Use the new script to sort the includes of every file under lib.
[oota-llvm.git] / lib / Analysis / PHITransAddr.cpp
1 //===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PHITransAddr class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Analysis/PHITransAddr.h"
15 #include "llvm/Analysis/Dominators.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Analysis/ValueTracking.h"
18 #include "llvm/Constants.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/raw_ostream.h"
23 using namespace llvm;
24
25 static bool CanPHITrans(Instruction *Inst) {
26   if (isa<PHINode>(Inst) ||
27       isa<GetElementPtrInst>(Inst))
28     return true;
29
30   if (isa<CastInst>(Inst) &&
31       isSafeToSpeculativelyExecute(Inst))
32     return true;
33
34   if (Inst->getOpcode() == Instruction::Add &&
35       isa<ConstantInt>(Inst->getOperand(1)))
36     return true;
37
38   //   cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
39   //   if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
40   //     cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
41   return false;
42 }
43
44 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
45 void PHITransAddr::dump() const {
46   if (Addr == 0) {
47     dbgs() << "PHITransAddr: null\n";
48     return;
49   }
50   dbgs() << "PHITransAddr: " << *Addr << "\n";
51   for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
52     dbgs() << "  Input #" << i << " is " << *InstInputs[i] << "\n";
53 }
54 #endif
55
56
57 static bool VerifySubExpr(Value *Expr,
58                           SmallVectorImpl<Instruction*> &InstInputs) {
59   // If this is a non-instruction value, there is nothing to do.
60   Instruction *I = dyn_cast<Instruction>(Expr);
61   if (I == 0) return true;
62
63   // If it's an instruction, it is either in Tmp or its operands recursively
64   // are.
65   SmallVectorImpl<Instruction*>::iterator Entry =
66     std::find(InstInputs.begin(), InstInputs.end(), I);
67   if (Entry != InstInputs.end()) {
68     InstInputs.erase(Entry);
69     return true;
70   }
71
72   // If it isn't in the InstInputs list it is a subexpr incorporated into the
73   // address.  Sanity check that it is phi translatable.
74   if (!CanPHITrans(I)) {
75     errs() << "Non phi translatable instruction found in PHITransAddr:\n";
76     errs() << *I << '\n';
77     llvm_unreachable("Either something is missing from InstInputs or "
78                      "CanPHITrans is wrong.");
79   }
80
81   // Validate the operands of the instruction.
82   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
83     if (!VerifySubExpr(I->getOperand(i), InstInputs))
84       return false;
85
86   return true;
87 }
88
89 /// Verify - Check internal consistency of this data structure.  If the
90 /// structure is valid, it returns true.  If invalid, it prints errors and
91 /// returns false.
92 bool PHITransAddr::Verify() const {
93   if (Addr == 0) return true;
94
95   SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end());
96
97   if (!VerifySubExpr(Addr, Tmp))
98     return false;
99
100   if (!Tmp.empty()) {
101     errs() << "PHITransAddr contains extra instructions:\n";
102     for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
103       errs() << "  InstInput #" << i << " is " << *InstInputs[i] << "\n";
104     llvm_unreachable("This is unexpected.");
105   }
106
107   // a-ok.
108   return true;
109 }
110
111
112 /// IsPotentiallyPHITranslatable - If this needs PHI translation, return true
113 /// if we have some hope of doing it.  This should be used as a filter to
114 /// avoid calling PHITranslateValue in hopeless situations.
115 bool PHITransAddr::IsPotentiallyPHITranslatable() const {
116   // If the input value is not an instruction, or if it is not defined in CurBB,
117   // then we don't need to phi translate it.
118   Instruction *Inst = dyn_cast<Instruction>(Addr);
119   return Inst == 0 || CanPHITrans(Inst);
120 }
121
122
123 static void RemoveInstInputs(Value *V,
124                              SmallVectorImpl<Instruction*> &InstInputs) {
125   Instruction *I = dyn_cast<Instruction>(V);
126   if (I == 0) return;
127
128   // If the instruction is in the InstInputs list, remove it.
