst::ICMP_NE;
6389         Changed = true;
6390         break;
6391       }
6392       if ((RA + 1).isMaxValue()) {
6393         Pred = ICmpInst::ICMP_EQ;
6394         RHS = getConstant(RA + 1);
6395         Changed = true;
6396         break;
6397       }
6398       if (RA.isMaxValue()) goto trivially_false;
6399       break;
6400     case ICmpInst::ICMP_ULT:
6401       if (RA.isMaxValue()) {
6402         Pred = ICmpInst::ICMP_NE;
6403         Changed = true;
6404         break;
6405       }
6406       if ((RA - 1).isMinValue()) {
6407         Pred = ICmpInst::ICMP_EQ;
6408         RHS = getConstant(RA - 1);
6409         Changed = true;
6410         break;
6411       }
6412       if (RA.isMinValue()) goto trivially_false;
6413       break;
6414     case ICmpInst::ICMP_SGT:
6415       if (RA.isMinSignedValue()) {
6416         Pred = ICmpInst::ICMP_NE;
6417         Changed = true;
6418         break;
6419       }
6420       if ((RA + 1).isMaxSignedValue()) {
6421         Pred = ICmpInst::ICMP_EQ;
6422         RHS = getConstant(RA + 1);
6423         Changed = true;
6424         break;
6425       }
6426       if (RA.isMaxSignedValue()) goto trivially_false;
6427       break;
6428     case ICmpInst::ICMP_SLT:
6429       if (RA.isMaxSignedValue()) {
6430         Pred = ICmpInst::ICMP_NE;
6431         Changed = true;
6432         break;
6433       }
6434       if ((RA - 1).isMinSignedValue()) {
6435        Pred = ICmpInst::ICMP_EQ;
6436        RHS = getConstant(RA - 1);
6437         Changed = true;
6438        break;
6439       }
6440       if (RA.isMinSignedValue()) goto trivially_false;
6441       break;
6442     }
6443   }
6444
6445   // Check for obvious equality.
6446   if (HasSameValue(LHS, RHS)) {
6447     if (ICmpInst::isTrueWhenEqual(Pred))
6448       goto trivially_true;
6449     if (ICmpInst::isFalseWhenEqual(Pred))
6450       goto trivially_false;
6451   }
6452
6453   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6454   // adding or subtracting 1 from one of the operands.
6455   switch (Pred) {
6456   case ICmpInst::ICMP_SLE:
6457     if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6458       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
6459                        SCEV::FlagNSW);
6460       Pred = ICmpInst::ICMP_SLT;
6461       Changed = true;
6462     } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
6463       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
6464                        SCEV::FlagNSW);
6465       Pred = ICmpInst::ICMP_SLT;
6466       Changed = true;
6467     }
6468     break;
6469   case ICmpInst::ICMP_SGE:
6470     if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
6471       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
6472                        SCEV::FlagNSW);
6473       Pred = ICmpInst::ICMP_SGT;
6474       Changed = true;
6475     } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6476       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
6477                        SCEV::FlagNSW);
6478       Pred = ICmpInst::ICMP_SGT;
6479       Changed = true;
6480     }
6481     break;
6482   case ICmpInst::ICMP_ULE:
6483     if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
6484       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
6485                        SCEV::FlagNUW);
6486       Pred = ICmpInst::ICMP_ULT;
6487       Changed = true;
6488     } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
6489       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
6490                        SCEV::FlagNUW);
6491       Pred = ICmpInst::ICMP_ULT;
6492       Changed = true;
6493     }
6494     break;
6495   case ICmpInst::ICMP_UGE:
6496     if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
6497       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
6498                        SCEV::FlagNUW);
6499       Pred = ICmpInst::ICMP_UGT;
6500       Changed = true;
6501     } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
6502       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
6503                        SCEV::FlagNUW);
6504       Pred = ICmpInst::ICMP_UGT;
6505       Changed = true;
6506     }
6507     break;
6508   default:
6509     break;
6510   }
6511
6512   // TODO: More simplifications are possible here.
6513
6514   // Recursively simplify until we either hit a recursion limit or nothing
6515   // changes.
6516   if (Changed)
6517     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6518
6519   return Changed;
6520
6521 trivially_true:
6522   // Return 0 == 0.
6523   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
6524   Pred = ICmpInst::ICMP_EQ;
6525   return true;
6526
6527 trivially_false:
6528   // Return 0 != 0.
6529   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
6530   Pred = ICmpInst::ICMP_NE;
6531   return true;
6532 }
6533
6534 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6535   return getSignedRange(S).getSignedMax().isNegative();
6536 }
6537
6538 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6539   return getSignedRange(S).getSignedMin().isStrictlyPositive();
6540 }
6541
6542 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6543   return !getSignedRange(S).getSignedMin().isNegative();
6544 }
6545
6546 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6547   return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6548 }
6549
6550 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6551   return isKnownNegative(S) || isKnownPositive(S);
6552 }
6553
6554 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6555                                        const SCEV *LHS, const SCEV *RHS) {
6556   // Canonicalize the inputs first.
6557   (void)SimplifyICmpOperands(Pred, LHS, RHS);
6558
6559   // If LHS or RHS is an addrec, check to see if the condition is true in
6560   // every iteration of the loop.
6561   // If LHS and RHS are both addrec, both conditions must be true in
6562   // every iteration of the loop.
6563   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6564   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6565   bool LeftGuarded = false;
6566   bool RightGuarded = false;
6567   if (LAR) {
6568     const Loop *L = LAR->getLoop();
6569     if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6570         isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6571       if (!RAR) return true;
6572       LeftGuarded = true;
6573     }
6574   }
6575   if (RAR) {
6576     const Loop *L = RAR->getLoop();
6577     if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6578         isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6579       if (!LAR) return true;
6580       RightGuarded = true;
6581     }
6582   }
6583   if (LeftGuarded && RightGuarded)
6584     return true;
6585
6586   // Otherwise see what can be done with known constant ranges.
6587   return isKnownPredicateWithRanges(Pred, LHS, RHS);
6588 }
6589
6590 bool
6591 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6592                                             const SCEV *LHS, const SCEV *RHS) {
6593   if (HasSameValue(LHS, RHS))
6594     return ICmpInst::isTrueWhenEqual(Pred);
6595
6596   // This code is split out from isKnownPredicate because it is called from
6597   // within isLoopEntryGuardedByCond.
6598   switch (Pred) {
6599   default:
6600     llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6601   case ICmpInst::ICMP_SGT:
6602     std::swap(LHS, RHS);
6603   case ICmpInst::ICMP_SLT: {
6604     ConstantRange LHSRange = getSignedRange(LHS);
6605     ConstantRange RHSRange = getSignedRange(RHS);
6606     if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6607       return true;
6608     if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6609       return false;
6610     break;
6611   }
6612   case ICmpInst::ICMP_SGE:
6613     std::swap(LHS, RHS);
6614   case ICmpInst::ICMP_SLE: {
6615     ConstantRange LHSRange = getSignedRange(LHS);
6616     ConstantRange RHSRange = getSignedRange(RHS);
6617     if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6618       return true;
6619     if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6620       return false;
6621     break;
6622   }
6623   case ICmpInst::ICMP_UGT:
6624     std::swap(LHS, RHS);
6625   case ICmpInst::ICMP_ULT: {
6626     ConstantRange LHSRange = getUnsignedRange(LHS);
6627     ConstantRange RHSRange = getUnsignedRange(RHS);
6628     if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6629       return true;
6630     if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6631       return false;
6632     break;
6633   }
6634   case ICmpInst::ICMP_UGE:
6635     std::swap(LHS, RHS);
6636   case ICmpInst::ICMP_ULE: {
6637     ConstantRange LHSRange = getUnsignedRange(LHS);
6638     ConstantRange RHSRange = getUnsignedRange(RHS);
6639     if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6640       return true;
6641     if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6642       return false;
6643     break;
6644   }
6645   case ICmpInst::ICMP_NE: {
6646     if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6647       return true;
6648     if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6649       return true;
6650
6651     const SCEV *Diff = getMinusSCEV(LHS, RHS);
6652     if (isKnownNonZero(Diff))
6653       return true;
6654     break;
6655   }
6656   case ICmpInst::ICMP_EQ:
6657     // The check at the top of the function catches the case where
6658     // the values are known to be equal.
