[SCEV] Add and use SCEVConstant::getAPInt; NFCI
[oota-llvm.git] / lib / Analysis / ScalarEvolution.cpp
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library.  First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
19 //
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
25 //
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression.  These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
30 //
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
34 //
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
37 //
38 //===----------------------------------------------------------------------===//
39 //
40 // There are several good references for the techniques used in this analysis.
41 //
42 //  Chains of recurrences -- a method to expedite the evaluation
43 //  of closed-form functions
44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 //
46 //  On computational properties of chains of recurrences
47 //  Eugene V. Zima
48 //
49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 //  Robert A. van Engelen
51 //
52 //  Efficient Symbolic Analysis for Optimizing Compilers
53 //  Robert A. van Engelen
54 //
55 //  Using the chains of recurrences algebra for data dependence testing and
56 //  induction variable substitution
57 //  MS Thesis, Johnie Birch
58 //
59 //===----------------------------------------------------------------------===//
60
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/ADT/Optional.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/Statistic.h"
66 #include "llvm/Analysis/AssumptionCache.h"
67 #include "llvm/Analysis/ConstantFolding.h"
68 #include "llvm/Analysis/InstructionSimplify.h"
69 #include "llvm/Analysis/LoopInfo.h"
70 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
71 #include "llvm/Analysis/TargetLibraryInfo.h"
72 #include "llvm/Analysis/ValueTracking.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/GetElementPtrTypeIterator.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalVariable.h"
81 #include "llvm/IR/InstIterator.h"
82 #include "llvm/IR/Instructions.h"
83 #include "llvm/IR/LLVMContext.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Operator.h"
86 #include "llvm/IR/PatternMatch.h"
87 #include "llvm/Support/CommandLine.h"
88 #include "llvm/Support/Debug.h"
89 #include "llvm/Support/ErrorHandling.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Support/SaveAndRestore.h"
93 #include <algorithm>
94 using namespace llvm;
95
96 #define DEBUG_TYPE "scalar-evolution"
97
98 STATISTIC(NumArrayLenItCounts,
99           "Number of trip counts computed with array length");
100 STATISTIC(NumTripCountsComputed,
101           "Number of loops with predictable loop counts");
102 STATISTIC(NumTripCountsNotComputed,
103           "Number of loops without predictable loop counts");
104 STATISTIC(NumBruteForceTripCountsComputed,
105           "Number of loops with trip counts computed by force");
106
107 static cl::opt<unsigned>
108 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
109                         cl::desc("Maximum number of iterations SCEV will "
110                                  "symbolically execute a constant "
111                                  "derived loop"),
112                         cl::init(100));
113
114 // FIXME: Enable this with XDEBUG when the test suite is clean.
115 static cl::opt<bool>
116 VerifySCEV("verify-scev",
117            cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
118
119 //===----------------------------------------------------------------------===//
120 //                           SCEV class definitions
121 //===----------------------------------------------------------------------===//
122
123 //===----------------------------------------------------------------------===//
124 // Implementation of the SCEV class.
125 //
126
127 LLVM_DUMP_METHOD
128 void SCEV::dump() const {
129   print(dbgs());
130   dbgs() << '\n';
131 }
132
133 void SCEV::print(raw_ostream &OS) const {
134   switch (static_cast<SCEVTypes>(getSCEVType())) {
135   case scConstant:
136     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
137     return;
138   case scTruncate: {
139     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
140     const SCEV *Op = Trunc->getOperand();
141     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
142        << *Trunc->getType() << ")";
143     return;
144   }
145   case scZeroExtend: {
146     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
147     const SCEV *Op = ZExt->getOperand();
148     OS << "(zext " << *Op->getType() << " " << *Op << " to "
149        << *ZExt->getType() << ")";
150     return;
151   }
152   case scSignExtend: {
153     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
154     const SCEV *Op = SExt->getOperand();
155     OS << "(sext " << *Op->getType() << " " << *Op << " to "
156        << *SExt->getType() << ")";
157     return;
158   }
159   case scAddRecExpr: {
160     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
161     OS << "{" << *AR->getOperand(0);
162     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
163       OS << ",+," << *AR->getOperand(i);
164     OS << "}<";
165     if (AR->getNoWrapFlags(FlagNUW))
166       OS << "nuw><";
167     if (AR->getNoWrapFlags(FlagNSW))
168       OS << "nsw><";
169     if (AR->getNoWrapFlags(FlagNW) &&
170         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
171       OS << "nw><";
172     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
173     OS << ">";
174     return;
175   }
176   case scAddExpr:
177   case scMulExpr:
178   case scUMaxExpr:
179   case scSMaxExpr: {
180     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
181     const char *OpStr = nullptr;
182     switch (NAry->getSCEVType()) {
183     case scAddExpr: OpStr = " + "; break;
184     case scMulExpr: OpStr = " * "; break;
185     case scUMaxExpr: OpStr = " umax "; break;
186     case scSMaxExpr: OpStr = " smax "; break;
187     }
188     OS << "(";
189     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
190          I != E; ++I) {
191       OS << **I;
192       if (std::next(I) != E)
193         OS << OpStr;
194     }
195     OS << ")";
196     switch (NAry->getSCEVType()) {
197     case scAddExpr:
198     case scMulExpr:
199       if (NAry->getNoWrapFlags(FlagNUW))
200         OS << "<nuw>";
201       if (NAry->getNoWrapFlags(FlagNSW))
202         OS << "<nsw>";
203     }
204     return;
205   }
206   case scUDivExpr: {
207     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
208     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
209     return;
210   }
211   case scUnknown: {
212     const SCEVUnknown *U = cast<SCEVUnknown>(this);
213     Type *AllocTy;
214     if (U->isSizeOf(AllocTy)) {
215       OS << "sizeof(" << *AllocTy << ")";
216       return;
217     }
218     if (U->isAlignOf(AllocTy)) {
219       OS << "alignof(" << *AllocTy << ")";
220       return;
221     }
222
223     Type *CTy;
224     Constant *FieldNo;
225     if (U->isOffsetOf(CTy, FieldNo)) {
226       OS << "offsetof(" << *CTy << ", ";
227       FieldNo->printAsOperand(OS, false);
228       OS << ")";
229       return;
230     }
231
232     // Otherwise just print it normally.
233     U->getValue()->printAsOperand(OS, false);
234     return;
235   }
236   case scCouldNotCompute:
237     OS << "***COULDNOTCOMPUTE***";
238     return;
239   }
240   llvm_unreachable("Unknown SCEV kind!");
241 }
242
243 Type *SCEV::getType() const {
244   switch (static_cast<SCEVTypes>(getSCEVType())) {
245   case scConstant:
246     return cast<SCEVConstant>(this)->getType();
247   case scTruncate:
248   case scZeroExtend:
249   case scSignExtend:
250     return cast<SCEVCastExpr>(this)->getType();
251   case scAddRecExpr:
252   case scMulExpr:
253   case scUMaxExpr:
254   case scSMaxExpr:
255     return cast<SCEVNAryExpr>(this)->getType();
256   case scAddExpr:
257     return cast<SCEVAddExpr>(this)->getType();
258   case scUDivExpr:
259     return cast<SCEVUDivExpr>(this)->getType();
260   case scUnknown:
261     return cast<SCEVUnknown>(this)->getType();
262   case scCouldNotCompute:
263     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
264   }
265   llvm_unreachable("Unknown SCEV kind!");
266 }
267
268 bool SCEV::isZero() const {
269   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
270     return SC->getValue()->isZero();
271   return false;
272 }
273
274 bool SCEV::isOne() const {
275   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
276     return SC->getValue()->isOne();
277   return false;
278 }
279
280 bool SCEV::isAllOnesValue() const {
281   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
282     return SC->getValue()->isAllOnesValue();
283   return false;
284 }
285
286 /// isNonConstantNegative - Return true if the specified scev is negated, but
287 /// not a constant.
288 bool SCEV::isNonConstantNegative() const {
289   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
290   if (!Mul) return false;
291
292   // If there is a constant factor, it will be first.
293   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
294   if (!SC) return false;
295
296   // Return true if the value is negative, this matches things like (-42 * V).
297   return SC->getAPInt().isNegative();
298 }
299
300 SCEVCouldNotCompute::SCEVCouldNotCompute() :
301   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
302
303 bool SCEVCouldNotCompute::classof(const SCEV *S) {
304   return S->getSCEVType() == scCouldNotCompute;
305 }
306
307 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
308   FoldingSetNodeID ID;
309   ID.AddInteger(scConstant);
310   ID.AddPointer(V);
311   void *IP = nullptr;
312   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
313   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
314   UniqueSCEVs.InsertNode(S, IP);
315   return S;
316 }
317
318 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
319   return getConstant(ConstantInt::get(getContext(), Val));
320 }
321
322 const SCEV *
323 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
324   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
325   return getConstant(ConstantInt::get(ITy, V, isSigned));
326 }
327
328 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
329                            unsigned SCEVTy, const SCEV *op, Type *ty)
330   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
331
332 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
333                                    const SCEV *op, Type *ty)
334   : SCEVCastExpr(ID, scTruncate, op, ty) {
335   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
336          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
337          "Cannot truncate non-integer value!");
338 }
339
340 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
341                                        const SCEV *op, Type *ty)
342   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
343   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
344          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
345          "Cannot zero extend non-integer value!");
346 }
347
348 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
349                                        const SCEV *op, Type *ty)
350   : SCEVCastExpr(ID, scSignExtend, op, ty) {
351   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
352          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
353          "Cannot sign extend non-integer value!");
354 }
355
356 void SCEVUnknown::deleted() {
357   // Clear this SCEVUnknown from various maps.
358   SE->forgetMemoizedResults(this);
359
360   // Remove this SCEVUnknown from the uniquing map.
361   SE->UniqueSCEVs.RemoveNode(this);
362
363   // Release the value.
364   setValPtr(nullptr);
365 }
366
367 void SCEVUnknown::allUsesReplacedWith(Value *New) {
368   // Clear this SCEVUnknown from various maps.
369   SE->forgetMemoizedResults(this);
370
371   // Remove this SCEVUnknown from the uniquing map.
372   SE->UniqueSCEVs.RemoveNode(this);
373
374   // Update this SCEVUnknown to point to the new value. This is needed
375   // because there may still be outstanding SCEVs which still point to
376   // this SCEVUnknown.
377   setValPtr(New);
378 }
379
380 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
381   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
382     if (VCE->getOpcode() == Instruction::PtrToInt)
383       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
384         if (CE->getOpcode() == Instruction::GetElementPtr &&
385             CE->getOperand(0)->isNullValue() &&
386             CE->getNumOperands() == 2)
387           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
388             if (CI->isOne()) {
389               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
390                                  ->getElementType();
391               return true;
392             }
393
394   return false;
395 }
396
397 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
398   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
399     if (VCE->getOpcode() == Instruction::PtrToInt)
400       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
401         if (CE->getOpcode() == Instruction::GetElementPtr &&
402             CE->getOperand(0)->isNullValue()) {
403           Type *Ty =
404             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
405           if (StructType *STy = dyn_cast<StructType>(Ty))
406             if (!STy->isPacked() &&
407                 CE->getNumOperands() == 3 &&
408                 CE->getOperand(1)->isNullValue()) {
409               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
410                 if (CI->isOne() &&
411                     STy->getNumElements() == 2 &&
412                     STy->getElementType(0)->isIntegerTy(1)) {
413                   AllocTy = STy->getElementType(1);
414                   return true;
415                 }
416             }
417         }
418
419   return false;
420 }
421
422 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
423   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
424     if (VCE->getOpcode() == Instruction::PtrToInt)
425       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
426         if (CE->getOpcode() == Instruction::GetElementPtr &&
427             CE->getNumOperands() == 3 &&
428             CE->getOperand(0)->isNullValue() &&
429             CE->getOperand(1)->isNullValue()) {
430           Type *Ty =
431             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
432           // Ignore vector types here so that ScalarEvolutionExpander doesn't
433           // emit getelementptrs that index into vectors.
434           if (Ty->isStructTy() || Ty->isArrayTy()) {
435             CTy = Ty;
436             FieldNo = CE->getOperand(2);
437             return true;
438           }
439         }
440
441   return false;
442 }
443
444 //===----------------------------------------------------------------------===//
445 //                               SCEV Utilities
446 //===----------------------------------------------------------------------===//
447
448 namespace {
449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
450 /// than the complexity of the RHS.  This comparator is used to canonicalize
451 /// expressions.
452 class SCEVComplexityCompare {
453   const LoopInfo *const LI;
454 public:
455   explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
456
457   // Return true or false if LHS is less than, or at least RHS, respectively.
458   bool operator()(const SCEV *LHS, const SCEV *RHS) const {
459     return compare(LHS, RHS) < 0;
460   }
461
462   // Return negative, zero, or positive, if LHS is less than, equal to, or
463   // greater than RHS, respectively. A three-way result allows recursive
464   // comparisons to be more efficient.
465   int compare(const SCEV *LHS, const SCEV *RHS) const {
466     // Fast-path: SCEVs are uniqued so we can do a quick equality check.
467     if (LHS == RHS)
468       return 0;
469
470     // Primarily, sort the SCEVs by their getSCEVType().
471     unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
472     if (LType != RType)
473       return (int)LType - (int)RType;
474
475     // Aside from the getSCEVType() ordering, the particular ordering
476     // isn't very important except that it's beneficial to be consistent,
477     // so that (a + b) and (b + a) don't end up as different expressions.
478     switch (static_cast<SCEVTypes>(LType)) {
479     case scUnknown: {
480       const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
481       const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
482
483       // Sort SCEVUnknown values with some loose heuristics. TODO: This is
484       // not as complete as it could be.
485       const Value *LV = LU->getValue(), *RV = RU->getValue();
486
487       // Order pointer values after integer values. This helps SCEVExpander
488       // form GEPs.
489       bool LIsPointer = LV->getType()->isPointerTy(),
490         RIsPointer = RV->getType()->isPointerTy();
491       if (LIsPointer != RIsPointer)
492         return (int)LIsPointer - (int)RIsPointer;
493
494       // Compare getValueID values.
495       unsigned LID = LV->getValueID(),
496         RID = RV->getValueID();
497       if (LID != RID)
498         return (int)LID - (int)RID;
499
500       // Sort arguments by their position.
501       if (const Argument *LA = dyn_cast<Argument>(LV)) {
502         const Argument *RA = cast<Argument>(RV);
503         unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
504         return (int)LArgNo - (int)RArgNo;
505       }
506
507       // For instructions, compare their loop depth, and their operand
508       // count.  This is pretty loose.
509       if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
510         const Instruction *RInst = cast<Instruction>(RV);
511
512         // Compare loop depths.
513         const BasicBlock *LParent = LInst->getParent(),
514           *RParent = RInst->getParent();
515         if (LParent != RParent) {
516           unsigned LDepth = LI->getLoopDepth(LParent),
517             RDepth = LI->getLoopDepth(RParent);
518           if (LDepth != RDepth)
519             return (int)LDepth - (int)RDepth;
520         }
521
522         // Compare the number of operands.
523         unsigned LNumOps = LInst->getNumOperands(),
524           RNumOps = RInst->getNumOperands();
525         return (int)LNumOps - (int)RNumOps;
526       }
527
528       return 0;
529     }
530
531     case scConstant: {
532       const SCEVConstant *LC = cast<SCEVConstant>(LHS);
533       const SCEVConstant *RC = cast<SCEVConstant>(RHS);
534
535       // Compare constant values.
536       const APInt &LA = LC->getAPInt();
537       const APInt &RA = RC->getAPInt();
538       unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
539       if (LBitWidth != RBitWidth)
540         return (int)LBitWidth - (int)RBitWidth;
541       return LA.ult(RA) ? -1 : 1;
542     }
543
544     case scAddRecExpr: {
545       const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
546       const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
547
548       // Compare addrec loop depths.
549       const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
550       if (LLoop != RLoop) {
551         unsigned LDepth = LLoop->getLoopDepth(),
552           RDepth = RLoop->getLoopDepth();
553         if (LDepth != RDepth)
554           return (int)LDepth - (int)RDepth;
555       }
556
557       // Addrec complexity grows with operand count.
558       unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
559       if (LNumOps != RNumOps)
560         return (int)LNumOps - (int)RNumOps;
561
562       // Lexicographically compare.
563       for (unsigned i = 0; i != LNumOps; ++i) {
564         long X = compare(LA->getOperand(i), RA->getOperand(i));
565         if (X != 0)
566           return X;
567       }
568
569       return 0;
570     }
571
572     case scAddExpr:
573     case scMulExpr:
574     case scSMaxExpr:
575     case scUMaxExpr: {
576       const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
577       const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
578
579       // Lexicographically compare n-ary expressions.
580       unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
581       if (LNumOps != RNumOps)
582         return (int)LNumOps - (int)RNumOps;
583
584       for (unsigned i = 0; i != LNumOps; ++i) {
585         if (i >= RNumOps)
586           return 1;
587         long X = compare(LC->getOperand(i), RC->getOperand(i));
588         if (X != 0)
589           return X;
590       }
591       return (int)LNumOps - (int)RNumOps;
592     }
593
594     case scUDivExpr: {
595       const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
596       const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
597
598       // Lexicographically compare udiv expressions.
599       long X = compare(LC->getLHS(), RC->getLHS());
600       if (X != 0)
601         return X;
602       return compare(LC->getRHS(), RC->getRHS());
603     }
604
605     case scTruncate:
606     case scZeroExtend:
607     case scSignExtend: {
608       const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
609       const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
610
611       // Compare cast expressions by operand.
612       return compare(LC->getOperand(), RC->getOperand());
613     }
614
615     case scCouldNotCompute:
616       llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
617     }
618     llvm_unreachable("Unknown SCEV kind!");
619   }
620 };
621 }  // end anonymous namespace
622
623 /// GroupByComplexity - Given a list of SCEV objects, order them by their
624 /// complexity, and group objects of the same complexity together by value.
625 /// When this routine is finished, we know that any duplicates in the vector are
626 /// consecutive and that complexity is monotonically increasing.
627 ///
628 /// Note that we go take special precautions to ensure that we get deterministic
629 /// results from this routine.  In other words, we don't want the results of
630 /// this to depend on where the addresses of various SCEV objects happened to
631 /// land in memory.
632 ///
633 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
634                               LoopInfo *LI) {
635   if (Ops.size() < 2) return;  // Noop
636   if (Ops.size() == 2) {
637     // This is the common case, which also happens to be trivially simple.
638     // Special case it.
639     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
640     if (SCEVComplexityCompare(LI)(RHS, LHS))
641       std::swap(LHS, RHS);
642     return;
643   }
644
645   // Do the rough sort by complexity.
646   std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
647
648   // Now that we are sorted by complexity, group elements of the same
649   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
650   // be extremely short in practice.  Note that we take this approach because we
651   // do not want to depend on the addresses of the objects we are grouping.
652   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
653     const SCEV *S = Ops[i];
654     unsigned Complexity = S->getSCEVType();
655
656     // If there are any objects of the same complexity and same value as this
657     // one, group them.
658     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
659       if (Ops[j] == S) { // Found a duplicate.
660         // Move it to immediately after i'th element.
661         std::swap(Ops[i+1], Ops[j]);
662         ++i;   // no need to rescan it.
663         if (i == e-2) return;  // Done!
664       }
665     }
666   }
667 }
668
669 // Returns the size of the SCEV S.
670 static inline int sizeOfSCEV(const SCEV *S) {
671   struct FindSCEVSize {
672     int Size;
673     FindSCEVSize() : Size(0) {}
674
675     bool follow(const SCEV *S) {
676       ++Size;
677       // Keep looking at all operands of S.
678       return true;
679     }
680     bool isDone() const {
681       return false;
682     }
683   };
684
685   FindSCEVSize F;
686   SCEVTraversal<FindSCEVSize> ST(F);
687   ST.visitAll(S);
688   return F.Size;
689 }
690
691 namespace {
692
693 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
694 public:
695   // Computes the Quotient and Remainder of the division of Numerator by
696   // Denominator.
697   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
698                      const SCEV *Denominator, const SCEV **Quotient,
699                      const SCEV **Remainder) {
700     assert(Numerator && Denominator && "Uninitialized SCEV");
701
702     SCEVDivision D(SE, Numerator, Denominator);
703
704     // Check for the trivial case here to avoid having to check for it in the
705     // rest of the code.
706     if (Numerator == Denominator) {
707       *Quotient = D.One;
708       *Remainder = D.Zero;
709       return;
710     }
711
712     if (Numerator->isZero()) {
713       *Quotient = D.Zero;
714       *Remainder = D.Zero;
715       return;
716     }
717
718     // A simple case when N/1. The quotient is N.
719     if (Denominator->isOne()) {
720       *Quotient = Numerator;
721       *Remainder = D.Zero;
722       return;
723     }
724
725     // Split the Denominator when it is a product.
726     if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
727       const SCEV *Q, *R;
728       *Quotient = Numerator;
729       for (const SCEV *Op : T->operands()) {
730         divide(SE, *Quotient, Op, &Q, &R);
731         *Quotient = Q;
732
733         // Bail out when the Numerator is not divisible by one of the terms of
734         // the Denominator.
735         if (!R->isZero()) {
736           *Quotient = D.Zero;
737           *Remainder = Numerator;
738           return;
739         }
740       }
741       *Remainder = D.Zero;
742       return;
743     }
744
745     D.visit(Numerator);
746     *Quotient = D.Quotient;
747     *Remainder = D.Remainder;
748   }
749
750   // Except in the trivial case described above, we do not know how to divide
751   // Expr by Denominator for the following functions with empty implementation.
752   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
753   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
754   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
755   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
756   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
757   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
758   void visitUnknown(const SCEVUnknown *Numerator) {}
759   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
760
761   void visitConstant(const SCEVConstant *Numerator) {
762     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
763       APInt NumeratorVal = Numerator->getAPInt();
764       APInt DenominatorVal = D->getAPInt();
765       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
766       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
767
768       if (NumeratorBW > DenominatorBW)
769         DenominatorVal = DenominatorVal.sext(NumeratorBW);
770       else if (NumeratorBW < DenominatorBW)
771         NumeratorVal = NumeratorVal.sext(DenominatorBW);
772
773       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
774       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
775       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
776       Quotient = SE.getConstant(QuotientVal);
777       Remainder = SE.getConstant(RemainderVal);
778       return;
779     }
780   }
781
782   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
783     const SCEV *StartQ, *StartR, *StepQ, *StepR;
784     if (!Numerator->isAffine())
785       return cannotDivide(Numerator);
786     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
787     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
788     // Bail out if the types do not match.
789     Type *Ty = Denominator->getType();
790     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
791         Ty != StepQ->getType() || Ty != StepR->getType())
792       return cannotDivide(Numerator);
793     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
794                                 Numerator->getNoWrapFlags());
795     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
796                                  Numerator->getNoWrapFlags());
797   }
798
799   void visitAddExpr(const SCEVAddExpr *Numerator) {
800     SmallVector<const SCEV *, 2> Qs, Rs;
801     Type *Ty = Denominator->getType();
802
803     for (const SCEV *Op : Numerator->operands()) {
804       const SCEV *Q, *R;
805       divide(SE, Op, Denominator, &Q, &R);
806
807       // Bail out if types do not match.
808       if (Ty != Q->getType() || Ty != R->getType())
809         return cannotDivide(Numerator);
810
811       Qs.push_back(Q);
812       Rs.push_back(R);
813     }
814
815     if (Qs.size() == 1) {
816       Quotient = Qs[0];
817       Remainder = Rs[0];
818       return;
819     }
820
821     Quotient = SE.getAddExpr(Qs);
822     Remainder = SE.getAddExpr(Rs);
823   }
824
825   void visitMulExpr(const SCEVMulExpr *Numerator) {
826     SmallVector<const SCEV *, 2> Qs;
827     Type *Ty = Denominator->getType();
828
829     bool FoundDenominatorTerm = false;
830     for (const SCEV *Op : Numerator->operands()) {
831       // Bail out if types do not match.
832       if (Ty != Op->getType())
833         return cannotDivide(Numerator);
834
835       if (FoundDenominatorTerm) {
836         Qs.push_back(Op);
837         continue;
838       }
839
840       // Check whether Denominator divides one of the product operands.
841       const SCEV *Q, *R;
842       divide(SE, Op, Denominator, &Q, &R);
843       if (!R->isZero()) {
844         Qs.push_back(Op);
845         continue;
846       }
847
848       // Bail out if types do not match.
849       if (Ty != Q->getType())
850         return cannotDivide(Numerator);
851
852       FoundDenominatorTerm = true;
853       Qs.push_back(Q);
854     }
855
856     if (FoundDenominatorTerm) {
857       Remainder = Zero;
858       if (Qs.size() == 1)
859         Quotient = Qs[0];
860       else
861         Quotient = SE.getMulExpr(Qs);
862       return;
863     }
864
865     if (!isa<SCEVUnknown>(Denominator))
866       return cannotDivide(Numerator);
867
868     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
869     ValueToValueMap RewriteMap;
870     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
871         cast<SCEVConstant>(Zero)->getValue();
872     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
873
874     if (Remainder->isZero()) {
875       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
876       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
877           cast<SCEVConstant>(One)->getValue();
878       Quotient =
879           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
880       return;
881     }
882
883     // Quotient is (Numerator - Remainder) divided by Denominator.
884     const SCEV *Q, *R;
885     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
886     // This SCEV does not seem to simplify: fail the division here.
887     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
888       return cannotDivide(Numerator);
889     divide(SE, Diff, Denominator, &Q, &R);
890     if (R != Zero)
891       return cannotDivide(Numerator);
892     Quotient = Q;
893   }
894
895 private:
896   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
897                const SCEV *Denominator)
898       : SE(S), Denominator(Denominator) {
899     Zero = SE.getZero(Denominator->getType());
900     One = SE.getOne(Denominator->getType());
901
902     // We generally do not know how to divide Expr by Denominator. We
903     // initialize the division to a "cannot divide" state to simplify the rest
904     // of the code.
905     cannotDivide(Numerator);
906   }
907
908   // Convenience function for giving up on the division. We set the quotient to
909   // be equal to zero and the remainder to be equal to the numerator.
910   void cannotDivide(const SCEV *Numerator) {
911     Quotient = Zero;
912     Remainder = Numerator;
913   }
914
915   ScalarEvolution &SE;
916   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
917 };
918
919 }
920
921 //===----------------------------------------------------------------------===//
922 //                      Simple SCEV method implementations
923 //===----------------------------------------------------------------------===//
924
925 /// BinomialCoefficient - Compute BC(It, K).  The result has width W.
926 /// Assume, K > 0.
927 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
928                                        ScalarEvolution &SE,
929                                        Type *ResultTy) {
930   // Handle the simplest case efficiently.
931   if (K == 1)
932     return SE.getTruncateOrZeroExtend(It, ResultTy);
933
934   // We are using the following formula for BC(It, K):
935   //
936   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
937   //
938   // Suppose, W is the bitwidth of the return value.  We must be prepared for
939   // overflow.  Hence, we must assure that the result of our computation is
940   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
941   // safe in modular arithmetic.
942   //
943   // However, this code doesn't use exactly that formula; the formula it uses
944   // is something like the following, where T is the number of factors of 2 in
945   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
946   // exponentiation:
947   //
948   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
949   //
950   // This formula is trivially equivalent to the previous formula.  However,
951   // this formula can be implemented much more efficiently.  The trick is that
952   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
953   // arithmetic.  To do exact division in modular arithmetic, all we have
954   // to do is multiply by the inverse.  Therefore, this step can be done at
955   // width W.
956   //
957   // The next issue is how to safely do the division by 2^T.  The way this
958   // is done is by doing the multiplication step at a width of at least W + T
959   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
960   // when we perform the division by 2^T (which is equivalent to a right shift
961   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
962   // truncated out after the division by 2^T.
963   //
964   // In comparison to just directly using the first formula, this technique
965   // is much more efficient; using the first formula requires W * K bits,
966   // but this formula less than W + K bits. Also, the first formula requires
967   // a division step, whereas this formula only requires multiplies and shifts.
968   //
969   // It doesn't matter whether the subtraction step is done in the calculation
970   // width or the input iteration count's width; if the subtraction overflows,
971   // the result must be zero anyway.  We prefer here to do it in the width of
972   // the induction variable because it helps a lot for certain cases; CodeGen
973   // isn't smart enough to ignore the overflow, which leads to much less
974   // efficient code if the width of the subtraction is wider than the native
975   // register width.
976   //
977   // (It's possible to not widen at all by pulling out factors of 2 before
978   // the multiplication; for example, K=2 can be calculated as
979   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
980   // extra arithmetic, so it's not an obvious win, and it gets
981   // much more complicated for K > 3.)
982
983   // Protection from insane SCEVs; this bound is conservative,
984   // but it probably doesn't matter.
985   if (K > 1000)
986     return SE.getCouldNotCompute();
987
988   unsigned W = SE.getTypeSizeInBits(ResultTy);
989
990   // Calculate K! / 2^T and T; we divide out the factors of two before
991   // multiplying for calculating K! / 2^T to avoid overflow.
992   // Other overflow doesn't matter because we only care about the bottom
993   // W bits of the result.
994   APInt OddFactorial(W, 1);
995   unsigned T = 1;
996   for (unsigned i = 3; i <= K; ++i) {
997     APInt Mult(W, i);
998     unsigned TwoFactors = Mult.countTrailingZeros();
999     T += TwoFactors;
1000     Mult = Mult.lshr(TwoFactors);
1001     OddFactorial *= Mult;
1002   }
1003
1004   // We need at least W + T bits for the multiplication step
1005   unsigned CalculationBits = W + T;
1006
1007   // Calculate 2^T, at width T+W.
1008   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1009
1010   // Calculate the multiplicative inverse of K! / 2^T;
1011   // this multiplication factor will perform the exact division by
1012   // K! / 2^T.
1013   APInt Mod = APInt::getSignedMinValue(W+1);
1014   APInt MultiplyFactor = OddFactorial.zext(W+1);
1015   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1016   MultiplyFactor = MultiplyFactor.trunc(W);
1017
1018   // Calculate the product, at width T+W
1019   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1020                                                       CalculationBits);
1021   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1022   for (unsigned i = 1; i != K; ++i) {
1023     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1024     Dividend = SE.getMulExpr(Dividend,
1025                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1026   }
1027
1028   // Divide by 2^T
1029   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1030
1031   // Truncate the result, and divide by K! / 2^T.
1032
1033   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1034                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1035 }
1036
1037 /// evaluateAtIteration - Return the value of this chain of recurrences at
1038 /// the specified iteration number.  We can evaluate this recurrence by
1039 /// multiplying each element in the chain by the binomial coefficient
1040 /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
1041 ///
1042 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1043 ///
1044 /// where BC(It, k) stands for binomial coefficient.
1045 ///
1046 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1047                                                 ScalarEvolution &SE) const {
1048   const SCEV *Result = getStart();
1049   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1050     // The computation is correct in the face of overflow provided that the
1051     // multiplication is performed _after_ the evaluation of the binomial
1052     // coefficient.
1053     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1054     if (isa<SCEVCouldNotCompute>(Coeff))
1055       return Coeff;
1056
1057     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1058   }
1059   return Result;
1060 }
1061
1062 //===----------------------------------------------------------------------===//
1063 //                    SCEV Expression folder implementations
1064 //===----------------------------------------------------------------------===//
1065
1066 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1067                                              Type *Ty) {
1068   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1069          "This is not a truncating conversion!");
1070   assert(isSCEVable(Ty) &&
1071          "This is not a conversion to a SCEVable type!");
1072   Ty = getEffectiveSCEVType(Ty);
1073
1074   FoldingSetNodeID ID;
1075   ID.AddInteger(scTruncate);
1076   ID.AddPointer(Op);
1077   ID.AddPointer(Ty);
1078   void *IP = nullptr;
1079   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1080
1081   // Fold if the operand is constant.
1082   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1083     return getConstant(
1084       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1085
1086   // trunc(trunc(x)) --> trunc(x)
1087   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1088     return getTruncateExpr(ST->getOperand(), Ty);
1089
1090   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1091   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1092     return getTruncateOrSignExtend(SS->getOperand(), Ty);
1093
1094   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1095   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1096     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1097
1098   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1099   // eliminate all the truncates, or we replace other casts with truncates.
1100   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1101     SmallVector<const SCEV *, 4> Operands;
1102     bool hasTrunc = false;
1103     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1104       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1105       if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1106         hasTrunc = isa<SCEVTruncateExpr>(S);
1107       Operands.push_back(S);
1108     }
1109     if (!hasTrunc)
1110       return getAddExpr(Operands);
1111     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1112   }
1113
1114   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1115   // eliminate all the truncates, or we replace other casts with truncates.
1116   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1117     SmallVector<const SCEV *, 4> Operands;
1118     bool hasTrunc = false;
1119     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1120       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1121       if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1122         hasTrunc = isa<SCEVTruncateExpr>(S);
1123       Operands.push_back(S);
1124     }
1125     if (!hasTrunc)
1126       return getMulExpr(Operands);
1127     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1128   }
1129
1130   // If the input value is a chrec scev, truncate the chrec's operands.
1131   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1132     SmallVector<const SCEV *, 4> Operands;
1133     for (const SCEV *Op : AddRec->operands())
1134       Operands.push_back(getTruncateExpr(Op, Ty));
1135     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1136   }
1137
1138   // The cast wasn't folded; create an explicit cast node. We can reuse
1139   // the existing insert position since if we get here, we won't have
1140   // made any changes which would invalidate it.
1141   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1142                                                  Op, Ty);
1143   UniqueSCEVs.InsertNode(S, IP);
1144   return S;
1145 }
1146
1147 // Get the limit of a recurrence such that incrementing by Step cannot cause
1148 // signed overflow as long as the value of the recurrence within the
1149 // loop does not exceed this limit before incrementing.
1150 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1151                                                  ICmpInst::Predicate *Pred,
1152                                                  ScalarEvolution *SE) {
1153   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1154   if (SE->isKnownPositive(Step)) {
1155     *Pred = ICmpInst::ICMP_SLT;
1156     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1157                            SE->getSignedRange(Step).getSignedMax());
1158   }
1159   if (SE->isKnownNegative(Step)) {
1160     *Pred = ICmpInst::ICMP_SGT;
1161     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1162                            SE->getSignedRange(Step).getSignedMin());
1163   }
1164   return nullptr;
1165 }
1166
1167 // Get the limit of a recurrence such that incrementing by Step cannot cause
1168 // unsigned overflow as long as the value of the recurrence within the loop does
1169 // not exceed this limit before incrementing.
1170 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1171                                                    ICmpInst::Predicate *Pred,
1172                                                    ScalarEvolution *SE) {
1173   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1174   *Pred = ICmpInst::ICMP_ULT;
1175
1176   return SE->getConstant(APInt::getMinValue(BitWidth) -
1177                          SE->getUnsignedRange(Step).getUnsignedMax());
1178 }
1179
1180 namespace {
1181
1182 struct ExtendOpTraitsBase {
1183   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1184 };
1185
1186 // Used to make code generic over signed and unsigned overflow.
1187 template <typename ExtendOp> struct ExtendOpTraits {
1188   // Members present:
1189   //
1190   // static const SCEV::NoWrapFlags WrapType;
1191   //
1192   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1193   //
1194   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1195   //                                           ICmpInst::Predicate *Pred,
1196   //                                           ScalarEvolution *SE);
1197 };
1198
1199 template <>
1200 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1201   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1202
1203   static const GetExtendExprTy GetExtendExpr;
1204
1205   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1206                                              ICmpInst::Predicate *Pred,
1207                                              ScalarEvolution *SE) {
1208     return getSignedOverflowLimitForStep(Step, Pred, SE);
1209   }
1210 };
1211
1212 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1213     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1214
1215 template <>
1216 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1217   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1218
1219   static const GetExtendExprTy GetExtendExpr;
1220
1221   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1222                                              ICmpInst::Predicate *Pred,
1223                                              ScalarEvolution *SE) {
1224     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1225   }
1226 };
1227
1228 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1229     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1230 }
1231
1232 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1233 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1234 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1235 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1236 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1237 // expression "Step + sext/zext(PreIncAR)" is congruent with
1238 // "sext/zext(PostIncAR)"
1239 template <typename ExtendOpTy>
1240 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1241                                         ScalarEvolution *SE) {
1242   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1243   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1244
1245   const Loop *L = AR->getLoop();
1246   const SCEV *Start = AR->getStart();
1247   const SCEV *Step = AR->getStepRecurrence(*SE);
1248
1249   // Check for a simple looking step prior to loop entry.
1250   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1251   if (!SA)
1252     return nullptr;
1253
1254   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1255   // subtraction is expensive. For this purpose, perform a quick and dirty
1256   // difference, by checking for Step in the operand list.
1257   SmallVector<const SCEV *, 4> DiffOps;
1258   for (const SCEV *Op : SA->operands())
1259     if (Op != Step)
1260       DiffOps.push_back(Op);
1261
1262   if (DiffOps.size() == SA->getNumOperands())
1263     return nullptr;
1264
1265   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1266   // `Step`:
1267
1268   // 1. NSW/NUW flags on the step increment.
1269   auto PreStartFlags =
1270     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1271   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1272   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1273       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1274
1275   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1276   // "S+X does not sign/unsign-overflow".
1277   //
1278
1279   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1280   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1281       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1282     return PreStart;
1283
1284   // 2. Direct overflow check on the step operation's expression.
1285   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1286   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1287   const SCEV *OperandExtendedStart =
1288       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1289                      (SE->*GetExtendExpr)(Step, WideTy));
1290   if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1291     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1292       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1293       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1294       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1295       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1296     }
1297     return PreStart;
1298   }
1299
1300   // 3. Loop precondition.
1301   ICmpInst::Predicate Pred;
1302   const SCEV *OverflowLimit =
1303       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1304
1305   if (OverflowLimit &&
1306       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1307     return PreStart;
1308
1309   return nullptr;
1310 }
1311
1312 // Get the normalized zero or sign extended expression for this AddRec's Start.
