Add a limit to the number of instructions memdep will scan in a single block. This...
[oota-llvm.git] / lib / Analysis / MemoryDependenceAnalysis.cpp
1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements an analysis that determines, for a given memory
11 // operation, what preceding memory operations it depends on.  It builds on 
12 // alias analysis information, and tries to provide a lazy, caching interface to
13 // a common kind of alias information query.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #define DEBUG_TYPE "memdep"
18 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/IntrinsicInst.h"
22 #include "llvm/Function.h"
23 #include "llvm/LLVMContext.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/Dominators.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/PHITransAddr.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/Support/PredIteratorCache.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Target/TargetData.h"
35 using namespace llvm;
36
37 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
38 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
39 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
40
41 STATISTIC(NumCacheNonLocalPtr,
42           "Number of fully cached non-local ptr responses");
43 STATISTIC(NumCacheDirtyNonLocalPtr,
44           "Number of cached, but dirty, non-local ptr responses");
45 STATISTIC(NumUncacheNonLocalPtr,
46           "Number of uncached non-local ptr responses");
47 STATISTIC(NumCacheCompleteNonLocalPtr,
48           "Number of block queries that were completely cached");
49
50 // Limit for the number of instructions to scan in a block.
51 // FIXME: Figure out what a sane value is for this.
52 //        (500 is relatively insane.)
53 static const int BlockScanLimit = 500;
54
55 char MemoryDependenceAnalysis::ID = 0;
56   
57 // Register this pass...
58 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
59                 "Memory Dependence Analysis", false, true)
60 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
61 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
62                       "Memory Dependence Analysis", false, true)
63
64 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
65 : FunctionPass(ID), PredCache(0) {
66   initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
67 }
68 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
69 }
70
71 /// Clean up memory in between runs
72 void MemoryDependenceAnalysis::releaseMemory() {
73   LocalDeps.clear();
74   NonLocalDeps.clear();
75   NonLocalPointerDeps.clear();
76   ReverseLocalDeps.clear();
77   ReverseNonLocalDeps.clear();
78   ReverseNonLocalPtrDeps.clear();
79   PredCache->clear();
80 }
81
82
83
84 /// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
85 ///
86 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
87   AU.setPreservesAll();
88   AU.addRequiredTransitive<AliasAnalysis>();
89 }
90
91 bool MemoryDependenceAnalysis::runOnFunction(Function &) {
92   AA = &getAnalysis<AliasAnalysis>();
93   TD = getAnalysisIfAvailable<TargetData>();
94   if (PredCache == 0)
95     PredCache.reset(new PredIteratorCache());
96   return false;
97 }
98
99 /// RemoveFromReverseMap - This is a helper function that removes Val from
100 /// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
101 template <typename KeyTy>
102 static void RemoveFromReverseMap(DenseMap<Instruction*, 
103                                  SmallPtrSet<KeyTy, 4> > &ReverseMap,
104                                  Instruction *Inst, KeyTy Val) {
105   typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
106   InstIt = ReverseMap.find(Inst);
107   assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
108   bool Found = InstIt->second.erase(Val);
109   assert(Found && "Invalid reverse map!"); (void)Found;
110   if (InstIt->second.empty())
111     ReverseMap.erase(InstIt);
112 }
113
114 /// GetLocation - If the given instruction references a specific memory
115 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
116 /// Return a ModRefInfo value describing the general behavior of the
117 /// instruction.
118 static
119 AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst,
120                                         AliasAnalysis::Location &Loc,
121                                         AliasAnalysis *AA) {
122   if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
123     if (LI->isVolatile()) {
124       Loc = AliasAnalysis::Location();
125       return AliasAnalysis::ModRef;
126     }
127     Loc = AA->getLocation(LI);
128     return AliasAnalysis::Ref;
129   }
130
131   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
132     if (SI->isVolatile()) {
133       Loc = AliasAnalysis::Location();
134       return AliasAnalysis::ModRef;
135     }
136     Loc = AA->getLocation(SI);
137     return AliasAnalysis::Mod;
138   }
139
140   if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
141     Loc = AA->getLocation(V);
142     return AliasAnalysis::ModRef;
143   }
144
145   if (const CallInst *CI = isFreeCall(Inst)) {
146     // calls to free() deallocate the entire structure
147     Loc = AliasAnalysis::Location(CI->getArgOperand(0));
148     return AliasAnalysis::Mod;
149   }
150
151   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
152     switch (II->getIntrinsicID()) {
153     case Intrinsic::lifetime_start:
154     case Intrinsic::lifetime_end:
155     case Intrinsic::invariant_start:
156       Loc = AliasAnalysis::Location(II->getArgOperand(1),
157                                     cast<ConstantInt>(II->getArgOperand(0))
158                                       ->getZExtValue(),
159                                     II->getMetadata(LLVMContext::MD_tbaa));
160       // These intrinsics don't really modify the memory, but returning Mod
161       // will allow them to be handled conservatively.