6659     break;
6660   }
6661   return false;
6662 }
6663
6664 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6665 /// protected by a conditional between LHS and RHS.  This is used to
6666 /// to eliminate casts.
6667 bool
6668 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6669                                              ICmpInst::Predicate Pred,
6670                                              const SCEV *LHS, const SCEV *RHS) {
6671   // Interpret a null as meaning no loop, where there is obviously no guard
6672   // (interprocedural conditions notwithstanding).
6673   if (!L) return true;
6674
6675   if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6676
6677   BasicBlock *Latch = L->getLoopLatch();
6678   if (!Latch)
6679     return false;
6680
6681   BranchInst *LoopContinuePredicate =
6682     dyn_cast<BranchInst>(Latch->getTerminator());
6683   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
6684       isImpliedCond(Pred, LHS, RHS,
6685                     LoopContinuePredicate->getCondition(),
6686                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
6687     return true;
6688
6689   // Check conditions due to any @llvm.assume intrinsics.
6690   for (auto &AssumeVH : AC->assumptions()) {
6691     if (!AssumeVH)
6692       continue;
6693     auto *CI = cast<CallInst>(AssumeVH);
6694     if (!DT->dominates(CI, Latch->getTerminator()))
6695       continue;
6696
6697     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6698       return true;
6699   }
6700
6701   return false;
6702 }
6703
6704 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
6705 /// by a conditional between LHS and RHS.  This is used to help avoid max
6706 /// expressions in loop trip counts, and to eliminate casts.
6707 bool
6708 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6709                                           ICmpInst::Predicate Pred,
6710                                           const SCEV *LHS, const SCEV *RHS) {
6711   // Interpret a null as meaning no loop, where there is obviously no guard
6712   // (interprocedural conditions notwithstanding).
6713   if (!L) return false;
6714
6715   if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6716
6717   // Starting at the loop predecessor, climb up the predecessor chain, as long
6718   // as there are predecessors that can be found that have unique successors
6719   // leading to the original header.
6720   for (std::pair<BasicBlock *, BasicBlock *>
6721          Pair(L->getLoopPredecessor(), L->getHeader());
6722        Pair.first;
6723        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
6724
6725     BranchInst *LoopEntryPredicate =
6726       dyn_cast<BranchInst>(Pair.first->getTerminator());
6727     if (!LoopEntryPredicate ||
6728         LoopEntryPredicate->isUnconditional())
6729       continue;
6730
6731     if (isImpliedCond(Pred, LHS, RHS,
6732                       LoopEntryPredicate->getCondition(),
6733                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
6734       return true;
6735   }
6736
6737   // Check conditions due to any @llvm.assume intrinsics.
6738   for (auto &AssumeVH : AC->assumptions()) {
6739     if (!AssumeVH)
6740       continue;
6741     auto *CI = cast<CallInst>(AssumeVH);
6742     if (!DT->dominates(CI, L->getHeader()))
6743       continue;
6744
6745     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6746       return true;
6747   }
6748
6749   return false;
6750 }
6751
6752 /// RAII wrapper to prevent recursive application of isImpliedCond.
6753 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6754 /// currently evaluating isImpliedCond.
6755 struct MarkPendingLoopPredicate {
6756   Value *Cond;
6757   DenseSet<Value*> &LoopPreds;
6758   bool Pending;
6759
6760   MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6761     : Cond(C), LoopPreds(LP) {
6762     Pending = !LoopPreds.insert(Cond).second;
6763   }
6764   ~MarkPendingLoopPredicate() {
6765     if (!Pending)
6766       LoopPreds.erase(Cond);
6767   }
6768 };
6769
6770 /// isImpliedCond - Test whether the condition described by Pred, LHS,
6771 /// and RHS is true whenever the given Cond value evaluates to true.
6772 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
6773                                     const SCEV *LHS, const SCEV *RHS,
6774                                     Value *FoundCondValue,
6775                                     bool Inverse) {
6776   MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6777   if (Mark.Pending)
6778     return false;
6779
6780   // Recursively handle And and Or conditions.
6781   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
6782     if (BO->getOpcode() == Instruction::And) {
6783       if (!Inverse)
6784         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6785                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6786     } else if (BO->getOpcode() == Instruction::Or) {
6787       if (Inverse)
6788         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6789                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6790     }
6791   }
6792
6793   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
6794   if (!ICI) return false;
6795
6796   // Now that we found a conditional branch that dominates the loop or controls
6797   // the loop latch. Check to see if it is the comparison we are looking for.
6798   ICmpInst::Predicate FoundPred;
6799   if (Inverse)
6800     FoundPred = ICI->getInversePredicate();
6801   else
6802     FoundPred = ICI->getPredicate();
6803
6804   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6805   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
6806
6807   // Balance the types.
6808   if (getTypeSizeInBits(LHS->getType()) <
6809       getTypeSizeInBits(FoundLHS->getType())) {
6810     if (CmpInst::isSigned(Pred)) {
6811       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
6812       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
6813     } else {
6814       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
6815       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
6816     }
6817   } else if (getTypeSizeInBits(LHS->getType()) >
6818       getTypeSizeInBits(FoundLHS->getType())) {
6819     if (CmpInst::isSigned(FoundPred)) {
6820       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6821       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6822     } else {
6823       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6824       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6825     }
6826   }
6827
6828   // Canonicalize the query to match the way instcombine will have
6829   // canonicalized the comparison.
6830   if (SimplifyICmpOperands(Pred, LHS, RHS))
6831     if (LHS == RHS)
6832       return CmpInst::isTrueWhenEqual(Pred);
6833   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6834     if (FoundLHS == FoundRHS)
6835       return CmpInst::isFalseWhenEqual(FoundPred);
6836
6837   // Check to see if we can make the LHS or RHS match.
6838   if (LHS == FoundRHS || RHS == FoundLHS) {
6839     if (isa<SCEVConstant>(RHS)) {
6840       std::swap(FoundLHS, FoundRHS);
6841       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6842     } else {
6843       std::swap(LHS, RHS);
6844       Pred = ICmpInst::getSwappedPredicate(Pred);
6845     }
6846   }
6847
6848   // Check whether the found predicate is the same as the desired predicate.
6849   if (FoundPred == Pred)
6850     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6851
6852   // Check whether swapping the found predicate makes it the same as the
6853   // desired predicate.
6854   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6855     if (isa<SCEVConstant>(RHS))
6856       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6857     else
6858       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6859                                    RHS, LHS, FoundLHS, FoundRHS);
6860   }
6861
6862   // Check if we can make progress by sharpening ranges.
6863   if (FoundPred == ICmpInst::ICMP_NE &&
6864       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
6865
6866     const SCEVConstant *C = nullptr;
6867     const SCEV *V = nullptr;
6868
6869     if (isa<SCEVConstant>(FoundLHS)) {
6870       C = cast<SCEVConstant>(FoundLHS);
6871       V = FoundRHS;
6872     } else {
6873       C = cast<SCEVConstant>(FoundRHS);
6874       V = FoundLHS;
6875     }
6876
6877     // The guarding predicate tells us that C != V. If the known range
6878     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
6879     // range we consider has to correspond to same signedness as the
6880     // predicate we're interested in folding.
6881
6882     APInt Min = ICmpInst::isSigned(Pred) ?
6883         getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
6884
6885     if (Min == C->getValue()->getValue()) {
6886       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
6887       // This is true even if (Min + 1) wraps around -- in case of
6888       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
6889
6890       APInt SharperMin = Min + 1;
6891
6892       switch (Pred) {
6893         case ICmpInst::ICMP_SGE:
6894         case ICmpInst::ICMP_UGE:
6895           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
6896           // RHS, we're done.
6897           if (isImpliedCondOperands(Pred, LHS, RHS, V,
6898                                     getConstant(SharperMin)))
6899             return true;
6900
6901         case ICmpInst::ICMP_SGT:
6902         case ICmpInst::ICMP_UGT:
6903           // We know from the range information that (V `Pred` Min ||
6904           // V == Min).  We know from the guarding condition that !(V
6905           // == Min).  This gives us
6906           //
6907           //       V `Pred` Min || V == Min && !(V == Min)
6908           //   =>  V `Pred` Min
6909           //
6910           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
6911
6912           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
6913             return true;
6914
6915         default:
6916           // No change
6917           break;
6918       }
6919     }
6920   }
6921
6922   // Check whether the actual condition is beyond sufficient.