129   SmallVectorImpl<Instruction*>::iterator Entry =
130     std::find(InstInputs.begin(), InstInputs.end(), I);
131   if (Entry != InstInputs.end()) {
132     InstInputs.erase(Entry);
133     return;
134   }
135
136   assert(!isa<PHINode>(I) && "Error, removing something that isn't an input");
137
138   // Otherwise, it must have instruction inputs itself.  Zap them recursively.
139   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
140     if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i)))
141       RemoveInstInputs(Op, InstInputs);
142   }
143 }
144
145 Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
146                                          BasicBlock *PredBB,
147                                          const DominatorTree *DT) {
148   // If this is a non-instruction value, it can't require PHI translation.
149   Instruction *Inst = dyn_cast<Instruction>(V);
150   if (Inst == 0) return V;
151
152   // Determine whether 'Inst' is an input to our PHI translatable expression.
153   bool isInput = std::count(InstInputs.begin(), InstInputs.end(), Inst);
154
155   // Handle inputs instructions if needed.
156   if (isInput) {
157     if (Inst->getParent() != CurBB) {
158       // If it is an input defined in a different block, then it remains an
159       // input.
160       return Inst;
161     }
162
163     // If 'Inst' is defined in this block and is an input that needs to be phi
164     // translated, we need to incorporate the value into the expression or fail.
165
166     // In either case, the instruction itself isn't an input any longer.
167     InstInputs.erase(std::find(InstInputs.begin(), InstInputs.end(), Inst));
168
169     // If this is a PHI, go ahead and translate it.
170     if (PHINode *PN = dyn_cast<PHINode>(Inst))
171       return AddAsInput(PN->getIncomingValueForBlock(PredBB));
172
173     // If this is a non-phi value, and it is analyzable, we can incorporate it
174     // into the expression by making all instruction operands be inputs.
175     if (!CanPHITrans(Inst))
176       return 0;
177
178     // All instruction operands are now inputs (and of course, they may also be
179     // defined in this block, so they may need to be phi translated themselves.
180     for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
181       if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(i)))
182         InstInputs.push_back(Op);
183   }
184
185   // Ok, it must be an intermediate result (either because it started that way
186   // or because we just incorporated it into the expression).  See if its
187   // operands need to be phi translated, and if so, reconstruct it.
188
189   if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
190     if (!isSafeToSpeculativelyExecute(Cast)) return 0;
191     Value *PHIIn = PHITranslateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT);
192     if (PHIIn == 0) return 0;
193     if (PHIIn == Cast->getOperand(0))
194       return Cast;
195
196     // Find an available version of this cast.
197
198     // Constants are trivial to find.
199     if (Constant *C = dyn_cast<Constant>(PHIIn))
200       return AddAsInput(ConstantExpr::getCast(Cast->getOpcode(),
201                                               C, Cast->getType()));
202
203     // Otherwise we have to see if a casted version of the incoming pointer
204     // is available.  If so, we can use it, otherwise we have to fail.
205     for (Value::use_iterator UI = PHIIn->use_begin(), E = PHIIn->use_end();
206          UI != E; ++UI) {
207       if (CastInst *CastI = dyn_cast<CastInst>(*UI))
208         if (CastI->getOpcode() == Cast->getOpcode() &&
209             CastI->getType() == Cast->getType() &&
210             (!DT || DT->dominates(CastI->getParent(), PredBB)))
211           return CastI;
212     }
213     return 0;
214   }
215
216   // Handle getelementptr with at least one PHI translatable operand.
217   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
218     SmallVector<Value*, 8> GEPOps;
219     bool AnyChanged = false;
220     for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
221       Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT);
222       if (GEPOp == 0) return 0;
223
224       AnyChanged |= GEPOp != GEP->getOperand(i);
225       GEPOps.push_back(GEPOp);
226     }
227
228     if (!AnyChanged)
229       return GEP;
230
231     // Simplify the GEP to handle 'gep x, 0' -> x etc.