1313 template <typename ExtendOpTy>
1314 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1315                                         ScalarEvolution *SE) {
1316   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1317
1318   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1319   if (!PreStart)
1320     return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1321
1322   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1323                         (SE->*GetExtendExpr)(PreStart, Ty));
1324 }
1325
1326 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1327 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1328 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1329 //
1330 // Formally:
1331 //
1332 //     {S,+,X} == {S-T,+,X} + T
1333 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1334 //
1335 // If ({S-T,+,X} + T) does not overflow  ... (1)
1336 //
1337 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1338 //
1339 // If {S-T,+,X} does not overflow  ... (2)
1340 //
1341 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1342 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1343 //
1344 // If (S-T)+T does not overflow  ... (3)
1345 //
1346 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1347 //      == {Ext(S),+,Ext(X)} == LHS
1348 //
1349 // Thus, if (1), (2) and (3) are true for some T, then
1350 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1351 //
1352 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1353 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1354 // to check for (1) and (2).
1355 //
1356 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1357 // is `Delta` (defined below).
1358 //
1359 template <typename ExtendOpTy>
1360 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1361                                                 const SCEV *Step,
1362                                                 const Loop *L) {
1363   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1364
1365   // We restrict `Start` to a constant to prevent SCEV from spending too much
1366   // time here.  It is correct (but more expensive) to continue with a
1367   // non-constant `Start` and do a general SCEV subtraction to compute
1368   // `PreStart` below.
1369   //
1370   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1371   if (!StartC)
1372     return false;
1373
1374   APInt StartAI = StartC->getAPInt();
1375
1376   for (unsigned Delta : {-2, -1, 1, 2}) {
1377     const SCEV *PreStart = getConstant(StartAI - Delta);
1378
1379     FoldingSetNodeID ID;
1380     ID.AddInteger(scAddRecExpr);
1381     ID.AddPointer(PreStart);
1382     ID.AddPointer(Step);
1383     ID.AddPointer(L);
1384     void *IP = nullptr;
1385     const auto *PreAR =
1386       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1387
1388     // Give up if we don't already have the add recurrence we need because
1389     // actually constructing an add recurrence is relatively expensive.
1390     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1391       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1392       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1393       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1394           DeltaS, &Pred, this);
1395       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1396         return true;
1397     }
1398   }
1399
1400   return false;
1401 }
1402
1403 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
1404                                                Type *Ty) {
1405   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1406          "This is not an extending conversion!");
1407   assert(isSCEVable(Ty) &&
1408          "This is not a conversion to a SCEVable type!");
1409   Ty = getEffectiveSCEVType(Ty);
1410
1411   // Fold if the operand is constant.
1412   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1413     return getConstant(
1414       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1415
1416   // zext(zext(x)) --> zext(x)
1417   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1418     return getZeroExtendExpr(SZ->getOperand(), Ty);
1419
1420   // Before doing any expensive analysis, check to see if we've already
1421   // computed a SCEV for this Op and Ty.
1422   FoldingSetNodeID ID;
1423   ID.AddInteger(scZeroExtend);
1424   ID.AddPointer(Op);
1425   ID.AddPointer(Ty);
1426   void *IP = nullptr;
1427   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1428
1429   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1430   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1431     // It's possible the bits taken off by the truncate were all zero bits. If
1432     // so, we should be able to simplify this further.
1433     const SCEV *X = ST->getOperand();
1434     ConstantRange CR = getUnsignedRange(X);
1435     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1436     unsigned NewBits = getTypeSizeInBits(Ty);
1437     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1438             CR.zextOrTrunc(NewBits)))
1439       return getTruncateOrZeroExtend(X, Ty);
1440   }
1441
1442   // If the input value is a chrec scev, and we can prove that the value
1443   // did not overflow the old, smaller, value, we can zero extend all of the
1444   // operands (often constants).  This allows analysis of something like
1445   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1446   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1447     if (AR->isAffine()) {
1448       const SCEV *Start = AR->getStart();
1449       const SCEV *Step = AR->getStepRecurrence(*this);
1450       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1451       const Loop *L = AR->getLoop();
1452
1453       // If we have special knowledge that this addrec won't overflow,
1454       // we don't need to do any further analysis.
1455       if (AR->getNoWrapFlags(SCEV::FlagNUW))
1456         return getAddRecExpr(
1457             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1458             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1459
1460       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1461       // Note that this serves two purposes: It filters out loops that are
1462       // simply not analyzable, and it covers the case where this code is
1463       // being called from within backedge-taken count analysis, such that
1464       // attempting to ask for the backedge-taken count would likely result
1465       // in infinite recursion. In the later case, the analysis code will
1466       // cope with a conservative value, and it will take care to purge
1467       // that value once it has finished.
1468       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1469       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1470         // Manually compute the final value for AR, checking for
1471         // overflow.
1472
1473         // Check whether the backedge-taken count can be losslessly casted to
1474         // the addrec's type. The count is always unsigned.
1475         const SCEV *CastedMaxBECount =
1476           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1477         const SCEV *RecastedMaxBECount =
1478           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1479         if (MaxBECount == RecastedMaxBECount) {
1480           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1481           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1482           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1483           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1484           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1485           const SCEV *WideMaxBECount =
1486             getZeroExtendExpr(CastedMaxBECount, WideTy);
1487           const SCEV *OperandExtendedAdd =
1488             getAddExpr(WideStart,
1489                        getMulExpr(WideMaxBECount,
1490                                   getZeroExtendExpr(Step, WideTy)));
1491           if (ZAdd == OperandExtendedAdd) {
1492             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1493             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1494             // Return the expression with the addrec on the outside.
1495             return getAddRecExpr(
1496                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1497                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1498           }
1499           // Similar to above, only this time treat the step value as signed.
1500           // This covers loops that count down.
1501           OperandExtendedAdd =
1502             getAddExpr(WideStart,
1503                        getMulExpr(WideMaxBECount,
1504                                   getSignExtendExpr(Step, WideTy)));
1505           if (ZAdd == OperandExtendedAdd) {
1506             // Cache knowledge of AR NW, which is propagated to this AddRec.
1507             // Negative step causes unsigned wrap, but it still can't self-wrap.
1508             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1509             // Return the expression with the addrec on the outside.
1510             return getAddRecExpr(
1511                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1512                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1513           }
1514         }
1515
1516         // If the backedge is guarded by a comparison with the pre-inc value
1517         // the addrec is safe. Also, if the entry is guarded by a comparison
1518         // with the start value and the backedge is guarded by a comparison
1519         // with the post-inc value, the addrec is safe.
1520         if (isKnownPositive(Step)) {
1521           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1522                                       getUnsignedRange(Step).getUnsignedMax());
1523           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1524               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1525                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1526                                            AR->getPostIncExpr(*this), N))) {
1527             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1528             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1529             // Return the expression with the addrec on the outside.
1530             return getAddRecExpr(
1531                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1532                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1533           }
1534         } else if (isKnownNegative(Step)) {
1535           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1536                                       getSignedRange(Step).getSignedMin());
1537           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1538               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1539                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1540                                            AR->getPostIncExpr(*this), N))) {
1541             // Cache knowledge of AR NW, which is propagated to this AddRec.
1542             // Negative step causes unsigned wrap, but it still can't self-wrap.
1543             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1544             // Return the expression with the addrec on the outside.
1545             return getAddRecExpr(
1546                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1547                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1548           }
1549         }
1550       }
1551
1552       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1553         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1554         return getAddRecExpr(
1555             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1556             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1557       }
1558     }
1559
1560   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1561     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1562     if (SA->getNoWrapFlags(SCEV::FlagNUW)) {
1563       // If the addition does not unsign overflow then we can, by definition,
1564       // commute the zero extension with the addition operation.
1565       SmallVector<const SCEV *, 4> Ops;
1566       for (const auto *Op : SA->operands())
1567         Ops.push_back(getZeroExtendExpr(Op, Ty));
1568       return getAddExpr(Ops, SCEV::FlagNUW);
1569     }
1570   }
1571
1572   // The cast wasn't folded; create an explicit cast node.
1573   // Recompute the insert position, as it may have been invalidated.
1574   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1575   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1576                                                    Op, Ty);
1577   UniqueSCEVs.InsertNode(S, IP);
1578   return S;
1579 }
1580
1581 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1582                                                Type *Ty) {
1583   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1584          "This is not an extending conversion!");
1585   assert(isSCEVable(Ty) &&
1586          "This is not a conversion to a SCEVable type!");
1587   Ty = getEffectiveSCEVType(Ty);
1588
1589   // Fold if the operand is constant.
1590   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1591     return getConstant(
1592       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1593
1594   // sext(sext(x)) --> sext(x)
1595   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1596     return getSignExtendExpr(SS->getOperand(), Ty);
1597
1598   // sext(zext(x)) --> zext(x)
1599   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1600     return getZeroExtendExpr(SZ->getOperand(), Ty);
1601
1602   // Before doing any expensive analysis, check to see if we've already
1603   // computed a SCEV for this Op and Ty.
1604   FoldingSetNodeID ID;
1605   ID.AddInteger(scSignExtend);
1606   ID.AddPointer(Op);
1607   ID.AddPointer(Ty);
1608   void *IP = nullptr;
1609   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1610
1611   // If the input value is provably positive, build a zext instead.
1612   if (isKnownNonNegative(Op))
1613     return getZeroExtendExpr(Op, Ty);
1614
1615   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1616   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1617     // It's possible the bits taken off by the truncate were all sign bits. If
1618     // so, we should be able to simplify this further.
1619     const SCEV *X = ST->getOperand();
1620     ConstantRange CR = getSignedRange(X);
1621     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1622     unsigned NewBits = getTypeSizeInBits(Ty);
1623     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1624             CR.sextOrTrunc(NewBits)))
1625       return getTruncateOrSignExtend(X, Ty);
1626   }
1627
1628   // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1629   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1630     if (SA->getNumOperands() == 2) {
1631       auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1632       auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1633       if (SMul && SC1) {
1634         if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1635           const APInt &C1 = SC1->getAPInt();
1636           const APInt &C2 = SC2->getAPInt();
1637           if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1638               C2.ugt(C1) && C2.isPowerOf2())
1639             return getAddExpr(getSignExtendExpr(SC1, Ty),
1640                               getSignExtendExpr(SMul, Ty));
1641         }
1642       }
1643     }
1644
1645     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1646     if (SA->getNoWrapFlags(SCEV::FlagNSW)) {
1647       // If the addition does not sign overflow then we can, by definition,
1648       // commute the sign extension with the addition operation.
1649       SmallVector<const SCEV *, 4> Ops;
1650       for (const auto *Op : SA->operands())
1651         Ops.push_back(getSignExtendExpr(Op, Ty));
1652       return getAddExpr(Ops, SCEV::FlagNSW);
1653     }
1654   }
1655   // If the input value is a chrec scev, and we can prove that the value
1656   // did not overflow the old, smaller, value, we can sign extend all of the
1657   // operands (often constants).  This allows analysis of something like
1658   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1659   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1660     if (AR->isAffine()) {
1661       const SCEV *Start = AR->getStart();
1662       const SCEV *Step = AR->getStepRecurrence(*this);
1663       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1664       const Loop *L = AR->getLoop();
1665
1666       // If we have special knowledge that this addrec won't overflow,
1667       // we don't need to do any further analysis.
1668       if (AR->getNoWrapFlags(SCEV::FlagNSW))
1669         return getAddRecExpr(
1670             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1671             getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
1672
1673       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1674       // Note that this serves two purposes: It filters out loops that are
1675       // simply not analyzable, and it covers the case where this code is
1676       // being called from within backedge-taken count analysis, such that
1677       // attempting to ask for the backedge-taken count would likely result
1678       // in infinite recursion. In the later case, the analysis code will
1679       // cope with a conservative value, and it will take care to purge
1680       // that value once it has finished.
1681       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1682       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1683         // Manually compute the final value for AR, checking for
1684         // overflow.
1685
1686         // Check whether the backedge-taken count can be losslessly casted to
1687         // the addrec's type. The count is always unsigned.
1688         const SCEV *CastedMaxBECount =
1689           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1690         const SCEV *RecastedMaxBECount =
1691           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1692         if (MaxBECount == RecastedMaxBECount) {
1693           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1694           // Check whether Start+Step*MaxBECount has no signed overflow.
1695           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1696           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1697           const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1698           const SCEV *WideMaxBECount =
1699             getZeroExtendExpr(CastedMaxBECount, WideTy);
1700           const SCEV *OperandExtendedAdd =
1701             getAddExpr(WideStart,
1702                        getMulExpr(WideMaxBECount,
1703                                   getSignExtendExpr(Step, WideTy)));
1704           if (SAdd == OperandExtendedAdd) {
1705             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1706             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1707             // Return the expression with the addrec on the outside.
1708             return getAddRecExpr(
1709                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1710                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1711           }
1712           // Similar to above, only this time treat the step value as unsigned.
1713           // This covers loops that count up with an unsigned step.
1714           OperandExtendedAdd =
1715             getAddExpr(WideStart,
1716                        getMulExpr(WideMaxBECount,
1717                                   getZeroExtendExpr(Step, WideTy)));
1718           if (SAdd == OperandExtendedAdd) {
1719             // If AR wraps around then
1720             //
1721             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1722             // => SAdd != OperandExtendedAdd
1723             //
1724             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1725             // (SAdd == OperandExtendedAdd => AR is NW)
1726
1727             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1728
1729             // Return the expression with the addrec on the outside.
1730             return getAddRecExpr(
1731                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1732                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1733           }
1734         }
1735
1736         // If the backedge is guarded by a comparison with the pre-inc value
1737         // the addrec is safe. Also, if the entry is guarded by a comparison
1738         // with the start value and the backedge is guarded by a comparison
1739         // with the post-inc value, the addrec is safe.
1740         ICmpInst::Predicate Pred;
1741         const SCEV *OverflowLimit =
1742             getSignedOverflowLimitForStep(Step, &Pred, this);
1743         if (OverflowLimit &&
1744             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1745              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1746               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1747                                           OverflowLimit)))) {
1748           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1749           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1750           return getAddRecExpr(
1751               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1752               getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1753         }
1754       }
1755       // If Start and Step are constants, check if we can apply this
1756       // transformation:
1757       // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1758       auto *SC1 = dyn_cast<SCEVConstant>(Start);
1759       auto *SC2 = dyn_cast<SCEVConstant>(Step);
1760       if (SC1 && SC2) {
1761         const APInt &C1 = SC1->getAPInt();
1762         const APInt &C2 = SC2->getAPInt();
1763         if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1764             C2.isPowerOf2()) {
1765           Start = getSignExtendExpr(Start, Ty);
1766           const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1767                                             AR->getNoWrapFlags());
1768           return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1769         }
1770       }
1771
1772       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1773         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1774         return getAddRecExpr(
1775             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1776             getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1777       }
1778     }
1779
1780   // The cast wasn't folded; create an explicit cast node.
1781   // Recompute the insert position, as it may have been invalidated.
1782   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1783   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1784                                                    Op, Ty);
1785   UniqueSCEVs.InsertNode(S, IP);
1786   return S;
1787 }
1788
1789 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1790 /// unspecified bits out to the given type.
1791 ///
1792 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1793                                               Type *Ty) {
1794   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1795          "This is not an extending conversion!");
1796   assert(isSCEVable(Ty) &&
1797          "This is not a conversion to a SCEVable type!");
1798   Ty = getEffectiveSCEVType(Ty);
1799
1800   // Sign-extend negative constants.
1801   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1802     if (SC->getAPInt().isNegative())
1803       return getSignExtendExpr(Op, Ty);
1804
1805   // Peel off a truncate cast.
1806   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1807     const SCEV *NewOp = T->getOperand();
1808     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1809       return getAnyExtendExpr(NewOp, Ty);
1810     return getTruncateOrNoop(NewOp, Ty);
1811   }
1812
1813   // Next try a zext cast. If the cast is folded, use it.
1814   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1815   if (!isa<SCEVZeroExtendExpr>(ZExt))
1816     return ZExt;
1817
1818   // Next try a sext cast. If the cast is folded, use it.
1819   const SCEV *SExt = getSignExtendExpr(Op, Ty);
1820   if (!isa<SCEVSignExtendExpr>(SExt))
1821     return SExt;
1822
1823   // Force the cast to be folded into the operands of an addrec.
1824   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1825     SmallVector<const SCEV *, 4> Ops;
1826     for (const SCEV *Op : AR->operands())
1827       Ops.push_back(getAnyExtendExpr(Op, Ty));
1828     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1829   }
1830
1831   // If the expression is obviously signed, use the sext cast value.
1832   if (isa<SCEVSMaxExpr>(Op))
1833     return SExt;
1834
1835   // Absent any other information, use the zext cast value.
1836   return ZExt;
1837 }
1838
1839 /// CollectAddOperandsWithScales - Process the given Ops list, which is
1840 /// a list of operands to be added under the given scale, update the given
1841 /// map. This is a helper function for getAddRecExpr. As an example of
1842 /// what it does, given a sequence of operands that would form an add
1843 /// expression like this:
1844 ///
1845 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1846 ///
1847 /// where A and B are constants, update the map with these values:
1848 ///
1849 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1850 ///
1851 /// and add 13 + A*B*29 to AccumulatedConstant.
1852 /// This will allow getAddRecExpr to produce this:
1853 ///
1854 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1855 ///
1856 /// This form often exposes folding opportunities that are hidden in
1857 /// the original operand list.
1858 ///
1859 /// Return true iff it appears that any interesting folding opportunities
1860 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1861 /// the common case where no interesting opportunities are present, and
1862 /// is also used as a check to avoid infinite recursion.
1863 ///
1864 static bool
1865 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1866                              SmallVectorImpl<const SCEV *> &NewOps,
1867                              APInt &AccumulatedConstant,
1868                              const SCEV *const *Ops, size_t NumOperands,
1869                              const APInt &Scale,
1870                              ScalarEvolution &SE) {
1871   bool Interesting = false;
1872
1873   // Iterate over the add operands. They are sorted, with constants first.
1874   unsigned i = 0;
1875   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1876     ++i;
1877     // Pull a buried constant out to the outside.
1878     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1879       Interesting = true;
1880     AccumulatedConstant += Scale * C->getAPInt();
1881   }
1882
1883   // Next comes everything else. We're especially interested in multiplies
1884   // here, but they're in the middle, so just visit the rest with one loop.
1885   for (; i != NumOperands; ++i) {
1886     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1887     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1888       APInt NewScale =
1889           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
1890       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1891         // A multiplication of a constant with another add; recurse.
1892         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1893         Interesting |=
1894           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1895                                        Add->op_begin(), Add->getNumOperands(),
1896                                        NewScale, SE);
1897       } else {
1898         // A multiplication of a constant with some other value. Update
1899         // the map.
1900         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1901         const SCEV *Key = SE.getMulExpr(MulOps);
1902         auto Pair = M.insert(std::make_pair(Key, NewScale));
1903         if (Pair.second) {
1904           NewOps.push_back(Pair.first->first);
1905         } else {
1906           Pair.first->second += NewScale;
1907           // The map already had an entry for this value, which may indicate
1908           // a folding opportunity.
1909           Interesting = true;
1910         }
1911       }
1912     } else {
1913       // An ordinary operand. Update the map.
1914       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1915         M.insert(std::make_pair(Ops[i], Scale));
1916       if (Pair.second) {
1917         NewOps.push_back(Pair.first->first);
1918       } else {
1919         Pair.first->second += Scale;
1920         // The map already had an entry for this value, which may indicate
1921         // a folding opportunity.
1922         Interesting = true;
1923       }
1924     }
1925   }
1926
1927   return Interesting;
1928 }
1929
1930 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1931 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
1932 // can't-overflow flags for the operation if possible.
1933 static SCEV::NoWrapFlags
1934 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1935                       const SmallVectorImpl<const SCEV *> &Ops,
1936                       SCEV::NoWrapFlags Flags) {
1937   using namespace std::placeholders;
1938   typedef OverflowingBinaryOperator OBO;
1939
1940   bool CanAnalyze =
1941       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1942   (void)CanAnalyze;
1943   assert(CanAnalyze && "don't call from other places!");
1944
1945   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1946   SCEV::NoWrapFlags SignOrUnsignWrap =
1947       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1948
1949   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1950   auto IsKnownNonNegative = [&](const SCEV *S) {
1951     return SE->isKnownNonNegative(S);
1952   };
1953
1954   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
1955     Flags =
1956         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1957
1958   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1959
1960   if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
1961       Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
1962
1963     // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
1964     // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
1965
1966     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
1967     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
1968       auto NSWRegion =
1969         ConstantRange::makeNoWrapRegion(Instruction::Add, C, OBO::NoSignedWrap);
1970       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
1971         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
1972     }
1973     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
1974       auto NUWRegion =
1975         ConstantRange::makeNoWrapRegion(Instruction::Add, C,
1976                                         OBO::NoUnsignedWrap);
1977       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
1978         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
1979     }
1980   }
1981
1982   return Flags;
1983 }
1984
1985 /// getAddExpr - Get a canonical add expression, or something simpler if
1986 /// possible.
1987 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1988                                         SCEV::NoWrapFlags Flags) {
1989   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1990          "only nuw or nsw allowed");
1991   assert(!Ops.empty() && "Cannot get empty add!");
1992   if (Ops.size() == 1) return Ops[0];
1993 #ifndef NDEBUG
1994   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1995   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1996     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1997            "SCEVAddExpr operand types don't match!");
1998 #endif
1999
2000   // Sort by complexity, this groups all similar expression types together.
2001   GroupByComplexity(Ops, &LI);
2002
2003   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2004
2005   // If there are any constants, fold them together.
2006   unsigned Idx = 0;
2007   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2008     ++Idx;
2009     assert(Idx < Ops.size());
2010     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2011       // We found two constants, fold them together!
2012       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2013       if (Ops.size() == 2) return Ops[0];
2014       Ops.erase(Ops.begin()+1);  // Erase the folded element
2015       LHSC = cast<SCEVConstant>(Ops[0]);
2016     }
2017
2018     // If we are left with a constant zero being added, strip it off.
2019     if (LHSC->getValue()->isZero()) {
2020       Ops.erase(Ops.begin());
2021       --Idx;
2022     }
2023
2024     if (Ops.size() == 1) return Ops[0];
2025   }
2026
2027   // Okay, check to see if the same value occurs in the operand list more than
2028   // once.  If so, merge them together into an multiply expression.  Since we
2029   // sorted the list, these values are required to be adjacent.
2030   Type *Ty = Ops[0]->getType();
2031   bool FoundMatch = false;
2032   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2033     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2034       // Scan ahead to count how many equal operands there are.
2035       unsigned Count = 2;
2036       while (i+Count != e && Ops[i+Count] == Ops[i])
2037         ++Count;
2038       // Merge the values into a multiply.
2039       const SCEV *Scale = getConstant(Ty, Count);
2040       const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2041       if (Ops.size() == Count)
2042         return Mul;
2043       Ops[i] = Mul;
2044       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2045       --i; e -= Count - 1;
2046       FoundMatch = true;
2047     }
2048   if (FoundMatch)
2049     return getAddExpr(Ops, Flags);
2050
2051   // Check for truncates. If all the operands are truncated from the same
2052   // type, see if factoring out the truncate would permit the result to be
2053   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2054   // if the contents of the resulting outer trunc fold to something simple.
2055   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2056     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
2057     Type *DstType = Trunc->getType();
2058     Type *SrcType = Trunc->getOperand()->getType();
2059     SmallVector<const SCEV *, 8> LargeOps;
2060     bool Ok = true;
2061     // Check all the operands to see if they can be represented in the
2062     // source type of the truncate.
2063     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2064       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2065         if (T->getOperand()->getType() != SrcType) {
2066           Ok = false;
2067           break;
2068         }
2069         LargeOps.push_back(T->getOperand());
2070       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2071         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2072       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2073         SmallVector<const SCEV *, 8> LargeMulOps;
2074         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2075           if (const SCEVTruncateExpr *T =
2076                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2077             if (T->getOperand()->getType() != SrcType) {
2078               Ok = false;
2079               break;
2080             }
2081             LargeMulOps.push_back(T->getOperand());
2082           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2083             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2084           } else {
2085             Ok = false;
2086             break;
2087           }
2088         }
2089         if (Ok)
2090           LargeOps.push_back(getMulExpr(LargeMulOps));
2091       } else {
2092         Ok = false;
2093         break;
2094       }
2095     }
2096     if (Ok) {
2097       // Evaluate the expression in the larger type.
2098       const SCEV *Fold = getAddExpr(LargeOps, Flags);
2099       // If it folds to something simple, use it. Otherwise, don't.
2100       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2101         return getTruncateExpr(Fold, DstType);
2102     }
2103   }
2104
2105   // Skip past any other cast SCEVs.
2106   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2107     ++Idx;
2108
2109   // If there are add operands they would be next.
2110   if (Idx < Ops.size()) {
2111     bool DeletedAdd = false;
2112     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2113       // If we have an add, expand the add operands onto the end of the operands
2114       // list.
2115       Ops.erase(Ops.begin()+Idx);
2116       Ops.append(Add->op_begin(), Add->op_end());
2117       DeletedAdd = true;
2118     }
2119
2120     // If we deleted at least one add, we added operands to the end of the list,
2121     // and they are not necessarily sorted.  Recurse to resort and resimplify
2122     // any operands we just acquired.
2123     if (DeletedAdd)
2124       return getAddExpr(Ops);
2125   }
2126
2127   // Skip over the add expression until we get to a multiply.
2128   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2129     ++Idx;
2130
2131   // Check to see if there are any folding opportunities present with
2132   // operands multiplied by constant values.
2133   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2134     uint64_t BitWidth = getTypeSizeInBits(Ty);
2135     DenseMap<const SCEV *, APInt> M;
2136     SmallVector<const SCEV *, 8> NewOps;
2137     APInt AccumulatedConstant(BitWidth, 0);
2138     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2139                                      Ops.data(), Ops.size(),
2140                                      APInt(BitWidth, 1), *this)) {
2141       struct APIntCompare {
2142         bool operator()(const APInt &LHS, const APInt &RHS) const {
2143           return LHS.ult(RHS);
2144         }
2145       };
2146
2147       // Some interesting folding opportunity is present, so its worthwhile to
2148       // re-generate the operands list. Group the operands by constant scale,
2149       // to avoid multiplying by the same constant scale multiple times.
2150       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2151       for (const SCEV *NewOp : NewOps)
2152         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2153       // Re-generate the operands list.
2154       Ops.clear();
2155       if (AccumulatedConstant != 0)
2156         Ops.push_back(getConstant(AccumulatedConstant));
2157       for (auto &MulOp : MulOpLists)
2158         if (MulOp.first != 0)
2159           Ops.push_back(getMulExpr(getConstant(MulOp.first),
2160                                    getAddExpr(MulOp.second)));
2161       if (Ops.empty())
2162         return getZero(Ty);
2163       if (Ops.size() == 1)
2164         return Ops[0];
2165       return getAddExpr(Ops);
2166     }
2167   }
2168
2169   // If we are adding something to a multiply expression, make sure the
2170   // something is not already an operand of the multiply.  If so, merge it into
2171   // the multiply.
2172   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2173     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2174     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2175       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2176       if (isa<SCEVConstant>(MulOpSCEV))
2177         continue;
2178       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2179         if (MulOpSCEV == Ops[AddOp]) {
2180           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2181           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2182           if (Mul->getNumOperands() != 2) {
2183             // If the multiply has more than two operands, we must get the
2184             // Y*Z term.
2185             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2186                                                 Mul->op_begin()+MulOp);
2187             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2188             InnerMul = getMulExpr(MulOps);
2189           }
2190           const SCEV *One = getOne(Ty);
2191           const SCEV *AddOne = getAddExpr(One, InnerMul);
2192           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
2193           if (Ops.size() == 2) return OuterMul;
2194           if (AddOp < Idx) {
2195             Ops.erase(Ops.begin()+AddOp);
2196             Ops.erase(Ops.begin()+Idx-1);
2197           } else {
2198             Ops.erase(Ops.begin()+Idx);
2199             Ops.erase(Ops.begin()+AddOp-1);
2200           }
2201           Ops.push_back(OuterMul);
2202           return getAddExpr(Ops);
2203         }
2204
2205       // Check this multiply against other multiplies being added together.
2206       for (unsigned OtherMulIdx = Idx+1;
2207            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2208            ++OtherMulIdx) {
2209         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2210         // If MulOp occurs in OtherMul, we can fold the two multiplies
2211         // together.
2212         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2213              OMulOp != e; ++OMulOp)
2214           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2215             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2216             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2217             if (Mul->getNumOperands() != 2) {
2218               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2219                                                   Mul->op_begin()+MulOp);
2220               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2221               InnerMul1 = getMulExpr(MulOps);
2222             }
2223             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2224             if (OtherMul->getNumOperands() != 2) {
2225               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2226                                                   OtherMul->op_begin()+OMulOp);
2227               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2228               InnerMul2 = getMulExpr(MulOps);
2229             }
2230             const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2231             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
2232             if (Ops.size() == 2) return OuterMul;
2233             Ops.erase(Ops.begin()+Idx);
2234             Ops.erase(Ops.begin()+OtherMulIdx-1);
2235             Ops.push_back(OuterMul);
2236             return getAddExpr(Ops);
2237           }
2238       }
2239     }
2240   }
2241
2242   // If there are any add recurrences in the operands list, see if any other
2243   // added values are loop invariant.  If so, we can fold them into the
2244   // recurrence.
2245   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2246     ++Idx;
2247
2248   // Scan over all recurrences, trying to fold loop invariants into them.
2249   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2250     // Scan all of the other operands to this add and add them to the vector if
2251     // they are loop invariant w.r.t. the recurrence.
2252     SmallVector<const SCEV *, 8> LIOps;
2253     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2254     const Loop *AddRecLoop = AddRec->getLoop();
2255     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2256       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2257         LIOps.push_back(Ops[i]);
2258         Ops.erase(Ops.begin()+i);
2259         --i; --e;
2260       }
2261
2262     // If we found some loop invariants, fold them into the recurrence.
2263     if (!LIOps.empty()) {
2264       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2265       LIOps.push_back(AddRec->getStart());
2266
2267       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2268                                              AddRec->op_end());
2269       AddRecOps[0] = getAddExpr(LIOps);
2270
2271       // Build the new addrec. Propagate the NUW and NSW flags if both the
2272       // outer add and the inner addrec are guaranteed to have no overflow.
2273       // Always propagate NW.
2274       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2275       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2276
2277       // If all of the other operands were loop invariant, we are done.
2278       if (Ops.size() == 1) return NewRec;
2279
2280       // Otherwise, add the folded AddRec by the non-invariant parts.
2281       for (unsigned i = 0;; ++i)
2282         if (Ops[i] == AddRec) {
2283           Ops[i] = NewRec;
2284           break;
2285         }
2286       return getAddExpr(Ops);
2287     }
2288
2289     // Okay, if there weren't any loop invariants to be folded, check to see if
2290     // there are multiple AddRec's with the same loop induction variable being
2291     // added together.  If so, we can fold them.
2292     for (unsigned OtherIdx = Idx+1;
2293          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2294          ++OtherIdx)
2295       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2296         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2297         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2298                                                AddRec->op_end());
2299         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2300              ++OtherIdx)
2301           if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2302             if (OtherAddRec->getLoop() == AddRecLoop) {
2303               for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2304                    i != e; ++i) {
2305                 if (i >= AddRecOps.size()) {
2306                   AddRecOps.append(OtherAddRec->op_begin()+i,
2307                                    OtherAddRec->op_end());
2308                   break;
2309                 }
2310                 AddRecOps[i] = getAddExpr(AddRecOps[i],
2311                                           OtherAddRec->getOperand(i));
2312               }
2313               Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2314             }
2315         // Step size has changed, so we cannot guarantee no self-wraparound.
2316         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2317         return getAddExpr(Ops);
2318       }
2319
2320     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2321     // next one.
2322   }
2323
2324   // Okay, it looks like we really DO need an add expr.  Check to see if we
2325   // already have one, otherwise create a new one.
2326   FoldingSetNodeID ID;
2327   ID.AddInteger(scAddExpr);
2328   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2329     ID.AddPointer(Ops[i]);
2330   void *IP = nullptr;
2331   SCEVAddExpr *S =
2332     static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2333   if (!S) {
2334     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2335     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2336     S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2337                                         O, Ops.size());
2338     UniqueSCEVs.InsertNode(S, IP);
2339   }
2340   S->setNoWrapFlags(Flags);
2341   return S;
2342 }
2343
2344 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2345   uint64_t k = i*j;
2346   if (j > 1 && k / j != i) Overflow = true;
2347   return k;
2348 }
2349
2350 /// Compute the result of "n choose k", the binomial coefficient.  If an
2351 /// intermediate computation overflows, Overflow will be set and the return will
2352 /// be garbage. Overflow is not cleared on absence of overflow.
2353 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2354   // We use the multiplicative formula:
2355   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2356   // At each iteration, we take the n-th term of the numeral and divide by the
2357   // (k-n)th term of the denominator.  This division will always produce an
2358   // integral result, and helps reduce the chance of overflow in the
2359   // intermediate computations. However, we can still overflow even when the
2360   // final result would fit.
2361
2362   if (n == 0 || n == k) return 1;
2363   if (k > n) return 0;
2364
2365   if (k > n/2)
2366     k = n-k;
2367
2368   uint64_t r = 1;
2369   for (uint64_t i = 1; i <= k; ++i) {
2370     r = umul_ov(r, n-(i-1), Overflow);
2371     r /= i;
2372   }
2373   return r;
2374 }
2375
2376 /// Determine if any of the operands in this SCEV are a constant or if
2377 /// any of the add or multiply expressions in this SCEV contain a constant.
2378 static bool containsConstantSomewhere(const SCEV *StartExpr) {
2379   SmallVector<const SCEV *, 4> Ops;
2380   Ops.push_back(StartExpr);
2381   while (!Ops.empty()) {
2382     const SCEV *CurrentExpr = Ops.pop_back_val();
2383     if (isa<SCEVConstant>(*CurrentExpr))
2384       return true;
2385
2386     if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2387       const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
2388       Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
2389     }
2390   }
2391   return false;
2392 }
2393
2394 /// getMulExpr - Get a canonical multiply expression, or something simpler if
2395 /// possible.
2396 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2397                                         SCEV::NoWrapFlags Flags) {
2398   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2399          "only nuw or nsw allowed");
2400   assert(!Ops.empty() && "Cannot get empty mul!");
2401   if (Ops.size() == 1) return Ops[0];
2402 #ifndef NDEBUG
2403   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2404   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2405     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2406            "SCEVMulExpr operand types don't match!");
2407 #endif
2408
2409   // Sort by complexity, this groups all similar expression types together.
2410   GroupByComplexity(Ops, &LI);
2411
2412   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2413
2414   // If there are any constants, fold them together.
2415   unsigned Idx = 0;
2416   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2417
2418     // C1*(C2+V) -> C1*C2 + C1*V
2419     if (Ops.size() == 2)
2420         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2421           // If any of Add's ops are Adds or Muls with a constant,
2422           // apply this transformation as well.
2423           if (Add->getNumOperands() == 2)
2424             if (containsConstantSomewhere(Add))
2425               return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2426                                 getMulExpr(LHSC, Add->getOperand(1)));
2427
2428     ++Idx;
2429     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2430       // We found two constants, fold them together!
2431       ConstantInt *Fold =
2432           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2433       Ops[0] = getConstant(Fold);
2434       Ops.erase(Ops.begin()+1);  // Erase the folded element
2435       if (Ops.size() == 1) return Ops[0];
2436       LHSC = cast<SCEVConstant>(Ops[0]);
2437     }
2438
2439     // If we are left with a constant one being multiplied, strip it off.
2440     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2441       Ops.erase(Ops.begin());
2442       --Idx;
2443     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2444       // If we have a multiply of zero, it will always be zero.
2445       return Ops[0];
2446     } else if (Ops[0]->isAllOnesValue()) {
2447       // If we have a mul by -1 of an add, try distributing the -1 among the
2448       // add operands.
2449       if (Ops.size() == 2) {
2450         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2451           SmallVector<const SCEV *, 4> NewOps;
2452           bool AnyFolded = false;
2453           for (const SCEV *AddOp : Add->operands()) {
2454             const SCEV *Mul = getMulExpr(Ops[0], AddOp);
2455             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2456             NewOps.push_back(Mul);
2457           }
2458           if (AnyFolded)
2459             return getAddExpr(NewOps);
2460         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2461           // Negation preserves a recurrence's no self-wrap property.
2462           SmallVector<const SCEV *, 4> Operands;
2463           for (const SCEV *AddRecOp : AddRec->operands())
2464             Operands.push_back(getMulExpr(Ops[0], AddRecOp));
2465
2466           return getAddRecExpr(Operands, AddRec->getLoop(),
2467                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2468         }
2469       }
2470     }
2471
2472     if (Ops.size() == 1)
2473       return Ops[0];
2474   }
2475
2476   // Skip over the add expression until we get to a multiply.
2477   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2478     ++Idx;
2479
2480   // If there are mul operands inline them all into this expression.
2481   if (Idx < Ops.size()) {
2482     bool DeletedMul = false;
2483     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2484       // If we have an mul, expand the mul operands onto the end of the operands
2485       // list.
2486       Ops.erase(Ops.begin()+Idx);
2487       Ops.append(Mul->op_begin(), Mul->op_end());
2488       DeletedMul = true;
2489     }
2490
2491     // If we deleted at least one mul, we added operands to the end of the list,
2492     // and they are not necessarily sorted.  Recurse to resort and resimplify
2493     // any operands we just acquired.
2494     if (DeletedMul)
2495       return getMulExpr(Ops);
2496   }
2497
2498   // If there are any add recurrences in the operands list, see if any other
2499   // added values are loop invariant.  If so, we can fold them into the
2500   // recurrence.
2501   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2502     ++Idx;
2503
2504   // Scan over all recurrences, trying to fold loop invariants into them.
2505   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2506     // Scan all of the other operands to this mul and add them to the vector if
2507     // they are loop invariant w.r.t. the recurrence.
2508     SmallVector<const SCEV *, 8> LIOps;
2509     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2510     const Loop *AddRecLoop = AddRec->getLoop();
2511     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2512       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2513         LIOps.push_back(Ops[i]);
2514         Ops.erase(Ops.begin()+i);
2515         --i; --e;
2516       }
2517
2518     // If we found some loop invariants, fold them into the recurrence.
2519     if (!LIOps.empty()) {
2520       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2521       SmallVector<const SCEV *, 4> NewOps;
2522       NewOps.reserve(AddRec->getNumOperands());
2523       const SCEV *Scale = getMulExpr(LIOps);
2524       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2525         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2526
2527       // Build the new addrec. Propagate the NUW and NSW flags if both the
2528       // outer mul and the inner addrec are guaranteed to have no overflow.