6923   if (FoundPred == ICmpInst::ICMP_EQ)
6924     if (ICmpInst::isTrueWhenEqual(Pred))
6925       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6926         return true;
6927   if (Pred == ICmpInst::ICMP_NE)
6928     if (!ICmpInst::isTrueWhenEqual(FoundPred))
6929       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6930         return true;
6931
6932   // Otherwise assume the worst.
6933   return false;
6934 }
6935
6936 /// isImpliedCondOperands - Test whether the condition described by Pred,
6937 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
6938 /// and FoundRHS is true.
6939 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6940                                             const SCEV *LHS, const SCEV *RHS,
6941                                             const SCEV *FoundLHS,
6942                                             const SCEV *FoundRHS) {
6943   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
6944     return true;
6945
6946   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6947                                      FoundLHS, FoundRHS) ||
6948          // ~x < ~y --> x > y
6949          isImpliedCondOperandsHelper(Pred, LHS, RHS,
6950                                      getNotSCEV(FoundRHS),
6951                                      getNotSCEV(FoundLHS));
6952 }
6953
6954
6955 /// If Expr computes ~A, return A else return nullptr
6956 static const SCEV *MatchNotExpr(const SCEV *Expr) {
6957   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
6958   if (!Add || Add->getNumOperands() != 2) return nullptr;
6959
6960   const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0));
6961   if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue()))
6962     return nullptr;
6963
6964   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
6965   if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr;
6966
6967   const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0));
6968   if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue()))
6969     return nullptr;
6970
6971   return AddRHS->getOperand(1);
6972 }
6973
6974
6975 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
6976 template<typename MaxExprType>
6977 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
6978                               const SCEV *Candidate) {
6979   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
6980   if (!MaxExpr) return false;
6981
6982   auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate);
6983   return It != MaxExpr->op_end();
6984 }
6985
6986
6987 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
6988 template<typename MaxExprType>
6989 static bool IsMinConsistingOf(ScalarEvolution &SE,
6990                               const SCEV *MaybeMinExpr,
6991                               const SCEV *Candidate) {
6992   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
6993   if (!MaybeMaxExpr)
6994     return false;
6995
6996   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
6997 }
6998
6999
7000 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
7001 /// expression?
7002 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
7003                                         ICmpInst::Predicate Pred,
7004                                         const SCEV *LHS, const SCEV *RHS) {
7005   switch (Pred) {
7006   default:
7007     return false;
7008
7009   case ICmpInst::ICMP_SGE:
7010     std::swap(LHS, RHS);
7011     // fall through
7012   case ICmpInst::ICMP_SLE:
7013     return
7014       // min(A, ...) <= A
7015       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
7016       // A <= max(A, ...)
7017       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
7018
7019   case ICmpInst::ICMP_UGE:
7020     std::swap(LHS, RHS);
7021     // fall through
7022   case ICmpInst::ICMP_ULE:
7023     return
7024       // min(A, ...) <= A
7025       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
7026       // A <= max(A, ...)
7027       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
7028   }
7029
7030   llvm_unreachable("covered switch fell through?!");
7031 }
7032
7033 /// isImpliedCondOperandsHelper - Test whether the condition described by
7034 /// Pred, LHS, and RHS is true whenever the condition described by Pred,
7035 /// FoundLHS, and FoundRHS is true.
7036 bool
7037 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
7038                                              const SCEV *LHS, const SCEV *RHS,
7039                                              const SCEV *FoundLHS,
7040                                              const SCEV *FoundRHS) {
7041   auto IsKnownPredicateFull =
7042       [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7043     return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
7044         IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS);
7045   };
7046
7047   switch (Pred) {
7048   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
7049   case ICmpInst::ICMP_EQ:
7050   case ICmpInst::ICMP_NE:
7051     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
7052       return true;
7053     break;
7054   case ICmpInst::ICMP_SLT:
7055   case ICmpInst::ICMP_SLE:
7056     if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
7057         IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
7058       return true;
7059     break;
7060   case ICmpInst::ICMP_SGT:
7061   case ICmpInst::ICMP_SGE:
7062     if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
7063         IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
7064       return true;
7065     break;
7066   case ICmpInst::ICMP_ULT:
7067   case ICmpInst::ICMP_ULE:
7068     if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
7069         IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
7070       return true;
7071     break;
7072   case ICmpInst::ICMP_UGT:
7073   case ICmpInst::ICMP_UGE:
7074     if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
7075         IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
7076       return true;
7077     break;
7078   }
7079
7080   return false;
7081 }
7082
7083 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
7084 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
7085 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
7086                                                      const SCEV *LHS,
7087                                                      const SCEV *RHS,
7088                                                      const SCEV *FoundLHS,
7089                                                      const SCEV *FoundRHS) {
7090   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
7091     // The restriction on `FoundRHS` be lifted easily -- it exists only to
7092     // reduce the compile time impact of this optimization.
7093     return false;
7094
7095   const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
7096   if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
7097       !isa<SCEVConstant>(AddLHS->getOperand(0)))
7098     return false;
7099
7100   APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue();
7101
7102   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
7103   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
7104   ConstantRange FoundLHSRange =
7105       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
7106
7107   // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
7108   // for `LHS`:
7109   APInt Addend =
7110       cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue();
7111   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
7112
7113   // We can also compute the range of values for `LHS` that satisfy the
7114   // consequent, "`LHS` `Pred` `RHS`":
7115   APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue();
7116   ConstantRange SatisfyingLHSRange =
7117       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
7118
7119   // The antecedent implies the consequent if every value of `LHS` that
7120   // satisfies the antecedent also satisfies the consequent.
7121   return SatisfyingLHSRange.contains(LHSRange);
7122 }
7123
7124 // Verify if an linear IV with positive stride can overflow when in a
7125 // less-than comparison, knowing the invariant term of the comparison, the
7126 // stride and the knowledge of NSW/NUW flags on the recurrence.
7127 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
7128                                          bool IsSigned, bool NoWrap) {
7129   if (NoWrap) return false;
7130
7131   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7132   const SCEV *One = getConstant(Stride->getType(), 1);
7133
7134   if (IsSigned) {
7135     APInt MaxRHS = getSignedRange(RHS).getSignedMax();
7136     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
7137     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7138                                 .getSignedMax();
7139
7140     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
7141     return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
7142   }
7143
7144   APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
7145   APInt MaxValue = APInt::getMaxValue(BitWidth);
7146   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7147                               .getUnsignedMax();
7148
7149   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
7150   return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
7151 }
7152
7153 // Verify if an linear IV with negative stride can overflow when in a
7154 // greater-than comparison, knowing the invariant term of the comparison,
7155 // the stride and the knowledge of NSW/NUW flags on the recurrence.
7156 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
7157                                          bool IsSigned, bool NoWrap) {
7158   if (NoWrap) return false;
7159
7160   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7161   const SCEV *One = getConstant(Stride->getType(), 1);
7162
7163   if (IsSigned) {
7164     APInt MinRHS = getSignedRange(RHS).getSignedMin();
7165     APInt MinValue = APInt::getSignedMinValue(BitWidth);
7166     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7167                                .getSignedMax();
7168
7169     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
7170     return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
7171   }
7172
7173   APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
7174   APInt MinValue = APInt::getMinValue(BitWidth);
7175   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7176                             .getUnsignedMax();
7177
7178   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
7179   return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
7180 }
7181
7182 // Compute the backedge taken count knowing the interval difference, the
7183 // stride and presence of the equality in the comparison.
7184 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
7185                                             bool Equality) {
7186   const SCEV *One = getConstant(Step->getType(), 1);
7187   Delta = Equality ? getAddExpr(Delta, Step)
7188                    : getAddExpr(Delta, getMinusSCEV(Step, One));
7189   return getUDivExpr(Delta, Step);
7190 }
7191
7192 /// HowManyLessThans - Return the number of times a backedge containing the
7193 /// specified less-than comparison will execute.  If not computable, return
7194 /// CouldNotCompute.