162       return AliasAnalysis::Mod;
163     case Intrinsic::invariant_end:
164       Loc = AliasAnalysis::Location(II->getArgOperand(2),
165                                     cast<ConstantInt>(II->getArgOperand(1))
166                                       ->getZExtValue(),
167                                     II->getMetadata(LLVMContext::MD_tbaa));
168       // These intrinsics don't really modify the memory, but returning Mod
169       // will allow them to be handled conservatively.
170       return AliasAnalysis::Mod;
171     default:
172       break;
173     }
174
175   // Otherwise, just do the coarse-grained thing that always works.
176   if (Inst->mayWriteToMemory())
177     return AliasAnalysis::ModRef;
178   if (Inst->mayReadFromMemory())
179     return AliasAnalysis::Ref;
180   return AliasAnalysis::NoModRef;
181 }
182
183 /// getCallSiteDependencyFrom - Private helper for finding the local
184 /// dependencies of a call site.
185 MemDepResult MemoryDependenceAnalysis::
186 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
187                           BasicBlock::iterator ScanIt, BasicBlock *BB) {
188   unsigned Limit = BlockScanLimit;
189
190   // Walk backwards through the block, looking for dependencies
191   while (ScanIt != BB->begin()) {
192     // Limit the amount of scanning we do so we don't end up with quadratic
193     // running time on extreme testcases. 
194     --Limit;
195     if (!Limit)
196       return MemDepResult::getUnknown();
197
198     Instruction *Inst = --ScanIt;
199     
200     // If this inst is a memory op, get the pointer it accessed
201     AliasAnalysis::Location Loc;
202     AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA);
203     if (Loc.Ptr) {
204       // A simple instruction.
205       if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef)
206         return MemDepResult::getClobber(Inst);
207       continue;
208     }
209
210     if (CallSite InstCS = cast<Value>(Inst)) {
211       // Debug intrinsics don't cause dependences.
212       if (isa<DbgInfoIntrinsic>(Inst)) continue;
213       // If these two calls do not interfere, look past it.
214       switch (AA->getModRefInfo(CS, InstCS)) {
215       case AliasAnalysis::NoModRef:
216         // If the two calls are the same, return InstCS as a Def, so that
217         // CS can be found redundant and eliminated.
218         if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) &&
219             CS.getInstruction()->isIdenticalToWhenDefined(Inst))
220           return MemDepResult::getDef(Inst);
221
222         // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
223         // keep scanning.
224         break;
225       default:
226         return MemDepResult::getClobber(Inst);
227       }
228     }
229   }
230   
231   // No dependence found.  If this is the entry block of the function, it is
232   // unknown, otherwise it is non-local.
233   if (BB != &BB->getParent()->getEntryBlock())
234     return MemDepResult::getNonLocal();
235   return MemDepResult::getUnknown();
236 }
237
238 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
239 /// would fully overlap MemLoc if done as a wider legal integer load.
240 ///
241 /// MemLocBase, MemLocOffset are lazily computed here the first time the
242 /// base/offs of memloc is needed.
243 static bool 
244 isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc,
245                                        const Value *&MemLocBase,
246                                        int64_t &MemLocOffs,
247                                        const LoadInst *LI,
248                                        const TargetData *TD) {
249   // If we have no target data, we can't do this.
250   if (TD == 0) return false;
251
252   // If we haven't already computed the base/offset of MemLoc, do so now.