2529       //
2530       // No self-wrap cannot be guaranteed after changing the step size, but
2531       // will be inferred if either NUW or NSW is true.
2532       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2533       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2534
2535       // If all of the other operands were loop invariant, we are done.
2536       if (Ops.size() == 1) return NewRec;
2537
2538       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2539       for (unsigned i = 0;; ++i)
2540         if (Ops[i] == AddRec) {
2541           Ops[i] = NewRec;
2542           break;
2543         }
2544       return getMulExpr(Ops);
2545     }
2546
2547     // Okay, if there weren't any loop invariants to be folded, check to see if
2548     // there are multiple AddRec's with the same loop induction variable being
2549     // multiplied together.  If so, we can fold them.
2550
2551     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2552     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2553     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2554     //   ]]],+,...up to x=2n}.
2555     // Note that the arguments to choose() are always integers with values
2556     // known at compile time, never SCEV objects.
2557     //
2558     // The implementation avoids pointless extra computations when the two
2559     // addrec's are of different length (mathematically, it's equivalent to
2560     // an infinite stream of zeros on the right).
2561     bool OpsModified = false;
2562     for (unsigned OtherIdx = Idx+1;
2563          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2564          ++OtherIdx) {
2565       const SCEVAddRecExpr *OtherAddRec =
2566         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2567       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2568         continue;
2569
2570       bool Overflow = false;
2571       Type *Ty = AddRec->getType();
2572       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2573       SmallVector<const SCEV*, 7> AddRecOps;
2574       for (int x = 0, xe = AddRec->getNumOperands() +
2575              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2576         const SCEV *Term = getZero(Ty);
2577         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2578           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2579           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2580                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2581                z < ze && !Overflow; ++z) {
2582             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2583             uint64_t Coeff;
2584             if (LargerThan64Bits)
2585               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2586             else
2587               Coeff = Coeff1*Coeff2;
2588             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2589             const SCEV *Term1 = AddRec->getOperand(y-z);
2590             const SCEV *Term2 = OtherAddRec->getOperand(z);
2591             Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2592           }
2593         }
2594         AddRecOps.push_back(Term);
2595       }
2596       if (!Overflow) {
2597         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2598                                               SCEV::FlagAnyWrap);
2599         if (Ops.size() == 2) return NewAddRec;
2600         Ops[Idx] = NewAddRec;
2601         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2602         OpsModified = true;
2603         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2604         if (!AddRec)
2605           break;
2606       }
2607     }
2608     if (OpsModified)
2609       return getMulExpr(Ops);
2610
2611     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2612     // next one.
2613   }
2614
2615   // Okay, it looks like we really DO need an mul expr.  Check to see if we
2616   // already have one, otherwise create a new one.
2617   FoldingSetNodeID ID;
2618   ID.AddInteger(scMulExpr);
2619   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2620     ID.AddPointer(Ops[i]);
2621   void *IP = nullptr;
2622   SCEVMulExpr *S =
2623     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2624   if (!S) {
2625     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2626     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2627     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2628                                         O, Ops.size());
2629     UniqueSCEVs.InsertNode(S, IP);
2630   }
2631   S->setNoWrapFlags(Flags);
2632   return S;
2633 }
2634
2635 /// getUDivExpr - Get a canonical unsigned division expression, or something
2636 /// simpler if possible.
2637 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2638                                          const SCEV *RHS) {
2639   assert(getEffectiveSCEVType(LHS->getType()) ==
2640          getEffectiveSCEVType(RHS->getType()) &&
2641          "SCEVUDivExpr operand types don't match!");
2642
2643   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2644     if (RHSC->getValue()->equalsInt(1))
2645       return LHS;                               // X udiv 1 --> x
2646     // If the denominator is zero, the result of the udiv is undefined. Don't
2647     // try to analyze it, because the resolution chosen here may differ from
2648     // the resolution chosen in other parts of the compiler.
2649     if (!RHSC->getValue()->isZero()) {
2650       // Determine if the division can be folded into the operands of
2651       // its operands.
2652       // TODO: Generalize this to non-constants by using known-bits information.
2653       Type *Ty = LHS->getType();
2654       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
2655       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2656       // For non-power-of-two values, effectively round the value up to the
2657       // nearest power of two.
2658       if (!RHSC->getAPInt().isPowerOf2())
2659         ++MaxShiftAmt;
2660       IntegerType *ExtTy =
2661         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2662       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2663         if (const SCEVConstant *Step =
2664             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2665           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2666           const APInt &StepInt = Step->getAPInt();
2667           const APInt &DivInt = RHSC->getAPInt();
2668           if (!StepInt.urem(DivInt) &&
2669               getZeroExtendExpr(AR, ExtTy) ==
2670               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2671                             getZeroExtendExpr(Step, ExtTy),
2672                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2673             SmallVector<const SCEV *, 4> Operands;
2674             for (const SCEV *Op : AR->operands())
2675               Operands.push_back(getUDivExpr(Op, RHS));
2676             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
2677           }
2678           /// Get a canonical UDivExpr for a recurrence.
2679           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2680           // We can currently only fold X%N if X is constant.
2681           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2682           if (StartC && !DivInt.urem(StepInt) &&
2683               getZeroExtendExpr(AR, ExtTy) ==
2684               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2685                             getZeroExtendExpr(Step, ExtTy),
2686                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2687             const APInt &StartInt = StartC->getAPInt();
2688             const APInt &StartRem = StartInt.urem(StepInt);
2689             if (StartRem != 0)
2690               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2691                                   AR->getLoop(), SCEV::FlagNW);
2692           }
2693         }
2694       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2695       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2696         SmallVector<const SCEV *, 4> Operands;
2697         for (const SCEV *Op : M->operands())
2698           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2699         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2700           // Find an operand that's safely divisible.
2701           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2702             const SCEV *Op = M->getOperand(i);
2703             const SCEV *Div = getUDivExpr(Op, RHSC);
2704             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2705               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2706                                                       M->op_end());
2707               Operands[i] = Div;
2708               return getMulExpr(Operands);
2709             }
2710           }
2711       }
2712       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2713       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2714         SmallVector<const SCEV *, 4> Operands;
2715         for (const SCEV *Op : A->operands())
2716           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2717         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2718           Operands.clear();
2719           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2720             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2721             if (isa<SCEVUDivExpr>(Op) ||
2722                 getMulExpr(Op, RHS) != A->getOperand(i))
2723               break;
2724             Operands.push_back(Op);
2725           }
2726           if (Operands.size() == A->getNumOperands())
2727             return getAddExpr(Operands);
2728         }
2729       }
2730
2731       // Fold if both operands are constant.
2732       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2733         Constant *LHSCV = LHSC->getValue();
2734         Constant *RHSCV = RHSC->getValue();
2735         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2736                                                                    RHSCV)));
2737       }
2738     }
2739   }
2740
2741   FoldingSetNodeID ID;
2742   ID.AddInteger(scUDivExpr);
2743   ID.AddPointer(LHS);
2744   ID.AddPointer(RHS);
2745   void *IP = nullptr;
2746   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2747   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2748                                              LHS, RHS);
2749   UniqueSCEVs.InsertNode(S, IP);
2750   return S;
2751 }
2752
2753 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2754   APInt A = C1->getAPInt().abs();
2755   APInt B = C2->getAPInt().abs();
2756   uint32_t ABW = A.getBitWidth();
2757   uint32_t BBW = B.getBitWidth();
2758
2759   if (ABW > BBW)
2760     B = B.zext(ABW);
2761   else if (ABW < BBW)
2762     A = A.zext(BBW);
2763
2764   return APIntOps::GreatestCommonDivisor(A, B);
2765 }
2766
2767 /// getUDivExactExpr - Get a canonical unsigned division expression, or
2768 /// something simpler if possible. There is no representation for an exact udiv
2769 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2770 /// We can't do this when it's not exact because the udiv may be clearing bits.
2771 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2772                                               const SCEV *RHS) {
2773   // TODO: we could try to find factors in all sorts of things, but for now we
2774   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2775   // end of this file for inspiration.
2776
2777   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2778   if (!Mul)
2779     return getUDivExpr(LHS, RHS);
2780
2781   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2782     // If the mulexpr multiplies by a constant, then that constant must be the
2783     // first element of the mulexpr.
2784     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2785       if (LHSCst == RHSCst) {
2786         SmallVector<const SCEV *, 2> Operands;
2787         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2788         return getMulExpr(Operands);
2789       }
2790
2791       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2792       // that there's a factor provided by one of the other terms. We need to
2793       // check.
2794       APInt Factor = gcd(LHSCst, RHSCst);
2795       if (!Factor.isIntN(1)) {
2796         LHSCst =
2797             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
2798         RHSCst =
2799             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
2800         SmallVector<const SCEV *, 2> Operands;
2801         Operands.push_back(LHSCst);
2802         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2803         LHS = getMulExpr(Operands);
2804         RHS = RHSCst;
2805         Mul = dyn_cast<SCEVMulExpr>(LHS);
2806         if (!Mul)
2807           return getUDivExactExpr(LHS, RHS);
2808       }
2809     }
2810   }
2811
2812   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2813     if (Mul->getOperand(i) == RHS) {
2814       SmallVector<const SCEV *, 2> Operands;
2815       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2816       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2817       return getMulExpr(Operands);
2818     }
2819   }
2820
2821   return getUDivExpr(LHS, RHS);
2822 }
2823
2824 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2825 /// Simplify the expression as much as possible.
2826 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2827                                            const Loop *L,
2828                                            SCEV::NoWrapFlags Flags) {
2829   SmallVector<const SCEV *, 4> Operands;
2830   Operands.push_back(Start);
2831   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2832     if (StepChrec->getLoop() == L) {
2833       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2834       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2835     }
2836
2837   Operands.push_back(Step);
2838   return getAddRecExpr(Operands, L, Flags);
2839 }
2840
2841 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2842 /// Simplify the expression as much as possible.
2843 const SCEV *
2844 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2845                                const Loop *L, SCEV::NoWrapFlags Flags) {
2846   if (Operands.size() == 1) return Operands[0];
2847 #ifndef NDEBUG
2848   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2849   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2850     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2851            "SCEVAddRecExpr operand types don't match!");
2852   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2853     assert(isLoopInvariant(Operands[i], L) &&
2854            "SCEVAddRecExpr operand is not loop-invariant!");
2855 #endif
2856
2857   if (Operands.back()->isZero()) {
2858     Operands.pop_back();
2859     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2860   }
2861
2862   // It's tempting to want to call getMaxBackedgeTakenCount count here and
2863   // use that information to infer NUW and NSW flags. However, computing a
2864   // BE count requires calling getAddRecExpr, so we may not yet have a
2865   // meaningful BE count at this point (and if we don't, we'd be stuck
2866   // with a SCEVCouldNotCompute as the cached BE count).
2867
2868   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
2869
2870   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2871   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2872     const Loop *NestedLoop = NestedAR->getLoop();
2873     if (L->contains(NestedLoop)
2874             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2875             : (!NestedLoop->contains(L) &&
2876                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
2877       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2878                                                   NestedAR->op_end());
2879       Operands[0] = NestedAR->getStart();
2880       // AddRecs require their operands be loop-invariant with respect to their
2881       // loops. Don't perform this transformation if it would break this
2882       // requirement.
2883       bool AllInvariant = all_of(
2884           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
2885
2886       if (AllInvariant) {
2887         // Create a recurrence for the outer loop with the same step size.
2888         //
2889         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2890         // inner recurrence has the same property.
2891         SCEV::NoWrapFlags OuterFlags =
2892           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2893
2894         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2895         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
2896           return isLoopInvariant(Op, NestedLoop);
2897         });
2898
2899         if (AllInvariant) {
2900           // Ok, both add recurrences are valid after the transformation.
2901           //
2902           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2903           // the outer recurrence has the same property.
2904           SCEV::NoWrapFlags InnerFlags =
2905             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2906           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2907         }
2908       }
2909       // Reset Operands to its original state.
2910       Operands[0] = NestedAR;
2911     }
2912   }
2913
2914   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2915   // already have one, otherwise create a new one.
2916   FoldingSetNodeID ID;
2917   ID.AddInteger(scAddRecExpr);
2918   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2919     ID.AddPointer(Operands[i]);
2920   ID.AddPointer(L);
2921   void *IP = nullptr;
2922   SCEVAddRecExpr *S =
2923     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2924   if (!S) {
2925     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2926     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2927     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2928                                            O, Operands.size(), L);
2929     UniqueSCEVs.InsertNode(S, IP);
2930   }
2931   S->setNoWrapFlags(Flags);
2932   return S;
2933 }
2934
2935 const SCEV *
2936 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2937                             const SmallVectorImpl<const SCEV *> &IndexExprs,
2938                             bool InBounds) {
2939   // getSCEV(Base)->getType() has the same address space as Base->getType()
2940   // because SCEV::getType() preserves the address space.
2941   Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2942   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2943   // instruction to its SCEV, because the Instruction may be guarded by control
2944   // flow and the no-overflow bits may not be valid for the expression in any
2945   // context. This can be fixed similarly to how these flags are handled for
2946   // adds.
2947   SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2948
2949   const SCEV *TotalOffset = getZero(IntPtrTy);
2950   // The address space is unimportant. The first thing we do on CurTy is getting
2951   // its element type.
2952   Type *CurTy = PointerType::getUnqual(PointeeType);
2953   for (const SCEV *IndexExpr : IndexExprs) {
2954     // Compute the (potentially symbolic) offset in bytes for this index.
2955     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2956       // For a struct, add the member offset.
2957       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2958       unsigned FieldNo = Index->getZExtValue();
2959       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2960
2961       // Add the field offset to the running total offset.
2962       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2963
2964       // Update CurTy to the type of the field at Index.
2965       CurTy = STy->getTypeAtIndex(Index);
2966     } else {
2967       // Update CurTy to its element type.
2968       CurTy = cast<SequentialType>(CurTy)->getElementType();
2969       // For an array, add the element offset, explicitly scaled.
2970       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
2971       // Getelementptr indices are signed.
2972       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
2973
2974       // Multiply the index by the element size to compute the element offset.
2975       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
2976
2977       // Add the element offset to the running total offset.
2978       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2979     }
2980   }
2981
2982   // Add the total offset from all the GEP indices to the base.
2983   return getAddExpr(BaseExpr, TotalOffset, Wrap);
2984 }
2985
2986 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2987                                          const SCEV *RHS) {
2988   SmallVector<const SCEV *, 2> Ops;
2989   Ops.push_back(LHS);
2990   Ops.push_back(RHS);
2991   return getSMaxExpr(Ops);
2992 }
2993
2994 const SCEV *
2995 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2996   assert(!Ops.empty() && "Cannot get empty smax!");
2997   if (Ops.size() == 1) return Ops[0];
2998 #ifndef NDEBUG
2999   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3000   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3001     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3002            "SCEVSMaxExpr operand types don't match!");
3003 #endif
3004
3005   // Sort by complexity, this groups all similar expression types together.
3006   GroupByComplexity(Ops, &LI);
3007
3008   // If there are any constants, fold them together.
3009   unsigned Idx = 0;
3010   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3011     ++Idx;
3012     assert(Idx < Ops.size());
3013     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3014       // We found two constants, fold them together!
3015       ConstantInt *Fold = ConstantInt::get(
3016           getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3017       Ops[0] = getConstant(Fold);
3018       Ops.erase(Ops.begin()+1);  // Erase the folded element
3019       if (Ops.size() == 1) return Ops[0];
3020       LHSC = cast<SCEVConstant>(Ops[0]);
3021     }
3022
3023     // If we are left with a constant minimum-int, strip it off.
3024     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3025       Ops.erase(Ops.begin());
3026       --Idx;
3027     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3028       // If we have an smax with a constant maximum-int, it will always be
3029       // maximum-int.
3030       return Ops[0];
3031     }
3032
3033     if (Ops.size() == 1) return Ops[0];
3034   }
3035
3036   // Find the first SMax
3037   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3038     ++Idx;
3039
3040   // Check to see if one of the operands is an SMax. If so, expand its operands
3041   // onto our operand list, and recurse to simplify.
3042   if (Idx < Ops.size()) {
3043     bool DeletedSMax = false;
3044     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3045       Ops.erase(Ops.begin()+Idx);
3046       Ops.append(SMax->op_begin(), SMax->op_end());
3047       DeletedSMax = true;
3048     }
3049
3050     if (DeletedSMax)
3051       return getSMaxExpr(Ops);
3052   }
3053
3054   // Okay, check to see if the same value occurs in the operand list twice.  If
3055   // so, delete one.  Since we sorted the list, these values are required to
3056   // be adjacent.
3057   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3058     //  X smax Y smax Y  -->  X smax Y
3059     //  X smax Y         -->  X, if X is always greater than Y
3060     if (Ops[i] == Ops[i+1] ||
3061         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3062       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3063       --i; --e;
3064     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3065       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3066       --i; --e;
3067     }
3068
3069   if (Ops.size() == 1) return Ops[0];
3070
3071   assert(!Ops.empty() && "Reduced smax down to nothing!");
3072
3073   // Okay, it looks like we really DO need an smax expr.  Check to see if we
3074   // already have one, otherwise create a new one.
3075   FoldingSetNodeID ID;
3076   ID.AddInteger(scSMaxExpr);
3077   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3078     ID.AddPointer(Ops[i]);
3079   void *IP = nullptr;
3080   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3081   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3082   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3083   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3084                                              O, Ops.size());
3085   UniqueSCEVs.InsertNode(S, IP);
3086   return S;
3087 }
3088
3089 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3090                                          const SCEV *RHS) {
3091   SmallVector<const SCEV *, 2> Ops;
3092   Ops.push_back(LHS);
3093   Ops.push_back(RHS);
3094   return getUMaxExpr(Ops);
3095 }
3096
3097 const SCEV *
3098 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3099   assert(!Ops.empty() && "Cannot get empty umax!");
3100   if (Ops.size() == 1) return Ops[0];
3101 #ifndef NDEBUG
3102   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3103   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3104     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3105            "SCEVUMaxExpr operand types don't match!");
3106 #endif
3107
3108   // Sort by complexity, this groups all similar expression types together.
3109   GroupByComplexity(Ops, &LI);
3110
3111   // If there are any constants, fold them together.
3112   unsigned Idx = 0;
3113   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3114     ++Idx;
3115     assert(Idx < Ops.size());
3116     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3117       // We found two constants, fold them together!
3118       ConstantInt *Fold = ConstantInt::get(
3119           getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3120       Ops[0] = getConstant(Fold);
3121       Ops.erase(Ops.begin()+1);  // Erase the folded element
3122       if (Ops.size() == 1) return Ops[0];
3123       LHSC = cast<SCEVConstant>(Ops[0]);
3124     }
3125
3126     // If we are left with a constant minimum-int, strip it off.
3127     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3128       Ops.erase(Ops.begin());
3129       --Idx;
3130     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3131       // If we have an umax with a constant maximum-int, it will always be
3132       // maximum-int.
3133       return Ops[0];
3134     }
3135
3136     if (Ops.size() == 1) return Ops[0];
3137   }
3138
3139   // Find the first UMax
3140   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3141     ++Idx;
3142
3143   // Check to see if one of the operands is a UMax. If so, expand its operands
3144   // onto our operand list, and recurse to simplify.
3145   if (Idx < Ops.size()) {
3146     bool DeletedUMax = false;
3147     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3148       Ops.erase(Ops.begin()+Idx);
3149       Ops.append(UMax->op_begin(), UMax->op_end());
3150       DeletedUMax = true;
3151     }
3152
3153     if (DeletedUMax)
3154       return getUMaxExpr(Ops);
3155   }
3156
3157   // Okay, check to see if the same value occurs in the operand list twice.  If
3158   // so, delete one.  Since we sorted the list, these values are required to
3159   // be adjacent.
3160   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3161     //  X umax Y umax Y  -->  X umax Y
3162     //  X umax Y         -->  X, if X is always greater than Y
3163     if (Ops[i] == Ops[i+1] ||
3164         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3165       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3166       --i; --e;
3167     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
3168       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3169       --i; --e;
3170     }
3171
3172   if (Ops.size() == 1) return Ops[0];
3173
3174   assert(!Ops.empty() && "Reduced umax down to nothing!");
3175
3176   // Okay, it looks like we really DO need a umax expr.  Check to see if we
3177   // already have one, otherwise create a new one.
3178   FoldingSetNodeID ID;
3179   ID.AddInteger(scUMaxExpr);
3180   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3181     ID.AddPointer(Ops[i]);
3182   void *IP = nullptr;
3183   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3184   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3185   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3186   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3187                                              O, Ops.size());
3188   UniqueSCEVs.InsertNode(S, IP);
3189   return S;
3190 }
3191
3192 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3193                                          const SCEV *RHS) {
3194   // ~smax(~x, ~y) == smin(x, y).
3195   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3196 }
3197
3198 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3199                                          const SCEV *RHS) {
3200   // ~umax(~x, ~y) == umin(x, y)
3201   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3202 }
3203
3204 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3205   // We can bypass creating a target-independent
3206   // constant expression and then folding it back into a ConstantInt.
3207   // This is just a compile-time optimization.
3208   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3209 }
3210
3211 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3212                                              StructType *STy,
3213                                              unsigned FieldNo) {
3214   // We can bypass creating a target-independent
3215   // constant expression and then folding it back into a ConstantInt.
3216   // This is just a compile-time optimization.
3217   return getConstant(
3218       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3219 }
3220
3221 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3222   // Don't attempt to do anything other than create a SCEVUnknown object
3223   // here.  createSCEV only calls getUnknown after checking for all other
3224   // interesting possibilities, and any other code that calls getUnknown
3225   // is doing so in order to hide a value from SCEV canonicalization.
3226
3227   FoldingSetNodeID ID;
3228   ID.AddInteger(scUnknown);
3229   ID.AddPointer(V);
3230   void *IP = nullptr;
3231   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3232     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3233            "Stale SCEVUnknown in uniquing map!");
3234     return S;
3235   }
3236   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3237                                             FirstUnknown);
3238   FirstUnknown = cast<SCEVUnknown>(S);
3239   UniqueSCEVs.InsertNode(S, IP);
3240   return S;
3241 }
3242
3243 //===----------------------------------------------------------------------===//
3244 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3245 //
3246
3247 /// isSCEVable - Test if values of the given type are analyzable within
3248 /// the SCEV framework. This primarily includes integer types, and it
3249 /// can optionally include pointer types if the ScalarEvolution class
3250 /// has access to target-specific information.
3251 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3252   // Integers and pointers are always SCEVable.
3253   return Ty->isIntegerTy() || Ty->isPointerTy();
3254 }
3255
3256 /// getTypeSizeInBits - Return the size in bits of the specified type,
3257 /// for which isSCEVable must return true.
3258 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3259   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3260   return getDataLayout().getTypeSizeInBits(Ty);
3261 }
3262
3263 /// getEffectiveSCEVType - Return a type with the same bitwidth as
3264 /// the given type and which represents how SCEV will treat the given
3265 /// type, for which isSCEVable must return true. For pointer types,
3266 /// this is the pointer-sized integer type.
3267 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3268   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3269
3270   if (Ty->isIntegerTy())
3271     return Ty;
3272
3273   // The only other support type is pointer.
3274   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3275   return getDataLayout().getIntPtrType(Ty);
3276 }
3277
3278 const SCEV *ScalarEvolution::getCouldNotCompute() {
3279   return CouldNotCompute.get();
3280 }
3281
3282
3283 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3284   // Helper class working with SCEVTraversal to figure out if a SCEV contains
3285   // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3286   // is set iff if find such SCEVUnknown.
3287   //
3288   struct FindInvalidSCEVUnknown {
3289     bool FindOne;
3290     FindInvalidSCEVUnknown() { FindOne = false; }
3291     bool follow(const SCEV *S) {
3292       switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3293       case scConstant:
3294         return false;
3295       case scUnknown:
3296         if (!cast<SCEVUnknown>(S)->getValue())
3297           FindOne = true;
3298         return false;
3299       default:
3300         return true;
3301       }
3302     }
3303     bool isDone() const { return FindOne; }
3304   };
3305
3306   FindInvalidSCEVUnknown F;
3307   SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3308   ST.visitAll(S);
3309
3310   return !F.FindOne;
3311 }
3312
3313 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3314 /// expression and create a new one.
3315 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3316   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3317
3318   const SCEV *S = getExistingSCEV(V);
3319   if (S == nullptr) {
3320     S = createSCEV(V);
3321     ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
3322   }
3323   return S;
3324 }
3325
3326 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3327   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3328
3329   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3330   if (I != ValueExprMap.end()) {
3331     const SCEV *S = I->second;
3332     if (checkValidity(S))
3333       return S;
3334     ValueExprMap.erase(I);
3335   }
3336   return nullptr;
3337 }
3338
3339 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3340 ///
3341 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3342                                              SCEV::NoWrapFlags Flags) {
3343   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3344     return getConstant(
3345                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3346
3347   Type *Ty = V->getType();
3348   Ty = getEffectiveSCEVType(Ty);
3349   return getMulExpr(
3350       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3351 }
3352
3353 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
3354 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3355   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3356     return getConstant(
3357                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3358
3359   Type *Ty = V->getType();
3360   Ty = getEffectiveSCEVType(Ty);
3361   const SCEV *AllOnes =
3362                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3363   return getMinusSCEV(AllOnes, V);
3364 }
3365
3366 /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
3367 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3368                                           SCEV::NoWrapFlags Flags) {
3369   // Fast path: X - X --> 0.
3370   if (LHS == RHS)
3371     return getZero(LHS->getType());
3372
3373   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3374   // makes it so that we cannot make much use of NUW.
3375   auto AddFlags = SCEV::FlagAnyWrap;
3376   const bool RHSIsNotMinSigned =
3377       !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3378   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3379     // Let M be the minimum representable signed value. Then (-1)*RHS
3380     // signed-wraps if and only if RHS is M. That can happen even for
3381     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3382     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3383     // (-1)*RHS, we need to prove that RHS != M.
3384     //
3385     // If LHS is non-negative and we know that LHS - RHS does not
3386     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3387     // either by proving that RHS > M or that LHS >= 0.
3388     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3389       AddFlags = SCEV::FlagNSW;
3390     }
3391   }
3392
3393   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3394   // RHS is NSW and LHS >= 0.
3395   //
3396   // The difficulty here is that the NSW flag may have been proven
3397   // relative to a loop that is to be found in a recurrence in LHS and
3398   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3399   // larger scope than intended.
3400   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3401
3402   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
3403 }
3404
3405 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3406 /// input value to the specified type.  If the type must be extended, it is zero
3407 /// extended.
3408 const SCEV *
3409 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3410   Type *SrcTy = V->getType();
3411   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3412          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3413          "Cannot truncate or zero extend with non-integer arguments!");
3414   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3415     return V;  // No conversion
3416   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3417     return getTruncateExpr(V, Ty);
3418   return getZeroExtendExpr(V, Ty);
3419 }
3420
3421 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3422 /// input value to the specified type.  If the type must be extended, it is sign
3423 /// extended.
3424 const SCEV *
3425 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
3426                                          Type *Ty) {
3427   Type *SrcTy = V->getType();
3428   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3429          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3430          "Cannot truncate or zero extend with non-integer arguments!");
3431   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3432     return V;  // No conversion
3433   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3434     return getTruncateExpr(V, Ty);
3435   return getSignExtendExpr(V, Ty);
3436 }
3437
3438 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3439 /// input value to the specified type.  If the type must be extended, it is zero
3440 /// extended.  The conversion must not be narrowing.
3441 const SCEV *
3442 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3443   Type *SrcTy = V->getType();
3444   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3445          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3446          "Cannot noop or zero extend with non-integer arguments!");
3447   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3448          "getNoopOrZeroExtend cannot truncate!");
3449   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3450     return V;  // No conversion
3451   return getZeroExtendExpr(V, Ty);
3452 }
3453
3454 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3455 /// input value to the specified type.  If the type must be extended, it is sign
3456 /// extended.  The conversion must not be narrowing.
3457 const SCEV *
3458 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3459   Type *SrcTy = V->getType();
3460   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3461          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3462          "Cannot noop or sign extend with non-integer arguments!");
3463   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3464          "getNoopOrSignExtend cannot truncate!");
3465   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3466     return V;  // No conversion
3467   return getSignExtendExpr(V, Ty);
3468 }
3469
3470 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3471 /// the input value to the specified type. If the type must be extended,
3472 /// it is extended with unspecified bits. The conversion must not be
3473 /// narrowing.
3474 const SCEV *
3475 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3476   Type *SrcTy = V->getType();
3477   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3478          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3479          "Cannot noop or any extend with non-integer arguments!");
3480   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3481          "getNoopOrAnyExtend cannot truncate!");
3482   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3483     return V;  // No conversion
3484   return getAnyExtendExpr(V, Ty);
3485 }
3486
3487 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3488 /// input value to the specified type.  The conversion must not be widening.
3489 const SCEV *
3490 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3491   Type *SrcTy = V->getType();
3492   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3493          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3494          "Cannot truncate or noop with non-integer arguments!");
3495   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3496          "getTruncateOrNoop cannot extend!");
3497   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3498     return V;  // No conversion
3499   return getTruncateExpr(V, Ty);
3500 }
3501
3502 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3503 /// the types using zero-extension, and then perform a umax operation
3504 /// with them.
3505 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3506                                                         const SCEV *RHS) {
3507   const SCEV *PromotedLHS = LHS;
3508   const SCEV *PromotedRHS = RHS;
3509
3510   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3511     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3512   else
3513     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3514
3515   return getUMaxExpr(PromotedLHS, PromotedRHS);
3516 }
3517
3518 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
3519 /// the types using zero-extension, and then perform a umin operation
3520 /// with them.
3521 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3522                                                         const SCEV *RHS) {
3523   const SCEV *PromotedLHS = LHS;
3524   const SCEV *PromotedRHS = RHS;
3525
3526   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3527     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3528   else
3529     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3530
3531   return getUMinExpr(PromotedLHS, PromotedRHS);
3532 }
3533
3534 /// getPointerBase - Transitively follow the chain of pointer-type operands
3535 /// until reaching a SCEV that does not have a single pointer operand. This
3536 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3537 /// but corner cases do exist.
3538 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3539   // A pointer operand may evaluate to a nonpointer expression, such as null.
3540   if (!V->getType()->isPointerTy())
3541     return V;
3542
3543   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3544     return getPointerBase(Cast->getOperand());
3545   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3546     const SCEV *PtrOp = nullptr;
3547     for (const SCEV *NAryOp : NAry->operands()) {
3548       if (NAryOp->getType()->isPointerTy()) {
3549         // Cannot find the base of an expression with multiple pointer operands.
3550         if (PtrOp)
3551           return V;
3552         PtrOp = NAryOp;
3553       }
3554     }
3555     if (!PtrOp)
3556       return V;
3557     return getPointerBase(PtrOp);
3558   }
3559   return V;
3560 }
3561
3562 /// PushDefUseChildren - Push users of the given Instruction
3563 /// onto the given Worklist.
3564 static void
3565 PushDefUseChildren(Instruction *I,
3566                    SmallVectorImpl<Instruction *> &Worklist) {
3567   // Push the def-use children onto the Worklist stack.
3568   for (User *U : I->users())
3569     Worklist.push_back(cast<Instruction>(U));
3570 }
3571
3572 /// ForgetSymbolicValue - This looks up computed SCEV values for all
3573 /// instructions that depend on the given instruction and removes them from
3574 /// the ValueExprMapType map if they reference SymName. This is used during PHI
3575 /// resolution.
3576 void
3577 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3578   SmallVector<Instruction *, 16> Worklist;
3579   PushDefUseChildren(PN, Worklist);
3580
3581   SmallPtrSet<Instruction *, 8> Visited;
3582   Visited.insert(PN);
3583   while (!Worklist.empty()) {
3584     Instruction *I = Worklist.pop_back_val();
3585     if (!Visited.insert(I).second)
3586       continue;
3587
3588     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
3589     if (It != ValueExprMap.end()) {
3590       const SCEV *Old = It->second;
3591
3592       // Short-circuit the def-use traversal if the symbolic name
3593       // ceases to appear in expressions.
3594       if (Old != SymName && !hasOperand(Old, SymName))
3595         continue;
3596
3597       // SCEVUnknown for a PHI either means that it has an unrecognized
3598       // structure, it's a PHI that's in the progress of being computed
3599       // by createNodeForPHI, or it's a single-value PHI. In the first case,
3600       // additional loop trip count information isn't going to change anything.
3601       // In the second case, createNodeForPHI will perform the necessary
3602       // updates on its own when it gets to that point. In the third, we do
3603       // want to forget the SCEVUnknown.
3604       if (!isa<PHINode>(I) ||
3605           !isa<SCEVUnknown>(Old) ||
3606           (I != PN && Old == SymName)) {
3607         forgetMemoizedResults(Old);
3608         ValueExprMap.erase(It);
3609       }
3610     }
3611
3612     PushDefUseChildren(I, Worklist);
3613   }
3614 }
3615
3616 namespace {
3617 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3618 public:
3619   static const SCEV *rewrite(const SCEV *Scev, const Loop *L,
3620                              ScalarEvolution &SE) {
3621     SCEVInitRewriter Rewriter(L, SE);
3622     const SCEV *Result = Rewriter.visit(Scev);
3623     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3624   }
3625
3626   SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3627       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3628
3629   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3630     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3631       Valid = false;
3632     return Expr;
3633   }
3634
3635   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3636     // Only allow AddRecExprs for this loop.
3637     if (Expr->getLoop() == L)
3638       return Expr->getStart();
3639     Valid = false;
3640     return Expr;
3641   }
3642
3643   bool isValid() { return Valid; }
3644
3645 private:
3646   const Loop *L;
3647   bool Valid;
3648 };
3649
3650 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3651 public:
3652   static const SCEV *rewrite(const SCEV *Scev, const Loop *L,
3653                              ScalarEvolution &SE) {
3654     SCEVShiftRewriter Rewriter(L, SE);
3655     const SCEV *Result = Rewriter.visit(Scev);
3656     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3657   }
3658
3659   SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3660       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3661
3662   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3663     // Only allow AddRecExprs for this loop.
3664     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3665       Valid = false;
3666     return Expr;
3667   }
3668
3669   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3670     if (Expr->getLoop() == L && Expr->isAffine())
3671       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3672     Valid = false;
3673     return Expr;
3674   }
3675   bool isValid() { return Valid; }
3676
3677 private:
3678   const Loop *L;
3679   bool Valid;
3680 };
3681 } // end anonymous namespace
3682
3683 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3684   const Loop *L = LI.getLoopFor(PN->getParent());
3685   if (!L || L->getHeader() != PN->getParent())
3686     return nullptr;
3687
3688   // The loop may have multiple entrances or multiple exits; we can analyze
3689   // this phi as an addrec if it has a unique entry value and a unique
3690   // backedge value.
3691   Value *BEValueV = nullptr, *StartValueV = nullptr;
3692   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3693     Value *V = PN->getIncomingValue(i);
3694     if (L->contains(PN->getIncomingBlock(i))) {
3695       if (!BEValueV) {
3696         BEValueV = V;
3697       } else if (BEValueV != V) {
3698         BEValueV = nullptr;
3699         break;
3700       }
3701     } else if (!StartValueV) {
3702       StartValueV = V;
3703     } else if (StartValueV != V) {
3704       StartValueV = nullptr;
3705       break;
3706     }
3707   }
3708   if (BEValueV && StartValueV) {
3709     // While we are analyzing this PHI node, handle its value symbolically.
3710     const SCEV *SymbolicName = getUnknown(PN);
3711     assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3712            "PHI node already processed?");
3713     ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
3714
3715     // Using this symbolic name for the PHI, analyze the value coming around
3716     // the back-edge.
3717     const SCEV *BEValue = getSCEV(BEValueV);
3718
3719     // NOTE: If BEValue is loop invariant, we know that the PHI node just
3720     // has a special value for the first iteration of the loop.
3721
3722     // If the value coming around the backedge is an add with the symbolic
3723     // value we just inserted, then we found a simple induction variable!
3724     if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3725       // If there is a single occurrence of the symbolic value, replace it
3726       // with a recurrence.
3727       unsigned FoundIndex = Add->getNumOperands();
3728       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3729         if (Add->getOperand(i) == SymbolicName)
3730           if (FoundIndex == e) {
3731             FoundIndex = i;
3732             break;
3733           }
3734
3735       if (FoundIndex != Add->getNumOperands()) {
3736         // Create an add with everything but the specified operand.
3737         SmallVector<const SCEV *, 8> Ops;
3738         for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3739           if (i != FoundIndex)
3740             Ops.push_back(Add->getOperand(i));
3741         const SCEV *Accum = getAddExpr(Ops);
3742
3743         // This is not a valid addrec if the step amount is varying each
3744         // loop iteration, but is not itself an addrec in this loop.
3745         if (isLoopInvariant(Accum, L) ||
3746             (isa<SCEVAddRecExpr>(Accum) &&
3747              cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3748           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3749
3750           // If the increment doesn't overflow, then neither the addrec nor
3751           // the post-increment will overflow.
3752           if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3753             if (OBO->getOperand(0) == PN) {
3754               if (OBO->hasNoUnsignedWrap())
3755                 Flags = setFlags(Flags, SCEV::FlagNUW);
3756               if (OBO->hasNoSignedWrap())
3757                 Flags = setFlags(Flags, SCEV::FlagNSW);
3758             }
3759           } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3760             // If the increment is an inbounds GEP, then we know the address
3761             // space cannot be wrapped around. We cannot make any guarantee
3762             // about signed or unsigned overflow because pointers are
3763             // unsigned but we may have a negative index from the base
3764             // pointer. We can guarantee that no unsigned wrap occurs if the
3765             // indices form a positive value.
3766             if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
3767               Flags = setFlags(Flags, SCEV::FlagNW);
3768
3769               const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3770               if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3771                 Flags = setFlags(Flags, SCEV::FlagNUW);
3772             }
3773
3774             // We cannot transfer nuw and nsw flags from subtraction
3775             // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3776             // for instance.
3777           }
3778
3779           const SCEV *StartVal = getSCEV(StartValueV);
3780           const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3781
3782           // Since the no-wrap flags are on the increment, they apply to the
3783           // post-incremented value as well.