7195 ///
7196 /// @param ControlsExit is true when the LHS < RHS condition directly controls
7197 /// the branch (loops exits only if condition is true). In this case, we can use
7198 /// NoWrapFlags to skip overflow checks.
7199 ScalarEvolution::ExitLimit
7200 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
7201                                   const Loop *L, bool IsSigned,
7202                                   bool ControlsExit) {
7203   // We handle only IV < Invariant
7204   if (!isLoopInvariant(RHS, L))
7205     return getCouldNotCompute();
7206
7207   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
7208
7209   // Avoid weird loops
7210   if (!IV || IV->getLoop() != L || !IV->isAffine())
7211     return getCouldNotCompute();
7212
7213   bool NoWrap = ControlsExit &&
7214                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
7215
7216   const SCEV *Stride = IV->getStepRecurrence(*this);
7217
7218   // Avoid negative or zero stride values
7219   if (!isKnownPositive(Stride))
7220     return getCouldNotCompute();
7221
7222   // Avoid proven overflow cases: this will ensure that the backedge taken count
7223   // will not generate any unsigned overflow. Relaxed no-overflow conditions
7224   // exploit NoWrapFlags, allowing to optimize in presence of undefined
7225   // behaviors like the case of C language.
7226   if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
7227     return getCouldNotCompute();
7228
7229   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
7230                                       : ICmpInst::ICMP_ULT;
7231   const SCEV *Start = IV->getStart();
7232   const SCEV *End = RHS;
7233   if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
7234     const SCEV *Diff = getMinusSCEV(RHS, Start);
7235     // If we have NoWrap set, then we can assume that the increment won't
7236     // overflow, in which case if RHS - Start is a constant, we don't need to
7237     // do a max operation since we can just figure it out statically
7238     if (NoWrap && isa<SCEVConstant>(Diff)) {
7239       APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7240       if (D.isNegative())
7241         End = Start;
7242     } else
7243       End = IsSigned ? getSMaxExpr(RHS, Start)
7244                      : getUMaxExpr(RHS, Start);
7245   }
7246
7247   const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
7248
7249   APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
7250                             : getUnsignedRange(Start).getUnsignedMin();
7251
7252   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7253                              : getUnsignedRange(Stride).getUnsignedMin();
7254
7255   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7256   APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
7257                          : APInt::getMaxValue(BitWidth) - (MinStride - 1);
7258
7259   // Although End can be a MAX expression we estimate MaxEnd considering only
7260   // the case End = RHS. This is safe because in the other case (End - Start)
7261   // is zero, leading to a zero maximum backedge taken count.
7262   APInt MaxEnd =
7263     IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
7264              : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
7265
7266   const SCEV *MaxBECount;
7267   if (isa<SCEVConstant>(BECount))
7268     MaxBECount = BECount;
7269   else
7270     MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
7271                                 getConstant(MinStride), false);
7272
7273   if (isa<SCEVCouldNotCompute>(MaxBECount))
7274     MaxBECount = BECount;
7275
7276   return ExitLimit(BECount, MaxBECount);
7277 }
7278
7279 ScalarEvolution::ExitLimit
7280 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
7281                                      const Loop *L, bool IsSigned,
7282                                      bool ControlsExit) {
7283   // We handle only IV > Invariant
7284   if (!isLoopInvariant(RHS, L))
7285     return getCouldNotCompute();
7286
7287   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
7288
7289   // Avoid weird loops
7290   if (!IV || IV->getLoop() != L || !IV->isAffine())
7291     return getCouldNotCompute();
7292
7293   bool NoWrap = ControlsExit &&
7294                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
7295
7296   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
7297
7298   // Avoid negative or zero stride values
7299   if (!isKnownPositive(Stride))
7300     return getCouldNotCompute();
7301
7302   // Avoid proven overflow cases: this will ensure that the backedge taken count
7303   // will not generate any unsigned overflow. Relaxed no-overflow conditions
7304   // exploit NoWrapFlags, allowing to optimize in presence of undefined
7305   // behaviors like the case of C language.
7306   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
7307     return getCouldNotCompute();
7308
7309   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
7310                                       : ICmpInst::ICMP_UGT;
7311
7312   const SCEV *Start = IV->getStart();
7313   const SCEV *End = RHS;
7314   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
7315     const SCEV *Diff = getMinusSCEV(RHS, Start);
7316     // If we have NoWrap set, then we can assume that the increment won't
7317     // overflow, in which case if RHS - Start is a constant, we don't need to
7318     // do a max operation since we can just figure it out statically
7319     if (NoWrap && isa<SCEVConstant>(Diff)) {
7320       APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7321       if (!D.isNegative())
7322         End = Start;
7323     } else
7324       End = IsSigned ? getSMinExpr(RHS, Start)
7325                      : getUMinExpr(RHS, Start);
7326   }
7327
7328   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
7329
7330   APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
7331                             : getUnsignedRange(Start).getUnsignedMax();
7332
7333   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7334                              : getUnsignedRange(Stride).getUnsignedMin();
7335
7336   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7337   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
7338                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
7339
7340   // Although End can be a MIN expression we estimate MinEnd considering only
7341   // the case End = RHS. This is safe because in the other case (Start - End)
7342   // is zero, leading to a zero maximum backedge taken count.
7343   APInt MinEnd =
7344     IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
7345              : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
7346
7347
7348   const SCEV *MaxBECount = getCouldNotCompute();
7349   if (isa<SCEVConstant>(BECount))
7350     MaxBECount = BECount;
7351   else
7352     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
7353                                 getConstant(MinStride), false);
7354
7355   if (isa<SCEVCouldNotCompute>(MaxBECount))
7356     MaxBECount = BECount;
7357
7358   return ExitLimit(BECount, MaxBECount);
7359 }
7360
7361 /// getNumIterationsInRange - Return the number of iterations of this loop that
7362 /// produce values in the specified constant range.  Another way of looking at
7363 /// this is that it returns the first iteration number where the value is not in
7364 /// the condition, thus computing the exit count. If the iteration count can't
7365 /// be computed, an instance of SCEVCouldNotCompute is returned.
7366 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
7367                                                     ScalarEvolution &SE) const {
7368   if (Range.isFullSet())  // Infinite loop.
7369     return SE.getCouldNotCompute();
7370
7371   // If the start is a non-zero constant, shift the range to simplify things.
7372   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
7373     if (!SC->getValue()->isZero()) {
7374       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
7375       Operands[0] = SE.getConstant(SC->getType(), 0);
7376       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
7377                                              getNoWrapFlags(FlagNW));
7378       if (const SCEVAddRecExpr *ShiftedAddRec =
7379             dyn_cast<SCEVAddRecExpr>(Shifted))
7380         return ShiftedAddRec->getNumIterationsInRange(
7381                            Range.subtract(SC->getValue()->getValue()), SE);
7382       // This is strange and shouldn't happen.
7383       return SE.getCouldNotCompute();
7384     }
7385
7386   // The only time we can solve this is when we have all constant indices.
7387   // Otherwise, we cannot determine the overflow conditions.
7388   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
7389     if (!isa<SCEVConstant>(getOperand(i)))
7390       return SE.getCouldNotCompute();
7391
7392
7393   // Okay at this point we know that all elements of the chrec are constants and
7394   // that the start element is zero.
7395
7396   // First check to see if the range contains zero.  If not, the first
7397   // iteration exits.
7398   unsigned BitWidth = SE.getTypeSizeInBits(getType());
7399   if (!Range.contains(APInt(BitWidth, 0)))
7400     return SE.getConstant(getType(), 0);
7401
7402   if (isAffine()) {
7403     // If this is an affine expression then we have this situation:
7404     //   Solve {0,+,A} in Range  ===  Ax in Range
7405
7406     // We know that zero is in the range.  If A is positive then we know that
7407     // the upper value of the range must be the first possible exit value.
7408     // If A is negative then the lower of the range is the last possible loop
7409     // value.  Also note that we already checked for a full range.
7410     APInt One(BitWidth,1);
7411     APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
7412     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
7413
7414     // The exit value should be (End+A)/A.