253   if (MemLocBase == 0)
254     MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, *TD);
255
256   unsigned Size = MemoryDependenceAnalysis::
257     getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size,
258                                     LI, *TD);
259   return Size != 0;
260 }
261
262 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
263 /// looks at a memory location for a load (specified by MemLocBase, Offs,
264 /// and Size) and compares it against a load.  If the specified load could
265 /// be safely widened to a larger integer load that is 1) still efficient,
266 /// 2) safe for the target, and 3) would provide the specified memory
267 /// location value, then this function returns the size in bytes of the
268 /// load width to use.  If not, this returns zero.
269 unsigned MemoryDependenceAnalysis::
270 getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs,
271                                 unsigned MemLocSize, const LoadInst *LI,
272                                 const TargetData &TD) {
273   // We can only extend non-volatile integer loads.
274   if (!isa<IntegerType>(LI->getType()) || LI->isVolatile()) return 0;
275   
276   // Get the base of this load.
277   int64_t LIOffs = 0;
278   const Value *LIBase = 
279     GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, TD);
280   
281   // If the two pointers are not based on the same pointer, we can't tell that
282   // they are related.
283   if (LIBase != MemLocBase) return 0;
284   
285   // Okay, the two values are based on the same pointer, but returned as
286   // no-alias.  This happens when we have things like two byte loads at "P+1"
287   // and "P+3".  Check to see if increasing the size of the "LI" load up to its
288   // alignment (or the largest native integer type) will allow us to load all
289   // the bits required by MemLoc.
290   
291   // If MemLoc is before LI, then no widening of LI will help us out.
292   if (MemLocOffs < LIOffs) return 0;
293   
294   // Get the alignment of the load in bytes.  We assume that it is safe to load
295   // any legal integer up to this size without a problem.  For example, if we're
296   // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
297   // widen it up to an i32 load.  If it is known 2-byte aligned, we can widen it
298   // to i16.
299   unsigned LoadAlign = LI->getAlignment();
300
301   int64_t MemLocEnd = MemLocOffs+MemLocSize;
302   
303   // If no amount of rounding up will let MemLoc fit into LI, then bail out.
304   if (LIOffs+LoadAlign < MemLocEnd) return 0;
305   
306   // This is the size of the load to try.  Start with the next larger power of
307   // two.
308   unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U;
309   NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
310   
311   while (1) {
312     // If this load size is bigger than our known alignment or would not fit
313     // into a native integer register, then we fail.
314     if (NewLoadByteSize > LoadAlign ||
315         !TD.fitsInLegalInteger(NewLoadByteSize*8))
316       return 0;
317
318     // If a load of this width would include all of MemLoc, then we succeed.
319     if (LIOffs+NewLoadByteSize >= MemLocEnd)
320       return NewLoadByteSize;
321     
322     NewLoadByteSize <<= 1;
323   }
324   
325   return 0;
326 }
327
328 /// getPointerDependencyFrom - Return the instruction on which a memory
329 /// location depends.  If isLoad is true, this routine ignores may-aliases with
330 /// read-only operations.  If isLoad is false, this routine ignores may-aliases
331 /// with reads from read-only locations.
332 MemDepResult MemoryDependenceAnalysis::
333 getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, 
334                          BasicBlock::iterator ScanIt, BasicBlock *BB) {
335
336   const Value *MemLocBase = 0;
337   int64_t MemLocOffset = 0;
338
339   unsigned Limit = BlockScanLimit;
340
341   // Walk backwards through the basic block, looking for dependencies.
342   while (ScanIt != BB->begin()) {
343     // Limit the amount of scanning we do so we don't end up with quadratic
344     // running time on extreme testcases.
345     --Limit;
346     if (!Limit)
347       return MemDepResult::getUnknown();
348
349     Instruction *Inst = --ScanIt;
350
351     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
352       // Debug intrinsics don't (and can't) cause dependences.
353       if (isa<DbgInfoIntrinsic>(II)) continue;
354       
355       // If we reach a lifetime begin or end marker, then the query ends here
356       // because the value is undefined.
357       if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
358         // FIXME: This only considers queries directly on the invariant-tagged
359         // pointer, not on query pointers that are indexed off of them.  It'd
360         // be nice to handle that at some point (the right approach is to use
361         // GetPointerBaseWithConstantOffset).
362         if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)),
363                             MemLoc))
364           return MemDepResult::getDef(II);
365         continue;
366       }
367     }
368
369     // Values depend on loads if the pointers are must aliased.  This means that
370     // a load depends on another must aliased load from the same value.