3784           if (isLoopInvariant(Accum, L))
3785             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
3786
3787           // Okay, for the entire analysis of this edge we assumed the PHI
3788           // to be symbolic.  We now need to go back and purge all of the
3789           // entries for the scalars that use the symbolic expression.
3790           ForgetSymbolicName(PN, SymbolicName);
3791           ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3792           return PHISCEV;
3793         }
3794       }
3795     } else {
3796       // Otherwise, this could be a loop like this:
3797       //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
3798       // In this case, j = {1,+,1}  and BEValue is j.
3799       // Because the other in-value of i (0) fits the evolution of BEValue
3800       // i really is an addrec evolution.
3801       //
3802       // We can generalize this saying that i is the shifted value of BEValue
3803       // by one iteration:
3804       //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
3805       const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
3806       const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
3807       if (Shifted != getCouldNotCompute() &&
3808           Start != getCouldNotCompute()) {
3809         const SCEV *StartVal = getSCEV(StartValueV);
3810         if (Start == StartVal) {
3811           // Okay, for the entire analysis of this edge we assumed the PHI
3812           // to be symbolic.  We now need to go back and purge all of the
3813           // entries for the scalars that use the symbolic expression.
3814           ForgetSymbolicName(PN, SymbolicName);
3815           ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
3816           return Shifted;
3817         }
3818       }
3819     }
3820   }
3821
3822   return nullptr;
3823 }
3824
3825 // Checks if the SCEV S is available at BB.  S is considered available at BB
3826 // if S can be materialized at BB without introducing a fault.
3827 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
3828                                BasicBlock *BB) {
3829   struct CheckAvailable {
3830     bool TraversalDone = false;
3831     bool Available = true;
3832
3833     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
3834     BasicBlock *BB = nullptr;
3835     DominatorTree &DT;
3836
3837     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
3838       : L(L), BB(BB), DT(DT) {}
3839
3840     bool setUnavailable() {
3841       TraversalDone = true;
3842       Available = false;
3843       return false;
3844     }
3845
3846     bool follow(const SCEV *S) {
3847       switch (S->getSCEVType()) {
3848       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
3849       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
3850         // These expressions are available if their operand(s) is/are.
3851         return true;
3852
3853       case scAddRecExpr: {
3854         // We allow add recurrences that are on the loop BB is in, or some
3855         // outer loop.  This guarantees availability because the value of the
3856         // add recurrence at BB is simply the "current" value of the induction
3857         // variable.  We can relax this in the future; for instance an add
3858         // recurrence on a sibling dominating loop is also available at BB.
3859         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
3860         if (L && (ARLoop == L || ARLoop->contains(L)))
3861           return true;
3862
3863         return setUnavailable();
3864       }
3865
3866       case scUnknown: {
3867         // For SCEVUnknown, we check for simple dominance.
3868         const auto *SU = cast<SCEVUnknown>(S);
3869         Value *V = SU->getValue();
3870
3871         if (isa<Argument>(V))
3872           return false;
3873
3874         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
3875           return false;
3876
3877         return setUnavailable();
3878       }
3879
3880       case scUDivExpr:
3881       case scCouldNotCompute:
3882         // We do not try to smart about these at all.
3883         return setUnavailable();
3884       }
3885       llvm_unreachable("switch should be fully covered!");
3886     }
3887
3888     bool isDone() { return TraversalDone; }
3889   };
3890
3891   CheckAvailable CA(L, BB, DT);
3892   SCEVTraversal<CheckAvailable> ST(CA);
3893
3894   ST.visitAll(S);
3895   return CA.Available;
3896 }
3897
3898 // Try to match a control flow sequence that branches out at BI and merges back
3899 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
3900 // match.
3901 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
3902                           Value *&C, Value *&LHS, Value *&RHS) {
3903   C = BI->getCondition();
3904
3905   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
3906   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
3907
3908   if (!LeftEdge.isSingleEdge())
3909     return false;
3910
3911   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
3912
3913   Use &LeftUse = Merge->getOperandUse(0);
3914   Use &RightUse = Merge->getOperandUse(1);
3915
3916   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
3917     LHS = LeftUse;
3918     RHS = RightUse;
3919     return true;
3920   }
3921
3922   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
3923     LHS = RightUse;
3924     RHS = LeftUse;
3925     return true;
3926   }
3927
3928   return false;
3929 }
3930
3931 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
3932   if (PN->getNumIncomingValues() == 2) {
3933     const Loop *L = LI.getLoopFor(PN->getParent());
3934
3935     // We don't want to break LCSSA, even in a SCEV expression tree.
3936     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3937       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
3938         return nullptr;
3939
3940     // Try to match
3941     //
3942     //  br %cond, label %left, label %right
3943     // left:
3944     //  br label %merge
3945     // right:
3946     //  br label %merge
3947     // merge:
3948     //  V = phi [ %x, %left ], [ %y, %right ]
3949     //
3950     // as "select %cond, %x, %y"
3951
3952     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
3953     assert(IDom && "At least the entry block should dominate PN");
3954
3955     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
3956     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
3957
3958     if (BI && BI->isConditional() &&
3959         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
3960         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
3961         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
3962       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
3963   }
3964
3965   return nullptr;
3966 }
3967
3968 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
3969   if (const SCEV *S = createAddRecFromPHI(PN))
3970     return S;
3971
3972   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
3973     return S;
3974
3975   // If the PHI has a single incoming value, follow that value, unless the
3976   // PHI's incoming blocks are in a different loop, in which case doing so
3977   // risks breaking LCSSA form. Instcombine would normally zap these, but
3978   // it doesn't have DominatorTree information, so it may miss cases.
3979   if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
3980     if (LI.replacementPreservesLCSSAForm(PN, V))
3981       return getSCEV(V);
3982
3983   // If it's not a loop phi, we can't handle it yet.
3984   return getUnknown(PN);
3985 }
3986
3987 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
3988                                                       Value *Cond,
3989                                                       Value *TrueVal,
3990                                                       Value *FalseVal) {
3991   // Handle "constant" branch or select. This can occur for instance when a
3992   // loop pass transforms an inner loop and moves on to process the outer loop.
3993   if (auto *CI = dyn_cast<ConstantInt>(Cond))
3994     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
3995
3996   // Try to match some simple smax or umax patterns.
3997   auto *ICI = dyn_cast<ICmpInst>(Cond);
3998   if (!ICI)
3999     return getUnknown(I);
4000
4001   Value *LHS = ICI->getOperand(0);
4002   Value *RHS = ICI->getOperand(1);
4003
4004   switch (ICI->getPredicate()) {
4005   case ICmpInst::ICMP_SLT:
4006   case ICmpInst::ICMP_SLE:
4007     std::swap(LHS, RHS);
4008   // fall through
4009   case ICmpInst::ICMP_SGT:
4010   case ICmpInst::ICMP_SGE:
4011     // a >s b ? a+x : b+x  ->  smax(a, b)+x
4012     // a >s b ? b+x : a+x  ->  smin(a, b)+x
4013     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4014       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4015       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4016       const SCEV *LA = getSCEV(TrueVal);
4017       const SCEV *RA = getSCEV(FalseVal);
4018       const SCEV *LDiff = getMinusSCEV(LA, LS);
4019       const SCEV *RDiff = getMinusSCEV(RA, RS);
4020       if (LDiff == RDiff)
4021         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4022       LDiff = getMinusSCEV(LA, RS);
4023       RDiff = getMinusSCEV(RA, LS);
4024       if (LDiff == RDiff)
4025         return getAddExpr(getSMinExpr(LS, RS), LDiff);
4026     }
4027     break;
4028   case ICmpInst::ICMP_ULT:
4029   case ICmpInst::ICMP_ULE:
4030     std::swap(LHS, RHS);
4031   // fall through
4032   case ICmpInst::ICMP_UGT:
4033   case ICmpInst::ICMP_UGE:
4034     // a >u b ? a+x : b+x  ->  umax(a, b)+x
4035     // a >u b ? b+x : a+x  ->  umin(a, b)+x
4036     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4037       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4038       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4039       const SCEV *LA = getSCEV(TrueVal);
4040       const SCEV *RA = getSCEV(FalseVal);
4041       const SCEV *LDiff = getMinusSCEV(LA, LS);
4042       const SCEV *RDiff = getMinusSCEV(RA, RS);
4043       if (LDiff == RDiff)
4044         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4045       LDiff = getMinusSCEV(LA, RS);
4046       RDiff = getMinusSCEV(RA, LS);
4047       if (LDiff == RDiff)
4048         return getAddExpr(getUMinExpr(LS, RS), LDiff);
4049     }
4050     break;
4051   case ICmpInst::ICMP_NE:
4052     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
4053     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4054         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4055       const SCEV *One = getOne(I->getType());
4056       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4057       const SCEV *LA = getSCEV(TrueVal);
4058       const SCEV *RA = getSCEV(FalseVal);
4059       const SCEV *LDiff = getMinusSCEV(LA, LS);
4060       const SCEV *RDiff = getMinusSCEV(RA, One);
4061       if (LDiff == RDiff)
4062         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4063     }
4064     break;
4065   case ICmpInst::ICMP_EQ:
4066     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
4067     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4068         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4069       const SCEV *One = getOne(I->getType());
4070       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4071       const SCEV *LA = getSCEV(TrueVal);
4072       const SCEV *RA = getSCEV(FalseVal);
4073       const SCEV *LDiff = getMinusSCEV(LA, One);
4074       const SCEV *RDiff = getMinusSCEV(RA, LS);
4075       if (LDiff == RDiff)
4076         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4077     }
4078     break;
4079   default:
4080     break;
4081   }
4082
4083   return getUnknown(I);
4084 }
4085
4086 /// createNodeForGEP - Expand GEP instructions into add and multiply
4087 /// operations. This allows them to be analyzed by regular SCEV code.
4088 ///
4089 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
4090   Value *Base = GEP->getOperand(0);
4091   // Don't attempt to analyze GEPs over unsized objects.
4092   if (!Base->getType()->getPointerElementType()->isSized())
4093     return getUnknown(GEP);
4094
4095   SmallVector<const SCEV *, 4> IndexExprs;
4096   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4097     IndexExprs.push_back(getSCEV(*Index));
4098   return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs,
4099                     GEP->isInBounds());
4100 }
4101
4102 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
4103 /// guaranteed to end in (at every loop iteration).  It is, at the same time,
4104 /// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
4105 /// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
4106 uint32_t
4107 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
4108   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4109     return C->getAPInt().countTrailingZeros();
4110
4111   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
4112     return std::min(GetMinTrailingZeros(T->getOperand()),
4113                     (uint32_t)getTypeSizeInBits(T->getType()));
4114
4115   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
4116     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4117     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4118              getTypeSizeInBits(E->getType()) : OpRes;
4119   }
4120
4121   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
4122     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4123     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4124              getTypeSizeInBits(E->getType()) : OpRes;
4125   }
4126
4127   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
4128     // The result is the min of all operands results.
4129     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4130     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4131       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4132     return MinOpRes;
4133   }
4134
4135   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
4136     // The result is the sum of all operands results.
4137     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4138     uint32_t BitWidth = getTypeSizeInBits(M->getType());
4139     for (unsigned i = 1, e = M->getNumOperands();
4140          SumOpRes != BitWidth && i != e; ++i)
4141       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
4142                           BitWidth);
4143     return SumOpRes;
4144   }
4145
4146   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
4147     // The result is the min of all operands results.
4148     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4149     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4150       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4151     return MinOpRes;
4152   }
4153
4154   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
4155     // The result is the min of all operands results.
4156     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4157     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4158       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4159     return MinOpRes;
4160   }
4161
4162   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
4163     // The result is the min of all operands results.
4164     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4165     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4166       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4167     return MinOpRes;
4168   }
4169
4170   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4171     // For a SCEVUnknown, ask ValueTracking.
4172     unsigned BitWidth = getTypeSizeInBits(U->getType());
4173     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4174     computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
4175                      nullptr, &DT);
4176     return Zeros.countTrailingOnes();
4177   }
4178
4179   // SCEVUDivExpr
4180   return 0;
4181 }
4182
4183 /// GetRangeFromMetadata - Helper method to assign a range to V from
4184 /// metadata present in the IR.
4185 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
4186   if (Instruction *I = dyn_cast<Instruction>(V))
4187     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4188       return getConstantRangeFromMetadata(*MD);
4189
4190   return None;
4191 }
4192
4193 /// getRange - Determine the range for a particular SCEV.  If SignHint is
4194 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4195 /// with a "cleaner" unsigned (resp. signed) representation.
4196 ///
4197 ConstantRange
4198 ScalarEvolution::getRange(const SCEV *S,
4199                           ScalarEvolution::RangeSignHint SignHint) {
4200   DenseMap<const SCEV *, ConstantRange> &Cache =
4201       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4202                                                        : SignedRanges;
4203
4204   // See if we've computed this range already.
4205   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4206   if (I != Cache.end())
4207     return I->second;
4208
4209   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4210     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
4211
4212   unsigned BitWidth = getTypeSizeInBits(S->getType());
4213   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4214
4215   // If the value has known zeros, the maximum value will have those known zeros
4216   // as well.
4217   uint32_t TZ = GetMinTrailingZeros(S);
4218   if (TZ != 0) {
4219     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4220       ConservativeResult =
4221           ConstantRange(APInt::getMinValue(BitWidth),
4222                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4223     else
4224       ConservativeResult = ConstantRange(
4225           APInt::getSignedMinValue(BitWidth),
4226           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4227   }
4228
4229   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
4230     ConstantRange X = getRange(Add->getOperand(0), SignHint);
4231     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
4232       X = X.add(getRange(Add->getOperand(i), SignHint));
4233     return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
4234   }
4235
4236   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
4237     ConstantRange X = getRange(Mul->getOperand(0), SignHint);
4238     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
4239       X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4240     return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
4241   }
4242
4243   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
4244     ConstantRange X = getRange(SMax->getOperand(0), SignHint);
4245     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
4246       X = X.smax(getRange(SMax->getOperand(i), SignHint));
4247     return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
4248   }
4249
4250   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
4251     ConstantRange X = getRange(UMax->getOperand(0), SignHint);
4252     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
4253       X = X.umax(getRange(UMax->getOperand(i), SignHint));
4254     return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
4255   }
4256
4257   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
4258     ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4259     ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4260     return setRange(UDiv, SignHint,
4261                     ConservativeResult.intersectWith(X.udiv(Y)));
4262   }
4263
4264   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
4265     ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4266     return setRange(ZExt, SignHint,
4267                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
4268   }
4269
4270   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
4271     ConstantRange X = getRange(SExt->getOperand(), SignHint);
4272     return setRange(SExt, SignHint,
4273                     ConservativeResult.intersectWith(X.signExtend(BitWidth)));
4274   }
4275
4276   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
4277     ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4278     return setRange(Trunc, SignHint,
4279                     ConservativeResult.intersectWith(X.truncate(BitWidth)));
4280   }
4281
4282   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
4283     // If there's no unsigned wrap, the value will never be less than its
4284     // initial value.
4285     if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
4286       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
4287         if (!C->getValue()->isZero())
4288           ConservativeResult = ConservativeResult.intersectWith(
4289               ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
4290
4291     // If there's no signed wrap, and all the operands have the same sign or
4292     // zero, the value won't ever change sign.
4293     if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
4294       bool AllNonNeg = true;
4295       bool AllNonPos = true;
4296       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4297         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4298         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4299       }
4300       if (AllNonNeg)
4301         ConservativeResult = ConservativeResult.intersectWith(
4302           ConstantRange(APInt(BitWidth, 0),
4303                         APInt::getSignedMinValue(BitWidth)));
4304       else if (AllNonPos)
4305         ConservativeResult = ConservativeResult.intersectWith(
4306           ConstantRange(APInt::getSignedMinValue(BitWidth),
4307                         APInt(BitWidth, 1)));
4308     }
4309
4310     // TODO: non-affine addrec
4311     if (AddRec->isAffine()) {
4312       Type *Ty = AddRec->getType();
4313       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
4314       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4315           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
4316
4317         // Check for overflow.  This must be done with ConstantRange arithmetic
4318         // because we could be called from within the ScalarEvolution overflow
4319         // checking code.
4320
4321         MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
4322         ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4323         ConstantRange ZExtMaxBECountRange =
4324             MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
4325
4326         const SCEV *Start = AddRec->getStart();
4327         const SCEV *Step = AddRec->getStepRecurrence(*this);
4328         ConstantRange StepSRange = getSignedRange(Step);
4329         ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
4330
4331         ConstantRange StartURange = getUnsignedRange(Start);
4332         ConstantRange EndURange =
4333             StartURange.add(MaxBECountRange.multiply(StepSRange));
4334
4335         // Check for unsigned overflow.
4336         ConstantRange ZExtStartURange =
4337             StartURange.zextOrTrunc(BitWidth * 2 + 1);
4338         ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4339         if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4340             ZExtEndURange) {
4341           APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4342                                      EndURange.getUnsignedMin());
4343           APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4344                                      EndURange.getUnsignedMax());
4345           bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4346           if (!IsFullRange)
4347             ConservativeResult =
4348                 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4349         }
4350
4351         ConstantRange StartSRange = getSignedRange(Start);
4352         ConstantRange EndSRange =
4353             StartSRange.add(MaxBECountRange.multiply(StepSRange));
4354
4355         // Check for signed overflow. This must be done with ConstantRange
4356         // arithmetic because we could be called from within the ScalarEvolution
4357         // overflow checking code.
4358         ConstantRange SExtStartSRange =
4359             StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4360         ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4361         if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4362             SExtEndSRange) {
4363           APInt Min = APIntOps::smin(StartSRange.getSignedMin(),
4364                                      EndSRange.getSignedMin());
4365           APInt Max = APIntOps::smax(StartSRange.getSignedMax(),
4366                                      EndSRange.getSignedMax());
4367           bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4368           if (!IsFullRange)
4369             ConservativeResult =
4370                 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4371         }
4372       }
4373     }
4374
4375     return setRange(AddRec, SignHint, ConservativeResult);
4376   }
4377
4378   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4379     // Check if the IR explicitly contains !range metadata.
4380     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4381     if (MDRange.hasValue())
4382       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4383
4384     // Split here to avoid paying the compile-time cost of calling both
4385     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
4386     // if needed.
4387     const DataLayout &DL = getDataLayout();
4388     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4389       // For a SCEVUnknown, ask ValueTracking.
4390       APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4391       computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
4392       if (Ones != ~Zeros + 1)
4393         ConservativeResult =
4394             ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4395     } else {
4396       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4397              "generalize as needed!");
4398       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
4399       if (NS > 1)
4400         ConservativeResult = ConservativeResult.intersectWith(
4401             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4402                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
4403     }
4404
4405     return setRange(U, SignHint, ConservativeResult);
4406   }
4407
4408   return setRange(S, SignHint, ConservativeResult);
4409 }
4410
4411 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
4412   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
4413   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4414
4415   // Return early if there are no flags to propagate to the SCEV.
4416   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4417   if (BinOp->hasNoUnsignedWrap())
4418     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4419   if (BinOp->hasNoSignedWrap())
4420     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4421   if (Flags == SCEV::FlagAnyWrap) {
4422     return SCEV::FlagAnyWrap;
4423   }
4424
4425   // Here we check that BinOp is in the header of the innermost loop
4426   // containing BinOp, since we only deal with instructions in the loop
4427   // header. The actual loop we need to check later will come from an add
4428   // recurrence, but getting that requires computing the SCEV of the operands,
4429   // which can be expensive. This check we can do cheaply to rule out some
4430   // cases early.
4431   Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent());
4432   if (innermostContainingLoop == nullptr ||
4433       innermostContainingLoop->getHeader() != BinOp->getParent())
4434     return SCEV::FlagAnyWrap;
4435
4436   // Only proceed if we can prove that BinOp does not yield poison.
4437   if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap;
4438
4439   // At this point we know that if V is executed, then it does not wrap
4440   // according to at least one of NSW or NUW. If V is not executed, then we do
4441   // not know if the calculation that V represents would wrap. Multiple
4442   // instructions can map to the same SCEV. If we apply NSW or NUW from V to
4443   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4444   // derived from other instructions that map to the same SCEV. We cannot make
4445   // that guarantee for cases where V is not executed. So we need to find the
4446   // loop that V is considered in relation to and prove that V is executed for
4447   // every iteration of that loop. That implies that the value that V
4448   // calculates does not wrap anywhere in the loop, so then we can apply the
4449   // flags to the SCEV.
4450   //
4451   // We check isLoopInvariant to disambiguate in case we are adding two
4452   // recurrences from different loops, so that we know which loop to prove
4453   // that V is executed in.
4454   for (int OpIndex = 0; OpIndex < 2; ++OpIndex) {
4455     const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex));
4456     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4457       const int OtherOpIndex = 1 - OpIndex;
4458       const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex));
4459       if (isLoopInvariant(OtherOp, AddRec->getLoop()) &&
4460           isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop()))
4461         return Flags;
4462     }
4463   }
4464   return SCEV::FlagAnyWrap;
4465 }
4466
4467 /// createSCEV - We know that there is no SCEV for the specified value.  Analyze
4468 /// the expression.
4469 ///
4470 const SCEV *ScalarEvolution::createSCEV(Value *V) {
4471   if (!isSCEVable(V->getType()))
4472     return getUnknown(V);
4473
4474   unsigned Opcode = Instruction::UserOp1;
4475   if (Instruction *I = dyn_cast<Instruction>(V)) {
4476     Opcode = I->getOpcode();
4477
4478     // Don't attempt to analyze instructions in blocks that aren't
4479     // reachable. Such instructions don't matter, and they aren't required
4480     // to obey basic rules for definitions dominating uses which this
4481     // analysis depends on.
4482     if (!DT.isReachableFromEntry(I->getParent()))
4483       return getUnknown(V);
4484   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
4485     Opcode = CE->getOpcode();
4486   else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4487     return getConstant(CI);
4488   else if (isa<ConstantPointerNull>(V))
4489     return getZero(V->getType());
4490   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4491     return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
4492   else
4493     return getUnknown(V);
4494
4495   Operator *U = cast<Operator>(V);
4496   switch (Opcode) {
4497   case Instruction::Add: {
4498     // The simple thing to do would be to just call getSCEV on both operands
4499     // and call getAddExpr with the result. However if we're looking at a
4500     // bunch of things all added together, this can be quite inefficient,
4501     // because it leads to N-1 getAddExpr calls for N ultimate operands.
4502     // Instead, gather up all the operands and make a single getAddExpr call.
4503     // LLVM IR canonical form means we need only traverse the left operands.
4504     SmallVector<const SCEV *, 4> AddOps;
4505     for (Value *Op = U;; Op = U->getOperand(0)) {
4506       U = dyn_cast<Operator>(Op);
4507       unsigned Opcode = U ? U->getOpcode() : 0;
4508       if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) {
4509         assert(Op != V && "V should be an add");
4510         AddOps.push_back(getSCEV(Op));
4511         break;
4512       }
4513
4514       if (auto *OpSCEV = getExistingSCEV(U)) {
4515         AddOps.push_back(OpSCEV);
4516         break;
4517       }
4518
4519       // If a NUW or NSW flag can be applied to the SCEV for this
4520       // addition, then compute the SCEV for this addition by itself
4521       // with a separate call to getAddExpr. We need to do that
4522       // instead of pushing the operands of the addition onto AddOps,
4523       // since the flags are only known to apply to this particular
4524       // addition - they may not apply to other additions that can be
4525       // formed with operands from AddOps.
4526       const SCEV *RHS = getSCEV(U->getOperand(1));
4527       SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4528       if (Flags != SCEV::FlagAnyWrap) {
4529         const SCEV *LHS = getSCEV(U->getOperand(0));
4530         if (Opcode == Instruction::Sub)
4531           AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
4532         else
4533           AddOps.push_back(getAddExpr(LHS, RHS, Flags));
4534         break;
4535       }
4536
4537       if (Opcode == Instruction::Sub)
4538         AddOps.push_back(getNegativeSCEV(RHS));
4539       else
4540         AddOps.push_back(RHS);
4541     }
4542     return getAddExpr(AddOps);
4543   }
4544
4545   case Instruction::Mul: {
4546     SmallVector<const SCEV *, 4> MulOps;
4547     for (Value *Op = U;; Op = U->getOperand(0)) {
4548       U = dyn_cast<Operator>(Op);
4549       if (!U || U->getOpcode() != Instruction::Mul) {
4550         assert(Op != V && "V should be a mul");
4551         MulOps.push_back(getSCEV(Op));
4552         break;
4553       }
4554
4555       if (auto *OpSCEV = getExistingSCEV(U)) {
4556         MulOps.push_back(OpSCEV);
4557         break;
4558       }
4559
4560       SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4561       if (Flags != SCEV::FlagAnyWrap) {
4562         MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)),
4563                                     getSCEV(U->getOperand(1)), Flags));
4564         break;
4565       }
4566
4567       MulOps.push_back(getSCEV(U->getOperand(1)));
4568     }
4569     return getMulExpr(MulOps);
4570   }
4571   case Instruction::UDiv:
4572     return getUDivExpr(getSCEV(U->getOperand(0)),
4573                        getSCEV(U->getOperand(1)));
4574   case Instruction::Sub:
4575     return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)),
4576                         getNoWrapFlagsFromUB(U));
4577   case Instruction::And:
4578     // For an expression like x&255 that merely masks off the high bits,
4579     // use zext(trunc(x)) as the SCEV expression.
4580     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4581       if (CI->isNullValue())
4582         return getSCEV(U->getOperand(1));
4583       if (CI->isAllOnesValue())
4584         return getSCEV(U->getOperand(0));
4585       const APInt &A = CI->getValue();
4586
4587       // Instcombine's ShrinkDemandedConstant may strip bits out of
4588       // constants, obscuring what would otherwise be a low-bits mask.
4589       // Use computeKnownBits to compute what ShrinkDemandedConstant
4590       // knew about to reconstruct a low-bits mask value.
4591       unsigned LZ = A.countLeadingZeros();
4592       unsigned TZ = A.countTrailingZeros();
4593       unsigned BitWidth = A.getBitWidth();
4594       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4595       computeKnownBits(U->getOperand(0), KnownZero, KnownOne, getDataLayout(),
4596                        0, &AC, nullptr, &DT);
4597
4598       APInt EffectiveMask =
4599           APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4600       if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4601         const SCEV *MulCount = getConstant(
4602             ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4603         return getMulExpr(
4604             getZeroExtendExpr(
4605                 getTruncateExpr(
4606                     getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4607                     IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4608                 U->getType()),
4609             MulCount);
4610       }
4611     }
4612     break;
4613
4614   case Instruction::Or:
4615     // If the RHS of the Or is a constant, we may have something like:
4616     // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
4617     // optimizations will transparently handle this case.
4618     //
4619     // In order for this transformation to be safe, the LHS must be of the
4620     // form X*(2^n) and the Or constant must be less than 2^n.
4621     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4622       const SCEV *LHS = getSCEV(U->getOperand(0));
4623       const APInt &CIVal = CI->getValue();
4624       if (GetMinTrailingZeros(LHS) >=
4625           (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4626         // Build a plain add SCEV.
4627         const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4628         // If the LHS of the add was an addrec and it has no-wrap flags,
4629         // transfer the no-wrap flags, since an or won't introduce a wrap.
4630         if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4631           const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
4632           const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4633             OldAR->getNoWrapFlags());
4634         }
4635         return S;
4636       }
4637     }
4638     break;
4639   case Instruction::Xor:
4640     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4641       // If the RHS of the xor is a signbit, then this is just an add.
4642       // Instcombine turns add of signbit into xor as a strength reduction step.
4643       if (CI->getValue().isSignBit())
4644         return getAddExpr(getSCEV(U->getOperand(0)),
4645                           getSCEV(U->getOperand(1)));
4646
4647       // If the RHS of xor is -1, then this is a not operation.
4648       if (CI->isAllOnesValue())
4649         return getNotSCEV(getSCEV(U->getOperand(0)));
4650
4651       // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4652       // This is a variant of the check for xor with -1, and it handles
4653       // the case where instcombine has trimmed non-demanded bits out
4654       // of an xor with -1.
4655       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4656         if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4657           if (BO->getOpcode() == Instruction::And &&
4658               LCI->getValue() == CI->getValue())
4659             if (const SCEVZeroExtendExpr *Z =
4660                   dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
4661               Type *UTy = U->getType();
4662               const SCEV *Z0 = Z->getOperand();
4663               Type *Z0Ty = Z0->getType();
4664               unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4665
4666               // If C is a low-bits mask, the zero extend is serving to
4667               // mask off the high bits. Complement the operand and
4668               // re-apply the zext.
4669               if (APIntOps::isMask(Z0TySize, CI->getValue()))
4670                 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4671
4672               // If C is a single bit, it may be in the sign-bit position
4673               // before the zero-extend. In this case, represent the xor
4674               // using an add, which is equivalent, and re-apply the zext.
4675               APInt Trunc = CI->getValue().trunc(Z0TySize);
4676               if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
4677                   Trunc.isSignBit())
4678                 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4679                                          UTy);
4680             }
4681     }
4682     break;
4683
4684   case Instruction::Shl:
4685     // Turn shift left of a constant amount into a multiply.
4686     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
4687       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
4688
4689       // If the shift count is not less than the bitwidth, the result of
4690       // the shift is undefined. Don't try to analyze it, because the
4691       // resolution chosen here may differ from the resolution chosen in
4692       // other parts of the compiler.
4693       if (SA->getValue().uge(BitWidth))
4694         break;
4695
4696       // It is currently not resolved how to interpret NSW for left
4697       // shift by BitWidth - 1, so we avoid applying flags in that
4698       // case. Remove this check (or this comment) once the situation
4699       // is resolved. See
4700       // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
4701       // and http://reviews.llvm.org/D8890 .
4702       auto Flags = SCEV::FlagAnyWrap;
4703       if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U);
4704
4705       Constant *X = ConstantInt::get(getContext(),
4706         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4707       return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags);
4708     }
4709     break;
4710
4711   case Instruction::LShr:
4712     // Turn logical shift right of a constant into a unsigned divide.
4713     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
4714       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
4715
4716       // If the shift count is not less than the bitwidth, the result of
4717       // the shift is undefined. Don't try to analyze it, because the
4718       // resolution chosen here may differ from the resolution chosen in
4719       // other parts of the compiler.
4720       if (SA->getValue().uge(BitWidth))
4721         break;
4722
4723       Constant *X = ConstantInt::get(getContext(),
4724         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4725       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
4726     }
4727     break;
4728
4729   case Instruction::AShr:
4730     // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4731     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
4732       if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
4733         if (L->getOpcode() == Instruction::Shl &&
4734             L->getOperand(1) == U->getOperand(1)) {
4735           uint64_t BitWidth = getTypeSizeInBits(U->getType());
4736
4737           // If the shift count is not less than the bitwidth, the result of
4738           // the shift is undefined. Don't try to analyze it, because the
4739           // resolution chosen here may differ from the resolution chosen in
4740           // other parts of the compiler.
4741           if (CI->getValue().uge(BitWidth))
4742             break;
4743
4744           uint64_t Amt = BitWidth - CI->getZExtValue();
4745           if (Amt == BitWidth)
4746             return getSCEV(L->getOperand(0));       // shift by zero --> noop
4747           return
4748             getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
4749                                               IntegerType::get(getContext(),
4750                                                                Amt)),
4751                               U->getType());
4752         }
4753     break;
4754
4755   case Instruction::Trunc:
4756     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
4757
4758   case Instruction::ZExt:
4759     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
4760
4761   case Instruction::SExt:
4762     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
4763
4764   case Instruction::BitCast:
4765     // BitCasts are no-op casts so we just eliminate the cast.
4766     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
4767       return getSCEV(U->getOperand(0));
4768     break;
4769
4770   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4771   // lead to pointer expressions which cannot safely be expanded to GEPs,
4772   // because ScalarEvolution doesn't respect the GEP aliasing rules when
4773   // simplifying integer expressions.
4774
4775   case Instruction::GetElementPtr:
4776     return createNodeForGEP(cast<GEPOperator>(U));
4777
4778   case Instruction::PHI:
4779     return createNodeForPHI(cast<PHINode>(U));
4780
4781   case Instruction::Select:
4782     // U can also be a select constant expr, which let fall through.  Since
4783     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
4784     // constant expressions cannot have instructions as operands, we'd have
4785     // returned getUnknown for a select constant expressions anyway.
4786     if (isa<Instruction>(U))
4787       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
4788                                       U->getOperand(1), U->getOperand(2));
4789
4790   default: // We cannot analyze this expression.
4791     break;
4792   }
4793
4794   return getUnknown(V);
4795 }
4796
4797
4798
4799 //===----------------------------------------------------------------------===//
4800 //                   Iteration Count Computation Code
4801 //
4802
4803 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4804   if (BasicBlock *ExitingBB = L->getExitingBlock())
4805     return getSmallConstantTripCount(L, ExitingBB);
4806
4807   // No trip count information for multiple exits.
4808   return 0;
4809 }
4810
4811 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
4812 /// normal unsigned value. Returns 0 if the trip count is unknown or not
4813 /// constant. Will also return 0 if the maximum trip count is very large (>=
4814 /// 2^32).
4815 ///
4816 /// This "trip count" assumes that control exits via ExitingBlock. More
4817 /// precisely, it is the number of times that control may reach ExitingBlock
4818 /// before taking the branch. For loops with multiple exits, it may not be the
4819 /// number times that the loop header executes because the loop may exit
4820 /// prematurely via another branch.
4821 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4822                                                     BasicBlock *ExitingBlock) {
4823   assert(ExitingBlock && "Must pass a non-null exiting block!");
4824   assert(L->isLoopExiting(ExitingBlock) &&
4825          "Exiting block must actually branch out of the loop!");
4826   const SCEVConstant *ExitCount =
4827       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
4828   if (!ExitCount)
4829     return 0;
4830
4831   ConstantInt *ExitConst = ExitCount->getValue();
4832
4833   // Guard against huge trip counts.
4834   if (ExitConst->getValue().getActiveBits() > 32)
4835     return 0;
4836
4837   // In case of integer overflow, this returns 0, which is correct.
4838   return ((unsigned)ExitConst->getZExtValue()) + 1;
4839 }
4840
4841 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4842   if (BasicBlock *ExitingBB = L->getExitingBlock())
4843     return getSmallConstantTripMultiple(L, ExitingBB);
4844
4845   // No trip multiple information for multiple exits.
4846   return 0;
4847 }
4848
4849 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4850 /// trip count of this loop as a normal unsigned value, if possible. This
4851 /// means that the actual trip count is always a multiple of the returned
4852 /// value (don't forget the trip count could very well be zero as well!).
4853 ///
4854 /// Returns 1 if the trip count is unknown or not guaranteed to be the
4855 /// multiple of a constant (which is also the case if the trip count is simply
4856 /// constant, use getSmallConstantTripCount for that case), Will also return 1
4857 /// if the trip count is very large (>= 2^32).
4858 ///
4859 /// As explained in the comments for getSmallConstantTripCount, this assumes
4860 /// that control exits the loop via ExitingBlock.
4861 unsigned
4862 ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4863                                               BasicBlock *ExitingBlock) {
4864   assert(ExitingBlock && "Must pass a non-null exiting block!");
4865   assert(L->isLoopExiting(ExitingBlock) &&
4866          "Exiting block must actually branch out of the loop!");
4867   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
4868   if (ExitCount == getCouldNotCompute())
4869     return 1;
4870
4871   // Get the trip count from the BE count by adding 1.
4872   const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
4873   // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4874   // to factor simple cases.
4875   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4876     TCMul = Mul->getOperand(0);
4877
4878   const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4879   if (!MulC)
4880     return 1;
4881
4882   ConstantInt *Result = MulC->getValue();
4883
4884   // Guard against huge trip counts (this requires checking
4885   // for zero to handle the case where the trip count == -1 and the
4886   // addition wraps).
4887   if (!Result || Result->getValue().getActiveBits() > 32 ||
4888       Result->getValue().getActiveBits() == 0)
4889     return 1;
4890
4891   return (unsigned)Result->getZExtValue();
4892 }
4893
4894 // getExitCount - Get the expression for the number of loop iterations for which
4895 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return
4896 // SCEVCouldNotCompute.
4897 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4898   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
4899 }
4900
4901 /// getBackedgeTakenCount - If the specified loop has a predictable
4902 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4903 /// object. The backedge-taken count is the number of times the loop header
4904 /// will be branched to from within the loop. This is one less than the
4905 /// trip count of the loop, since it doesn't count the first iteration,
4906 /// when the header is branched to from outside the loop.
4907 ///
4908 /// Note that it is not valid to call this method on a loop without a
4909 /// loop-invariant backedge-taken count (see
4910 /// hasLoopInvariantBackedgeTakenCount).
4911 ///
4912 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
4913   return getBackedgeTakenInfo(L).getExact(this);
4914 }
4915
4916 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4917 /// return the least SCEV value that is known never to be less than the
4918 /// actual backedge taken count.
4919 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
4920   return getBackedgeTakenInfo(L).getMax(this);
4921 }
4922
4923 /// PushLoopPHIs - Push PHI nodes in the header of the given loop
4924 /// onto the given Worklist.
4925 static void
4926 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4927   BasicBlock *Header = L->getHeader();
4928
4929   // Push all Loop-header PHIs onto the Worklist stack.
4930   for (BasicBlock::iterator I = Header->begin();
4931        PHINode *PN = dyn_cast<PHINode>(I); ++I)
4932     Worklist.push_back(PN);
4933 }
4934
4935 const ScalarEvolution::BackedgeTakenInfo &
4936 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
4937   // Initially insert an invalid entry for this loop. If the insertion
4938   // succeeds, proceed to actually compute a backedge-taken count and
4939   // update the value. The temporary CouldNotCompute value tells SCEV
4940   // code elsewhere that it shouldn't attempt to request a new
4941   // backedge-taken count, which could result in infinite recursion.
4942   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
4943     BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
4944   if (!Pair.second)
4945     return Pair.first->second;
4946
4947   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
4948   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4949   // must be cleared in this scope.
4950   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
4951
4952   if (Result.getExact(this) != getCouldNotCompute()) {
4953     assert(isLoopInvariant(Result.getExact(this), L) &&
4954            isLoopInvariant(Result.getMax(this), L) &&
4955            "Computed backedge-taken count isn't loop invariant for loop!");
4956     ++NumTripCountsComputed;
4957   }
4958   else if (Result.getMax(this) == getCouldNotCompute() &&
4959            isa<PHINode>(L->getHeader()->begin())) {
4960     // Only count loops that have phi nodes as not being computable.