7415     APInt ExitVal = (End + A).udiv(A);
7416     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
7417
7418     // Evaluate at the exit value.  If we really did fall out of the valid
7419     // range, then we computed our trip count, otherwise wrap around or other
7420     // things must have happened.
7421     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
7422     if (Range.contains(Val->getValue()))
7423       return SE.getCouldNotCompute();  // Something strange happened
7424
7425     // Ensure that the previous value is in the range.  This is a sanity check.
7426     assert(Range.contains(
7427            EvaluateConstantChrecAtConstant(this,
7428            ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
7429            "Linear scev computation is off in a bad way!");
7430     return SE.getConstant(ExitValue);
7431   } else if (isQuadratic()) {
7432     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
7433     // quadratic equation to solve it.  To do this, we must frame our problem in
7434     // terms of figuring out when zero is crossed, instead of when
7435     // Range.getUpper() is crossed.
7436     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
7437     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
7438     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
7439                                              // getNoWrapFlags(FlagNW)
7440                                              FlagAnyWrap);
7441
7442     // Next, solve the constructed addrec
7443     std::pair<const SCEV *,const SCEV *> Roots =
7444       SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
7445     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
7446     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
7447     if (R1) {
7448       // Pick the smallest positive root value.
7449       if (ConstantInt *CB =
7450           dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
7451                          R1->getValue(), R2->getValue()))) {
7452         if (!CB->getZExtValue())
7453           std::swap(R1, R2);   // R1 is the minimum root now.
7454
7455         // Make sure the root is not off by one.  The returned iteration should
7456         // not be in the range, but the previous one should be.  When solving
7457         // for "X*X < 5", for example, we should not return a root of 2.
7458         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
7459                                                              R1->getValue(),
7460                                                              SE);
7461         if (Range.contains(R1Val->getValue())) {
7462           // The next iteration must be out of the range...
7463           ConstantInt *NextVal =
7464                 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
7465
7466           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
7467           if (!Range.contains(R1Val->getValue()))
7468             return SE.getConstant(NextVal);
7469           return SE.getCouldNotCompute();  // Something strange happened
7470         }
7471
7472         // If R1 was not in the range, then it is a good return value.  Make
7473         // sure that R1-1 WAS in the range though, just in case.
7474         ConstantInt *NextVal =
7475                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
7476         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
7477         if (Range.contains(R1Val->getValue()))
7478           return R1;
7479         return SE.getCouldNotCompute();  // Something strange happened
7480       }
7481     }
7482   }
7483
7484   return SE.getCouldNotCompute();
7485 }
7486
7487 namespace {
7488 struct FindUndefs {
7489   bool Found;
7490   FindUndefs() : Found(false) {}
7491
7492   bool follow(const SCEV *S) {
7493     if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
7494       if (isa<UndefValue>(C->getValue()))
7495         Found = true;
7496     } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
7497       if (isa<UndefValue>(C->getValue()))
7498         Found = true;
7499     }
7500
7501     // Keep looking if we haven't found it yet.
7502     return !Found;
7503   }
7504   bool isDone() const {
7505     // Stop recursion if we have found an undef.
7506     return Found;
7507   }
7508 };
7509 }
7510
7511 // Return true when S contains at least an undef value.
7512 static inline bool
7513 containsUndefs(const SCEV *S) {
7514   FindUndefs F;
7515   SCEVTraversal<FindUndefs> ST(F);
7516   ST.visitAll(S);
7517
7518   return F.Found;
7519 }
7520
7521 namespace {
7522 // Collect all steps of SCEV expressions.
7523 struct SCEVCollectStrides {
7524   ScalarEvolution &SE;
7525   SmallVectorImpl<const SCEV *> &Strides;
7526
7527   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
7528       : SE(SE), Strides(S) {}
7529
7530   bool follow(const SCEV *S) {
7531     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
7532       Strides.push_back(AR->getStepRecurrence(SE));
7533     return true;
7534   }
7535   bool isDone() const { return false; }
7536 };
7537
7538 // Collect all SCEVUnknown and SCEVMulExpr expressions.
7539 struct SCEVCollectTerms {
7540   SmallVectorImpl<const SCEV *> &Terms;
7541
7542   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
7543       : Terms(T) {}
7544
7545   bool follow(const SCEV *S) {
7546     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
7547       if (!containsUndefs(S))
7548         Terms.push_back(S);
7549
7550       // Stop recursion: once we collected a term, do not walk its operands.
7551       return false;
7552     }
7553
7554     // Keep looking.
7555     return true;
7556   }
7557   bool isDone() const { return false; }
7558 };
7559 }
7560
7561 /// Find parametric terms in this SCEVAddRecExpr.
7562 void SCEVAddRecExpr::collectParametricTerms(
7563     ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const {
7564   SmallVector<const SCEV *, 4> Strides;
7565   SCEVCollectStrides StrideCollector(SE, Strides);
7566   visitAll(this, StrideCollector);
7567
7568   DEBUG({
7569       dbgs() << "Strides:\n";
7570       for (const SCEV *S : Strides)
7571         dbgs() << *S << "\n";
7572     });
7573
7574   for (const SCEV *S : Strides) {
7575     SCEVCollectTerms TermCollector(Terms);
7576     visitAll(S, TermCollector);
7577   }
7578
7579   DEBUG({
7580       dbgs() << "Terms:\n";
7581       for (const SCEV *T : Terms)
7582         dbgs() << *T << "\n";
7583     });
7584 }
7585
7586 static bool findArrayDimensionsRec(ScalarEvolution &SE,
7587                                    SmallVectorImpl<const SCEV *> &Terms,
7588                                    SmallVectorImpl<const SCEV *> &Sizes) {
7589   int Last = Terms.size() - 1;
7590   const SCEV *Step = Terms[Last];
7591
7592   // End of recursion.
7593   if (Last == 0) {
7594     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
7595       SmallVector<const SCEV *, 2> Qs;
7596       for (const SCEV *Op : M->operands())
7597         if (!isa<SCEVConstant>(Op))
7598           Qs.push_back(Op);
7599
7600       Step = SE.getMulExpr(Qs);
7601     }
7602
7603     Sizes.push_back(Step);
7604     return true;
7605   }
7606
7607   for (const SCEV *&Term : Terms) {
7608     // Normalize the terms before the next call to findArrayDimensionsRec.
7609     const SCEV *Q, *R;
7610     SCEVDivision::divide(SE, Term, Step, &Q, &R);
7611
7612     // Bail out when GCD does not evenly divide one of the terms.
7613     if (!R->isZero())
7614       return false;
7615
7616     Term = Q;
7617   }
7618
7619   // Remove all SCEVConstants.
7620   Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
7621                 return isa<SCEVConstant>(E);
7622               }),
7623               Terms.end());
7624
7625   if (Terms.size() > 0)
7626     if (!findArrayDimensionsRec(SE, Terms, Sizes))
7627       return false;
7628
7629   Sizes.push_back(Step);
7630   return true;
7631 }
7632
7633 namespace {
7634 struct FindParameter {
7635   bool FoundParameter;
7636   FindParameter() : FoundParameter(false) {}
7637
7638   bool follow(const SCEV *S) {
7639     if (isa<SCEVUnknown>(S)) {
7640       FoundParameter = true;
7641       // Stop recursion: we found a parameter.
7642       return false;
7643     }
7644     // Keep looking.
7645     return true;
7646   }
7647   bool isDone() const {
7648     // Stop recursion if we have found a parameter.
7649     return FoundParameter;
7650   }
7651 };
7652 }
7653
7654 // Returns true when S contains at least a SCEVUnknown parameter.
7655 static inline bool
7656 containsParameters(const SCEV *S) {
7657   FindParameter F;
7658   SCEVTraversal<FindParameter> ST(F);
7659   ST.visitAll(S);
7660
7661   return F.FoundParameter;
7662 }
7663
7664 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
7665 static inline bool
7666 containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
7667   for (const SCEV *T : Terms)
7668     if (containsParameters(T))
7669       return true;
7670   return false;
7671 }
7672
7673 // Return the number of product terms in S.