371     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
372       AliasAnalysis::Location LoadLoc = AA->getLocation(LI);
373       
374       // If we found a pointer, check if it could be the same as our pointer.
375       AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc);
376       
377       if (isLoad) {
378         if (R == AliasAnalysis::NoAlias) {
379           // If this is an over-aligned integer load (for example,
380           // "load i8* %P, align 4") see if it would obviously overlap with the
381           // queried location if widened to a larger load (e.g. if the queried
382           // location is 1 byte at P+1).  If so, return it as a load/load
383           // clobber result, allowing the client to decide to widen the load if
384           // it wants to.
385           if (const IntegerType *ITy = dyn_cast<IntegerType>(LI->getType()))
386             if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() &&
387                 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
388                                                        MemLocOffset, LI, TD))
389               return MemDepResult::getClobber(Inst);
390           
391           continue;
392         }
393         
394         // Must aliased loads are defs of each other.
395         if (R == AliasAnalysis::MustAlias)
396           return MemDepResult::getDef(Inst);
397
398 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
399       // in terms of clobbering loads, but since it does this by looking
400       // at the clobbering load directly, it doesn't know about any
401       // phi translation that may have happened along the way.
402
403         // If we have a partial alias, then return this as a clobber for the
404         // client to handle.
405         if (R == AliasAnalysis::PartialAlias)
406           return MemDepResult::getClobber(Inst);
407 #endif
408         
409         // Random may-alias loads don't depend on each other without a
410         // dependence.
411         continue;
412       }
413
414       // Stores don't depend on other no-aliased accesses.
415       if (R == AliasAnalysis::NoAlias)
416         continue;
417
418       // Stores don't alias loads from read-only memory.
419       if (AA->pointsToConstantMemory(LoadLoc))
420         continue;
421
422       // Stores depend on may/must aliased loads.
423       return MemDepResult::getDef(Inst);
424     }
425     
426     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
427       // If alias analysis can tell that this store is guaranteed to not modify
428       // the query pointer, ignore it.  Use getModRefInfo to handle cases where
429       // the query pointer points to constant memory etc.
430       if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef)
431         continue;
432
433       // Ok, this store might clobber the query pointer.  Check to see if it is
434       // a must alias: in this case, we want to return this as a def.
435       AliasAnalysis::Location StoreLoc = AA->getLocation(SI);
436       
437       // If we found a pointer, check if it could be the same as our pointer.
438       AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc);
439       
440       if (R == AliasAnalysis::NoAlias)
441         continue;
442       if (R == AliasAnalysis::MustAlias)
443         return MemDepResult::getDef(Inst);
444       return MemDepResult::getClobber(Inst);
445     }
446
447     // If this is an allocation, and if we know that the accessed pointer is to
448     // the allocation, return Def.  This means that there is no dependence and
449     // the access can be optimized based on that.  For example, a load could
450     // turn into undef.
451     // Note: Only determine this to be a malloc if Inst is the malloc call, not
452     // a subsequent bitcast of the malloc call result.  There can be stores to
453     // the malloced memory between the malloc call and its bitcast uses, and we
454     // need to continue scanning until the malloc call.
455     if (isa<AllocaInst>(Inst) ||
456         (isa<CallInst>(Inst) && extractMallocCall(Inst))) {
457       const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, TD);
458       
459       if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
460         return MemDepResult::getDef(Inst);
461       continue;
462     }
463
464     // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
465     switch (AA->getModRefInfo(Inst, MemLoc)) {
466     case AliasAnalysis::NoModRef:
467       // If the call has no effect on the queried pointer, just ignore it.
468       continue;
469     case AliasAnalysis::Mod:
470       return MemDepResult::getClobber(Inst);
471     case AliasAnalysis::Ref:
472       // If the call is known to never store to the pointer, and if this is a
473       // load query, we can safely ignore it (scan past it).
474       if (isLoad)
475         continue;
476     default:
477       // Otherwise, there is a potential dependence.  Return a clobber.
478       return MemDepResult::getClobber(Inst);
479     }
480   }
481   
482   // No dependence found.  If this is the entry block of the function, it is
483   // unknown, otherwise it is non-local.
484   if (BB != &BB->getParent()->getEntryBlock())
485     return MemDepResult::getNonLocal();
486   return MemDepResult::getUnknown();
487 }
488
489 /// getDependency - Return the instruction on which a memory operation
490 /// depends.