4961     ++NumTripCountsNotComputed;
4962   }
4963
4964   // Now that we know more about the trip count for this loop, forget any
4965   // existing SCEV values for PHI nodes in this loop since they are only
4966   // conservative estimates made without the benefit of trip count
4967   // information. This is similar to the code in forgetLoop, except that
4968   // it handles SCEVUnknown PHI nodes specially.
4969   if (Result.hasAnyInfo()) {
4970     SmallVector<Instruction *, 16> Worklist;
4971     PushLoopPHIs(L, Worklist);
4972
4973     SmallPtrSet<Instruction *, 8> Visited;
4974     while (!Worklist.empty()) {
4975       Instruction *I = Worklist.pop_back_val();
4976       if (!Visited.insert(I).second)
4977         continue;
4978
4979       ValueExprMapType::iterator It =
4980         ValueExprMap.find_as(static_cast<Value *>(I));
4981       if (It != ValueExprMap.end()) {
4982         const SCEV *Old = It->second;
4983
4984         // SCEVUnknown for a PHI either means that it has an unrecognized
4985         // structure, or it's a PHI that's in the progress of being computed
4986         // by createNodeForPHI.  In the former case, additional loop trip
4987         // count information isn't going to change anything. In the later
4988         // case, createNodeForPHI will perform the necessary updates on its
4989         // own when it gets to that point.
4990         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4991           forgetMemoizedResults(Old);
4992           ValueExprMap.erase(It);
4993         }
4994         if (PHINode *PN = dyn_cast<PHINode>(I))
4995           ConstantEvolutionLoopExitValue.erase(PN);
4996       }
4997
4998       PushDefUseChildren(I, Worklist);
4999     }
5000   }
5001
5002   // Re-lookup the insert position, since the call to
5003   // computeBackedgeTakenCount above could result in a
5004   // recusive call to getBackedgeTakenInfo (on a different
5005   // loop), which would invalidate the iterator computed
5006   // earlier.
5007   return BackedgeTakenCounts.find(L)->second = Result;
5008 }
5009
5010 /// forgetLoop - This method should be called by the client when it has
5011 /// changed a loop in a way that may effect ScalarEvolution's ability to
5012 /// compute a trip count, or if the loop is deleted.
5013 void ScalarEvolution::forgetLoop(const Loop *L) {
5014   // Drop any stored trip count value.
5015   DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
5016     BackedgeTakenCounts.find(L);
5017   if (BTCPos != BackedgeTakenCounts.end()) {
5018     BTCPos->second.clear();
5019     BackedgeTakenCounts.erase(BTCPos);
5020   }
5021
5022   // Drop information about expressions based on loop-header PHIs.
5023   SmallVector<Instruction *, 16> Worklist;
5024   PushLoopPHIs(L, Worklist);
5025
5026   SmallPtrSet<Instruction *, 8> Visited;
5027   while (!Worklist.empty()) {
5028     Instruction *I = Worklist.pop_back_val();
5029     if (!Visited.insert(I).second)
5030       continue;
5031
5032     ValueExprMapType::iterator It =
5033       ValueExprMap.find_as(static_cast<Value *>(I));
5034     if (It != ValueExprMap.end()) {
5035       forgetMemoizedResults(It->second);
5036       ValueExprMap.erase(It);
5037       if (PHINode *PN = dyn_cast<PHINode>(I))
5038         ConstantEvolutionLoopExitValue.erase(PN);
5039     }
5040
5041     PushDefUseChildren(I, Worklist);
5042   }
5043
5044   // Forget all contained loops too, to avoid dangling entries in the
5045   // ValuesAtScopes map.
5046   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5047     forgetLoop(*I);
5048 }
5049
5050 /// forgetValue - This method should be called by the client when it has
5051 /// changed a value in a way that may effect its value, or which may
5052 /// disconnect it from a def-use chain linking it to a loop.
5053 void ScalarEvolution::forgetValue(Value *V) {
5054   Instruction *I = dyn_cast<Instruction>(V);
5055   if (!I) return;
5056
5057   // Drop information about expressions based on loop-header PHIs.
5058   SmallVector<Instruction *, 16> Worklist;
5059   Worklist.push_back(I);
5060
5061   SmallPtrSet<Instruction *, 8> Visited;
5062   while (!Worklist.empty()) {
5063     I = Worklist.pop_back_val();
5064     if (!Visited.insert(I).second)
5065       continue;
5066
5067     ValueExprMapType::iterator It =
5068       ValueExprMap.find_as(static_cast<Value *>(I));
5069     if (It != ValueExprMap.end()) {
5070       forgetMemoizedResults(It->second);
5071       ValueExprMap.erase(It);
5072       if (PHINode *PN = dyn_cast<PHINode>(I))
5073         ConstantEvolutionLoopExitValue.erase(PN);
5074     }
5075
5076     PushDefUseChildren(I, Worklist);
5077   }
5078 }
5079
5080 /// getExact - Get the exact loop backedge taken count considering all loop
5081 /// exits. A computable result can only be returned for loops with a single
5082 /// exit.  Returning the minimum taken count among all exits is incorrect
5083 /// because one of the loop's exit limit's may have been skipped. HowFarToZero
5084 /// assumes that the limit of each loop test is never skipped. This is a valid
5085 /// assumption as long as the loop exits via that test. For precise results, it
5086 /// is the caller's responsibility to specify the relevant loop exit using
5087 /// getExact(ExitingBlock, SE).
5088 const SCEV *
5089 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
5090   // If any exits were not computable, the loop is not computable.
5091   if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
5092
5093   // We need exactly one computable exit.
5094   if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
5095   assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
5096
5097   const SCEV *BECount = nullptr;
5098   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
5099        ENT != nullptr; ENT = ENT->getNextExit()) {
5100
5101     assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
5102
5103     if (!BECount)
5104       BECount = ENT->ExactNotTaken;
5105     else if (BECount != ENT->ExactNotTaken)
5106       return SE->getCouldNotCompute();
5107   }
5108   assert(BECount && "Invalid not taken count for loop exit");
5109   return BECount;
5110 }
5111
5112 /// getExact - Get the exact not taken count for this loop exit.
5113 const SCEV *
5114 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
5115                                              ScalarEvolution *SE) const {
5116   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
5117        ENT != nullptr; ENT = ENT->getNextExit()) {
5118
5119     if (ENT->ExitingBlock == ExitingBlock)
5120       return ENT->ExactNotTaken;
5121   }
5122   return SE->getCouldNotCompute();
5123 }
5124
5125 /// getMax - Get the max backedge taken count for the loop.
5126 const SCEV *
5127 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5128   return Max ? Max : SE->getCouldNotCompute();
5129 }
5130
5131 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5132                                                     ScalarEvolution *SE) const {
5133   if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
5134     return true;
5135
5136   if (!ExitNotTaken.ExitingBlock)
5137     return false;
5138
5139   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
5140        ENT != nullptr; ENT = ENT->getNextExit()) {
5141
5142     if (ENT->ExactNotTaken != SE->getCouldNotCompute()
5143         && SE->hasOperand(ENT->ExactNotTaken, S)) {
5144       return true;
5145     }
5146   }
5147   return false;
5148 }
5149
5150 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5151 /// computable exit into a persistent ExitNotTakenInfo array.
5152 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
5153   SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
5154   bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
5155
5156   if (!Complete)
5157     ExitNotTaken.setIncomplete();
5158
5159   unsigned NumExits = ExitCounts.size();
5160   if (NumExits == 0) return;
5161
5162   ExitNotTaken.ExitingBlock = ExitCounts[0].first;
5163   ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
5164   if (NumExits == 1) return;
5165
5166   // Handle the rare case of multiple computable exits.
5167   ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
5168
5169   ExitNotTakenInfo *PrevENT = &ExitNotTaken;
5170   for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
5171     PrevENT->setNextExit(ENT);
5172     ENT->ExitingBlock = ExitCounts[i].first;
5173     ENT->ExactNotTaken = ExitCounts[i].second;
5174   }
5175 }
5176
5177 /// clear - Invalidate this result and free the ExitNotTakenInfo array.
5178 void ScalarEvolution::BackedgeTakenInfo::clear() {
5179   ExitNotTaken.ExitingBlock = nullptr;
5180   ExitNotTaken.ExactNotTaken = nullptr;
5181   delete[] ExitNotTaken.getNextExit();
5182 }
5183
5184 /// computeBackedgeTakenCount - Compute the number of times the backedge
5185 /// of the specified loop will execute.
5186 ScalarEvolution::BackedgeTakenInfo
5187 ScalarEvolution::computeBackedgeTakenCount(const Loop *L) {
5188   SmallVector<BasicBlock *, 8> ExitingBlocks;
5189   L->getExitingBlocks(ExitingBlocks);
5190
5191   SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
5192   bool CouldComputeBECount = true;
5193   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
5194   const SCEV *MustExitMaxBECount = nullptr;
5195   const SCEV *MayExitMaxBECount = nullptr;
5196
5197   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5198   // and compute maxBECount.
5199   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
5200     BasicBlock *ExitBB = ExitingBlocks[i];
5201     ExitLimit EL = computeExitLimit(L, ExitBB);
5202
5203     // 1. For each exit that can be computed, add an entry to ExitCounts.
5204     // CouldComputeBECount is true only if all exits can be computed.
5205     if (EL.Exact == getCouldNotCompute())
5206       // We couldn't compute an exact value for this exit, so
5207       // we won't be able to compute an exact value for the loop.
5208       CouldComputeBECount = false;
5209     else
5210       ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
5211
5212     // 2. Derive the loop's MaxBECount from each exit's max number of
5213     // non-exiting iterations. Partition the loop exits into two kinds:
5214     // LoopMustExits and LoopMayExits.
5215     //
5216     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5217     // is a LoopMayExit.  If any computable LoopMustExit is found, then
5218     // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
5219     // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
5220     // considered greater than any computable EL.Max.
5221     if (EL.Max != getCouldNotCompute() && Latch &&
5222         DT.dominates(ExitBB, Latch)) {
5223       if (!MustExitMaxBECount)
5224         MustExitMaxBECount = EL.Max;
5225       else {
5226         MustExitMaxBECount =
5227           getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
5228       }
5229     } else if (MayExitMaxBECount != getCouldNotCompute()) {
5230       if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5231         MayExitMaxBECount = EL.Max;
5232       else {
5233         MayExitMaxBECount =
5234           getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5235       }
5236     }
5237   }
5238   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5239     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
5240   return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
5241 }
5242
5243 ScalarEvolution::ExitLimit
5244 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
5245
5246   // Okay, we've chosen an exiting block.  See what condition causes us to exit
5247   // at this block and remember the exit block and whether all other targets
5248   // lead to the loop header.
5249   bool MustExecuteLoopHeader = true;
5250   BasicBlock *Exit = nullptr;
5251   for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
5252        SI != SE; ++SI)
5253     if (!L->contains(*SI)) {
5254       if (Exit) // Multiple exit successors.
5255         return getCouldNotCompute();
5256       Exit = *SI;
5257     } else if (*SI != L->getHeader()) {
5258       MustExecuteLoopHeader = false;
5259     }
5260
5261   // At this point, we know we have a conditional branch that determines whether
5262   // the loop is exited.  However, we don't know if the branch is executed each
5263   // time through the loop.  If not, then the execution count of the branch will
5264   // not be equal to the trip count of the loop.
5265   //
5266   // Currently we check for this by checking to see if the Exit branch goes to
5267   // the loop header.  If so, we know it will always execute the same number of
5268   // times as the loop.  We also handle the case where the exit block *is* the
5269   // loop header.  This is common for un-rotated loops.
5270   //
5271   // If both of those tests fail, walk up the unique predecessor chain to the
5272   // header, stopping if there is an edge that doesn't exit the loop. If the
5273   // header is reached, the execution count of the branch will be equal to the
5274   // trip count of the loop.
5275   //
5276   //  More extensive analysis could be done to handle more cases here.
5277   //
5278   if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
5279     // The simple checks failed, try climbing the unique predecessor chain
5280     // up to the header.
5281     bool Ok = false;
5282     for (BasicBlock *BB = ExitingBlock; BB; ) {
5283       BasicBlock *Pred = BB->getUniquePredecessor();
5284       if (!Pred)
5285         return getCouldNotCompute();
5286       TerminatorInst *PredTerm = Pred->getTerminator();
5287       for (const BasicBlock *PredSucc : PredTerm->successors()) {
5288         if (PredSucc == BB)
5289           continue;
5290         // If the predecessor has a successor that isn't BB and isn't
5291         // outside the loop, assume the worst.
5292         if (L->contains(PredSucc))
5293           return getCouldNotCompute();
5294       }
5295       if (Pred == L->getHeader()) {
5296         Ok = true;
5297         break;
5298       }
5299       BB = Pred;
5300     }
5301     if (!Ok)
5302       return getCouldNotCompute();
5303   }
5304
5305   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
5306   TerminatorInst *Term = ExitingBlock->getTerminator();
5307   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5308     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5309     // Proceed to the next level to examine the exit condition expression.
5310     return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
5311                                     BI->getSuccessor(1),
5312                                     /*ControlsExit=*/IsOnlyExit);
5313   }
5314
5315   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
5316     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
5317                                                 /*ControlsExit=*/IsOnlyExit);
5318
5319   return getCouldNotCompute();
5320 }
5321
5322 /// computeExitLimitFromCond - Compute the number of times the
5323 /// backedge of the specified loop will execute if its exit condition
5324 /// were a conditional branch of ExitCond, TBB, and FBB.
5325 ///
5326 /// @param ControlsExit is true if ExitCond directly controls the exit
5327 /// branch. In this case, we can assume that the loop exits only if the
5328 /// condition is true and can infer that failing to meet the condition prior to
5329 /// integer wraparound results in undefined behavior.
5330 ScalarEvolution::ExitLimit
5331 ScalarEvolution::computeExitLimitFromCond(const Loop *L,
5332                                           Value *ExitCond,
5333                                           BasicBlock *TBB,
5334                                           BasicBlock *FBB,
5335                                           bool ControlsExit) {
5336   // Check if the controlling expression for this loop is an And or Or.
5337   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5338     if (BO->getOpcode() == Instruction::And) {
5339       // Recurse on the operands of the and.
5340       bool EitherMayExit = L->contains(TBB);
5341       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5342                                                ControlsExit && !EitherMayExit);
5343       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5344                                                ControlsExit && !EitherMayExit);
5345       const SCEV *BECount = getCouldNotCompute();
5346       const SCEV *MaxBECount = getCouldNotCompute();
5347       if (EitherMayExit) {
5348         // Both conditions must be true for the loop to continue executing.
5349         // Choose the less conservative count.
5350         if (EL0.Exact == getCouldNotCompute() ||
5351             EL1.Exact == getCouldNotCompute())
5352           BECount = getCouldNotCompute();
5353         else
5354           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5355         if (EL0.Max == getCouldNotCompute())
5356           MaxBECount = EL1.Max;
5357         else if (EL1.Max == getCouldNotCompute())
5358           MaxBECount = EL0.Max;
5359         else
5360           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5361       } else {
5362         // Both conditions must be true at the same time for the loop to exit.
5363         // For now, be conservative.
5364         assert(L->contains(FBB) && "Loop block has no successor in loop!");
5365         if (EL0.Max == EL1.Max)
5366           MaxBECount = EL0.Max;
5367         if (EL0.Exact == EL1.Exact)
5368           BECount = EL0.Exact;
5369       }
5370
5371       return ExitLimit(BECount, MaxBECount);
5372     }
5373     if (BO->getOpcode() == Instruction::Or) {
5374       // Recurse on the operands of the or.
5375       bool EitherMayExit = L->contains(FBB);
5376       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5377                                                ControlsExit && !EitherMayExit);
5378       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5379                                                ControlsExit && !EitherMayExit);
5380       const SCEV *BECount = getCouldNotCompute();
5381       const SCEV *MaxBECount = getCouldNotCompute();
5382       if (EitherMayExit) {
5383         // Both conditions must be false for the loop to continue executing.
5384         // Choose the less conservative count.
5385         if (EL0.Exact == getCouldNotCompute() ||
5386             EL1.Exact == getCouldNotCompute())
5387           BECount = getCouldNotCompute();
5388         else
5389           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5390         if (EL0.Max == getCouldNotCompute())
5391           MaxBECount = EL1.Max;
5392         else if (EL1.Max == getCouldNotCompute())
5393           MaxBECount = EL0.Max;
5394         else
5395           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5396       } else {
5397         // Both conditions must be false at the same time for the loop to exit.
5398         // For now, be conservative.
5399         assert(L->contains(TBB) && "Loop block has no successor in loop!");
5400         if (EL0.Max == EL1.Max)
5401           MaxBECount = EL0.Max;
5402         if (EL0.Exact == EL1.Exact)
5403           BECount = EL0.Exact;
5404       }
5405
5406       return ExitLimit(BECount, MaxBECount);
5407     }
5408   }
5409
5410   // With an icmp, it may be feasible to compute an exact backedge-taken count.
5411   // Proceed to the next level to examine the icmp.
5412   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
5413     return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
5414
5415   // Check for a constant condition. These are normally stripped out by
5416   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5417   // preserve the CFG and is temporarily leaving constant conditions
5418   // in place.
5419   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5420     if (L->contains(FBB) == !CI->getZExtValue())
5421       // The backedge is always taken.
5422       return getCouldNotCompute();
5423     else
5424       // The backedge is never taken.
5425       return getZero(CI->getType());
5426   }
5427
5428   // If it's not an integer or pointer comparison then compute it the hard way.
5429   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5430 }
5431
5432 ScalarEvolution::ExitLimit
5433 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
5434                                           ICmpInst *ExitCond,
5435                                           BasicBlock *TBB,
5436                                           BasicBlock *FBB,
5437                                           bool ControlsExit) {
5438
5439   // If the condition was exit on true, convert the condition to exit on false
5440   ICmpInst::Predicate Cond;
5441   if (!L->contains(FBB))
5442     Cond = ExitCond->getPredicate();
5443   else
5444     Cond = ExitCond->getInversePredicate();
5445
5446   // Handle common loops like: for (X = "string"; *X; ++X)
5447   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5448     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
5449       ExitLimit ItCnt =
5450         computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
5451       if (ItCnt.hasAnyInfo())
5452         return ItCnt;
5453     }
5454
5455   ExitLimit ShiftEL = computeShiftCompareExitLimit(
5456       ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond);
5457   if (ShiftEL.hasAnyInfo())
5458     return ShiftEL;
5459
5460   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5461   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
5462
5463   // Try to evaluate any dependencies out of the loop.
5464   LHS = getSCEVAtScope(LHS, L);
5465   RHS = getSCEVAtScope(RHS, L);
5466
5467   // At this point, we would like to compute how many iterations of the
5468   // loop the predicate will return true for these inputs.
5469   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
5470     // If there is a loop-invariant, force it into the RHS.
5471     std::swap(LHS, RHS);
5472     Cond = ICmpInst::getSwappedPredicate(Cond);
5473   }
5474
5475   // Simplify the operands before analyzing them.
5476   (void)SimplifyICmpOperands(Cond, LHS, RHS);
5477
5478   // If we have a comparison of a chrec against a constant, try to use value
5479   // ranges to answer this query.
5480   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5481     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
5482       if (AddRec->getLoop() == L) {
5483         // Form the constant range.
5484         ConstantRange CompRange(
5485             ICmpInst::makeConstantRange(Cond, RHSC->getAPInt()));
5486
5487         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
5488         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
5489       }
5490
5491   switch (Cond) {
5492   case ICmpInst::ICMP_NE: {                     // while (X != Y)
5493     // Convert to: while (X-Y != 0)
5494     ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
5495     if (EL.hasAnyInfo()) return EL;
5496     break;
5497   }
5498   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
5499     // Convert to: while (X-Y == 0)
5500     ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5501     if (EL.hasAnyInfo()) return EL;
5502     break;
5503   }
5504   case ICmpInst::ICMP_SLT:
5505   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
5506     bool IsSigned = Cond == ICmpInst::ICMP_SLT;
5507     ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
5508     if (EL.hasAnyInfo()) return EL;
5509     break;
5510   }
5511   case ICmpInst::ICMP_SGT:
5512   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
5513     bool IsSigned = Cond == ICmpInst::ICMP_SGT;
5514     ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
5515     if (EL.hasAnyInfo()) return EL;
5516     break;
5517   }
5518   default:
5519     break;
5520   }
5521   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5522 }
5523
5524 ScalarEvolution::ExitLimit
5525 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
5526                                                       SwitchInst *Switch,
5527                                                       BasicBlock *ExitingBlock,
5528                                                       bool ControlsExit) {
5529   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5530
5531   // Give up if the exit is the default dest of a switch.
5532   if (Switch->getDefaultDest() == ExitingBlock)
5533     return getCouldNotCompute();
5534
5535   assert(L->contains(Switch->getDefaultDest()) &&
5536          "Default case must not exit the loop!");
5537   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5538   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5539
5540   // while (X != Y) --> while (X-Y != 0)
5541   ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
5542   if (EL.hasAnyInfo())
5543     return EL;
5544
5545   return getCouldNotCompute();
5546 }
5547
5548 static ConstantInt *
5549 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5550                                 ScalarEvolution &SE) {
5551   const SCEV *InVal = SE.getConstant(C);
5552   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
5553   assert(isa<SCEVConstant>(Val) &&
5554          "Evaluation of SCEV at constant didn't fold correctly?");
5555   return cast<SCEVConstant>(Val)->getValue();
5556 }
5557
5558 /// computeLoadConstantCompareExitLimit - Given an exit condition of
5559 /// 'icmp op load X, cst', try to see if we can compute the backedge
5560 /// execution count.
5561 ScalarEvolution::ExitLimit
5562 ScalarEvolution::computeLoadConstantCompareExitLimit(
5563   LoadInst *LI,
5564   Constant *RHS,
5565   const Loop *L,
5566   ICmpInst::Predicate predicate) {
5567
5568   if (LI->isVolatile()) return getCouldNotCompute();
5569
5570   // Check to see if the loaded pointer is a getelementptr of a global.
5571   // TODO: Use SCEV instead of manually grubbing with GEPs.
5572   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
5573   if (!GEP) return getCouldNotCompute();
5574
5575   // Make sure that it is really a constant global we are gepping, with an
5576   // initializer, and make sure the first IDX is really 0.
5577   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
5578   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
5579       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5580       !cast<Constant>(GEP->getOperand(1))->isNullValue())
5581     return getCouldNotCompute();
5582
5583   // Okay, we allow one non-constant index into the GEP instruction.
5584   Value *VarIdx = nullptr;
5585   std::vector<Constant*> Indexes;
5586   unsigned VarIdxNum = 0;
5587   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5588     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5589       Indexes.push_back(CI);
5590     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
5591       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
5592       VarIdx = GEP->getOperand(i);
5593       VarIdxNum = i-2;
5594       Indexes.push_back(nullptr);
5595     }
5596
5597   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5598   if (!VarIdx)
5599     return getCouldNotCompute();
5600
5601   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5602   // Check to see if X is a loop variant variable value now.
5603   const SCEV *Idx = getSCEV(VarIdx);
5604   Idx = getSCEVAtScope(Idx, L);
5605
5606   // We can only recognize very limited forms of loop index expressions, in
5607   // particular, only affine AddRec's like {C1,+,C2}.
5608   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
5609   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
5610       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5611       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
5612     return getCouldNotCompute();
5613
5614   unsigned MaxSteps = MaxBruteForceIterations;
5615   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
5616     ConstantInt *ItCst = ConstantInt::get(
5617                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
5618     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
5619
5620     // Form the GEP offset.
5621     Indexes[VarIdxNum] = Val;
5622
5623     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5624                                                          Indexes);
5625     if (!Result) break;  // Cannot compute!
5626
5627     // Evaluate the condition for this iteration.
5628     Result = ConstantExpr::getICmp(predicate, Result, RHS);
5629     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
5630     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
5631       ++NumArrayLenItCounts;
5632       return getConstant(ItCst);   // Found terminating iteration!
5633     }
5634   }
5635   return getCouldNotCompute();
5636 }
5637
5638 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
5639     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
5640   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
5641   if (!RHS)
5642     return getCouldNotCompute();
5643
5644   const BasicBlock *Latch = L->getLoopLatch();
5645   if (!Latch)
5646     return getCouldNotCompute();
5647
5648   const BasicBlock *Predecessor = L->getLoopPredecessor();
5649   if (!Predecessor)
5650     return getCouldNotCompute();
5651
5652   // Return true if V is of the form "LHS `shift_op` <positive constant>".
5653   // Return LHS in OutLHS and shift_opt in OutOpCode.
5654   auto MatchPositiveShift =
5655       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
5656
5657     using namespace PatternMatch;
5658
5659     ConstantInt *ShiftAmt;
5660     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5661       OutOpCode = Instruction::LShr;
5662     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5663       OutOpCode = Instruction::AShr;
5664     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5665       OutOpCode = Instruction::Shl;
5666     else
5667       return false;
5668
5669     return ShiftAmt->getValue().isStrictlyPositive();
5670   };
5671
5672   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
5673   //
5674   // loop:
5675   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
5676   //   %iv.shifted = lshr i32 %iv, <positive constant>
5677   //
5678   // Return true on a succesful match.  Return the corresponding PHI node (%iv
5679   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
5680   auto MatchShiftRecurrence =
5681       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
5682     Optional<Instruction::BinaryOps> PostShiftOpCode;
5683
5684     {
5685       Instruction::BinaryOps OpC;
5686       Value *V;
5687
5688       // If we encounter a shift instruction, "peel off" the shift operation,
5689       // and remember that we did so.  Later when we inspect %iv's backedge
5690       // value, we will make sure that the backedge value uses the same
5691       // operation.
5692       //
5693       // Note: the peeled shift operation does not have to be the same
5694       // instruction as the one feeding into the PHI's backedge value.  We only
5695       // really care about it being the same *kind* of shift instruction --
5696       // that's all that is required for our later inferences to hold.
5697       if (MatchPositiveShift(LHS, V, OpC)) {
5698         PostShiftOpCode = OpC;
5699         LHS = V;
5700       }
5701     }
5702
5703     PNOut = dyn_cast<PHINode>(LHS);
5704     if (!PNOut || PNOut->getParent() != L->getHeader())
5705       return false;
5706
5707     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
5708     Value *OpLHS;
5709
5710     return
5711         // The backedge value for the PHI node must be a shift by a positive
5712         // amount
5713         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
5714
5715         // of the PHI node itself
5716         OpLHS == PNOut &&
5717
5718         // and the kind of shift should be match the kind of shift we peeled
5719         // off, if any.
5720         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
5721   };
5722
5723   PHINode *PN;
5724   Instruction::BinaryOps OpCode;
5725   if (!MatchShiftRecurrence(LHS, PN, OpCode))
5726     return getCouldNotCompute();
5727
5728   const DataLayout &DL = getDataLayout();
5729
5730   // The key rationale for this optimization is that for some kinds of shift
5731   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
5732   // within a finite number of iterations.  If the condition guarding the
5733   // backedge (in the sense that the backedge is taken if the condition is true)
5734   // is false for the value the shift recurrence stabilizes to, then we know
5735   // that the backedge is taken only a finite number of times.
5736
5737   ConstantInt *StableValue = nullptr;
5738   switch (OpCode) {
5739   default:
5740     llvm_unreachable("Impossible case!");
5741
5742   case Instruction::AShr: {
5743     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
5744     // bitwidth(K) iterations.
5745     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
5746     bool KnownZero, KnownOne;
5747     ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
5748                    Predecessor->getTerminator(), &DT);
5749     auto *Ty = cast<IntegerType>(RHS->getType());
5750     if (KnownZero)
5751       StableValue = ConstantInt::get(Ty, 0);
5752     else if (KnownOne)
5753       StableValue = ConstantInt::get(Ty, -1, true);
5754     else
5755       return getCouldNotCompute();
5756
5757     break;
5758   }
5759   case Instruction::LShr:
5760   case Instruction::Shl:
5761     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
5762     // stabilize to 0 in at most bitwidth(K) iterations.
5763     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
5764     break;
5765   }
5766
5767   auto *Result =
5768       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
5769   assert(Result->getType()->isIntegerTy(1) &&
5770          "Otherwise cannot be an operand to a branch instruction");
5771
5772   if (Result->isZeroValue()) {
5773     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
5774     const SCEV *UpperBound =
5775         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
5776     return ExitLimit(getCouldNotCompute(), UpperBound);
5777   }
5778
5779   return getCouldNotCompute();
5780 }
5781
5782 /// CanConstantFold - Return true if we can constant fold an instruction of the
5783 /// specified type, assuming that all operands were constants.
5784 static bool CanConstantFold(const Instruction *I) {
5785   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
5786       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5787       isa<LoadInst>(I))
5788     return true;
5789
5790   if (const CallInst *CI = dyn_cast<CallInst>(I))
5791     if (const Function *F = CI->getCalledFunction())
5792       return canConstantFoldCallTo(F);
5793   return false;
5794 }
5795
5796 /// Determine whether this instruction can constant evolve within this loop
5797 /// assuming its operands can all constant evolve.
5798 static bool canConstantEvolve(Instruction *I, const Loop *L) {
5799   // An instruction outside of the loop can't be derived from a loop PHI.
5800   if (!L->contains(I)) return false;
5801
5802   if (isa<PHINode>(I)) {
5803     // We don't currently keep track of the control flow needed to evaluate
5804     // PHIs, so we cannot handle PHIs inside of loops.
5805     return L->getHeader() == I->getParent();
5806   }
5807
5808   // If we won't be able to constant fold this expression even if the operands
5809   // are constants, bail early.
5810   return CanConstantFold(I);
5811 }
5812
5813 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5814 /// recursing through each instruction operand until reaching a loop header phi.
5815 static PHINode *
5816 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
5817                                DenseMap<Instruction *, PHINode *> &PHIMap) {
5818
5819   // Otherwise, we can evaluate this instruction if all of its operands are
5820   // constant or derived from a PHI node themselves.
5821   PHINode *PHI = nullptr;
5822   for (Value *Op : UseInst->operands()) {
5823     if (isa<Constant>(Op)) continue;
5824
5825     Instruction *OpInst = dyn_cast<Instruction>(Op);
5826     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
5827
5828     PHINode *P = dyn_cast<PHINode>(OpInst);
5829     if (!P)
5830       // If this operand is already visited, reuse the prior result.
5831       // We may have P != PHI if this is the deepest point at which the
5832       // inconsistent paths meet.
5833       P = PHIMap.lookup(OpInst);
5834     if (!P) {
5835       // Recurse and memoize the results, whether a phi is found or not.
5836       // This recursive call invalidates pointers into PHIMap.
5837       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5838       PHIMap[OpInst] = P;
5839     }
5840     if (!P)
5841       return nullptr;  // Not evolving from PHI
5842     if (PHI && PHI != P)
5843       return nullptr;  // Evolving from multiple different PHIs.
5844     PHI = P;
5845   }
5846   // This is a expression evolving from a constant PHI!
5847   return PHI;
5848 }
5849
5850 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5851 /// in the loop that V is derived from.  We allow arbitrary operations along the
5852 /// way, but the operands of an operation must either be constants or a value
5853 /// derived from a constant PHI.  If this expression does not fit with these
5854 /// constraints, return null.
5855 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
5856   Instruction *I = dyn_cast<Instruction>(V);
5857   if (!I || !canConstantEvolve(I, L)) return nullptr;
5858
5859   if (PHINode *PN = dyn_cast<PHINode>(I))
5860     return PN;
5861
5862   // Record non-constant instructions contained by the loop.
5863   DenseMap<Instruction *, PHINode *> PHIMap;
5864   return getConstantEvolvingPHIOperands(I, L, PHIMap);
5865 }
5866
5867 /// EvaluateExpression - Given an expression that passes the
5868 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5869 /// in the loop has the value PHIVal.  If we can't fold this expression for some
5870 /// reason, return null.
5871 static Constant *EvaluateExpression(Value *V, const Loop *L,
5872                                     DenseMap<Instruction *, Constant *> &Vals,
5873                                     const DataLayout &DL,
5874                                     const TargetLibraryInfo *TLI) {
5875   // Convenient constant check, but redundant for recursive calls.
5876   if (Constant *C = dyn_cast<Constant>(V)) return C;
5877   Instruction *I = dyn_cast<Instruction>(V);
5878   if (!I) return nullptr;
5879
5880   if (Constant *C = Vals.lookup(I)) return C;
5881
5882   // An instruction inside the loop depends on a value outside the loop that we
5883   // weren't given a mapping for, or a value such as a call inside the loop.
5884   if (!canConstantEvolve(I, L)) return nullptr;
5885
5886   // An unmapped PHI can be due to a branch or another loop inside this loop,
5887   // or due to this not being the initial iteration through a loop where we
5888   // couldn't compute the evolution of this particular PHI last time.
5889   if (isa<PHINode>(I)) return nullptr;
5890
5891   std::vector<Constant*> Operands(I->getNumOperands());
5892
5893   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5894     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5895     if (!Operand) {
5896       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
5897       if (!Operands[i]) return nullptr;
5898       continue;
5899     }
5900     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
5901     Vals[Operand] = C;
5902     if (!C) return nullptr;
5903     Operands[i] = C;
5904   }
5905
5906   if (CmpInst *CI = dyn_cast<CmpInst>(I))
5907     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
5908                                            Operands[1], DL, TLI);
5909   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5910     if (!LI->isVolatile())
5911       return ConstantFoldLoadFromConstPtr(Operands[0], DL);
5912   }
5913   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
5914                                   TLI);
5915 }
5916
5917
5918 // If every incoming value to PN except the one for BB is a specific Constant,
5919 // return that, else return nullptr.
5920 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
5921   Constant *IncomingVal = nullptr;
5922
5923   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5924     if (PN->getIncomingBlock(i) == BB)
5925       continue;
5926
5927     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
5928     if (!CurrentVal)
5929       return nullptr;
5930
5931     if (IncomingVal != CurrentVal) {
5932       if (IncomingVal)
5933         return nullptr;
5934       IncomingVal = CurrentVal;
5935     }
5936   }
5937
5938   return IncomingVal;
5939 }
5940
5941 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5942 /// in the header of its containing loop, we know the loop executes a
5943 /// constant number of times, and the PHI node is just a recurrence
5944 /// involving constants, fold it.
5945 Constant *
5946 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
5947                                                    const APInt &BEs,
5948                                                    const Loop *L) {
5949   auto I = ConstantEvolutionLoopExitValue.find(PN);
5950   if (I != ConstantEvolutionLoopExitValue.end())
5951     return I->second;
5952
5953   if (BEs.ugt(MaxBruteForceIterations))
5954     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
5955
5956   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5957
5958   DenseMap<Instruction *, Constant *> CurrentIterVals;
5959   BasicBlock *Header = L->getHeader();
5960   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5961
5962   BasicBlock *Latch = L->getLoopLatch();
5963   if (!Latch)
5964     return nullptr;
5965
5966   for (auto &I : *Header) {
5967     PHINode *PHI = dyn_cast<PHINode>(&I);
5968     if (!PHI) break;
5969     auto *StartCST = getOtherIncomingValue(PHI, Latch);
5970     if (!StartCST) continue;
5971     CurrentIterVals[PHI] = StartCST;
5972   }
5973   if (!CurrentIterVals.count(PN))
5974     return RetVal = nullptr;
5975
5976   Value *BEValue = PN->getIncomingValueForBlock(Latch);
5977
5978   // Execute the loop symbolically to determine the exit value.
5979   if (BEs.getActiveBits() >= 32)
5980     return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
5981
5982   unsigned NumIterations = BEs.getZExtValue(); // must be in range
5983   unsigned IterationNum = 0;
5984   const DataLayout &DL = getDataLayout();
5985   for (; ; ++IterationNum) {
5986     if (IterationNum == NumIterations)
5987       return RetVal = CurrentIterVals[PN];  // Got exit value!
5988
5989     // Compute the value of the PHIs for the next iteration.
5990     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
5991     DenseMap<Instruction *, Constant *> NextIterVals;
5992     Constant *NextPHI =
5993         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
5994     if (!NextPHI)
5995       return nullptr;        // Couldn't evaluate!
5996     NextIterVals[PN] = NextPHI;
5997
5998     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5999
6000     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
6001     // cease to be able to evaluate one of them or if they stop evolving,
6002     // because that doesn't necessarily prevent us from computing PN.
6003     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
6004     for (const auto &I : CurrentIterVals) {
6005       PHINode *PHI = dyn_cast<PHINode>(I.first);
6006       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
6007       PHIsToCompute.emplace_back(PHI, I.second);
6008     }
6009     // We use two distinct loops because EvaluateExpression may invalidate any
6010     // iterators into CurrentIterVals.
6011     for (const auto &I : PHIsToCompute) {
6012       PHINode *PHI = I.first;
6013       Constant *&NextPHI = NextIterVals[PHI];
6014       if (!NextPHI) {   // Not already computed.
6015         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6016         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6017       }
6018       if (NextPHI != I.second)
6019         StoppedEvolving = false;
6020     }
6021
6022     // If all entries in CurrentIterVals == NextIterVals then we can stop
6023     // iterating, the loop can't continue to change.
6024     if (StoppedEvolving)
6025       return RetVal = CurrentIterVals[PN];
6026
6027     CurrentIterVals.swap(NextIterVals);
6028   }
6029 }
6030
6031 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
6032                                                           Value *Cond,
6033                                                           bool ExitWhen) {
6034   PHINode *PN = getConstantEvolvingPHI(Cond, L);
6035   if (!PN) return getCouldNotCompute();
6036
6037   // If the loop is canonicalized, the PHI will have exactly two entries.
6038   // That's the only form we support here.
6039   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6040
6041   DenseMap<Instruction *, Constant *> CurrentIterVals;
6042   BasicBlock *Header = L->getHeader();
6043   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6044
6045   BasicBlock *Latch = L->getLoopLatch();
6046   assert(Latch && "Should follow from NumIncomingValues == 2!");
6047
6048   for (auto &I : *Header) {
6049     PHINode *PHI = dyn_cast<PHINode>(&I);
6050     if (!PHI)
6051       break;
6052     auto *StartCST = getOtherIncomingValue(PHI, Latch);
6053     if (!StartCST) continue;
6054     CurrentIterVals[PHI] = StartCST;
6055   }
6056   if (!CurrentIterVals.count(PN))
6057     return getCouldNotCompute();
6058
6059   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
6060   // the loop symbolically to determine when the condition gets a value of
6061   // "ExitWhen".