7674 static inline int numberOfTerms(const SCEV *S) {
7675   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
7676     return Expr->getNumOperands();
7677   return 1;
7678 }
7679
7680 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
7681   if (isa<SCEVConstant>(T))
7682     return nullptr;
7683
7684   if (isa<SCEVUnknown>(T))
7685     return T;
7686
7687   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
7688     SmallVector<const SCEV *, 2> Factors;
7689     for (const SCEV *Op : M->operands())
7690       if (!isa<SCEVConstant>(Op))
7691         Factors.push_back(Op);
7692
7693     return SE.getMulExpr(Factors);
7694   }
7695
7696   return T;
7697 }
7698
7699 /// Return the size of an element read or written by Inst.
7700 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
7701   Type *Ty;
7702   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
7703     Ty = Store->getValueOperand()->getType();
7704   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
7705     Ty = Load->getType();
7706   else
7707     return nullptr;
7708
7709   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
7710   return getSizeOfExpr(ETy, Ty);
7711 }
7712
7713 /// Second step of delinearization: compute the array dimensions Sizes from the
7714 /// set of Terms extracted from the memory access function of this SCEVAddRec.
7715 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
7716                                           SmallVectorImpl<const SCEV *> &Sizes,
7717                                           const SCEV *ElementSize) const {
7718
7719   if (Terms.size() < 1 || !ElementSize)
7720     return;
7721
7722   // Early return when Terms do not contain parameters: we do not delinearize
7723   // non parametric SCEVs.
7724   if (!containsParameters(Terms))
7725     return;
7726
7727   DEBUG({
7728       dbgs() << "Terms:\n";
7729       for (const SCEV *T : Terms)
7730         dbgs() << *T << "\n";
7731     });
7732
7733   // Remove duplicates.
7734   std::sort(Terms.begin(), Terms.end());
7735   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
7736
7737   // Put larger terms first.
7738   std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
7739     return numberOfTerms(LHS) > numberOfTerms(RHS);
7740   });
7741
7742   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7743
7744   // Divide all terms by the element size.
7745   for (const SCEV *&Term : Terms) {
7746     const SCEV *Q, *R;
7747     SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
7748     Term = Q;
7749   }
7750
7751   SmallVector<const SCEV *, 4> NewTerms;
7752
7753   // Remove constant factors.
7754   for (const SCEV *T : Terms)
7755     if (const SCEV *NewT = removeConstantFactors(SE, T))
7756       NewTerms.push_back(NewT);
7757
7758   DEBUG({
7759       dbgs() << "Terms after sorting:\n";
7760       for (const SCEV *T : NewTerms)
7761         dbgs() << *T << "\n";
7762     });
7763
7764   if (NewTerms.empty() ||
7765       !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
7766     Sizes.clear();
7767     return;
7768   }
7769
7770   // The last element to be pushed into Sizes is the size of an element.
7771   Sizes.push_back(ElementSize);
7772
7773   DEBUG({
7774       dbgs() << "Sizes:\n";
7775       for (const SCEV *S : Sizes)
7776         dbgs() << *S << "\n";
7777     });
7778 }
7779
7780 /// Third step of delinearization: compute the access functions for the
7781 /// Subscripts based on the dimensions in Sizes.
7782 void SCEVAddRecExpr::computeAccessFunctions(
7783     ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts,
7784     SmallVectorImpl<const SCEV *> &Sizes) const {
7785
7786   // Early exit in case this SCEV is not an affine multivariate function.
7787   if (Sizes.empty() || !this->isAffine())
7788     return;
7789
7790   const SCEV *Res = this;
7791   int Last = Sizes.size() - 1;
7792   for (int i = Last; i >= 0; i--) {
7793     const SCEV *Q, *R;
7794     SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R);
7795
7796     DEBUG({
7797         dbgs() << "Res: " << *Res << "\n";
7798         dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
7799         dbgs() << "Res divided by Sizes[i]:\n";
7800         dbgs() << "Quotient: " << *Q << "\n";
7801         dbgs() << "Remainder: " << *R << "\n";
7802       });
7803
7804     Res = Q;
7805
7806     // Do not record the last subscript corresponding to the size of elements in
7807     // the array.
7808     if (i == Last) {
7809
7810       // Bail out if the remainder is too complex.
7811       if (isa<SCEVAddRecExpr>(R)) {
7812         Subscripts.clear();
7813         Sizes.clear();
7814         return;
7815       }
7816
7817       continue;
7818     }
7819
7820     // Record the access function for the current subscript.
7821     Subscripts.push_back(R);
7822   }
7823
7824   // Also push in last position the remainder of the last division: it will be
7825   // the access function of the innermost dimension.
7826   Subscripts.push_back(Res);
7827
7828   std::reverse(Subscripts.begin(), Subscripts.end());
7829
7830   DEBUG({
7831       dbgs() << "Subscripts:\n";
7832       for (const SCEV *S : Subscripts)
7833         dbgs() << *S << "\n";
7834     });
7835 }
7836
7837 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7838 /// sizes of an array access. Returns the remainder of the delinearization that
7839 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
7840 /// the multiples of SCEV coefficients: that is a pattern matching of sub
7841 /// expressions in the stride and base of a SCEV corresponding to the
7842 /// computation of a GCD (greatest common divisor) of base and stride.  When
7843 /// SCEV->delinearize fails, it returns the SCEV unchanged.
7844 ///
7845 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
7846 ///
7847 ///  void foo(long n, long m, long o, double A[n][m][o]) {
7848 ///
7849 ///    for (long i = 0; i < n; i++)
7850 ///      for (long j = 0; j < m; j++)
7851 ///        for (long k = 0; k < o; k++)
7852 ///          A[i][j][k] = 1.0;
7853 ///  }
7854 ///
7855 /// the delinearization input is the following AddRec SCEV:
7856 ///
7857 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
7858 ///
7859 /// From this SCEV, we are able to say that the base offset of the access is %A
7860 /// because it appears as an offset that does not divide any of the strides in
7861 /// the loops:
7862 ///
7863 ///  CHECK: Base offset: %A
7864 ///
7865 /// and then SCEV->delinearize determines the size of some of the dimensions of
7866 /// the array as these are the multiples by which the strides are happening:
7867 ///
7868 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
7869 ///
7870 /// Note that the outermost dimension remains of UnknownSize because there are
7871 /// no strides that would help identifying the size of the last dimension: when
7872 /// the array has been statically allocated, one could compute the size of that
7873 /// dimension by dividing the overall size of the array by the size of the known
7874 /// dimensions: %m * %o * 8.
7875 ///
7876 /// Finally delinearize provides the access functions for the array reference
7877 /// that does correspond to A[i][j][k] of the above C testcase:
7878 ///
7879 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
7880 ///
7881 /// The testcases are checking the output of a function pass:
7882 /// DelinearizationPass that walks through all loads and stores of a function
7883 /// asking for the SCEV of the memory access with respect to all enclosing
7884 /// loops, calling SCEV->delinearize on that and printing the results.
7885
7886 void SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7887                                  SmallVectorImpl<const SCEV *> &Subscripts,
7888                                  SmallVectorImpl<const SCEV *> &Sizes,
7889                                  const SCEV *ElementSize) const {
7890   // First step: collect parametric terms.
7891   SmallVector<const SCEV *, 4> Terms;
7892   collectParametricTerms(SE, Terms);
7893
7894   if (Terms.empty())
7895     return;
7896
7897   // Second step: find subscript sizes.
7898   SE.findArrayDimensions(Terms, Sizes, ElementSize);
7899
7900   if (Sizes.empty())
7901     return;
7902
7903   // Third step: compute the access functions for each subscript.
7904   computeAccessFunctions(SE, Subscripts, Sizes);
7905
7906   if (Subscripts.empty())
7907     return;
7908
7909   DEBUG({
7910       dbgs() << "succeeded to delinearize " << *this << "\n";
7911       dbgs() << "ArrayDecl[UnknownSize]";
7912       for (const SCEV *S : Sizes)
7913         dbgs() << "[" << *S << "]";
7914
7915       dbgs() << "\nArrayRef";
7916       for (const SCEV *S : Subscripts)
7917         dbgs() << "[" << *S << "]";
7918       dbgs() << "\n";
7919     });
7920 }
7921
7922 //===----------------------------------------------------------------------===//
7923 //                   SCEVCallbackVH Class Implementation
7924 //===----------------------------------------------------------------------===//
7925
7926 void ScalarEvolution::SCEVCallbackVH::deleted() {
7927   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
7928   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
7929     SE->ConstantEvolutionLoopExitValue.erase(PN);
7930   SE->ValueExprMap.erase(getValPtr());
7931   // this now dangles!