491 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
492   Instruction *ScanPos = QueryInst;
493   
494   // Check for a cached result
495   MemDepResult &LocalCache = LocalDeps[QueryInst];
496   
497   // If the cached entry is non-dirty, just return it.  Note that this depends
498   // on MemDepResult's default constructing to 'dirty'.
499   if (!LocalCache.isDirty())
500     return LocalCache;
501     
502   // Otherwise, if we have a dirty entry, we know we can start the scan at that
503   // instruction, which may save us some work.
504   if (Instruction *Inst = LocalCache.getInst()) {
505     ScanPos = Inst;
506    
507     RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
508   }
509   
510   BasicBlock *QueryParent = QueryInst->getParent();
511   
512   // Do the scan.
513   if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
514     // No dependence found.  If this is the entry block of the function, it is
515     // unknown, otherwise it is non-local.
516     if (QueryParent != &QueryParent->getParent()->getEntryBlock())
517       LocalCache = MemDepResult::getNonLocal();
518     else
519       LocalCache = MemDepResult::getUnknown();
520   } else {
521     AliasAnalysis::Location MemLoc;
522     AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA);
523     if (MemLoc.Ptr) {
524       // If we can do a pointer scan, make it happen.
525       bool isLoad = !(MR & AliasAnalysis::Mod);
526       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
527         isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
528
529       LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos,
530                                             QueryParent);
531     } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
532       CallSite QueryCS(QueryInst);
533       bool isReadOnly = AA->onlyReadsMemory(QueryCS);
534       LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
535                                              QueryParent);
536     } else
537       // Non-memory instruction.
538       LocalCache = MemDepResult::getUnknown();
539   }
540   
541   // Remember the result!
542   if (Instruction *I = LocalCache.getInst())
543     ReverseLocalDeps[I].insert(QueryInst);
544   
545   return LocalCache;
546 }
547
548 #ifndef NDEBUG
549 /// AssertSorted - This method is used when -debug is specified to verify that
550 /// cache arrays are properly kept sorted.
551 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
552                          int Count = -1) {
553   if (Count == -1) Count = Cache.size();
554   if (Count == 0) return;
555
556   for (unsigned i = 1; i != unsigned(Count); ++i)
557     assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
558 }
559 #endif
560
561 /// getNonLocalCallDependency - Perform a full dependency query for the
562 /// specified call, returning the set of blocks that the value is
563 /// potentially live across.  The returned set of results will include a
564 /// "NonLocal" result for all blocks where the value is live across.
565 ///
566 /// This method assumes the instruction returns a "NonLocal" dependency
567 /// within its own block.
568 ///
569 /// This returns a reference to an internal data structure that may be
570 /// invalidated on the next non-local query or when an instruction is
571 /// removed.  Clients must copy this data if they want it around longer than
572 /// that.
573 const MemoryDependenceAnalysis::NonLocalDepInfo &
574 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
575   assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
576  "getNonLocalCallDependency should only be used on calls with non-local deps!");
577   PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
578   NonLocalDepInfo &Cache = CacheP.first;
579
580   /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
581   /// the cached case, this can happen due to instructions being deleted etc. In
582   /// the uncached case, this starts out as the set of predecessors we care
583   /// about.
584   SmallVector<BasicBlock*, 32> DirtyBlocks;
585   
586   if (!Cache.empty()) {
587     // Okay, we have a cache entry.  If we know it is not dirty, just return it
588     // with no computation.
589     if (!CacheP.second) {
590       ++NumCacheNonLocal;
591       return Cache;
592     }
593     
594     // If we already have a partially computed set of results, scan them to
595     // determine what is dirty, seeding our initial DirtyBlocks worklist.
596     for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
597        I != E; ++I)
598       if (I->getResult().isDirty())
599         DirtyBlocks.push_back(I->getBB());
600     
601     // Sort the cache so that we can do fast binary search lookups below.
602     std::sort(Cache.begin(), Cache.end());
603     
604     ++NumCacheDirtyNonLocal;
605     //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
606     //     << Cache.size() << " cached: " << *QueryInst;
607   } else {
608     // Seed DirtyBlocks with each of the preds of QueryInst's block.