6062   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
6063   const DataLayout &DL = getDataLayout();
6064   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
6065     auto *CondVal = dyn_cast_or_null<ConstantInt>(
6066         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
6067
6068     // Couldn't symbolically evaluate.
6069     if (!CondVal) return getCouldNotCompute();
6070
6071     if (CondVal->getValue() == uint64_t(ExitWhen)) {
6072       ++NumBruteForceTripCountsComputed;
6073       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
6074     }
6075
6076     // Update all the PHI nodes for the next iteration.
6077     DenseMap<Instruction *, Constant *> NextIterVals;
6078
6079     // Create a list of which PHIs we need to compute. We want to do this before
6080     // calling EvaluateExpression on them because that may invalidate iterators
6081     // into CurrentIterVals.
6082     SmallVector<PHINode *, 8> PHIsToCompute;
6083     for (const auto &I : CurrentIterVals) {
6084       PHINode *PHI = dyn_cast<PHINode>(I.first);
6085       if (!PHI || PHI->getParent() != Header) continue;
6086       PHIsToCompute.push_back(PHI);
6087     }
6088     for (PHINode *PHI : PHIsToCompute) {
6089       Constant *&NextPHI = NextIterVals[PHI];
6090       if (NextPHI) continue;    // Already computed!
6091
6092       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6093       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6094     }
6095     CurrentIterVals.swap(NextIterVals);
6096   }
6097
6098   // Too many iterations were needed to evaluate.
6099   return getCouldNotCompute();
6100 }
6101
6102 /// getSCEVAtScope - Return a SCEV expression for the specified value
6103 /// at the specified scope in the program.  The L value specifies a loop
6104 /// nest to evaluate the expression at, where null is the top-level or a
6105 /// specified loop is immediately inside of the loop.
6106 ///
6107 /// This method can be used to compute the exit value for a variable defined
6108 /// in a loop by querying what the value will hold in the parent loop.
6109 ///
6110 /// In the case that a relevant loop exit value cannot be computed, the
6111 /// original value V is returned.
6112 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
6113   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
6114       ValuesAtScopes[V];
6115   // Check to see if we've folded this expression at this loop before.
6116   for (auto &LS : Values)
6117     if (LS.first == L)
6118       return LS.second ? LS.second : V;
6119
6120   Values.emplace_back(L, nullptr);
6121
6122   // Otherwise compute it.
6123   const SCEV *C = computeSCEVAtScope(V, L);
6124   for (auto &LS : reverse(ValuesAtScopes[V]))
6125     if (LS.first == L) {
6126       LS.second = C;
6127       break;
6128     }
6129   return C;
6130 }
6131
6132 /// This builds up a Constant using the ConstantExpr interface.  That way, we
6133 /// will return Constants for objects which aren't represented by a
6134 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
6135 /// Returns NULL if the SCEV isn't representable as a Constant.
6136 static Constant *BuildConstantFromSCEV(const SCEV *V) {
6137   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
6138     case scCouldNotCompute:
6139     case scAddRecExpr:
6140       break;
6141     case scConstant:
6142       return cast<SCEVConstant>(V)->getValue();
6143     case scUnknown:
6144       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
6145     case scSignExtend: {
6146       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
6147       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
6148         return ConstantExpr::getSExt(CastOp, SS->getType());
6149       break;
6150     }
6151     case scZeroExtend: {
6152       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
6153       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
6154         return ConstantExpr::getZExt(CastOp, SZ->getType());
6155       break;
6156     }
6157     case scTruncate: {
6158       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
6159       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
6160         return ConstantExpr::getTrunc(CastOp, ST->getType());
6161       break;
6162     }
6163     case scAddExpr: {
6164       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
6165       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
6166         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6167           unsigned AS = PTy->getAddressSpace();
6168           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6169           C = ConstantExpr::getBitCast(C, DestPtrTy);
6170         }
6171         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
6172           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
6173           if (!C2) return nullptr;
6174
6175           // First pointer!
6176           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
6177             unsigned AS = C2->getType()->getPointerAddressSpace();
6178             std::swap(C, C2);
6179             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6180             // The offsets have been converted to bytes.  We can add bytes to an
6181             // i8* by GEP with the byte count in the first index.
6182             C = ConstantExpr::getBitCast(C, DestPtrTy);
6183           }
6184
6185           // Don't bother trying to sum two pointers. We probably can't
6186           // statically compute a load that results from it anyway.
6187           if (C2->getType()->isPointerTy())
6188             return nullptr;
6189
6190           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6191             if (PTy->getElementType()->isStructTy())
6192               C2 = ConstantExpr::getIntegerCast(
6193                   C2, Type::getInt32Ty(C->getContext()), true);
6194             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
6195           } else
6196             C = ConstantExpr::getAdd(C, C2);
6197         }
6198         return C;
6199       }
6200       break;
6201     }
6202     case scMulExpr: {
6203       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6204       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6205         // Don't bother with pointers at all.
6206         if (C->getType()->isPointerTy()) return nullptr;
6207         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6208           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
6209           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
6210           C = ConstantExpr::getMul(C, C2);
6211         }
6212         return C;
6213       }
6214       break;
6215     }
6216     case scUDivExpr: {
6217       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6218       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6219         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6220           if (LHS->getType() == RHS->getType())
6221             return ConstantExpr::getUDiv(LHS, RHS);
6222       break;
6223     }
6224     case scSMaxExpr:
6225     case scUMaxExpr:
6226       break; // TODO: smax, umax.
6227   }
6228   return nullptr;
6229 }
6230
6231 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
6232   if (isa<SCEVConstant>(V)) return V;
6233
6234   // If this instruction is evolved from a constant-evolving PHI, compute the
6235   // exit value from the loop without using SCEVs.
6236   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
6237     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
6238       const Loop *LI = this->LI[I->getParent()];
6239       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
6240         if (PHINode *PN = dyn_cast<PHINode>(I))
6241           if (PN->getParent() == LI->getHeader()) {
6242             // Okay, there is no closed form solution for the PHI node.  Check
6243             // to see if the loop that contains it has a known backedge-taken
6244             // count.  If so, we may be able to force computation of the exit
6245             // value.
6246             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
6247             if (const SCEVConstant *BTCC =
6248                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
6249               // Okay, we know how many times the containing loop executes.  If
6250               // this is a constant evolving PHI node, get the final value at
6251               // the specified iteration number.
6252               Constant *RV =
6253                   getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
6254               if (RV) return getSCEV(RV);
6255             }
6256           }
6257
6258       // Okay, this is an expression that we cannot symbolically evaluate
6259       // into a SCEV.  Check to see if it's possible to symbolically evaluate
6260       // the arguments into constants, and if so, try to constant propagate the
6261       // result.  This is particularly useful for computing loop exit values.
6262       if (CanConstantFold(I)) {
6263         SmallVector<Constant *, 4> Operands;
6264         bool MadeImprovement = false;
6265         for (Value *Op : I->operands()) {
6266           if (Constant *C = dyn_cast<Constant>(Op)) {
6267             Operands.push_back(C);
6268             continue;
6269           }
6270
6271           // If any of the operands is non-constant and if they are
6272           // non-integer and non-pointer, don't even try to analyze them
6273           // with scev techniques.
6274           if (!isSCEVable(Op->getType()))
6275             return V;
6276
6277           const SCEV *OrigV = getSCEV(Op);
6278           const SCEV *OpV = getSCEVAtScope(OrigV, L);
6279           MadeImprovement |= OrigV != OpV;
6280
6281           Constant *C = BuildConstantFromSCEV(OpV);
6282           if (!C) return V;
6283           if (C->getType() != Op->getType())
6284             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6285                                                               Op->getType(),
6286                                                               false),
6287                                       C, Op->getType());
6288           Operands.push_back(C);
6289         }
6290
6291         // Check to see if getSCEVAtScope actually made an improvement.
6292         if (MadeImprovement) {
6293           Constant *C = nullptr;
6294           const DataLayout &DL = getDataLayout();
6295           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
6296             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6297                                                 Operands[1], DL, &TLI);
6298           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6299             if (!LI->isVolatile())
6300               C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
6301           } else
6302             C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands,
6303                                          DL, &TLI);
6304           if (!C) return V;
6305           return getSCEV(C);
6306         }
6307       }
6308     }
6309
6310     // This is some other type of SCEVUnknown, just return it.
6311     return V;
6312   }
6313
6314   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
6315     // Avoid performing the look-up in the common case where the specified
6316     // expression has no loop-variant portions.
6317     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
6318       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6319       if (OpAtScope != Comm->getOperand(i)) {
6320         // Okay, at least one of these operands is loop variant but might be
6321         // foldable.  Build a new instance of the folded commutative expression.
6322         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6323                                             Comm->op_begin()+i);
6324         NewOps.push_back(OpAtScope);
6325
6326         for (++i; i != e; ++i) {
6327           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6328           NewOps.push_back(OpAtScope);
6329         }
6330         if (isa<SCEVAddExpr>(Comm))
6331           return getAddExpr(NewOps);
6332         if (isa<SCEVMulExpr>(Comm))
6333           return getMulExpr(NewOps);
6334         if (isa<SCEVSMaxExpr>(Comm))
6335           return getSMaxExpr(NewOps);
6336         if (isa<SCEVUMaxExpr>(Comm))
6337           return getUMaxExpr(NewOps);
6338         llvm_unreachable("Unknown commutative SCEV type!");
6339       }
6340     }
6341     // If we got here, all operands are loop invariant.
6342     return Comm;
6343   }
6344
6345   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
6346     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6347     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
6348     if (LHS == Div->getLHS() && RHS == Div->getRHS())
6349       return Div;   // must be loop invariant
6350     return getUDivExpr(LHS, RHS);
6351   }
6352
6353   // If this is a loop recurrence for a loop that does not contain L, then we
6354   // are dealing with the final value computed by the loop.
6355   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
6356     // First, attempt to evaluate each operand.
6357     // Avoid performing the look-up in the common case where the specified
6358     // expression has no loop-variant portions.
6359     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6360       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6361       if (OpAtScope == AddRec->getOperand(i))
6362         continue;
6363
6364       // Okay, at least one of these operands is loop variant but might be
6365       // foldable.  Build a new instance of the folded commutative expression.
6366       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6367                                           AddRec->op_begin()+i);
6368       NewOps.push_back(OpAtScope);
6369       for (++i; i != e; ++i)
6370         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6371
6372       const SCEV *FoldedRec =
6373         getAddRecExpr(NewOps, AddRec->getLoop(),
6374                       AddRec->getNoWrapFlags(SCEV::FlagNW));
6375       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
6376       // The addrec may be folded to a nonrecurrence, for example, if the
6377       // induction variable is multiplied by zero after constant folding. Go
6378       // ahead and return the folded value.
6379       if (!AddRec)
6380         return FoldedRec;
6381       break;
6382     }
6383
6384     // If the scope is outside the addrec's loop, evaluate it by using the
6385     // loop exit value of the addrec.
6386     if (!AddRec->getLoop()->contains(L)) {
6387       // To evaluate this recurrence, we need to know how many times the AddRec
6388       // loop iterates.  Compute this now.
6389       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
6390       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
6391
6392       // Then, evaluate the AddRec.
6393       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
6394     }
6395
6396     return AddRec;
6397   }
6398
6399   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
6400     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6401     if (Op == Cast->getOperand())
6402       return Cast;  // must be loop invariant
6403     return getZeroExtendExpr(Op, Cast->getType());
6404   }
6405
6406   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
6407     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6408     if (Op == Cast->getOperand())
6409       return Cast;  // must be loop invariant
6410     return getSignExtendExpr(Op, Cast->getType());
6411   }
6412
6413   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
6414     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6415     if (Op == Cast->getOperand())
6416       return Cast;  // must be loop invariant
6417     return getTruncateExpr(Op, Cast->getType());
6418   }
6419
6420   llvm_unreachable("Unknown SCEV type!");
6421 }
6422
6423 /// getSCEVAtScope - This is a convenience function which does
6424 /// getSCEVAtScope(getSCEV(V), L).
6425 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
6426   return getSCEVAtScope(getSCEV(V), L);
6427 }
6428
6429 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
6430 /// following equation:
6431 ///
6432 ///     A * X = B (mod N)
6433 ///
6434 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6435 /// A and B isn't important.
6436 ///
6437 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
6438 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
6439                                                ScalarEvolution &SE) {
6440   uint32_t BW = A.getBitWidth();
6441   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6442   assert(A != 0 && "A must be non-zero.");
6443
6444   // 1. D = gcd(A, N)
6445   //
6446   // The gcd of A and N may have only one prime factor: 2. The number of
6447   // trailing zeros in A is its multiplicity
6448   uint32_t Mult2 = A.countTrailingZeros();
6449   // D = 2^Mult2
6450
6451   // 2. Check if B is divisible by D.
6452   //
6453   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6454   // is not less than multiplicity of this prime factor for D.
6455   if (B.countTrailingZeros() < Mult2)
6456     return SE.getCouldNotCompute();
6457
6458   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6459   // modulo (N / D).
6460   //
6461   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
6462   // bit width during computations.
6463   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
6464   APInt Mod(BW + 1, 0);
6465   Mod.setBit(BW - Mult2);  // Mod = N / D
6466   APInt I = AD.multiplicativeInverse(Mod);
6467
6468   // 4. Compute the minimum unsigned root of the equation:
6469   // I * (B / D) mod (N / D)
6470   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6471
6472   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6473   // bits.
6474   return SE.getConstant(Result.trunc(BW));
6475 }
6476
6477 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
6478 /// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
6479 /// might be the same) or two SCEVCouldNotCompute objects.
6480 ///
6481 static std::pair<const SCEV *,const SCEV *>
6482 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
6483   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
6484   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6485   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6486   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
6487
6488   // We currently can only solve this if the coefficients are constants.
6489   if (!LC || !MC || !NC) {
6490     const SCEV *CNC = SE.getCouldNotCompute();
6491     return std::make_pair(CNC, CNC);
6492   }
6493
6494   uint32_t BitWidth = LC->getAPInt().getBitWidth();
6495   const APInt &L = LC->getAPInt();
6496   const APInt &M = MC->getAPInt();
6497   const APInt &N = NC->getAPInt();
6498   APInt Two(BitWidth, 2);
6499   APInt Four(BitWidth, 4);
6500
6501   {
6502     using namespace APIntOps;
6503     const APInt& C = L;
6504     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6505     // The B coefficient is M-N/2
6506     APInt B(M);
6507     B -= sdiv(N,Two);
6508
6509     // The A coefficient is N/2
6510     APInt A(N.sdiv(Two));
6511
6512     // Compute the B^2-4ac term.
6513     APInt SqrtTerm(B);
6514     SqrtTerm *= B;
6515     SqrtTerm -= Four * (A * C);
6516
6517     if (SqrtTerm.isNegative()) {
6518       // The loop is provably infinite.
6519       const SCEV *CNC = SE.getCouldNotCompute();
6520       return std::make_pair(CNC, CNC);
6521     }
6522
6523     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6524     // integer value or else APInt::sqrt() will assert.
6525     APInt SqrtVal(SqrtTerm.sqrt());
6526
6527     // Compute the two solutions for the quadratic formula.
6528     // The divisions must be performed as signed divisions.
6529     APInt NegB(-B);
6530     APInt TwoA(A << 1);
6531     if (TwoA.isMinValue()) {
6532       const SCEV *CNC = SE.getCouldNotCompute();
6533       return std::make_pair(CNC, CNC);
6534     }
6535
6536     LLVMContext &Context = SE.getContext();
6537
6538     ConstantInt *Solution1 =
6539       ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
6540     ConstantInt *Solution2 =
6541       ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
6542
6543     return std::make_pair(SE.getConstant(Solution1),
6544                           SE.getConstant(Solution2));
6545   } // end APIntOps namespace
6546 }
6547
6548 /// HowFarToZero - Return the number of times a backedge comparing the specified
6549 /// value to zero will execute.  If not computable, return CouldNotCompute.
6550 ///
6551 /// This is only used for loops with a "x != y" exit test. The exit condition is
6552 /// now expressed as a single expression, V = x-y. So the exit test is
6553 /// effectively V != 0.  We know and take advantage of the fact that this
6554 /// expression only being used in a comparison by zero context.
6555 ScalarEvolution::ExitLimit
6556 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
6557   // If the value is a constant
6558   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
6559     // If the value is already zero, the branch will execute zero times.
6560     if (C->getValue()->isZero()) return C;
6561     return getCouldNotCompute();  // Otherwise it will loop infinitely.
6562   }
6563
6564   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
6565   if (!AddRec || AddRec->getLoop() != L)
6566     return getCouldNotCompute();
6567
6568   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6569   // the quadratic equation to solve it.
6570   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6571     std::pair<const SCEV *,const SCEV *> Roots =
6572       SolveQuadraticEquation(AddRec, *this);
6573     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6574     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
6575     if (R1 && R2) {
6576       // Pick the smallest positive root value.
6577       if (ConstantInt *CB =
6578           dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6579                                                       R1->getValue(),
6580                                                       R2->getValue()))) {
6581         if (!CB->getZExtValue())
6582           std::swap(R1, R2);   // R1 is the minimum root now.
6583
6584         // We can only use this value if the chrec ends up with an exact zero
6585         // value at this index.  When solving for "X*X != 5", for example, we
6586         // should not accept a root of 2.
6587         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
6588         if (Val->isZero())
6589           return R1;  // We found a quadratic root!
6590       }
6591     }
6592     return getCouldNotCompute();
6593   }
6594
6595   // Otherwise we can only handle this if it is affine.
6596   if (!AddRec->isAffine())
6597     return getCouldNotCompute();
6598
6599   // If this is an affine expression, the execution count of this branch is
6600   // the minimum unsigned root of the following equation:
6601   //
6602   //     Start + Step*N = 0 (mod 2^BW)
6603   //
6604   // equivalent to:
6605   //
6606   //             Step*N = -Start (mod 2^BW)
6607   //
6608   // where BW is the common bit width of Start and Step.
6609
6610   // Get the initial value for the loop.
6611   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6612   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6613
6614   // For now we handle only constant steps.
6615   //
6616   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6617   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6618   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6619   // We have not yet seen any such cases.
6620   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
6621   if (!StepC || StepC->getValue()->equalsInt(0))
6622     return getCouldNotCompute();
6623
6624   // For positive steps (counting up until unsigned overflow):
6625   //   N = -Start/Step (as unsigned)
6626   // For negative steps (counting down to zero):
6627   //   N = Start/-Step
6628   // First compute the unsigned distance from zero in the direction of Step.
6629   bool CountDown = StepC->getAPInt().isNegative();
6630   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
6631
6632   // Handle unitary steps, which cannot wraparound.
6633   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6634   //   N = Distance (as unsigned)
6635   if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6636     ConstantRange CR = getUnsignedRange(Start);
6637     const SCEV *MaxBECount;
6638     if (!CountDown && CR.getUnsignedMin().isMinValue())
6639       // When counting up, the worst starting value is 1, not 0.
6640       MaxBECount = CR.getUnsignedMax().isMinValue()
6641         ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6642         : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6643     else
6644       MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6645                                          : -CR.getUnsignedMin());
6646     return ExitLimit(Distance, MaxBECount);
6647   }
6648
6649   // As a special case, handle the instance where Step is a positive power of
6650   // two. In this case, determining whether Step divides Distance evenly can be
6651   // done by counting and comparing the number of trailing zeros of Step and
6652   // Distance.
6653   if (!CountDown) {
6654     const APInt &StepV = StepC->getAPInt();
6655     // StepV.isPowerOf2() returns true if StepV is an positive power of two.  It
6656     // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6657     // case is not handled as this code is guarded by !CountDown.
6658     if (StepV.isPowerOf2() &&
6659         GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
6660       // Here we've constrained the equation to be of the form
6661       //
6662       //   2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W)  ... (0)
6663       //
6664       // where we're operating on a W bit wide integer domain and k is
6665       // non-negative.  The smallest unsigned solution for X is the trip count.
6666       //
6667       // (0) is equivalent to:
6668       //
6669       //      2^(N + k) * Distance' - 2^N * X = L * 2^W
6670       // <=>  2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
6671       // <=>  2^k * Distance' - X = L * 2^(W - N)
6672       // <=>  2^k * Distance'     = L * 2^(W - N) + X    ... (1)
6673       //
6674       // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
6675       // by 2^(W - N).
6676       //
6677       // <=>  X = 2^k * Distance' URem 2^(W - N)   ... (2)
6678       //
6679       // E.g. say we're solving
6680       //
6681       //   2 * Val = 2 * X  (in i8)   ... (3)
6682       //
6683       // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
6684       //
6685       // Note: It is tempting to solve (3) by setting X = Val, but Val is not
6686       // necessarily the smallest unsigned value of X that satisfies (3).
6687       // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
6688       // is i8 1, not i8 -127
6689
6690       const auto *ModuloResult = getUDivExactExpr(Distance, Step);
6691
6692       // Since SCEV does not have a URem node, we construct one using a truncate
6693       // and a zero extend.
6694
6695       unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
6696       auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
6697       auto *WideTy = Distance->getType();
6698
6699       return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
6700     }
6701   }
6702
6703   // If the condition controls loop exit (the loop exits only if the expression
6704   // is true) and the addition is no-wrap we can use unsigned divide to
6705   // compute the backedge count.  In this case, the step may not divide the
6706   // distance, but we don't care because if the condition is "missed" the loop
6707   // will have undefined behavior due to wrapping.
6708   if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6709     const SCEV *Exact =
6710         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6711     return ExitLimit(Exact, Exact);
6712   }
6713
6714   // Then, try to solve the above equation provided that Start is constant.
6715   if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6716     return SolveLinEquationWithOverflow(StepC->getAPInt(), -StartC->getAPInt(),
6717                                         *this);
6718   return getCouldNotCompute();
6719 }
6720
6721 /// HowFarToNonZero - Return the number of times a backedge checking the
6722 /// specified value for nonzero will execute.  If not computable, return
6723 /// CouldNotCompute
6724 ScalarEvolution::ExitLimit
6725 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
6726   // Loops that look like: while (X == 0) are very strange indeed.  We don't
6727   // handle them yet except for the trivial case.  This could be expanded in the
6728   // future as needed.
6729
6730   // If the value is a constant, check to see if it is known to be non-zero
6731   // already.  If so, the backedge will execute zero times.
6732   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
6733     if (!C->getValue()->isNullValue())
6734       return getZero(C->getType());
6735     return getCouldNotCompute();  // Otherwise it will loop infinitely.
6736   }
6737
6738   // We could implement others, but I really doubt anyone writes loops like
6739   // this, and if they did, they would already be constant folded.
6740   return getCouldNotCompute();
6741 }
6742
6743 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6744 /// (which may not be an immediate predecessor) which has exactly one
6745 /// successor from which BB is reachable, or null if no such block is
6746 /// found.
6747 ///
6748 std::pair<BasicBlock *, BasicBlock *>
6749 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
6750   // If the block has a unique predecessor, then there is no path from the
6751   // predecessor to the block that does not go through the direct edge
6752   // from the predecessor to the block.
6753   if (BasicBlock *Pred = BB->getSinglePredecessor())
6754     return std::make_pair(Pred, BB);
6755
6756   // A loop's header is defined to be a block that dominates the loop.
6757   // If the header has a unique predecessor outside the loop, it must be
6758   // a block that has exactly one successor that can reach the loop.
6759   if (Loop *L = LI.getLoopFor(BB))
6760     return std::make_pair(L->getLoopPredecessor(), L->getHeader());
6761
6762   return std::pair<BasicBlock *, BasicBlock *>();
6763 }
6764
6765 /// HasSameValue - SCEV structural equivalence is usually sufficient for
6766 /// testing whether two expressions are equal, however for the purposes of
6767 /// looking for a condition guarding a loop, it can be useful to be a little
6768 /// more general, since a front-end may have replicated the controlling
6769 /// expression.
6770 ///
6771 static bool HasSameValue(const SCEV *A, const SCEV *B) {
6772   // Quick check to see if they are the same SCEV.
6773   if (A == B) return true;
6774
6775   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
6776     // Not all instructions that are "identical" compute the same value.  For
6777     // instance, two distinct alloca instructions allocating the same type are
6778     // identical and do not read memory; but compute distinct values.
6779     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
6780   };
6781
6782   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6783   // two different instructions with the same value. Check for this case.
6784   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6785     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6786       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6787         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
6788           if (ComputesEqualValues(AI, BI))
6789             return true;
6790
6791   // Otherwise assume they may have a different value.
6792   return false;
6793 }
6794
6795 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
6796 /// predicate Pred. Return true iff any changes were made.
6797 ///
6798 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
6799                                            const SCEV *&LHS, const SCEV *&RHS,
6800                                            unsigned Depth) {
6801   bool Changed = false;
6802
6803   // If we hit the max recursion limit bail out.
6804   if (Depth >= 3)
6805     return false;
6806
6807   // Canonicalize a constant to the right side.
6808   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6809     // Check for both operands constant.
6810     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6811       if (ConstantExpr::getICmp(Pred,
6812                                 LHSC->getValue(),
6813                                 RHSC->getValue())->isNullValue())
6814         goto trivially_false;
6815       else
6816         goto trivially_true;
6817     }
6818     // Otherwise swap the operands to put the constant on the right.
6819     std::swap(LHS, RHS);
6820     Pred = ICmpInst::getSwappedPredicate(Pred);
6821     Changed = true;
6822   }
6823
6824   // If we're comparing an addrec with a value which is loop-invariant in the
6825   // addrec's loop, put the addrec on the left. Also make a dominance check,
6826   // as both operands could be addrecs loop-invariant in each other's loop.
6827   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6828     const Loop *L = AR->getLoop();
6829     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
6830       std::swap(LHS, RHS);
6831       Pred = ICmpInst::getSwappedPredicate(Pred);
6832       Changed = true;
6833     }
6834   }
6835
6836   // If there's a constant operand, canonicalize comparisons with boundary
6837   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6838   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6839     const APInt &RA = RC->getAPInt();
6840     switch (Pred) {
6841     default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6842     case ICmpInst::ICMP_EQ:
6843     case ICmpInst::ICMP_NE:
6844       // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6845       if (!RA)
6846         if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6847           if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
6848             if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6849                 ME->getOperand(0)->isAllOnesValue()) {
6850               RHS = AE->getOperand(1);
6851               LHS = ME->getOperand(1);
6852               Changed = true;
6853             }
6854       break;
6855     case ICmpInst::ICMP_UGE:
6856       if ((RA - 1).isMinValue()) {
6857         Pred = ICmpInst::ICMP_NE;
6858         RHS = getConstant(RA - 1);
6859         Changed = true;
6860         break;
6861       }
6862       if (RA.isMaxValue()) {
6863         Pred = ICmpInst::ICMP_EQ;
6864         Changed = true;
6865         break;
6866       }
6867       if (RA.isMinValue()) goto trivially_true;
6868
6869       Pred = ICmpInst::ICMP_UGT;
6870       RHS = getConstant(RA - 1);
6871       Changed = true;
6872       break;
6873     case ICmpInst::ICMP_ULE:
6874       if ((RA + 1).isMaxValue()) {
6875         Pred = ICmpInst::ICMP_NE;
6876         RHS = getConstant(RA + 1);
6877         Changed = true;
6878         break;
6879       }
6880       if (RA.isMinValue()) {
6881         Pred = ICmpInst::ICMP_EQ;
6882         Changed = true;
6883         break;
6884       }
6885       if (RA.isMaxValue()) goto trivially_true;
6886
6887       Pred = ICmpInst::ICMP_ULT;
6888       RHS = getConstant(RA + 1);
6889       Changed = true;
6890       break;
6891     case ICmpInst::ICMP_SGE:
6892       if ((RA - 1).isMinSignedValue()) {
6893         Pred = ICmpInst::ICMP_NE;
6894         RHS = getConstant(RA - 1);
6895         Changed = true;
6896         break;
6897       }
6898       if (RA.isMaxSignedValue()) {
6899         Pred = ICmpInst::ICMP_EQ;
6900         Changed = true;
6901         break;
6902       }
6903       if (RA.isMinSignedValue()) goto trivially_true;
6904
6905       Pred = ICmpInst::ICMP_SGT;
6906       RHS = getConstant(RA - 1);
6907       Changed = true;
6908       break;
6909     case ICmpInst::ICMP_SLE:
6910       if ((RA + 1).isMaxSignedValue()) {
6911         Pred = ICmpInst::ICMP_NE;
6912         RHS = getConstant(RA + 1);
6913         Changed = true;
6914         break;
6915       }
6916       if (RA.isMinSignedValue()) {
6917         Pred = ICmpInst::ICMP_EQ;
6918         Changed = true;
6919         break;
6920       }
6921       if (RA.isMaxSignedValue()) goto trivially_true;
6922
6923       Pred = ICmpInst::ICMP_SLT;
6924       RHS = getConstant(RA + 1);
6925       Changed = true;
6926       break;
6927     case ICmpInst::ICMP_UGT:
6928       if (RA.isMinValue()) {
6929         Pred = ICmpInst::ICMP_NE;
6930         Changed = true;
6931         break;
6932       }
6933       if ((RA + 1).isMaxValue()) {
6934         Pred = ICmpInst::ICMP_EQ;
6935         RHS = getConstant(RA + 1);
6936         Changed = true;
6937         break;
6938       }
6939       if (RA.isMaxValue()) goto trivially_false;
6940       break;
6941     case ICmpInst::ICMP_ULT:
6942       if (RA.isMaxValue()) {
6943         Pred = ICmpInst::ICMP_NE;
6944         Changed = true;
6945         break;
6946       }
6947       if ((RA - 1).isMinValue()) {
6948         Pred = ICmpInst::ICMP_EQ;
6949         RHS = getConstant(RA - 1);
6950         Changed = true;
6951         break;
6952       }
6953       if (RA.isMinValue()) goto trivially_false;
6954       break;
6955     case ICmpInst::ICMP_SGT:
6956       if (RA.isMinSignedValue()) {
6957         Pred = ICmpInst::ICMP_NE;
6958         Changed = true;
6959         break;
6960       }
6961       if ((RA + 1).isMaxSignedValue()) {
6962         Pred = ICmpInst::ICMP_EQ;
6963         RHS = getConstant(RA + 1);
6964         Changed = true;
6965         break;
6966       }
6967       if (RA.isMaxSignedValue()) goto trivially_false;
6968       break;
6969     case ICmpInst::ICMP_SLT:
6970       if (RA.isMaxSignedValue()) {
6971         Pred = ICmpInst::ICMP_NE;
6972         Changed = true;
6973         break;
6974       }
6975       if ((RA - 1).isMinSignedValue()) {
6976        Pred = ICmpInst::ICMP_EQ;
6977        RHS = getConstant(RA - 1);
6978         Changed = true;
6979        break;
6980       }
6981       if (RA.isMinSignedValue()) goto trivially_false;
6982       break;
6983     }
6984   }
6985
6986   // Check for obvious equality.
6987   if (HasSameValue(LHS, RHS)) {
6988     if (ICmpInst::isTrueWhenEqual(Pred))
6989       goto trivially_true;
6990     if (ICmpInst::isFalseWhenEqual(Pred))
6991       goto trivially_false;
6992   }
6993
6994   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6995   // adding or subtracting 1 from one of the operands.
6996   switch (Pred) {
6997   case ICmpInst::ICMP_SLE:
6998     if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6999       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7000                        SCEV::FlagNSW);
7001       Pred = ICmpInst::ICMP_SLT;
7002       Changed = true;
7003     } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
7004       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
7005                        SCEV::FlagNSW);
7006       Pred = ICmpInst::ICMP_SLT;
7007       Changed = true;
7008     }
7009     break;
7010   case ICmpInst::ICMP_SGE:
7011     if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
7012       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
7013                        SCEV::FlagNSW);
7014       Pred = ICmpInst::ICMP_SGT;
7015       Changed = true;
7016     } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7017       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7018                        SCEV::FlagNSW);
7019       Pred = ICmpInst::ICMP_SGT;
7020       Changed = true;
7021     }
7022     break;
7023   case ICmpInst::ICMP_ULE:
7024     if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
7025       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7026                        SCEV::FlagNUW);
7027       Pred = ICmpInst::ICMP_ULT;
7028       Changed = true;
7029     } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
7030       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
7031       Pred = ICmpInst::ICMP_ULT;
7032       Changed = true;
7033     }
7034     break;
7035   case ICmpInst::ICMP_UGE:
7036     if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
7037       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
7038       Pred = ICmpInst::ICMP_UGT;
7039       Changed = true;
7040     } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
7041       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7042                        SCEV::FlagNUW);
7043       Pred = ICmpInst::ICMP_UGT;
7044       Changed = true;
7045     }
7046     break;
7047   default:
7048     break;
7049   }
7050
7051   // TODO: More simplifications are possible here.
7052
7053   // Recursively simplify until we either hit a recursion limit or nothing
7054   // changes.
7055   if (Changed)
7056     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7057
7058   return Changed;
7059
7060 trivially_true:
7061   // Return 0 == 0.
7062   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7063   Pred = ICmpInst::ICMP_EQ;
7064   return true;
7065
7066 trivially_false:
7067   // Return 0 != 0.
7068   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7069   Pred = ICmpInst::ICMP_NE;
7070   return true;
7071 }
7072
7073 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7074   return getSignedRange(S).getSignedMax().isNegative();
7075 }
7076
7077 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7078   return getSignedRange(S).getSignedMin().isStrictlyPositive();
7079 }
7080
7081 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7082   return !getSignedRange(S).getSignedMin().isNegative();
7083 }
7084
7085 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7086   return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7087 }
7088
7089 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7090   return isKnownNegative(S) || isKnownPositive(S);
7091 }
7092
7093 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7094                                        const SCEV *LHS, const SCEV *RHS) {
7095   // Canonicalize the inputs first.
7096   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7097
7098   // If LHS or RHS is an addrec, check to see if the condition is true in
7099   // every iteration of the loop.
7100   // If LHS and RHS are both addrec, both conditions must be true in
7101   // every iteration of the loop.
7102   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7103   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7104   bool LeftGuarded = false;
7105   bool RightGuarded = false;
7106   if (LAR) {
7107     const Loop *L = LAR->getLoop();
7108     if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7109         isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7110       if (!RAR) return true;
7111       LeftGuarded = true;
7112     }
7113   }
7114   if (RAR) {
7115     const Loop *L = RAR->getLoop();
7116     if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7117         isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7118       if (!LAR) return true;
7119       RightGuarded = true;
7120     }
7121   }
7122   if (LeftGuarded && RightGuarded)
7123     return true;
7124
7125   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7126     return true;
7127
7128   // Otherwise see what can be done with known constant ranges.
7129   return isKnownPredicateWithRanges(Pred, LHS, RHS);
7130 }
7131
7132 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7133                                            ICmpInst::Predicate Pred,
7134                                            bool &Increasing) {
7135   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7136
7137 #ifndef NDEBUG
7138   // Verify an invariant: inverting the predicate should turn a monotonically
7139   // increasing change to a monotonically decreasing one, and vice versa.
7140   bool IncreasingSwapped;
7141   bool ResultSwapped = isMonotonicPredicateImpl(
7142       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7143
7144   assert(Result == ResultSwapped && "should be able to analyze both!");
7145   if (ResultSwapped)
7146     assert(Increasing == !IncreasingSwapped &&
7147            "monotonicity should flip as we flip the predicate");
7148 #endif
7149
7150   return Result;
7151 }
7152
7153 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7154                                                ICmpInst::Predicate Pred,
7155                                                bool &Increasing) {
7156
7157   // A zero step value for LHS means the induction variable is essentially a
7158   // loop invariant value. We don't really depend on the predicate actually
7159   // flipping from false to true (for increasing predicates, and the other way
7160   // around for decreasing predicates), all we care about is that *if* the
7161   // predicate changes then it only changes from false to true.
7162   //
7163   // A zero step value in itself is not very useful, but there may be places
7164   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7165   // as general as possible.
7166
7167   switch (Pred) {
7168   default:
7169     return false; // Conservative answer
7170
7171   case ICmpInst::ICMP_UGT:
7172   case ICmpInst::ICMP_UGE:
7173   case ICmpInst::ICMP_ULT:
7174   case ICmpInst::ICMP_ULE:
7175     if (!LHS->getNoWrapFlags(SCEV::FlagNUW))
7176       return false;
7177
7178     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
7179     return true;
7180
7181   case ICmpInst::ICMP_SGT:
7182   case ICmpInst::ICMP_SGE:
7183   case ICmpInst::ICMP_SLT:
7184   case ICmpInst::ICMP_SLE: {
7185     if (!LHS->getNoWrapFlags(SCEV::FlagNSW))
7186       return false;
7187
7188     const SCEV *Step = LHS->getStepRecurrence(*this);
7189
7190     if (isKnownNonNegative(Step)) {
7191       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7192       return true;
7193     }
7194
7195     if (isKnownNonPositive(Step)) {
7196       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7197       return true;
7198     }
7199
7200     return false;
7201   }
7202
7203   }
7204
7205   llvm_unreachable("switch has default clause!");
7206 }
7207
7208 bool ScalarEvolution::isLoopInvariantPredicate(
7209     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7210     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7211     const SCEV *&InvariantRHS) {
7212
7213   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7214   if (!isLoopInvariant(RHS, L)) {
7215     if (!isLoopInvariant(LHS, L))
7216       return false;
7217
7218     std::swap(LHS, RHS);
7219     Pred = ICmpInst::getSwappedPredicate(Pred);
7220   }
7221
7222   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7223   if (!ArLHS || ArLHS->getLoop() != L)
7224     return false;
7225
7226   bool Increasing;
7227   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7228     return false;
7229
7230   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7231   // true as the loop iterates, and the backedge is control dependent on
7232   // "ArLHS `Pred` RHS" == true then we can reason as follows:
7233   //
7234   //   * if the predicate was false in the first iteration then the predicate
7235   //     is never evaluated again, since the loop exits without taking the
7236   //     backedge.
7237   //   * if the predicate was true in the first iteration then it will
7238   //     continue to be true for all future iterations since it is
7239   //     monotonically increasing.
7240   //
7241   // For both the above possibilities, we can replace the loop varying
7242   // predicate with its value on the first iteration of the loop (which is
7243   // loop invariant).