7932 }
7933
7934 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
7935   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
7936
7937   // Forget all the expressions associated with users of the old value,
7938   // so that future queries will recompute the expressions using the new
7939   // value.
7940   Value *Old = getValPtr();
7941   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
7942   SmallPtrSet<User *, 8> Visited;
7943   while (!Worklist.empty()) {
7944     User *U = Worklist.pop_back_val();
7945     // Deleting the Old value will cause this to dangle. Postpone
7946     // that until everything else is done.
7947     if (U == Old)
7948       continue;
7949     if (!Visited.insert(U).second)
7950       continue;
7951     if (PHINode *PN = dyn_cast<PHINode>(U))
7952       SE->ConstantEvolutionLoopExitValue.erase(PN);
7953     SE->ValueExprMap.erase(U);
7954     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
7955   }
7956   // Delete the Old value.
7957   if (PHINode *PN = dyn_cast<PHINode>(Old))
7958     SE->ConstantEvolutionLoopExitValue.erase(PN);
7959   SE->ValueExprMap.erase(Old);
7960   // this now dangles!
7961 }
7962
7963 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
7964   : CallbackVH(V), SE(se) {}
7965
7966 //===----------------------------------------------------------------------===//
7967 //                   ScalarEvolution Class Implementation
7968 //===----------------------------------------------------------------------===//
7969
7970 ScalarEvolution::ScalarEvolution()
7971   : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64),
7972     BlockDispositions(64), FirstUnknown(nullptr) {
7973   initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
7974 }
7975
7976 bool ScalarEvolution::runOnFunction(Function &F) {
7977   this->F = &F;
7978   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
7979   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
7980   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
7981   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
7982   return false;
7983 }
7984
7985 void ScalarEvolution::releaseMemory() {
7986   // Iterate through all the SCEVUnknown instances and call their
7987   // destructors, so that they release their references to their values.
7988   for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
7989     U->~SCEVUnknown();
7990   FirstUnknown = nullptr;
7991
7992   ValueExprMap.clear();
7993
7994   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
7995   // that a loop had multiple computable exits.
7996   for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7997          BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
7998        I != E; ++I) {
7999     I->second.clear();
8000   }
8001
8002   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
8003
8004   BackedgeTakenCounts.clear();
8005   ConstantEvolutionLoopExitValue.clear();
8006   ValuesAtScopes.clear();
8007   LoopDispositions.clear();
8008   BlockDispositions.clear();
8009   UnsignedRanges.clear();
8010   SignedRanges.clear();
8011   UniqueSCEVs.clear();
8012   SCEVAllocator.Reset();
8013 }
8014
8015 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
8016   AU.setPreservesAll();
8017   AU.addRequired<AssumptionCacheTracker>();
8018   AU.addRequiredTransitive<LoopInfoWrapperPass>();
8019   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
8020   AU.addRequired<TargetLibraryInfoWrapperPass>();
8021 }
8022
8023 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
8024   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
8025 }
8026
8027 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
8028                           const Loop *L) {
8029   // Print all inner loops first
8030   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
8031     PrintLoopInfo(OS, SE, *I);
8032
8033   OS << "Loop ";
8034   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
8035   OS << ": ";
8036
8037   SmallVector<BasicBlock *, 8> ExitBlocks;
8038   L->getExitBlocks(ExitBlocks);
8039   if (ExitBlocks.size() != 1)
8040     OS << "<multiple exits> ";
8041
8042   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
8043     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
8044   } else {
8045     OS << "Unpredictable backedge-taken count. ";
8046   }
8047
8048   OS << "\n"
8049         "Loop ";
8050   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
8051   OS << ": ";
8052
8053   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
8054     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
8055   } else {
8056     OS << "Unpredictable max backedge-taken count. ";
8057   }
8058
8059   OS << "\n";
8060 }
8061
8062 void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
8063   // ScalarEvolution's implementation of the print method is to print
8064   // out SCEV values of all instructions that are interesting. Doing
8065   // this potentially causes it to create new SCEV objects though,
8066   // which technically conflicts with the const qualifier. This isn't
8067   // observable from outside the class though, so casting away the
8068   // const isn't dangerous.
8069   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8070
8071   OS << "Classifying expressions for: ";
8072   F->printAsOperand(OS, /*PrintType=*/false);
8073   OS << "\n";
8074   for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
8075     if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
8076       OS << *I << '\n';
8077       OS << "  -->  ";
8078       const SCEV *SV = SE.getSCEV(&*I);
8079       SV->print(OS);
8080       if (!isa<SCEVCouldNotCompute>(SV)) {
8081         OS << " U: ";
8082         SE.getUnsignedRange(SV).print(OS);
8083         OS << " S: ";
8084         SE.getSignedRange(SV).print(OS);
8085       }
8086
8087       const Loop *L = LI->getLoopFor((*I).getParent());
8088
8089       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
8090       if (AtUse != SV) {
8091         OS << "  -->  ";
8092         AtUse->print(OS);
8093         if (!isa<SCEVCouldNotCompute>(AtUse)) {
8094           OS << " U: ";
8095           SE.getUnsignedRange(AtUse).print(OS);
8096           OS << " S: ";
8097           SE.getSignedRange(AtUse).print(OS);
8098         }
8099       }
8100
8101       if (L) {
8102         OS << "\t\t" "Exits: ";
8103         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
8104         if (!SE.isLoopInvariant(ExitValue, L)) {
8105           OS << "<<Unknown>>";
8106         } else {
8107           OS << *ExitValue;
8108         }
8109       }
8110
8111       OS << "\n";
8112     }
8113
8114   OS << "Determining loop execution counts for: ";
8115   F->printAsOperand(OS, /*PrintType=*/false);
8116   OS << "\n";
8117   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
8118     PrintLoopInfo(OS, &SE, *I);
8119 }
8120
8121 ScalarEvolution::LoopDisposition
8122 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
8123   auto &Values = LoopDispositions[S];
8124   for (auto &V : Values) {
8125     if (V.getPointer() == L)
8126       return V.getInt();
8127   }
8128   Values.emplace_back(L, LoopVariant);
8129   LoopDisposition D = computeLoopDisposition(S, L);
8130   auto &Values2 = LoopDispositions[S];
8131   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
8132     if (V.getPointer() == L) {
8133       V.setInt(D);
8134       break;
8135     }
8136   }
8137   return D;
8138 }
8139
8140 ScalarEvolution::LoopDisposition
8141 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
8142   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
8143   case scConstant:
8144     return LoopInvariant;
8145   case scTruncate:
8146   case scZeroExtend:
8147   case scSignExtend:
8148     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
8149   case scAddRecExpr: {
8150     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8151
8152     // If L is the addrec's loop, it's computable.
8153     if (AR->getLoop() == L)
8154       return LoopComputable;
8155
8156     // Add recurrences are never invariant in the function-body (null loop).
8157     if (!L)
8158       return LoopVariant;
8159
8160     // This recurrence is variant w.r.t. L if L contains AR's loop.
8161     if (L->contains(AR->getLoop()))
8162       return LoopVariant;
8163
8164     // This recurrence is invariant w.r.t. L if AR's loop contains L.
8165     if (AR->getLoop()->contains(L))
8166       return LoopInvariant;
8167
8168     // This recurrence is variant w.r.t. L if any of its operands
8169     // are variant.
8170     for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
8171          I != E; ++I)
8172       if (!isLoopInvariant(*I, L))
8173         return LoopVariant;
8174
8175     // Otherwise it's loop-invariant.
8176     return LoopInvariant;
8177   }
8178   case scAddExpr:
8179   case scMulExpr:
8180   case scUMaxExpr:
8181   case scSMaxExpr: {
8182     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
8183     bool HasVarying = false;
8184     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
8185          I != E; ++I) {
8186       LoopDisposition D = getLoopDisposition(*I, L);
8187       if (D == LoopVariant)
8188         return LoopVariant;
8189       if (D == LoopComputable)
8190         HasVarying = true;
8191     }
8192     return HasVarying ? LoopComputable : LoopInvariant;
8193   }
8194   case scUDivExpr: {
8195     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
8196     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
8197     if (LD == LoopVariant)
8198       return LoopVariant;
8199     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
8200     if (RD == LoopVariant)
8201       return LoopVariant;
8202     return (LD == LoopInvariant && RD == LoopInvariant) ?