609     BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
610     for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
611       DirtyBlocks.push_back(*PI);
612     ++NumUncacheNonLocal;
613   }
614   
615   // isReadonlyCall - If this is a read-only call, we can be more aggressive.
616   bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
617
618   SmallPtrSet<BasicBlock*, 64> Visited;
619   
620   unsigned NumSortedEntries = Cache.size();
621   DEBUG(AssertSorted(Cache));
622   
623   // Iterate while we still have blocks to update.
624   while (!DirtyBlocks.empty()) {
625     BasicBlock *DirtyBB = DirtyBlocks.back();
626     DirtyBlocks.pop_back();
627     
628     // Already processed this block?
629     if (!Visited.insert(DirtyBB))
630       continue;
631     
632     // Do a binary search to see if we already have an entry for this block in
633     // the cache set.  If so, find it.
634     DEBUG(AssertSorted(Cache, NumSortedEntries));
635     NonLocalDepInfo::iterator Entry = 
636       std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
637                        NonLocalDepEntry(DirtyBB));
638     if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB)
639       --Entry;
640     
641     NonLocalDepEntry *ExistingResult = 0;
642     if (Entry != Cache.begin()+NumSortedEntries && 
643         Entry->getBB() == DirtyBB) {
644       // If we already have an entry, and if it isn't already dirty, the block
645       // is done.
646       if (!Entry->getResult().isDirty())
647         continue;
648       
649       // Otherwise, remember this slot so we can update the value.
650       ExistingResult = &*Entry;
651     }
652     
653     // If the dirty entry has a pointer, start scanning from it so we don't have
654     // to rescan the entire block.
655     BasicBlock::iterator ScanPos = DirtyBB->end();
656     if (ExistingResult) {
657       if (Instruction *Inst = ExistingResult->getResult().getInst()) {
658         ScanPos = Inst;
659         // We're removing QueryInst's use of Inst.
660         RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
661                              QueryCS.getInstruction());
662       }
663     }
664     
665     // Find out if this block has a local dependency for QueryInst.
666     MemDepResult Dep;
667     
668     if (ScanPos != DirtyBB->begin()) {
669       Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
670     } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
671       // No dependence found.  If this is the entry block of the function, it is
672       // a clobber, otherwise it is unknown.
673       Dep = MemDepResult::getNonLocal();
674     } else {
675       Dep = MemDepResult::getUnknown();
676     }
677     
678     // If we had a dirty entry for the block, update it.  Otherwise, just add
679     // a new entry.
680     if (ExistingResult)
681       ExistingResult->setResult(Dep);
682     else
683       Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
684     
685     // If the block has a dependency (i.e. it isn't completely transparent to
686     // the value), remember the association!
687     if (!Dep.isNonLocal()) {
688       // Keep the ReverseNonLocalDeps map up to date so we can efficiently
689       // update this when we remove instructions.
690       if (Instruction *Inst = Dep.getInst())
691         ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
692     } else {
693     
694       // If the block *is* completely transparent to the load, we need to check
695       // the predecessors of this block.  Add them to our worklist.
696       for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
697         DirtyBlocks.push_back(*PI);
698     }
699   }
700   
701   return Cache;
702 }
703
704 /// getNonLocalPointerDependency - Perform a full dependency query for an
705 /// access to the specified (non-volatile) memory location, returning the
706 /// set of instructions that either define or clobber the value.
707 ///
708 /// This method assumes the pointer has a "NonLocal" dependency within its
709 /// own block.
710 ///
711 void MemoryDependenceAnalysis::
712 getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad,
713                              BasicBlock *FromBB,
714                              SmallVectorImpl<NonLocalDepResult> &Result) {
715   assert(Loc.Ptr->getType()->isPointerTy() &&
716          "Can't get pointer deps of a non-pointer!");
717   Result.clear();
718   
719   PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD);
720   
721   // This is the set of blocks we've inspected, and the pointer we consider in
722   // each block.  Because of critical edges, we currently bail out if querying
723   // a block with multiple different pointers.  This can happen during PHI
724   // translation.
725   DenseMap<BasicBlock*, Value*> Visited;
726   if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB,
727                                    Result, Visited, true))
728     return;
729   Result.clear();
730   Result.push_back(NonLocalDepResult(FromBB,
731                                      MemDepResult::getUnknown(),
732                                      const_cast<Value *>(Loc.Ptr)));
733 }
734
735 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with
736 /// Pointer/PointeeSize using either cached information in Cache or by doing a
737 /// lookup (which may use dirty cache info if available).  If we do a lookup,
738 /// add the result to the cache.