7244   //
7245   // A similar reasoning applies for a monotonically decreasing predicate, by
7246   // replacing true with false and false with true in the above two bullets.
7247
7248   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7249
7250   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7251     return false;
7252
7253   InvariantPred = Pred;
7254   InvariantLHS = ArLHS->getStart();
7255   InvariantRHS = RHS;
7256   return true;
7257 }
7258
7259 bool
7260 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
7261                                             const SCEV *LHS, const SCEV *RHS) {
7262   if (HasSameValue(LHS, RHS))
7263     return ICmpInst::isTrueWhenEqual(Pred);
7264
7265   // This code is split out from isKnownPredicate because it is called from
7266   // within isLoopEntryGuardedByCond.
7267   switch (Pred) {
7268   default:
7269     llvm_unreachable("Unexpected ICmpInst::Predicate value!");
7270   case ICmpInst::ICMP_SGT:
7271     std::swap(LHS, RHS);
7272   case ICmpInst::ICMP_SLT: {
7273     ConstantRange LHSRange = getSignedRange(LHS);
7274     ConstantRange RHSRange = getSignedRange(RHS);
7275     if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
7276       return true;
7277     if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
7278       return false;
7279     break;
7280   }
7281   case ICmpInst::ICMP_SGE:
7282     std::swap(LHS, RHS);
7283   case ICmpInst::ICMP_SLE: {
7284     ConstantRange LHSRange = getSignedRange(LHS);
7285     ConstantRange RHSRange = getSignedRange(RHS);
7286     if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
7287       return true;
7288     if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
7289       return false;
7290     break;
7291   }
7292   case ICmpInst::ICMP_UGT:
7293     std::swap(LHS, RHS);
7294   case ICmpInst::ICMP_ULT: {
7295     ConstantRange LHSRange = getUnsignedRange(LHS);
7296     ConstantRange RHSRange = getUnsignedRange(RHS);
7297     if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
7298       return true;
7299     if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
7300       return false;
7301     break;
7302   }
7303   case ICmpInst::ICMP_UGE:
7304     std::swap(LHS, RHS);
7305   case ICmpInst::ICMP_ULE: {
7306     ConstantRange LHSRange = getUnsignedRange(LHS);
7307     ConstantRange RHSRange = getUnsignedRange(RHS);
7308     if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
7309       return true;
7310     if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
7311       return false;
7312     break;
7313   }
7314   case ICmpInst::ICMP_NE: {
7315     if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
7316       return true;
7317     if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
7318       return true;
7319
7320     const SCEV *Diff = getMinusSCEV(LHS, RHS);
7321     if (isKnownNonZero(Diff))
7322       return true;
7323     break;
7324   }
7325   case ICmpInst::ICMP_EQ:
7326     // The check at the top of the function catches the case where
7327     // the values are known to be equal.
7328     break;
7329   }
7330   return false;
7331 }
7332
7333 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7334                                                     const SCEV *LHS,
7335                                                     const SCEV *RHS) {
7336
7337   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7338   // Return Y via OutY.
7339   auto MatchBinaryAddToConst =
7340       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7341              SCEV::NoWrapFlags ExpectedFlags) {
7342     const SCEV *NonConstOp, *ConstOp;
7343     SCEV::NoWrapFlags FlagsPresent;
7344
7345     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7346         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7347       return false;
7348
7349     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
7350     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
7351   };
7352
7353   APInt C;
7354
7355   switch (Pred) {
7356   default:
7357     break;
7358
7359   case ICmpInst::ICMP_SGE:
7360     std::swap(LHS, RHS);
7361   case ICmpInst::ICMP_SLE:
7362     // X s<= (X + C)<nsw> if C >= 0
7363     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7364       return true;
7365
7366     // (X + C)<nsw> s<= X if C <= 0
7367     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7368         !C.isStrictlyPositive())
7369       return true;
7370     break;
7371
7372   case ICmpInst::ICMP_SGT:
7373     std::swap(LHS, RHS);
7374   case ICmpInst::ICMP_SLT:
7375     // X s< (X + C)<nsw> if C > 0
7376     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7377         C.isStrictlyPositive())
7378       return true;
7379
7380     // (X + C)<nsw> s< X if C < 0
7381     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7382       return true;
7383     break;
7384   }
7385
7386   return false;
7387 }
7388
7389 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7390                                                    const SCEV *LHS,
7391                                                    const SCEV *RHS) {
7392   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
7393     return false;
7394
7395   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7396   // the stack can result in exponential time complexity.
7397   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7398
7399   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7400   //
7401   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7402   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
7403   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7404   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
7405   // use isKnownPredicate later if needed.
7406   return isKnownNonNegative(RHS) &&
7407          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7408          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
7409 }
7410
7411 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7412 /// protected by a conditional between LHS and RHS.  This is used to
7413 /// to eliminate casts.
7414 bool
7415 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7416                                              ICmpInst::Predicate Pred,
7417                                              const SCEV *LHS, const SCEV *RHS) {
7418   // Interpret a null as meaning no loop, where there is obviously no guard
7419   // (interprocedural conditions notwithstanding).
7420   if (!L) return true;
7421
7422   if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
7423
7424   BasicBlock *Latch = L->getLoopLatch();
7425   if (!Latch)
7426     return false;
7427
7428   BranchInst *LoopContinuePredicate =
7429     dyn_cast<BranchInst>(Latch->getTerminator());
7430   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7431       isImpliedCond(Pred, LHS, RHS,
7432                     LoopContinuePredicate->getCondition(),
7433                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7434     return true;
7435
7436   // We don't want more than one activation of the following loops on the stack
7437   // -- that can lead to O(n!) time complexity.
7438   if (WalkingBEDominatingConds)
7439     return false;
7440
7441   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
7442
7443   // See if we can exploit a trip count to prove the predicate.
7444   const auto &BETakenInfo = getBackedgeTakenInfo(L);
7445   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7446   if (LatchBECount != getCouldNotCompute()) {
7447     // We know that Latch branches back to the loop header exactly
7448     // LatchBECount times.  This means the backdege condition at Latch is
7449     // equivalent to  "{0,+,1} u< LatchBECount".
7450     Type *Ty = LatchBECount->getType();
7451     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7452     const SCEV *LoopCounter =
7453       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7454     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7455                       LatchBECount))
7456       return true;
7457   }
7458
7459   // Check conditions due to any @llvm.assume intrinsics.
7460   for (auto &AssumeVH : AC.assumptions()) {
7461     if (!AssumeVH)
7462       continue;
7463     auto *CI = cast<CallInst>(AssumeVH);
7464     if (!DT.dominates(CI, Latch->getTerminator()))
7465       continue;
7466
7467     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7468       return true;
7469   }
7470
7471   // If the loop is not reachable from the entry block, we risk running into an
7472   // infinite loop as we walk up into the dom tree.  These loops do not matter
7473   // anyway, so we just return a conservative answer when we see them.
7474   if (!DT.isReachableFromEntry(L->getHeader()))
7475     return false;
7476
7477   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7478        DTN != HeaderDTN; DTN = DTN->getIDom()) {
7479
7480     assert(DTN && "should reach the loop header before reaching the root!");
7481
7482     BasicBlock *BB = DTN->getBlock();
7483     BasicBlock *PBB = BB->getSinglePredecessor();
7484     if (!PBB)
7485       continue;
7486
7487     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7488     if (!ContinuePredicate || !ContinuePredicate->isConditional())
7489       continue;
7490
7491     Value *Condition = ContinuePredicate->getCondition();
7492
7493     // If we have an edge `E` within the loop body that dominates the only
7494     // latch, the condition guarding `E` also guards the backedge.  This
7495     // reasoning works only for loops with a single latch.
7496
7497     BasicBlockEdge DominatingEdge(PBB, BB);
7498     if (DominatingEdge.isSingleEdge()) {
7499       // We're constructively (and conservatively) enumerating edges within the
7500       // loop body that dominate the latch.  The dominator tree better agree
7501       // with us on this:
7502       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
7503
7504       if (isImpliedCond(Pred, LHS, RHS, Condition,
7505                         BB != ContinuePredicate->getSuccessor(0)))
7506         return true;
7507     }
7508   }
7509
7510   return false;
7511 }
7512
7513 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
7514 /// by a conditional between LHS and RHS.  This is used to help avoid max
7515 /// expressions in loop trip counts, and to eliminate casts.
7516 bool
7517 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7518                                           ICmpInst::Predicate Pred,
7519                                           const SCEV *LHS, const SCEV *RHS) {
7520   // Interpret a null as meaning no loop, where there is obviously no guard
7521   // (interprocedural conditions notwithstanding).
7522   if (!L) return false;
7523
7524   if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
7525
7526   // Starting at the loop predecessor, climb up the predecessor chain, as long
7527   // as there are predecessors that can be found that have unique successors
7528   // leading to the original header.
7529   for (std::pair<BasicBlock *, BasicBlock *>
7530          Pair(L->getLoopPredecessor(), L->getHeader());
7531        Pair.first;
7532        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
7533
7534     BranchInst *LoopEntryPredicate =
7535       dyn_cast<BranchInst>(Pair.first->getTerminator());
7536     if (!LoopEntryPredicate ||
7537         LoopEntryPredicate->isUnconditional())
7538       continue;
7539
7540     if (isImpliedCond(Pred, LHS, RHS,
7541                       LoopEntryPredicate->getCondition(),
7542                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
7543       return true;
7544   }
7545
7546   // Check conditions due to any @llvm.assume intrinsics.
7547   for (auto &AssumeVH : AC.assumptions()) {
7548     if (!AssumeVH)
7549       continue;
7550     auto *CI = cast<CallInst>(AssumeVH);
7551     if (!DT.dominates(CI, L->getHeader()))
7552       continue;
7553
7554     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7555       return true;
7556   }
7557
7558   return false;
7559 }
7560
7561 namespace {
7562 /// RAII wrapper to prevent recursive application of isImpliedCond.
7563 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
7564 /// currently evaluating isImpliedCond.
7565 struct MarkPendingLoopPredicate {
7566   Value *Cond;
7567   DenseSet<Value*> &LoopPreds;
7568   bool Pending;
7569
7570   MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
7571     : Cond(C), LoopPreds(LP) {
7572     Pending = !LoopPreds.insert(Cond).second;
7573   }
7574   ~MarkPendingLoopPredicate() {
7575     if (!Pending)
7576       LoopPreds.erase(Cond);
7577   }
7578 };
7579 } // end anonymous namespace
7580
7581 /// isImpliedCond - Test whether the condition described by Pred, LHS,
7582 /// and RHS is true whenever the given Cond value evaluates to true.
7583 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
7584                                     const SCEV *LHS, const SCEV *RHS,
7585                                     Value *FoundCondValue,
7586                                     bool Inverse) {
7587   MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
7588   if (Mark.Pending)
7589     return false;
7590
7591   // Recursively handle And and Or conditions.
7592   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
7593     if (BO->getOpcode() == Instruction::And) {
7594       if (!Inverse)
7595         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7596                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
7597     } else if (BO->getOpcode() == Instruction::Or) {
7598       if (Inverse)
7599         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7600                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
7601     }
7602   }
7603
7604   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
7605   if (!ICI) return false;
7606
7607   // Now that we found a conditional branch that dominates the loop or controls
7608   // the loop latch. Check to see if it is the comparison we are looking for.
7609   ICmpInst::Predicate FoundPred;
7610   if (Inverse)
7611     FoundPred = ICI->getInversePredicate();
7612   else
7613     FoundPred = ICI->getPredicate();
7614
7615   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
7616   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
7617
7618   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
7619 }
7620
7621 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
7622                                     const SCEV *RHS,
7623                                     ICmpInst::Predicate FoundPred,
7624                                     const SCEV *FoundLHS,
7625                                     const SCEV *FoundRHS) {
7626   // Balance the types.
7627   if (getTypeSizeInBits(LHS->getType()) <
7628       getTypeSizeInBits(FoundLHS->getType())) {
7629     if (CmpInst::isSigned(Pred)) {
7630       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
7631       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
7632     } else {
7633       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
7634       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
7635     }
7636   } else if (getTypeSizeInBits(LHS->getType()) >
7637       getTypeSizeInBits(FoundLHS->getType())) {
7638     if (CmpInst::isSigned(FoundPred)) {
7639       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
7640       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
7641     } else {
7642       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
7643       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
7644     }
7645   }
7646
7647   // Canonicalize the query to match the way instcombine will have
7648   // canonicalized the comparison.
7649   if (SimplifyICmpOperands(Pred, LHS, RHS))
7650     if (LHS == RHS)
7651       return CmpInst::isTrueWhenEqual(Pred);
7652   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
7653     if (FoundLHS == FoundRHS)
7654       return CmpInst::isFalseWhenEqual(FoundPred);
7655
7656   // Check to see if we can make the LHS or RHS match.
7657   if (LHS == FoundRHS || RHS == FoundLHS) {
7658     if (isa<SCEVConstant>(RHS)) {
7659       std::swap(FoundLHS, FoundRHS);
7660       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
7661     } else {
7662       std::swap(LHS, RHS);
7663       Pred = ICmpInst::getSwappedPredicate(Pred);
7664     }
7665   }
7666
7667   // Check whether the found predicate is the same as the desired predicate.
7668   if (FoundPred == Pred)
7669     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7670
7671   // Check whether swapping the found predicate makes it the same as the
7672   // desired predicate.
7673   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
7674     if (isa<SCEVConstant>(RHS))
7675       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
7676     else
7677       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
7678                                    RHS, LHS, FoundLHS, FoundRHS);
7679   }
7680
7681   // Unsigned comparison is the same as signed comparison when both the operands
7682   // are non-negative.
7683   if (CmpInst::isUnsigned(FoundPred) &&
7684       CmpInst::getSignedPredicate(FoundPred) == Pred &&
7685       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
7686     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7687
7688   // Check if we can make progress by sharpening ranges.
7689   if (FoundPred == ICmpInst::ICMP_NE &&
7690       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
7691
7692     const SCEVConstant *C = nullptr;
7693     const SCEV *V = nullptr;
7694
7695     if (isa<SCEVConstant>(FoundLHS)) {
7696       C = cast<SCEVConstant>(FoundLHS);
7697       V = FoundRHS;
7698     } else {
7699       C = cast<SCEVConstant>(FoundRHS);
7700       V = FoundLHS;
7701     }
7702
7703     // The guarding predicate tells us that C != V. If the known range
7704     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
7705     // range we consider has to correspond to same signedness as the
7706     // predicate we're interested in folding.
7707
7708     APInt Min = ICmpInst::isSigned(Pred) ?
7709         getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
7710
7711     if (Min == C->getAPInt()) {
7712       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
7713       // This is true even if (Min + 1) wraps around -- in case of
7714       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
7715
7716       APInt SharperMin = Min + 1;
7717
7718       switch (Pred) {
7719         case ICmpInst::ICMP_SGE:
7720         case ICmpInst::ICMP_UGE:
7721           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
7722           // RHS, we're done.
7723           if (isImpliedCondOperands(Pred, LHS, RHS, V,
7724                                     getConstant(SharperMin)))
7725             return true;
7726
7727         case ICmpInst::ICMP_SGT:
7728         case ICmpInst::ICMP_UGT:
7729           // We know from the range information that (V `Pred` Min ||
7730           // V == Min).  We know from the guarding condition that !(V
7731           // == Min).  This gives us
7732           //
7733           //       V `Pred` Min || V == Min && !(V == Min)
7734           //   =>  V `Pred` Min
7735           //
7736           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
7737
7738           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
7739             return true;
7740
7741         default:
7742           // No change
7743           break;
7744       }
7745     }
7746   }
7747
7748   // Check whether the actual condition is beyond sufficient.
7749   if (FoundPred == ICmpInst::ICMP_EQ)
7750     if (ICmpInst::isTrueWhenEqual(Pred))
7751       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
7752         return true;
7753   if (Pred == ICmpInst::ICMP_NE)
7754     if (!ICmpInst::isTrueWhenEqual(FoundPred))
7755       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
7756         return true;
7757
7758   // Otherwise assume the worst.
7759   return false;
7760 }
7761
7762 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
7763                                      const SCEV *&L, const SCEV *&R,
7764                                      SCEV::NoWrapFlags &Flags) {
7765   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
7766   if (!AE || AE->getNumOperands() != 2)
7767     return false;
7768
7769   L = AE->getOperand(0);
7770   R = AE->getOperand(1);
7771   Flags = AE->getNoWrapFlags();
7772   return true;
7773 }
7774
7775 bool ScalarEvolution::computeConstantDifference(const SCEV *Less,
7776                                                 const SCEV *More,
7777                                                 APInt &C) {
7778   // We avoid subtracting expressions here because this function is usually
7779   // fairly deep in the call stack (i.e. is called many times).
7780
7781   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
7782     const auto *LAR = cast<SCEVAddRecExpr>(Less);
7783     const auto *MAR = cast<SCEVAddRecExpr>(More);
7784
7785     if (LAR->getLoop() != MAR->getLoop())
7786       return false;
7787
7788     // We look at affine expressions only; not for correctness but to keep
7789     // getStepRecurrence cheap.
7790     if (!LAR->isAffine() || !MAR->isAffine())
7791       return false;
7792
7793     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
7794       return false;
7795
7796     Less = LAR->getStart();
7797     More = MAR->getStart();
7798
7799     // fall through
7800   }
7801
7802   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
7803     const auto &M = cast<SCEVConstant>(More)->getAPInt();
7804     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
7805     C = M - L;
7806     return true;
7807   }
7808
7809   const SCEV *L, *R;
7810   SCEV::NoWrapFlags Flags;
7811   if (splitBinaryAdd(Less, L, R, Flags))
7812     if (const auto *LC = dyn_cast<SCEVConstant>(L))
7813       if (R == More) {
7814         C = -(LC->getAPInt());
7815         return true;
7816       }
7817
7818   if (splitBinaryAdd(More, L, R, Flags))
7819     if (const auto *LC = dyn_cast<SCEVConstant>(L))
7820       if (R == Less) {
7821         C = LC->getAPInt();
7822         return true;
7823       }
7824
7825   return false;
7826 }
7827
7828 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
7829     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
7830     const SCEV *FoundLHS, const SCEV *FoundRHS) {
7831   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
7832     return false;
7833
7834   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7835   if (!AddRecLHS)
7836     return false;
7837
7838   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
7839   if (!AddRecFoundLHS)
7840     return false;
7841
7842   // We'd like to let SCEV reason about control dependencies, so we constrain
7843   // both the inequalities to be about add recurrences on the same loop.  This
7844   // way we can use isLoopEntryGuardedByCond later.
7845
7846   const Loop *L = AddRecFoundLHS->getLoop();
7847   if (L != AddRecLHS->getLoop())
7848     return false;
7849
7850   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
7851   //
7852   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
7853   //                                                                  ... (2)
7854   //
7855   // Informal proof for (2), assuming (1) [*]:
7856   //
7857   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
7858   //
7859   // Then
7860   //
7861   //       FoundLHS s< FoundRHS s< INT_MIN - C
7862   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
7863   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
7864   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
7865   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
7866   // <=>  FoundLHS + C s< FoundRHS + C
7867   //
7868   // [*]: (1) can be proved by ruling out overflow.
7869   //
7870   // [**]: This can be proved by analyzing all the four possibilities:
7871   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
7872   //    (A s>= 0, B s>= 0).
7873   //
7874   // Note:
7875   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
7876   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
7877   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
7878   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
7879   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
7880   // C)".
7881
7882   APInt LDiff, RDiff;
7883   if (!computeConstantDifference(FoundLHS, LHS, LDiff) ||
7884       !computeConstantDifference(FoundRHS, RHS, RDiff) ||
7885       LDiff != RDiff)
7886     return false;
7887
7888   if (LDiff == 0)
7889     return true;
7890
7891   APInt FoundRHSLimit;
7892
7893   if (Pred == CmpInst::ICMP_ULT) {
7894     FoundRHSLimit = -RDiff;
7895   } else {
7896     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
7897     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff;
7898   }
7899
7900   // Try to prove (1) or (2), as needed.
7901   return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
7902                                   getConstant(FoundRHSLimit));
7903 }
7904
7905 /// isImpliedCondOperands - Test whether the condition described by Pred,
7906 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
7907 /// and FoundRHS is true.
7908 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
7909                                             const SCEV *LHS, const SCEV *RHS,
7910                                             const SCEV *FoundLHS,
7911                                             const SCEV *FoundRHS) {
7912   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
7913     return true;
7914
7915   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
7916     return true;
7917
7918   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
7919                                      FoundLHS, FoundRHS) ||
7920          // ~x < ~y --> x > y
7921          isImpliedCondOperandsHelper(Pred, LHS, RHS,
7922                                      getNotSCEV(FoundRHS),
7923                                      getNotSCEV(FoundLHS));
7924 }
7925
7926
7927 /// If Expr computes ~A, return A else return nullptr
7928 static const SCEV *MatchNotExpr(const SCEV *Expr) {
7929   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
7930   if (!Add || Add->getNumOperands() != 2 ||
7931       !Add->getOperand(0)->isAllOnesValue())
7932     return nullptr;
7933
7934   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
7935   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
7936       !AddRHS->getOperand(0)->isAllOnesValue())
7937     return nullptr;
7938
7939   return AddRHS->getOperand(1);
7940 }
7941
7942
7943 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
7944 template<typename MaxExprType>
7945 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
7946                               const SCEV *Candidate) {
7947   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
7948   if (!MaxExpr) return false;
7949
7950   return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
7951 }
7952
7953
7954 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
7955 template<typename MaxExprType>
7956 static bool IsMinConsistingOf(ScalarEvolution &SE,
7957                               const SCEV *MaybeMinExpr,
7958                               const SCEV *Candidate) {
7959   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
7960   if (!MaybeMaxExpr)
7961     return false;
7962
7963   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
7964 }
7965
7966 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
7967                                            ICmpInst::Predicate Pred,
7968                                            const SCEV *LHS, const SCEV *RHS) {
7969
7970   // If both sides are affine addrecs for the same loop, with equal
7971   // steps, and we know the recurrences don't wrap, then we only
7972   // need to check the predicate on the starting values.
7973
7974   if (!ICmpInst::isRelational(Pred))
7975     return false;
7976
7977   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7978   if (!LAR)
7979     return false;
7980   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7981   if (!RAR)
7982     return false;
7983   if (LAR->getLoop() != RAR->getLoop())
7984     return false;
7985   if (!LAR->isAffine() || !RAR->isAffine())
7986     return false;
7987
7988   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
7989     return false;
7990
7991   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
7992                          SCEV::FlagNSW : SCEV::FlagNUW;
7993   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
7994     return false;
7995
7996   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
7997 }
7998
7999 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8000 /// expression?
8001 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8002                                         ICmpInst::Predicate Pred,
8003                                         const SCEV *LHS, const SCEV *RHS) {
8004   switch (Pred) {
8005   default:
8006     return false;
8007
8008   case ICmpInst::ICMP_SGE:
8009     std::swap(LHS, RHS);
8010     // fall through
8011   case ICmpInst::ICMP_SLE:
8012     return
8013       // min(A, ...) <= A
8014       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8015       // A <= max(A, ...)
8016       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8017
8018   case ICmpInst::ICMP_UGE:
8019     std::swap(LHS, RHS);
8020     // fall through
8021   case ICmpInst::ICMP_ULE:
8022     return
8023       // min(A, ...) <= A
8024       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8025       // A <= max(A, ...)
8026       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8027   }
8028
8029   llvm_unreachable("covered switch fell through?!");
8030 }
8031
8032 /// isImpliedCondOperandsHelper - Test whether the condition described by
8033 /// Pred, LHS, and RHS is true whenever the condition described by Pred,
8034 /// FoundLHS, and FoundRHS is true.
8035 bool
8036 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8037                                              const SCEV *LHS, const SCEV *RHS,
8038                                              const SCEV *FoundLHS,
8039                                              const SCEV *FoundRHS) {
8040   auto IsKnownPredicateFull =
8041       [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
8042     return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
8043            IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
8044            IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8045            isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
8046   };
8047
8048   switch (Pred) {
8049   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
8050   case ICmpInst::ICMP_EQ:
8051   case ICmpInst::ICMP_NE:
8052     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8053       return true;
8054     break;
8055   case ICmpInst::ICMP_SLT:
8056   case ICmpInst::ICMP_SLE:
8057     if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8058         IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
8059       return true;
8060     break;
8061   case ICmpInst::ICMP_SGT:
8062   case ICmpInst::ICMP_SGE:
8063     if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8064         IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
8065       return true;
8066     break;
8067   case ICmpInst::ICMP_ULT:
8068   case ICmpInst::ICMP_ULE:
8069     if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8070         IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
8071       return true;
8072     break;
8073   case ICmpInst::ICMP_UGT:
8074   case ICmpInst::ICMP_UGE:
8075     if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8076         IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
8077       return true;
8078     break;
8079   }
8080
8081   return false;
8082 }
8083
8084 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
8085 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
8086 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8087                                                      const SCEV *LHS,
8088                                                      const SCEV *RHS,
8089                                                      const SCEV *FoundLHS,
8090                                                      const SCEV *FoundRHS) {
8091   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
8092     // The restriction on `FoundRHS` be lifted easily -- it exists only to
8093     // reduce the compile time impact of this optimization.
8094     return false;
8095
8096   const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
8097   if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
8098       !isa<SCEVConstant>(AddLHS->getOperand(0)))
8099     return false;
8100
8101   APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
8102
8103   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
8104   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
8105   ConstantRange FoundLHSRange =
8106       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
8107
8108   // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
8109   // for `LHS`:
8110   APInt Addend = cast<SCEVConstant>(AddLHS->getOperand(0))->getAPInt();
8111   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
8112
8113   // We can also compute the range of values for `LHS` that satisfy the
8114   // consequent, "`LHS` `Pred` `RHS`":
8115   APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
8116   ConstantRange SatisfyingLHSRange =
8117       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
8118
8119   // The antecedent implies the consequent if every value of `LHS` that
8120   // satisfies the antecedent also satisfies the consequent.
8121   return SatisfyingLHSRange.contains(LHSRange);
8122 }
8123
8124 // Verify if an linear IV with positive stride can overflow when in a
8125 // less-than comparison, knowing the invariant term of the comparison, the
8126 // stride and the knowledge of NSW/NUW flags on the recurrence.
8127 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
8128                                          bool IsSigned, bool NoWrap) {
8129   if (NoWrap) return false;
8130
8131   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8132   const SCEV *One = getOne(Stride->getType());
8133
8134   if (IsSigned) {
8135     APInt MaxRHS = getSignedRange(RHS).getSignedMax();
8136     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
8137     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8138                                 .getSignedMax();
8139
8140     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
8141     return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
8142   }
8143
8144   APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
8145   APInt MaxValue = APInt::getMaxValue(BitWidth);
8146   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8147                               .getUnsignedMax();
8148
8149   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
8150   return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
8151 }
8152
8153 // Verify if an linear IV with negative stride can overflow when in a
8154 // greater-than comparison, knowing the invariant term of the comparison,
8155 // the stride and the knowledge of NSW/NUW flags on the recurrence.
8156 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
8157                                          bool IsSigned, bool NoWrap) {
8158   if (NoWrap) return false;
8159
8160   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8161   const SCEV *One = getOne(Stride->getType());
8162
8163   if (IsSigned) {
8164     APInt MinRHS = getSignedRange(RHS).getSignedMin();
8165     APInt MinValue = APInt::getSignedMinValue(BitWidth);
8166     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8167                                .getSignedMax();
8168
8169     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8170     return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8171   }
8172
8173   APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8174   APInt MinValue = APInt::getMinValue(BitWidth);
8175   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8176                             .getUnsignedMax();
8177
8178   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8179   return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8180 }
8181
8182 // Compute the backedge taken count knowing the interval difference, the
8183 // stride and presence of the equality in the comparison.
8184 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
8185                                             bool Equality) {
8186   const SCEV *One = getOne(Step->getType());
8187   Delta = Equality ? getAddExpr(Delta, Step)
8188                    : getAddExpr(Delta, getMinusSCEV(Step, One));
8189   return getUDivExpr(Delta, Step);
8190 }
8191
8192 /// HowManyLessThans - Return the number of times a backedge containing the
8193 /// specified less-than comparison will execute.  If not computable, return
8194 /// CouldNotCompute.
8195 ///
8196 /// @param ControlsExit is true when the LHS < RHS condition directly controls
8197 /// the branch (loops exits only if condition is true). In this case, we can use
8198 /// NoWrapFlags to skip overflow checks.
8199 ScalarEvolution::ExitLimit
8200 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
8201                                   const Loop *L, bool IsSigned,
8202                                   bool ControlsExit) {
8203   // We handle only IV < Invariant
8204   if (!isLoopInvariant(RHS, L))
8205     return getCouldNotCompute();
8206
8207   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8208
8209   // Avoid weird loops
8210   if (!IV || IV->getLoop() != L || !IV->isAffine())
8211     return getCouldNotCompute();
8212
8213   bool NoWrap = ControlsExit &&
8214                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8215
8216   const SCEV *Stride = IV->getStepRecurrence(*this);
8217
8218   // Avoid negative or zero stride values
8219   if (!isKnownPositive(Stride))
8220     return getCouldNotCompute();
8221
8222   // Avoid proven overflow cases: this will ensure that the backedge taken count
8223   // will not generate any unsigned overflow. Relaxed no-overflow conditions
8224   // exploit NoWrapFlags, allowing to optimize in presence of undefined
8225   // behaviors like the case of C language.
8226   if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8227     return getCouldNotCompute();
8228
8229   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8230                                       : ICmpInst::ICMP_ULT;
8231   const SCEV *Start = IV->getStart();
8232   const SCEV *End = RHS;
8233   if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
8234     const SCEV *Diff = getMinusSCEV(RHS, Start);
8235     // If we have NoWrap set, then we can assume that the increment won't
8236     // overflow, in which case if RHS - Start is a constant, we don't need to
8237     // do a max operation since we can just figure it out statically
8238     if (NoWrap && isa<SCEVConstant>(Diff)) {
8239       APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
8240       if (D.isNegative())
8241         End = Start;
8242     } else
8243       End = IsSigned ? getSMaxExpr(RHS, Start)
8244                      : getUMaxExpr(RHS, Start);
8245   }
8246
8247   const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
8248
8249   APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8250                             : getUnsignedRange(Start).getUnsignedMin();
8251
8252   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8253                              : getUnsignedRange(Stride).getUnsignedMin();
8254
8255   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8256   APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
8257                          : APInt::getMaxValue(BitWidth) - (MinStride - 1);
8258
8259   // Although End can be a MAX expression we estimate MaxEnd considering only
8260   // the case End = RHS. This is safe because in the other case (End - Start)
8261   // is zero, leading to a zero maximum backedge taken count.
8262   APInt MaxEnd =
8263     IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8264              : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8265
8266   const SCEV *MaxBECount;
8267   if (isa<SCEVConstant>(BECount))
8268     MaxBECount = BECount;
8269   else
8270     MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8271                                 getConstant(MinStride), false);
8272
8273   if (isa<SCEVCouldNotCompute>(MaxBECount))
8274     MaxBECount = BECount;
8275
8276   return ExitLimit(BECount, MaxBECount);
8277 }
8278
8279 ScalarEvolution::ExitLimit
8280 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8281                                      const Loop *L, bool IsSigned,
8282                                      bool ControlsExit) {
8283   // We handle only IV > Invariant
8284   if (!isLoopInvariant(RHS, L))
8285     return getCouldNotCompute();
8286
8287   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8288
8289   // Avoid weird loops
8290   if (!IV || IV->getLoop() != L || !IV->isAffine())
8291     return getCouldNotCompute();
8292
8293   bool NoWrap = ControlsExit &&
8294                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8295
8296   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8297
8298   // Avoid negative or zero stride values
8299   if (!isKnownPositive(Stride))
8300     return getCouldNotCompute();
8301
8302   // Avoid proven overflow cases: this will ensure that the backedge taken count
8303   // will not generate any unsigned overflow. Relaxed no-overflow conditions
8304   // exploit NoWrapFlags, allowing to optimize in presence of undefined
8305   // behaviors like the case of C language.
8306   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8307     return getCouldNotCompute();
8308
8309   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8310                                       : ICmpInst::ICMP_UGT;
8311
8312   const SCEV *Start = IV->getStart();
8313   const SCEV *End = RHS;
8314   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
8315     const SCEV *Diff = getMinusSCEV(RHS, Start);
8316     // If we have NoWrap set, then we can assume that the increment won't
8317     // overflow, in which case if RHS - Start is a constant, we don't need to
8318     // do a max operation since we can just figure it out statically
8319     if (NoWrap && isa<SCEVConstant>(Diff)) {
8320       APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
8321       if (!D.isNegative())
8322         End = Start;
8323     } else
8324       End = IsSigned ? getSMinExpr(RHS, Start)
8325                      : getUMinExpr(RHS, Start);
8326   }
8327
8328   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8329
8330   APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8331                             : getUnsignedRange(Start).getUnsignedMax();
8332
8333   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8334                              : getUnsignedRange(Stride).getUnsignedMin();
8335
8336   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8337   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8338                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
8339
8340   // Although End can be a MIN expression we estimate MinEnd considering only
8341   // the case End = RHS. This is safe because in the other case (Start - End)
8342   // is zero, leading to a zero maximum backedge taken count.
8343   APInt MinEnd =
8344     IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8345              : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8346
8347
8348   const SCEV *MaxBECount = getCouldNotCompute();
8349   if (isa<SCEVConstant>(BECount))
8350     MaxBECount = BECount;
8351   else
8352     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
8353                                 getConstant(MinStride), false);
8354
8355   if (isa<SCEVCouldNotCompute>(MaxBECount))
8356     MaxBECount = BECount;
8357
8358   return ExitLimit(BECount, MaxBECount);
8359 }
8360
8361 /// getNumIterationsInRange - Return the number of iterations of this loop that
8362 /// produce values in the specified constant range.  Another way of looking at
8363 /// this is that it returns the first iteration number where the value is not in
8364 /// the condition, thus computing the exit count. If the iteration count can't
8365 /// be computed, an instance of SCEVCouldNotCompute is returned.
8366 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
8367                                                     ScalarEvolution &SE) const {
8368   if (Range.isFullSet())  // Infinite loop.
8369     return SE.getCouldNotCompute();
8370
8371   // If the start is a non-zero constant, shift the range to simplify things.
8372   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
8373     if (!SC->getValue()->isZero()) {
8374       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
8375       Operands[0] = SE.getZero(SC->getType());
8376       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
8377                                              getNoWrapFlags(FlagNW));
8378       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
8379         return ShiftedAddRec->getNumIterationsInRange(
8380             Range.subtract(SC->getAPInt()), SE);
8381       // This is strange and shouldn't happen.
8382       return SE.getCouldNotCompute();
8383     }
8384
8385   // The only time we can solve this is when we have all constant indices.
8386   // Otherwise, we cannot determine the overflow conditions.
8387   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
8388     return SE.getCouldNotCompute();
8389
8390   // Okay at this point we know that all elements of the chrec are constants and
8391   // that the start element is zero.
8392
8393   // First check to see if the range contains zero.  If not, the first
8394   // iteration exits.
8395   unsigned BitWidth = SE.getTypeSizeInBits(getType());
8396   if (!Range.contains(APInt(BitWidth, 0)))
8397     return SE.getZero(getType());
8398
8399   if (isAffine()) {
8400     // If this is an affine expression then we have this situation:
8401     //   Solve {0,+,A} in Range  ===  Ax in Range
8402
8403     // We know that zero is in the range.  If A is positive then we know that
8404     // the upper value of the range must be the first possible exit value.
8405     // If A is negative then the lower of the range is the last possible loop
8406     // value.  Also note that we already checked for a full range.
8407     APInt One(BitWidth,1);
8408     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
8409     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
8410
8411     // The exit value should be (End+A)/A.
8412     APInt ExitVal = (End + A).udiv(A);
8413     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
8414
8415     // Evaluate at the exit value.  If we really did fall out of the valid
8416     // range, then we computed our trip count, otherwise wrap around or other
8417     // things must have happened.
8418     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
8419     if (Range.contains(Val->getValue()))
8420       return SE.getCouldNotCompute();  // Something strange happened
8421
8422     // Ensure that the previous value is in the range.  This is a sanity check.
8423     assert(Range.contains(
8424            EvaluateConstantChrecAtConstant(this,
8425            ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
8426            "Linear scev computation is off in a bad way!");
8427     return SE.getConstant(ExitValue);
8428   } else if (isQuadratic()) {
8429     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8430     // quadratic equation to solve it.  To do this, we must frame our problem in
8431     // terms of figuring out when zero is crossed, instead of when
8432     // Range.getUpper() is crossed.
8433     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
8434     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
8435     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
8436                                              // getNoWrapFlags(FlagNW)
8437                                              FlagAnyWrap);
8438
8439     // Next, solve the constructed addrec
8440     auto Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
8441     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
8442     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
8443     if (R1) {
8444       // Pick the smallest positive root value.
8445       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8446               ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
8447         if (!CB->getZExtValue())
8448           std::swap(R1, R2);   // R1 is the minimum root now.
8449
8450         // Make sure the root is not off by one.  The returned iteration should
8451         // not be in the range, but the previous one should be.  When solving
8452         // for "X*X < 5", for example, we should not return a root of 2.
8453         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
8454                                                              R1->getValue(),
8455                                                              SE);
8456         if (Range.contains(R1Val->getValue())) {
8457           // The next iteration must be out of the range...
8458           ConstantInt *NextVal =
8459               ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
8460
8461           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8462           if (!Range.contains(R1Val->getValue()))
8463             return SE.getConstant(NextVal);
8464           return SE.getCouldNotCompute();  // Something strange happened
8465         }
8466
8467         // If R1 was not in the range, then it is a good return value.  Make
8468         // sure that R1-1 WAS in the range though, just in case.
8469         ConstantInt *NextVal =
8470             ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
8471         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8472         if (Range.contains(R1Val->getValue()))
8473           return R1;
8474         return SE.getCouldNotCompute();  // Something strange happened
8475       }
8476     }
8477   }
8478
8479   return SE.getCouldNotCompute();
8480 }
8481
8482 namespace {
8483 struct FindUndefs {
8484   bool Found;
8485   FindUndefs() : Found(false) {}
8486
8487   bool follow(const SCEV *S) {
8488     if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
8489       if (isa<UndefValue>(C->getValue()))
8490         Found = true;
8491     } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
8492       if (isa<UndefValue>(C->getValue()))
8493         Found = true;
8494     }
8495
8496     // Keep looking if we haven't found it yet.