232     if (Value *V = SimplifyGEPInst(GEPOps, TD, TLI, DT)) {
233       for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
234         RemoveInstInputs(GEPOps[i], InstInputs);
235
236       return AddAsInput(V);
237     }
238
239     // Scan to see if we have this GEP available.
240     Value *APHIOp = GEPOps[0];
241     for (Value::use_iterator UI = APHIOp->use_begin(), E = APHIOp->use_end();
242          UI != E; ++UI) {
243       if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI))
244         if (GEPI->getType() == GEP->getType() &&
245             GEPI->getNumOperands() == GEPOps.size() &&
246             GEPI->getParent()->getParent() == CurBB->getParent() &&
247             (!DT || DT->dominates(GEPI->getParent(), PredBB))) {
248           bool Mismatch = false;
249           for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
250             if (GEPI->getOperand(i) != GEPOps[i]) {
251               Mismatch = true;
252               break;
253             }
254           if (!Mismatch)
255             return GEPI;
256         }
257     }
258     return 0;
259   }
260
261   // Handle add with a constant RHS.
262   if (Inst->getOpcode() == Instruction::Add &&
263       isa<ConstantInt>(Inst->getOperand(1))) {
264     // PHI translate the LHS.
265     Constant *RHS = cast<ConstantInt>(Inst->getOperand(1));
266     bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap();
267     bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap();
268
269     Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT);
270     if (LHS == 0) return 0;
271
272     // If the PHI translated LHS is an add of a constant, fold the immediates.
273     if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS))
274       if (BOp->getOpcode() == Instruction::Add)
275         if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
276           LHS = BOp->getOperand(0);
277           RHS = ConstantExpr::getAdd(RHS, CI);
278           isNSW = isNUW = false;
279
280           // If the old 'LHS' was an input, add the new 'LHS' as an input.
281           if (std::count(InstInputs.begin(), InstInputs.end(), BOp)) {
282             RemoveInstInputs(BOp, InstInputs);
283             AddAsInput(LHS);
284           }
285         }
286
287     // See if the add simplifies away.
288     if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, TD, TLI, DT)) {
289       // If we simplified the operands, the LHS is no longer an input, but Res
290       // is.
291       RemoveInstInputs(LHS, InstInputs);
292       return AddAsInput(Res);
293     }
294
295     // If we didn't modify the add, just return it.
296     if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1))
297       return Inst;
298
299     // Otherwise, see if we have this add available somewhere.
300     for (Value::use_iterator UI = LHS->use_begin(), E = LHS->use_end();
301          UI != E; ++UI) {
302       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(*UI))
303         if (BO->getOpcode() == Instruction::Add &&
304             BO->getOperand(0) == LHS && BO->getOperand(1) == RHS &&
305             BO->getParent()->getParent() == CurBB->getParent() &&
306             (!DT || DT->dominates(BO->getParent(), PredBB)))
307           return BO;
308     }
309
310     return 0;
311   }
312
313   // Otherwise, we failed.
314   return 0;
315 }
316
317
318 /// PHITranslateValue - PHI translate the current address up the CFG from
319 /// CurBB to Pred, updating our state to reflect any needed changes.  If the
320 /// dominator tree DT is non-null, the translated value must dominate
321 /// PredBB.  This returns true on failure and sets Addr to null.
322 bool PHITransAddr::PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB,
323                                      const DominatorTree *DT) {
324   assert(Verify() && "Invalid PHITransAddr!");
325   Addr = PHITranslateSubExpr(Addr, CurBB, PredBB, DT);
326   assert(Verify() && "Invalid PHITransAddr!");
327
328   if (DT) {
329     // Make sure the value is live in the predecessor.
330     if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr))
331       if (!DT->dominates(Inst->getParent(), PredBB))
332         Addr = 0;
333   }
334
335   return Addr == 0;
336 }
337
338 /// PHITranslateWithInsertion - PHI translate this value into the specified
339 /// predecessor block, inserting a computation of the value if it is
340 /// unavailable.