739 MemDepResult MemoryDependenceAnalysis::
740 GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc,
741                         bool isLoad, BasicBlock *BB,
742                         NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
743   
744   // Do a binary search to see if we already have an entry for this block in
745   // the cache set.  If so, find it.
746   NonLocalDepInfo::iterator Entry =
747     std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
748                      NonLocalDepEntry(BB));
749   if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
750     --Entry;
751   
752   NonLocalDepEntry *ExistingResult = 0;
753   if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
754     ExistingResult = &*Entry;
755   
756   // If we have a cached entry, and it is non-dirty, use it as the value for
757   // this dependency.
758   if (ExistingResult && !ExistingResult->getResult().isDirty()) {
759     ++NumCacheNonLocalPtr;
760     return ExistingResult->getResult();
761   }    
762   
763   // Otherwise, we have to scan for the value.  If we have a dirty cache
764   // entry, start scanning from its position, otherwise we scan from the end
765   // of the block.
766   BasicBlock::iterator ScanPos = BB->end();
767   if (ExistingResult && ExistingResult->getResult().getInst()) {
768     assert(ExistingResult->getResult().getInst()->getParent() == BB &&
769            "Instruction invalidated?");
770     ++NumCacheDirtyNonLocalPtr;
771     ScanPos = ExistingResult->getResult().getInst();
772     
773     // Eliminating the dirty entry from 'Cache', so update the reverse info.
774     ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
775     RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
776   } else {
777     ++NumUncacheNonLocalPtr;
778   }
779   
780   // Scan the block for the dependency.
781   MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB);
782   
783   // If we had a dirty entry for the block, update it.  Otherwise, just add
784   // a new entry.
785   if (ExistingResult)
786     ExistingResult->setResult(Dep);
787   else
788     Cache->push_back(NonLocalDepEntry(BB, Dep));
789   
790   // If the block has a dependency (i.e. it isn't completely transparent to
791   // the value), remember the reverse association because we just added it
792   // to Cache!
793   if (Dep.isNonLocal() || Dep.isUnknown())
794     return Dep;
795   
796   // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
797   // update MemDep when we remove instructions.
798   Instruction *Inst = Dep.getInst();
799   assert(Inst && "Didn't depend on anything?");
800   ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
801   ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
802   return Dep;
803 }
804
805 /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
806 /// number of elements in the array that are already properly ordered.  This is
807 /// optimized for the case when only a few entries are added.
808 static void 
809 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
810                          unsigned NumSortedEntries) {
811   switch (Cache.size() - NumSortedEntries) {
812   case 0:
813     // done, no new entries.
814     break;
815   case 2: {
816     // Two new entries, insert the last one into place.
817     NonLocalDepEntry Val = Cache.back();
818     Cache.pop_back();
819     MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
820       std::upper_bound(Cache.begin(), Cache.end()-1, Val);
821     Cache.insert(Entry, Val);
822     // FALL THROUGH.
823   }
824   case 1:
825     // One new entry, Just insert the new value at the appropriate position.
826     if (Cache.size() != 1) {
827       NonLocalDepEntry Val = Cache.back();
828       Cache.pop_back();
829       MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
830         std::upper_bound(Cache.begin(), Cache.end(), Val);
831       Cache.insert(Entry, Val);
832     }
833     break;
834   default:
835     // Added many values, do a full scale sort.
836     std::sort(Cache.begin(), Cache.end());
837     break;
838   }
839 }
840
841 /// getNonLocalPointerDepFromBB - Perform a dependency query based on
842 /// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
843 /// results to the results vector and keep track of which blocks are visited in
844 /// 'Visited'.
845 ///
846 /// This has special behavior for the first block queries (when SkipFirstBlock
847 /// is true).  In this special case, it ignores the contents of the specified
848 /// block and starts returning dependence info for its predecessors.
849 ///
850 /// This function returns false on success, or true to indicate that it could
851 /// not compute dependence information for some reason.  This should be treated
852 /// as a clobber dependence on the first instruction in the predecessor block.