8203            LoopInvariant : LoopComputable;
8204   }
8205   case scUnknown:
8206     // All non-instruction values are loop invariant.  All instructions are loop
8207     // invariant if they are not contained in the specified loop.
8208     // Instructions are never considered invariant in the function body
8209     // (null loop) because they are defined within the "loop".
8210     if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
8211       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
8212     return LoopInvariant;
8213   case scCouldNotCompute:
8214     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
8215   }
8216   llvm_unreachable("Unknown SCEV kind!");
8217 }
8218
8219 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
8220   return getLoopDisposition(S, L) == LoopInvariant;
8221 }
8222
8223 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
8224   return getLoopDisposition(S, L) == LoopComputable;
8225 }
8226
8227 ScalarEvolution::BlockDisposition
8228 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
8229   auto &Values = BlockDispositions[S];
8230   for (auto &V : Values) {
8231     if (V.getPointer() == BB)
8232       return V.getInt();
8233   }
8234   Values.emplace_back(BB, DoesNotDominateBlock);
8235   BlockDisposition D = computeBlockDisposition(S, BB);
8236   auto &Values2 = BlockDispositions[S];
8237   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
8238     if (V.getPointer() == BB) {
8239       V.setInt(D);
8240       break;
8241     }
8242   }
8243   return D;
8244 }
8245
8246 ScalarEvolution::BlockDisposition
8247 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
8248   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
8249   case scConstant:
8250     return ProperlyDominatesBlock;
8251   case scTruncate:
8252   case scZeroExtend:
8253   case scSignExtend:
8254     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
8255   case scAddRecExpr: {
8256     // This uses a "dominates" query instead of "properly dominates" query
8257     // to test for proper dominance too, because the instruction which
8258     // produces the addrec's value is a PHI, and a PHI effectively properly
8259     // dominates its entire containing block.
8260     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8261     if (!DT->dominates(AR->getLoop()->getHeader(), BB))
8262       return DoesNotDominateBlock;
8263   }
8264   // FALL THROUGH into SCEVNAryExpr handling.
8265   case scAddExpr:
8266   case scMulExpr:
8267   case scUMaxExpr:
8268   case scSMaxExpr: {
8269     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
8270     bool Proper = true;
8271     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
8272          I != E; ++I) {
8273       BlockDisposition D = getBlockDisposition(*I, BB);
8274       if (D == DoesNotDominateBlock)
8275         return DoesNotDominateBlock;
8276       if (D == DominatesBlock)
8277         Proper = false;
8278     }
8279     return Proper ? ProperlyDominatesBlock : DominatesBlock;
8280   }
8281   case scUDivExpr: {
8282     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
8283     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
8284     BlockDisposition LD = getBlockDisposition(LHS, BB);
8285     if (LD == DoesNotDominateBlock)
8286       return DoesNotDominateBlock;
8287     BlockDisposition RD = getBlockDisposition(RHS, BB);
8288     if (RD == DoesNotDominateBlock)
8289       return DoesNotDominateBlock;
8290     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
8291       ProperlyDominatesBlock : DominatesBlock;
8292   }
8293   case scUnknown:
8294     if (Instruction *I =
8295           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
8296       if (I->getParent() == BB)
8297         return DominatesBlock;
8298       if (DT->properlyDominates(I->getParent(), BB))
8299         return ProperlyDominatesBlock;
8300       return DoesNotDominateBlock;
8301     }
8302     return ProperlyDominatesBlock;
8303   case scCouldNotCompute:
8304     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
8305   }
8306   llvm_unreachable("Unknown SCEV kind!");
8307 }
8308
8309 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
8310   return getBlockDisposition(S, BB) >= DominatesBlock;
8311 }
8312
8313 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
8314   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
8315 }
8316
8317 namespace {
8318 // Search for a SCEV expression node within an expression tree.
8319 // Implements SCEVTraversal::Visitor.
8320 struct SCEVSearch {
8321   const SCEV *Node;
8322   bool IsFound;
8323
8324   SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
8325
8326   bool follow(const SCEV *S) {
8327     IsFound |= (S == Node);
8328     return !IsFound;
8329   }
8330   bool isDone() const { return IsFound; }
8331 };
8332 }
8333
8334 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
8335   SCEVSearch Search(Op);
8336   visitAll(S, Search);
8337   return Search.IsFound;
8338 }
8339
8340 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
8341   ValuesAtScopes.erase(S);
8342   LoopDispositions.erase(S);
8343   BlockDispositions.erase(S);
8344   UnsignedRanges.erase(S);
8345   SignedRanges.erase(S);
8346
8347   for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
8348          BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
8349     BackedgeTakenInfo &BEInfo = I->second;
8350     if (BEInfo.hasOperand(S, this)) {
8351       BEInfo.clear();
8352       BackedgeTakenCounts.erase(I++);
8353     }
8354     else
8355       ++I;
8356   }
8357 }
8358
8359 typedef DenseMap<const Loop *, std::string> VerifyMap;
8360
8361 /// replaceSubString - Replaces all occurrences of From in Str with To.
8362 static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
8363   size_t Pos = 0;
8364   while ((Pos = Str.find(From, Pos)) != std::string::npos) {
8365     Str.replace(Pos, From.size(), To.data(), To.size());
8366     Pos += To.size();
8367   }
8368 }
8369
8370 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
8371 static void
8372 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
8373   for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
8374     getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
8375
8376     std::string &S = Map[L];
8377     if (S.empty()) {
8378       raw_string_ostream OS(S);
8379       SE.getBackedgeTakenCount(L)->print(OS);
8380
8381       // false and 0 are semantically equivalent. This can happen in dead loops.
8382       replaceSubString(OS.str(), "false", "0");
8383       // Remove wrap flags, their use in SCEV is highly fragile.
8384       // FIXME: Remove this when SCEV gets smarter about them.
8385       replaceSubString(OS.str(), "<nw>", "");
8386       replaceSubString(OS.str(), "<nsw>", "");
8387       replaceSubString(OS.str(), "<nuw>", "");
8388     }
8389   }
8390 }
8391
8392 void ScalarEvolution::verifyAnalysis() const {
8393   if (!VerifySCEV)
8394     return;
8395
8396   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8397
8398   // Gather stringified backedge taken counts for all loops using SCEV's caches.
8399   // FIXME: It would be much better to store actual values instead of strings,
8400   //        but SCEV pointers will change if we drop the caches.
8401   VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
8402   for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8403     getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
8404
8405   // Gather stringified backedge taken counts for all loops without using
8406   // SCEV's caches.
8407   SE.releaseMemory();
8408   for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8409     getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
8410
8411   // Now compare whether they're the same with and without caches. This allows
8412   // verifying that no pass changed the cache.
8413   assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
8414          "New loops suddenly appeared!");
8415
8416   for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
8417                            OldE = BackedgeDumpsOld.end(),
8418                            NewI = BackedgeDumpsNew.begin();
8419        OldI != OldE; ++OldI, ++NewI) {
8420     assert(OldI->first == NewI->first && "Loop order changed!");
8421
8422     // Compare the stringified SCEVs. We don't care if undef backedgetaken count
8423     // changes.
8424     // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
8425     // means that a pass is buggy or SCEV has to learn a new pattern but is
8426     // usually not harmful.
8427     if (OldI->second != NewI->second &&
8428         OldI->second.find("undef") == std::string::npos &&
8429         NewI->second.find("undef") == std::string::npos &&
8430         OldI->second != "***COULDNOTCOMPUTE***" &&
8431         NewI->second != "***COULDNOTCOMPUTE***") {
8432       dbgs() << "SCEVValidator: SCEV for loop '"
8433              << OldI->first->getHeader()->getName()
8434              << "' changed from '" << OldI->second
8435              << "' to '" << NewI->second << "'!\n";
8436       std::abort();
8437     }
8438   }
8439
8440   // TODO: Verify more things.
8441 }