8497     return !Found;
8498   }
8499   bool isDone() const {
8500     // Stop recursion if we have found an undef.
8501     return Found;
8502   }
8503 };
8504 }
8505
8506 // Return true when S contains at least an undef value.
8507 static inline bool
8508 containsUndefs(const SCEV *S) {
8509   FindUndefs F;
8510   SCEVTraversal<FindUndefs> ST(F);
8511   ST.visitAll(S);
8512
8513   return F.Found;
8514 }
8515
8516 namespace {
8517 // Collect all steps of SCEV expressions.
8518 struct SCEVCollectStrides {
8519   ScalarEvolution &SE;
8520   SmallVectorImpl<const SCEV *> &Strides;
8521
8522   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8523       : SE(SE), Strides(S) {}
8524
8525   bool follow(const SCEV *S) {
8526     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8527       Strides.push_back(AR->getStepRecurrence(SE));
8528     return true;
8529   }
8530   bool isDone() const { return false; }
8531 };
8532
8533 // Collect all SCEVUnknown and SCEVMulExpr expressions.
8534 struct SCEVCollectTerms {
8535   SmallVectorImpl<const SCEV *> &Terms;
8536
8537   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
8538       : Terms(T) {}
8539
8540   bool follow(const SCEV *S) {
8541     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
8542       if (!containsUndefs(S))
8543         Terms.push_back(S);
8544
8545       // Stop recursion: once we collected a term, do not walk its operands.
8546       return false;
8547     }
8548
8549     // Keep looking.
8550     return true;
8551   }
8552   bool isDone() const { return false; }
8553 };
8554
8555 // Check if a SCEV contains an AddRecExpr.
8556 struct SCEVHasAddRec {
8557   bool &ContainsAddRec;
8558
8559   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
8560    ContainsAddRec = false;
8561   }
8562
8563   bool follow(const SCEV *S) {
8564     if (isa<SCEVAddRecExpr>(S)) {
8565       ContainsAddRec = true;
8566
8567       // Stop recursion: once we collected a term, do not walk its operands.
8568       return false;
8569     }
8570
8571     // Keep looking.
8572     return true;
8573   }
8574   bool isDone() const { return false; }
8575 };
8576
8577 // Find factors that are multiplied with an expression that (possibly as a
8578 // subexpression) contains an AddRecExpr. In the expression:
8579 //
8580 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
8581 //
8582 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
8583 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
8584 // parameters as they form a product with an induction variable.
8585 //
8586 // This collector expects all array size parameters to be in the same MulExpr.
8587 // It might be necessary to later add support for collecting parameters that are
8588 // spread over different nested MulExpr.
8589 struct SCEVCollectAddRecMultiplies {
8590   SmallVectorImpl<const SCEV *> &Terms;
8591   ScalarEvolution &SE;
8592
8593   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
8594       : Terms(T), SE(SE) {}
8595
8596   bool follow(const SCEV *S) {
8597     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
8598       bool HasAddRec = false;
8599       SmallVector<const SCEV *, 0> Operands;
8600       for (auto Op : Mul->operands()) {
8601         if (isa<SCEVUnknown>(Op)) {
8602           Operands.push_back(Op);
8603         } else {
8604           bool ContainsAddRec;
8605           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
8606           visitAll(Op, ContiansAddRec);
8607           HasAddRec |= ContainsAddRec;
8608         }
8609       }
8610       if (Operands.size() == 0)
8611         return true;
8612
8613       if (!HasAddRec)
8614         return false;
8615
8616       Terms.push_back(SE.getMulExpr(Operands));
8617       // Stop recursion: once we collected a term, do not walk its operands.
8618       return false;
8619     }
8620
8621     // Keep looking.
8622     return true;
8623   }
8624   bool isDone() const { return false; }
8625 };
8626 }
8627
8628 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
8629 /// two places:
8630 ///   1) The strides of AddRec expressions.
8631 ///   2) Unknowns that are multiplied with AddRec expressions.
8632 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
8633     SmallVectorImpl<const SCEV *> &Terms) {
8634   SmallVector<const SCEV *, 4> Strides;
8635   SCEVCollectStrides StrideCollector(*this, Strides);
8636   visitAll(Expr, StrideCollector);
8637
8638   DEBUG({
8639       dbgs() << "Strides:\n";
8640       for (const SCEV *S : Strides)
8641         dbgs() << *S << "\n";
8642     });
8643
8644   for (const SCEV *S : Strides) {
8645     SCEVCollectTerms TermCollector(Terms);
8646     visitAll(S, TermCollector);
8647   }
8648
8649   DEBUG({
8650       dbgs() << "Terms:\n";
8651       for (const SCEV *T : Terms)
8652         dbgs() << *T << "\n";
8653     });
8654
8655   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
8656   visitAll(Expr, MulCollector);
8657 }
8658
8659 static bool findArrayDimensionsRec(ScalarEvolution &SE,
8660                                    SmallVectorImpl<const SCEV *> &Terms,
8661                                    SmallVectorImpl<const SCEV *> &Sizes) {
8662   int Last = Terms.size() - 1;
8663   const SCEV *Step = Terms[Last];
8664
8665   // End of recursion.
8666   if (Last == 0) {
8667     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
8668       SmallVector<const SCEV *, 2> Qs;
8669       for (const SCEV *Op : M->operands())
8670         if (!isa<SCEVConstant>(Op))
8671           Qs.push_back(Op);
8672
8673       Step = SE.getMulExpr(Qs);
8674     }
8675
8676     Sizes.push_back(Step);
8677     return true;
8678   }
8679
8680   for (const SCEV *&Term : Terms) {
8681     // Normalize the terms before the next call to findArrayDimensionsRec.
8682     const SCEV *Q, *R;
8683     SCEVDivision::divide(SE, Term, Step, &Q, &R);
8684
8685     // Bail out when GCD does not evenly divide one of the terms.
8686     if (!R->isZero())
8687       return false;
8688
8689     Term = Q;
8690   }
8691
8692   // Remove all SCEVConstants.
8693   Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
8694                 return isa<SCEVConstant>(E);
8695               }),
8696               Terms.end());
8697
8698   if (Terms.size() > 0)
8699     if (!findArrayDimensionsRec(SE, Terms, Sizes))
8700       return false;
8701
8702   Sizes.push_back(Step);
8703   return true;
8704 }
8705
8706 // Returns true when S contains at least a SCEVUnknown parameter.
8707 static inline bool
8708 containsParameters(const SCEV *S) {
8709   struct FindParameter {
8710     bool FoundParameter;
8711     FindParameter() : FoundParameter(false) {}
8712
8713     bool follow(const SCEV *S) {
8714       if (isa<SCEVUnknown>(S)) {
8715         FoundParameter = true;
8716         // Stop recursion: we found a parameter.
8717         return false;
8718       }
8719       // Keep looking.
8720       return true;
8721     }
8722     bool isDone() const {
8723       // Stop recursion if we have found a parameter.
8724       return FoundParameter;
8725     }
8726   };
8727
8728   FindParameter F;
8729   SCEVTraversal<FindParameter> ST(F);
8730   ST.visitAll(S);
8731
8732   return F.FoundParameter;
8733 }
8734
8735 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
8736 static inline bool
8737 containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
8738   for (const SCEV *T : Terms)
8739     if (containsParameters(T))
8740       return true;
8741   return false;
8742 }
8743
8744 // Return the number of product terms in S.
8745 static inline int numberOfTerms(const SCEV *S) {
8746   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
8747     return Expr->getNumOperands();
8748   return 1;
8749 }
8750
8751 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
8752   if (isa<SCEVConstant>(T))
8753     return nullptr;
8754
8755   if (isa<SCEVUnknown>(T))
8756     return T;
8757
8758   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
8759     SmallVector<const SCEV *, 2> Factors;
8760     for (const SCEV *Op : M->operands())
8761       if (!isa<SCEVConstant>(Op))
8762         Factors.push_back(Op);
8763
8764     return SE.getMulExpr(Factors);
8765   }
8766
8767   return T;
8768 }
8769
8770 /// Return the size of an element read or written by Inst.
8771 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
8772   Type *Ty;
8773   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
8774     Ty = Store->getValueOperand()->getType();
8775   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
8776     Ty = Load->getType();
8777   else
8778     return nullptr;
8779
8780   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
8781   return getSizeOfExpr(ETy, Ty);
8782 }
8783
8784 /// Second step of delinearization: compute the array dimensions Sizes from the
8785 /// set of Terms extracted from the memory access function of this SCEVAddRec.
8786 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
8787                                           SmallVectorImpl<const SCEV *> &Sizes,
8788                                           const SCEV *ElementSize) const {
8789
8790   if (Terms.size() < 1 || !ElementSize)
8791     return;
8792
8793   // Early return when Terms do not contain parameters: we do not delinearize
8794   // non parametric SCEVs.
8795   if (!containsParameters(Terms))
8796     return;
8797
8798   DEBUG({
8799       dbgs() << "Terms:\n";
8800       for (const SCEV *T : Terms)
8801         dbgs() << *T << "\n";
8802     });
8803
8804   // Remove duplicates.
8805   std::sort(Terms.begin(), Terms.end());
8806   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
8807
8808   // Put larger terms first.
8809   std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
8810     return numberOfTerms(LHS) > numberOfTerms(RHS);
8811   });
8812
8813   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8814
8815   // Try to divide all terms by the element size. If term is not divisible by
8816   // element size, proceed with the original term.
8817   for (const SCEV *&Term : Terms) {
8818     const SCEV *Q, *R;
8819     SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
8820     if (!Q->isZero())
8821       Term = Q;
8822   }
8823
8824   SmallVector<const SCEV *, 4> NewTerms;
8825
8826   // Remove constant factors.
8827   for (const SCEV *T : Terms)
8828     if (const SCEV *NewT = removeConstantFactors(SE, T))
8829       NewTerms.push_back(NewT);
8830
8831   DEBUG({
8832       dbgs() << "Terms after sorting:\n";
8833       for (const SCEV *T : NewTerms)
8834         dbgs() << *T << "\n";
8835     });
8836
8837   if (NewTerms.empty() ||
8838       !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
8839     Sizes.clear();
8840     return;
8841   }
8842
8843   // The last element to be pushed into Sizes is the size of an element.
8844   Sizes.push_back(ElementSize);
8845
8846   DEBUG({
8847       dbgs() << "Sizes:\n";
8848       for (const SCEV *S : Sizes)
8849         dbgs() << *S << "\n";
8850     });
8851 }
8852
8853 /// Third step of delinearization: compute the access functions for the
8854 /// Subscripts based on the dimensions in Sizes.
8855 void ScalarEvolution::computeAccessFunctions(
8856     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
8857     SmallVectorImpl<const SCEV *> &Sizes) {
8858
8859   // Early exit in case this SCEV is not an affine multivariate function.
8860   if (Sizes.empty())
8861     return;
8862
8863   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
8864     if (!AR->isAffine())
8865       return;
8866
8867   const SCEV *Res = Expr;
8868   int Last = Sizes.size() - 1;
8869   for (int i = Last; i >= 0; i--) {
8870     const SCEV *Q, *R;
8871     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
8872
8873     DEBUG({
8874         dbgs() << "Res: " << *Res << "\n";
8875         dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
8876         dbgs() << "Res divided by Sizes[i]:\n";
8877         dbgs() << "Quotient: " << *Q << "\n";
8878         dbgs() << "Remainder: " << *R << "\n";
8879       });
8880
8881     Res = Q;
8882
8883     // Do not record the last subscript corresponding to the size of elements in
8884     // the array.
8885     if (i == Last) {
8886
8887       // Bail out if the remainder is too complex.
8888       if (isa<SCEVAddRecExpr>(R)) {
8889         Subscripts.clear();
8890         Sizes.clear();
8891         return;
8892       }
8893
8894       continue;
8895     }
8896
8897     // Record the access function for the current subscript.
8898     Subscripts.push_back(R);
8899   }
8900
8901   // Also push in last position the remainder of the last division: it will be
8902   // the access function of the innermost dimension.
8903   Subscripts.push_back(Res);
8904
8905   std::reverse(Subscripts.begin(), Subscripts.end());
8906
8907   DEBUG({
8908       dbgs() << "Subscripts:\n";
8909       for (const SCEV *S : Subscripts)
8910         dbgs() << *S << "\n";
8911     });
8912 }
8913
8914 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
8915 /// sizes of an array access. Returns the remainder of the delinearization that
8916 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
8917 /// the multiples of SCEV coefficients: that is a pattern matching of sub
8918 /// expressions in the stride and base of a SCEV corresponding to the
8919 /// computation of a GCD (greatest common divisor) of base and stride.  When
8920 /// SCEV->delinearize fails, it returns the SCEV unchanged.
8921 ///
8922 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
8923 ///
8924 ///  void foo(long n, long m, long o, double A[n][m][o]) {
8925 ///
8926 ///    for (long i = 0; i < n; i++)
8927 ///      for (long j = 0; j < m; j++)
8928 ///        for (long k = 0; k < o; k++)
8929 ///          A[i][j][k] = 1.0;
8930 ///  }
8931 ///
8932 /// the delinearization input is the following AddRec SCEV:
8933 ///
8934 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
8935 ///
8936 /// From this SCEV, we are able to say that the base offset of the access is %A
8937 /// because it appears as an offset that does not divide any of the strides in
8938 /// the loops:
8939 ///
8940 ///  CHECK: Base offset: %A
8941 ///
8942 /// and then SCEV->delinearize determines the size of some of the dimensions of
8943 /// the array as these are the multiples by which the strides are happening:
8944 ///
8945 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
8946 ///
8947 /// Note that the outermost dimension remains of UnknownSize because there are
8948 /// no strides that would help identifying the size of the last dimension: when
8949 /// the array has been statically allocated, one could compute the size of that
8950 /// dimension by dividing the overall size of the array by the size of the known
8951 /// dimensions: %m * %o * 8.
8952 ///
8953 /// Finally delinearize provides the access functions for the array reference
8954 /// that does correspond to A[i][j][k] of the above C testcase:
8955 ///
8956 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
8957 ///
8958 /// The testcases are checking the output of a function pass:
8959 /// DelinearizationPass that walks through all loads and stores of a function
8960 /// asking for the SCEV of the memory access with respect to all enclosing
8961 /// loops, calling SCEV->delinearize on that and printing the results.
8962
8963 void ScalarEvolution::delinearize(const SCEV *Expr,
8964                                  SmallVectorImpl<const SCEV *> &Subscripts,
8965                                  SmallVectorImpl<const SCEV *> &Sizes,
8966                                  const SCEV *ElementSize) {
8967   // First step: collect parametric terms.
8968   SmallVector<const SCEV *, 4> Terms;
8969   collectParametricTerms(Expr, Terms);
8970
8971   if (Terms.empty())
8972     return;
8973
8974   // Second step: find subscript sizes.
8975   findArrayDimensions(Terms, Sizes, ElementSize);
8976
8977   if (Sizes.empty())
8978     return;
8979
8980   // Third step: compute the access functions for each subscript.
8981   computeAccessFunctions(Expr, Subscripts, Sizes);
8982
8983   if (Subscripts.empty())
8984     return;
8985
8986   DEBUG({
8987       dbgs() << "succeeded to delinearize " << *Expr << "\n";
8988       dbgs() << "ArrayDecl[UnknownSize]";
8989       for (const SCEV *S : Sizes)
8990         dbgs() << "[" << *S << "]";
8991
8992       dbgs() << "\nArrayRef";
8993       for (const SCEV *S : Subscripts)
8994         dbgs() << "[" << *S << "]";
8995       dbgs() << "\n";
8996     });
8997 }
8998
8999 //===----------------------------------------------------------------------===//
9000 //                   SCEVCallbackVH Class Implementation
9001 //===----------------------------------------------------------------------===//
9002
9003 void ScalarEvolution::SCEVCallbackVH::deleted() {
9004   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9005   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9006     SE->ConstantEvolutionLoopExitValue.erase(PN);
9007   SE->ValueExprMap.erase(getValPtr());
9008   // this now dangles!
9009 }
9010
9011 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
9012   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9013
9014   // Forget all the expressions associated with users of the old value,
9015   // so that future queries will recompute the expressions using the new
9016   // value.
9017   Value *Old = getValPtr();
9018   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
9019   SmallPtrSet<User *, 8> Visited;
9020   while (!Worklist.empty()) {
9021     User *U = Worklist.pop_back_val();
9022     // Deleting the Old value will cause this to dangle. Postpone
9023     // that until everything else is done.
9024     if (U == Old)
9025       continue;
9026     if (!Visited.insert(U).second)
9027       continue;
9028     if (PHINode *PN = dyn_cast<PHINode>(U))
9029       SE->ConstantEvolutionLoopExitValue.erase(PN);
9030     SE->ValueExprMap.erase(U);
9031     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
9032   }
9033   // Delete the Old value.
9034   if (PHINode *PN = dyn_cast<PHINode>(Old))
9035     SE->ConstantEvolutionLoopExitValue.erase(PN);
9036   SE->ValueExprMap.erase(Old);
9037   // this now dangles!
9038 }
9039
9040 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
9041   : CallbackVH(V), SE(se) {}
9042
9043 //===----------------------------------------------------------------------===//
9044 //                   ScalarEvolution Class Implementation
9045 //===----------------------------------------------------------------------===//
9046
9047 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
9048                                  AssumptionCache &AC, DominatorTree &DT,
9049                                  LoopInfo &LI)
9050     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
9051       CouldNotCompute(new SCEVCouldNotCompute()),
9052       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9053       ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
9054       FirstUnknown(nullptr) {}
9055
9056 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
9057     : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI),
9058       CouldNotCompute(std::move(Arg.CouldNotCompute)),
9059       ValueExprMap(std::move(Arg.ValueExprMap)),
9060       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9061       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
9062       ConstantEvolutionLoopExitValue(
9063           std::move(Arg.ConstantEvolutionLoopExitValue)),
9064       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9065       LoopDispositions(std::move(Arg.LoopDispositions)),
9066       BlockDispositions(std::move(Arg.BlockDispositions)),
9067       UnsignedRanges(std::move(Arg.UnsignedRanges)),
9068       SignedRanges(std::move(Arg.SignedRanges)),
9069       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
9070       UniquePreds(std::move(Arg.UniquePreds)),
9071       SCEVAllocator(std::move(Arg.SCEVAllocator)),
9072       FirstUnknown(Arg.FirstUnknown) {
9073   Arg.FirstUnknown = nullptr;
9074 }
9075
9076 ScalarEvolution::~ScalarEvolution() {
9077   // Iterate through all the SCEVUnknown instances and call their
9078   // destructors, so that they release their references to their values.
9079   for (SCEVUnknown *U = FirstUnknown; U;) {
9080     SCEVUnknown *Tmp = U;
9081     U = U->Next;
9082     Tmp->~SCEVUnknown();
9083   }
9084   FirstUnknown = nullptr;
9085
9086   ValueExprMap.clear();
9087
9088   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
9089   // that a loop had multiple computable exits.
9090   for (auto &BTCI : BackedgeTakenCounts)
9091     BTCI.second.clear();
9092
9093   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
9094   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
9095   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
9096 }
9097
9098 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
9099   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
9100 }
9101
9102 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
9103                           const Loop *L) {
9104   // Print all inner loops first
9105   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
9106     PrintLoopInfo(OS, SE, *I);
9107
9108   OS << "Loop ";
9109   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9110   OS << ": ";
9111
9112   SmallVector<BasicBlock *, 8> ExitBlocks;
9113   L->getExitBlocks(ExitBlocks);
9114   if (ExitBlocks.size() != 1)
9115     OS << "<multiple exits> ";
9116
9117   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
9118     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
9119   } else {
9120     OS << "Unpredictable backedge-taken count. ";
9121   }
9122
9123   OS << "\n"
9124         "Loop ";
9125   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9126   OS << ": ";
9127
9128   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
9129     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
9130   } else {
9131     OS << "Unpredictable max backedge-taken count. ";
9132   }
9133
9134   OS << "\n";
9135 }
9136
9137 void ScalarEvolution::print(raw_ostream &OS) const {
9138   // ScalarEvolution's implementation of the print method is to print
9139   // out SCEV values of all instructions that are interesting. Doing
9140   // this potentially causes it to create new SCEV objects though,
9141   // which technically conflicts with the const qualifier. This isn't
9142   // observable from outside the class though, so casting away the
9143   // const isn't dangerous.
9144   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9145
9146   OS << "Classifying expressions for: ";
9147   F.printAsOperand(OS, /*PrintType=*/false);
9148   OS << "\n";
9149   for (Instruction &I : instructions(F))
9150     if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
9151       OS << I << '\n';
9152       OS << "  -->  ";
9153       const SCEV *SV = SE.getSCEV(&I);
9154       SV->print(OS);
9155       if (!isa<SCEVCouldNotCompute>(SV)) {
9156         OS << " U: ";
9157         SE.getUnsignedRange(SV).print(OS);
9158         OS << " S: ";
9159         SE.getSignedRange(SV).print(OS);
9160       }
9161
9162       const Loop *L = LI.getLoopFor(I.getParent());
9163
9164       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
9165       if (AtUse != SV) {
9166         OS << "  -->  ";
9167         AtUse->print(OS);
9168         if (!isa<SCEVCouldNotCompute>(AtUse)) {
9169           OS << " U: ";
9170           SE.getUnsignedRange(AtUse).print(OS);
9171           OS << " S: ";
9172           SE.getSignedRange(AtUse).print(OS);
9173         }
9174       }
9175
9176       if (L) {
9177         OS << "\t\t" "Exits: ";
9178         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
9179         if (!SE.isLoopInvariant(ExitValue, L)) {
9180           OS << "<<Unknown>>";
9181         } else {
9182           OS << *ExitValue;
9183         }
9184       }
9185
9186       OS << "\n";
9187     }
9188
9189   OS << "Determining loop execution counts for: ";
9190   F.printAsOperand(OS, /*PrintType=*/false);
9191   OS << "\n";
9192   for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
9193     PrintLoopInfo(OS, &SE, *I);
9194 }
9195
9196 ScalarEvolution::LoopDisposition
9197 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
9198   auto &Values = LoopDispositions[S];
9199   for (auto &V : Values) {
9200     if (V.getPointer() == L)
9201       return V.getInt();
9202   }
9203   Values.emplace_back(L, LoopVariant);
9204   LoopDisposition D = computeLoopDisposition(S, L);
9205   auto &Values2 = LoopDispositions[S];
9206   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9207     if (V.getPointer() == L) {
9208       V.setInt(D);
9209       break;
9210     }
9211   }
9212   return D;
9213 }
9214
9215 ScalarEvolution::LoopDisposition
9216 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
9217   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9218   case scConstant:
9219     return LoopInvariant;
9220   case scTruncate:
9221   case scZeroExtend:
9222   case scSignExtend:
9223     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
9224   case scAddRecExpr: {
9225     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9226
9227     // If L is the addrec's loop, it's computable.
9228     if (AR->getLoop() == L)
9229       return LoopComputable;
9230
9231     // Add recurrences are never invariant in the function-body (null loop).
9232     if (!L)
9233       return LoopVariant;
9234
9235     // This recurrence is variant w.r.t. L if L contains AR's loop.
9236     if (L->contains(AR->getLoop()))
9237       return LoopVariant;
9238
9239     // This recurrence is invariant w.r.t. L if AR's loop contains L.
9240     if (AR->getLoop()->contains(L))
9241       return LoopInvariant;
9242
9243     // This recurrence is variant w.r.t. L if any of its operands
9244     // are variant.
9245     for (auto *Op : AR->operands())
9246       if (!isLoopInvariant(Op, L))
9247         return LoopVariant;
9248
9249     // Otherwise it's loop-invariant.
9250     return LoopInvariant;
9251   }
9252   case scAddExpr:
9253   case scMulExpr:
9254   case scUMaxExpr:
9255   case scSMaxExpr: {
9256     bool HasVarying = false;
9257     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
9258       LoopDisposition D = getLoopDisposition(Op, L);
9259       if (D == LoopVariant)
9260         return LoopVariant;
9261       if (D == LoopComputable)
9262         HasVarying = true;
9263     }
9264     return HasVarying ? LoopComputable : LoopInvariant;
9265   }
9266   case scUDivExpr: {
9267     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9268     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9269     if (LD == LoopVariant)
9270       return LoopVariant;
9271     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9272     if (RD == LoopVariant)
9273       return LoopVariant;
9274     return (LD == LoopInvariant && RD == LoopInvariant) ?
9275            LoopInvariant : LoopComputable;
9276   }
9277   case scUnknown:
9278     // All non-instruction values are loop invariant.  All instructions are loop
9279     // invariant if they are not contained in the specified loop.
9280     // Instructions are never considered invariant in the function body
9281     // (null loop) because they are defined within the "loop".
9282     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
9283       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9284     return LoopInvariant;
9285   case scCouldNotCompute:
9286     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9287   }
9288   llvm_unreachable("Unknown SCEV kind!");
9289 }
9290
9291 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9292   return getLoopDisposition(S, L) == LoopInvariant;
9293 }
9294
9295 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9296   return getLoopDisposition(S, L) == LoopComputable;
9297 }
9298
9299 ScalarEvolution::BlockDisposition
9300 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9301   auto &Values = BlockDispositions[S];
9302   for (auto &V : Values) {
9303     if (V.getPointer() == BB)
9304       return V.getInt();
9305   }
9306   Values.emplace_back(BB, DoesNotDominateBlock);
9307   BlockDisposition D = computeBlockDisposition(S, BB);
9308   auto &Values2 = BlockDispositions[S];
9309   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9310     if (V.getPointer() == BB) {
9311       V.setInt(D);
9312       break;
9313     }
9314   }
9315   return D;
9316 }
9317
9318 ScalarEvolution::BlockDisposition
9319 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9320   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9321   case scConstant:
9322     return ProperlyDominatesBlock;
9323   case scTruncate:
9324   case scZeroExtend:
9325   case scSignExtend:
9326     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
9327   case scAddRecExpr: {
9328     // This uses a "dominates" query instead of "properly dominates" query
9329     // to test for proper dominance too, because the instruction which
9330     // produces the addrec's value is a PHI, and a PHI effectively properly
9331     // dominates its entire containing block.
9332     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9333     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
9334       return DoesNotDominateBlock;
9335   }
9336   // FALL THROUGH into SCEVNAryExpr handling.
9337   case scAddExpr:
9338   case scMulExpr:
9339   case scUMaxExpr:
9340   case scSMaxExpr: {
9341     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
9342     bool Proper = true;
9343     for (const SCEV *NAryOp : NAry->operands()) {
9344       BlockDisposition D = getBlockDisposition(NAryOp, BB);
9345       if (D == DoesNotDominateBlock)
9346         return DoesNotDominateBlock;
9347       if (D == DominatesBlock)
9348         Proper = false;
9349     }
9350     return Proper ? ProperlyDominatesBlock : DominatesBlock;
9351   }
9352   case scUDivExpr: {
9353     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9354     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9355     BlockDisposition LD = getBlockDisposition(LHS, BB);
9356     if (LD == DoesNotDominateBlock)
9357       return DoesNotDominateBlock;
9358     BlockDisposition RD = getBlockDisposition(RHS, BB);
9359     if (RD == DoesNotDominateBlock)
9360       return DoesNotDominateBlock;
9361     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9362       ProperlyDominatesBlock : DominatesBlock;
9363   }
9364   case scUnknown:
9365     if (Instruction *I =
9366           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9367       if (I->getParent() == BB)
9368         return DominatesBlock;
9369       if (DT.properlyDominates(I->getParent(), BB))
9370         return ProperlyDominatesBlock;
9371       return DoesNotDominateBlock;
9372     }
9373     return ProperlyDominatesBlock;
9374   case scCouldNotCompute:
9375     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9376   }
9377   llvm_unreachable("Unknown SCEV kind!");
9378 }
9379
9380 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9381   return getBlockDisposition(S, BB) >= DominatesBlock;
9382 }
9383
9384 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9385   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
9386 }
9387
9388 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
9389   // Search for a SCEV expression node within an expression tree.
9390   // Implements SCEVTraversal::Visitor.
9391   struct SCEVSearch {
9392     const SCEV *Node;
9393     bool IsFound;
9394
9395     SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
9396
9397     bool follow(const SCEV *S) {
9398       IsFound |= (S == Node);
9399       return !IsFound;
9400     }
9401     bool isDone() const { return IsFound; }
9402   };
9403
9404   SCEVSearch Search(Op);
9405   visitAll(S, Search);
9406   return Search.IsFound;
9407 }
9408
9409 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9410   ValuesAtScopes.erase(S);
9411   LoopDispositions.erase(S);
9412   BlockDispositions.erase(S);
9413   UnsignedRanges.erase(S);
9414   SignedRanges.erase(S);
9415
9416   for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
9417          BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
9418     BackedgeTakenInfo &BEInfo = I->second;
9419     if (BEInfo.hasOperand(S, this)) {
9420       BEInfo.clear();
9421       BackedgeTakenCounts.erase(I++);
9422     }
9423     else
9424       ++I;
9425   }
9426 }
9427
9428 typedef DenseMap<const Loop *, std::string> VerifyMap;
9429
9430 /// replaceSubString - Replaces all occurrences of From in Str with To.
9431 static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9432   size_t Pos = 0;
9433   while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9434     Str.replace(Pos, From.size(), To.data(), To.size());
9435     Pos += To.size();
9436   }
9437 }
9438
9439 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9440 static void
9441 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
9442   for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
9443     getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
9444
9445     std::string &S = Map[L];
9446     if (S.empty()) {
9447       raw_string_ostream OS(S);
9448       SE.getBackedgeTakenCount(L)->print(OS);
9449
9450       // false and 0 are semantically equivalent. This can happen in dead loops.
9451       replaceSubString(OS.str(), "false", "0");
9452       // Remove wrap flags, their use in SCEV is highly fragile.
9453       // FIXME: Remove this when SCEV gets smarter about them.
9454       replaceSubString(OS.str(), "<nw>", "");
9455       replaceSubString(OS.str(), "<nsw>", "");
9456       replaceSubString(OS.str(), "<nuw>", "");
9457     }
9458   }
9459 }
9460
9461 void ScalarEvolution::verify() const {
9462   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9463
9464   // Gather stringified backedge taken counts for all loops using SCEV's caches.
9465   // FIXME: It would be much better to store actual values instead of strings,
9466   //        but SCEV pointers will change if we drop the caches.
9467   VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
9468   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9469     getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
9470
9471   // Gather stringified backedge taken counts for all loops using a fresh
9472   // ScalarEvolution object.
9473   ScalarEvolution SE2(F, TLI, AC, DT, LI);
9474   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9475     getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
9476
9477   // Now compare whether they're the same with and without caches. This allows
9478   // verifying that no pass changed the cache.
9479   assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
9480          "New loops suddenly appeared!");
9481
9482   for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
9483                            OldE = BackedgeDumpsOld.end(),
9484                            NewI = BackedgeDumpsNew.begin();
9485        OldI != OldE; ++OldI, ++NewI) {
9486     assert(OldI->first == NewI->first && "Loop order changed!");
9487
9488     // Compare the stringified SCEVs. We don't care if undef backedgetaken count
9489     // changes.
9490     // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
9491     // means that a pass is buggy or SCEV has to learn a new pattern but is
9492     // usually not harmful.
9493     if (OldI->second != NewI->second &&
9494         OldI->second.find("undef") == std::string::npos &&
9495         NewI->second.find("undef") == std::string::npos &&
9496         OldI->second != "***COULDNOTCOMPUTE***" &&
9497         NewI->second != "***COULDNOTCOMPUTE***") {
9498       dbgs() << "SCEVValidator: SCEV for loop '"
9499              << OldI->first->getHeader()->getName()
9500              << "' changed from '" << OldI->second
9501              << "' to '" << NewI->second << "'!\n";
9502       std::abort();
9503     }
9504   }
9505
9506   // TODO: Verify more things.
9507 }
9508
9509 char ScalarEvolutionAnalysis::PassID;
9510
9511 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
9512                                              AnalysisManager<Function> *AM) {
9513   return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F),
9514                          AM->getResult<AssumptionAnalysis>(F),
9515                          AM->getResult<DominatorTreeAnalysis>(F),
9516                          AM->getResult<LoopAnalysis>(F));
9517 }
9518
9519 PreservedAnalyses
9520 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) {
9521   AM->getResult<ScalarEvolutionAnalysis>(F).print(OS);
9522   return PreservedAnalyses::all();
9523 }
9524
9525 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
9526                       "Scalar Evolution Analysis", false, true)
9527 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
9528 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
9529 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
9530 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
9531 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
9532                     "Scalar Evolution Analysis", false, true)
9533 char ScalarEvolutionWrapperPass::ID = 0;
9534
9535 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
9536   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
9537 }
9538
9539 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
9540   SE.reset(new ScalarEvolution(
9541       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
9542       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
9543       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
9544       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
9545   return false;
9546 }
9547
9548 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
9549
9550 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
9551   SE->print(OS);
9552 }
9553
9554 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
9555   if (!VerifySCEV)
9556     return;
9557
9558   SE->verify();
9559 }
9560
9561 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
9562   AU.setPreservesAll();
9563   AU.addRequiredTransitive<AssumptionCacheTracker>();
9564   AU.addRequiredTransitive<LoopInfoWrapperPass>();
9565   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
9566   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
9567 }
9568
9569 const SCEVPredicate *
9570 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
9571                                    const SCEVConstant *RHS) {
9572   FoldingSetNodeID ID;
9573   // Unique this node based on the arguments
9574   ID.AddInteger(SCEVPredicate::P_Equal);
9575   ID.AddPointer(LHS);
9576   ID.AddPointer(RHS);
9577   void *IP = nullptr;
9578   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
9579     return S;
9580   SCEVEqualPredicate *Eq = new (SCEVAllocator)
9581       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
9582   UniquePreds.InsertNode(Eq, IP);
9583   return Eq;
9584 }
9585
9586 namespace {
9587 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
9588 public:
9589   static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
9590                              SCEVUnionPredicate &A) {
9591     SCEVPredicateRewriter Rewriter(SE, A);
9592     return Rewriter.visit(Scev);
9593   }
9594
9595   SCEVPredicateRewriter(ScalarEvolution &SE, SCEVUnionPredicate &P)
9596       : SCEVRewriteVisitor(SE), P(P) {}
9597
9598   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
9599     auto ExprPreds = P.getPredicatesForExpr(Expr);
9600     for (auto *Pred : ExprPreds)
9601       if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred))
9602         if (IPred->getLHS() == Expr)
9603           return IPred->getRHS();
9604
9605     return Expr;
9606   }
9607
9608 private:
9609   SCEVUnionPredicate &P;
9610 };
9611 } // end anonymous namespace
9612
9613 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *Scev,
9614                                                    SCEVUnionPredicate &Preds) {
9615   return SCEVPredicateRewriter::rewrite(Scev, *this, Preds);
9616 }
9617
9618 /// SCEV predicates
9619 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
9620                              SCEVPredicateKind Kind)
9621     : FastID(ID), Kind(Kind) {}
9622
9623 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
9624                                        const SCEVUnknown *LHS,
9625                                        const SCEVConstant *RHS)
9626     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
9627
9628 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
9629   const auto *Op = dyn_cast<const SCEVEqualPredicate>(N);
9630
9631   if (!Op)
9632     return false;
9633
9634   return Op->LHS == LHS && Op->RHS == RHS;
9635 }
9636
9637 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
9638
9639 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
9640
9641 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
9642   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
9643 }
9644
9645 /// Union predicates don't get cached so create a dummy set ID for it.
9646 SCEVUnionPredicate::SCEVUnionPredicate()
9647     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
9648
9649 bool SCEVUnionPredicate::isAlwaysTrue() const {
9650   return all_of(Preds,
9651                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
9652 }
9653
9654 ArrayRef<const SCEVPredicate *>
9655 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
9656   auto I = SCEVToPreds.find(Expr);
9657   if (I == SCEVToPreds.end())
9658     return ArrayRef<const SCEVPredicate *>();
9659   return I->second;
9660 }
9661
9662 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
9663   if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N))
9664     return all_of(Set->Preds,
9665                   [this](const SCEVPredicate *I) { return this->implies(I); });
9666
9667   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
9668   if (ScevPredsIt == SCEVToPreds.end())
9669     return false;
9670   auto &SCEVPreds = ScevPredsIt->second;
9671
9672   return any_of(SCEVPreds,
9673                 [N](const SCEVPredicate *I) { return I->implies(N); });
9674 }
9675
9676 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
9677
9678 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
9679   for (auto Pred : Preds)
9680     Pred->print(OS, Depth);
9681 }
9682
9683 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
9684   if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) {
9685     for (auto Pred : Set->Preds)
9686       add(Pred);
9687     return;
9688   }
9689
9690   if (implies(N))
9691     return;
9692
9693   const SCEV *Key = N->getExpr();
9694   assert(Key && "Only SCEVUnionPredicate doesn't have an "
9695                 " associated expression!");
9696
9697   SCEVToPreds[Key].push_back(N);
9698   Preds.push_back(N);
9699 }
9700
9701 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE)
9702     : SE(SE), Generation(0) {}
9703
9704 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
9705   const SCEV *Expr = SE.getSCEV(V);
9706   RewriteEntry &Entry = RewriteMap[Expr];
9707
9708   // If we already have an entry and the version matches, return it.
9709   if (Entry.second && Generation == Entry.first)
9710     return Entry.second;
9711
9712   // We found an entry but it's stale. Rewrite the stale entry
9713   // acording to the current predicate.
9714   if (Entry.second)
9715     Expr = Entry.second;
9716
9717   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, Preds);
9718   Entry = {Generation, NewSCEV};
9719
9720   return NewSCEV;
9721 }
9722
9723 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
9724   if (Preds.implies(&Pred))
9725     return;
9726   Preds.add(&Pred);
9727   updateGeneration();
9728 }
9729
9730 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
9731   return Preds;
9732 }
9733
9734 void PredicatedScalarEvolution::updateGeneration() {
9735   // If the generation number wrapped recompute everything.
9736   if (++Generation == 0) {
9737     for (auto &II : RewriteMap) {
9738       const SCEV *Rewritten = II.second.second;
9739       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, Preds)};
9740     }
9741   }
9742 }