341 ///
342 /// All newly created instructions are added to the NewInsts list.  This
343 /// returns null on failure.
344 ///
345 Value *PHITransAddr::
346 PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB,
347                           const DominatorTree &DT,
348                           SmallVectorImpl<Instruction*> &NewInsts) {
349   unsigned NISize = NewInsts.size();
350
351   // Attempt to PHI translate with insertion.
352   Addr = InsertPHITranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts);
353
354   // If successful, return the new value.
355   if (Addr) return Addr;
356
357   // If not, destroy any intermediate instructions inserted.
358   while (NewInsts.size() != NISize)
359     NewInsts.pop_back_val()->eraseFromParent();
360   return 0;
361 }
362
363
364 /// InsertPHITranslatedPointer - Insert a computation of the PHI translated
365 /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
366 /// block.  All newly created instructions are added to the NewInsts list.
367 /// This returns null on failure.
368 ///
369 Value *PHITransAddr::
370 InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB,
371                            BasicBlock *PredBB, const DominatorTree &DT,
372                            SmallVectorImpl<Instruction*> &NewInsts) {
373   // See if we have a version of this value already available and dominating
374   // PredBB.  If so, there is no need to insert a new instance of it.
375   PHITransAddr Tmp(InVal, TD);
376   if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT))
377     return Tmp.getAddr();
378
379   // If we don't have an available version of this value, it must be an
380   // instruction.
381   Instruction *Inst = cast<Instruction>(InVal);
382
383   // Handle cast of PHI translatable value.
384   if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
385     if (!isSafeToSpeculativelyExecute(Cast)) return 0;
386     Value *OpVal = InsertPHITranslatedSubExpr(Cast->getOperand(0),
387                                               CurBB, PredBB, DT, NewInsts);
388     if (OpVal == 0) return 0;
389
390     // Otherwise insert a cast at the end of PredBB.
391     CastInst *New = CastInst::Create(Cast->getOpcode(),
392                                      OpVal, InVal->getType(),
393                                      InVal->getName()+".phi.trans.insert",
394                                      PredBB->getTerminator());
395     NewInsts.push_back(New);
396     return New;
397   }
398
399   // Handle getelementptr with at least one PHI operand.
400   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
401     SmallVector<Value*, 8> GEPOps;
402     BasicBlock *CurBB = GEP->getParent();
403     for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
404       Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i),
405                                                 CurBB, PredBB, DT, NewInsts);
406       if (OpVal == 0) return 0;
407       GEPOps.push_back(OpVal);
408     }
409
410     GetElementPtrInst *Result =
411       GetElementPtrInst::Create(GEPOps[0], makeArrayRef(GEPOps).slice(1),
412                                 InVal->getName()+".phi.trans.insert",
413                                 PredBB->getTerminator());
414     Result->setIsInBounds(GEP->isInBounds());
415     NewInsts.push_back(Result);
416     return Result;
417   }
418
419 #if 0
420   // FIXME: This code works, but it is unclear that we actually want to insert
421   // a big chain of computation in order to make a value available in a block.
422   // This needs to be evaluated carefully to consider its cost trade offs.
423
424   // Handle add with a constant RHS.
425   if (Inst->getOpcode() == Instruction::Add &&
426       isa<ConstantInt>(Inst->getOperand(1))) {
427     // PHI translate the LHS.
428     Value *OpVal = InsertPHITranslatedSubExpr(Inst->getOperand(0),
429                                               CurBB, PredBB, DT, NewInsts);
430     if (OpVal == 0) return 0;
431
432     BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1),
433                                            InVal->getName()+".phi.trans.insert",
434                                                     PredBB->getTerminator());
435     Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap());
436     Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap());
437     NewInsts.push_back(Res);
438     return Res;
439   }
440 #endif
441
442   return 0;
443 }