853 bool MemoryDependenceAnalysis::
854 getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
855                             const AliasAnalysis::Location &Loc,
856                             bool isLoad, BasicBlock *StartBB,
857                             SmallVectorImpl<NonLocalDepResult> &Result,
858                             DenseMap<BasicBlock*, Value*> &Visited,
859                             bool SkipFirstBlock) {
860   
861   // Look up the cached info for Pointer.
862   ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
863
864   // Set up a temporary NLPI value. If the map doesn't yet have an entry for
865   // CacheKey, this value will be inserted as the associated value. Otherwise,
866   // it'll be ignored, and we'll have to check to see if the cached size and
867   // tbaa tag are consistent with the current query.
868   NonLocalPointerInfo InitialNLPI;
869   InitialNLPI.Size = Loc.Size;
870   InitialNLPI.TBAATag = Loc.TBAATag;
871
872   // Get the NLPI for CacheKey, inserting one into the map if it doesn't
873   // already have one.
874   std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 
875     NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
876   NonLocalPointerInfo *CacheInfo = &Pair.first->second;
877
878   // If we already have a cache entry for this CacheKey, we may need to do some
879   // work to reconcile the cache entry and the current query.
880   if (!Pair.second) {
881     if (CacheInfo->Size < Loc.Size) {
882       // The query's Size is greater than the cached one. Throw out the
883       // cached data and procede with the query at the greater size.
884       CacheInfo->Pair = BBSkipFirstBlockPair();
885       CacheInfo->Size = Loc.Size;
886       for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
887            DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
888         if (Instruction *Inst = DI->getResult().getInst())
889           RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
890       CacheInfo->NonLocalDeps.clear();
891     } else if (CacheInfo->Size > Loc.Size) {
892       // This query's Size is less than the cached one. Conservatively restart
893       // the query using the greater size.
894       return getNonLocalPointerDepFromBB(Pointer,
895                                          Loc.getWithNewSize(CacheInfo->Size),
896                                          isLoad, StartBB, Result, Visited,
897                                          SkipFirstBlock);
898     }
899
900     // If the query's TBAATag is inconsistent with the cached one,
901     // conservatively throw out the cached data and restart the query with
902     // no tag if needed.
903     if (CacheInfo->TBAATag != Loc.TBAATag) {
904       if (CacheInfo->TBAATag) {
905         CacheInfo->Pair = BBSkipFirstBlockPair();
906         CacheInfo->TBAATag = 0;
907         for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
908              DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
909           if (Instruction *Inst = DI->getResult().getInst())
910             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
911         CacheInfo->NonLocalDeps.clear();
912       }
913       if (Loc.TBAATag)
914         return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(),
915                                            isLoad, StartBB, Result, Visited,
916                                            SkipFirstBlock);
917     }
918   }
919
920   NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
921
922   // If we have valid cached information for exactly the block we are
923   // investigating, just return it with no recomputation.
924   if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
925     // We have a fully cached result for this query then we can just return the
926     // cached results and populate the visited set.  However, we have to verify
927     // that we don't already have conflicting results for these blocks.  Check
928     // to ensure that if a block in the results set is in the visited set that
929     // it was for the same pointer query.
930     if (!Visited.empty()) {
931       for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
932            I != E; ++I) {
933         DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
934         if (VI == Visited.end() || VI->second == Pointer.getAddr())
935           continue;
936         
937         // We have a pointer mismatch in a block.  Just return clobber, saying
938         // that something was clobbered in this result.  We could also do a
939         // non-fully cached query, but there is little point in doing this.
940         return true;
941       }
942     }
943     
944     Value *Addr = Pointer.getAddr();
945     for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
946          I != E; ++I) {
947       Visited.insert(std::make_pair(I->getBB(), Addr));
948       if (!I->getResult().isNonLocal())
949         Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
950     }
951     ++NumCacheCompleteNonLocalPtr;
952     return false;
953   }
954   
955   // Otherwise, either this is a new block, a block with an invalid cache
956   // pointer or one that we're about to invalidate by putting more info into it
957   // than its valid cache info.  If empty, the result will be valid cache info,
958   // otherwise it isn't.
959   if (Cache->empty())
960     CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
961   else
962     CacheInfo->Pair = BBSkipFirstBlockPair();
963   
964   SmallVector<BasicBlock*, 32> Worklist;
965   Worklist.push_back(StartBB);
966   
967   // PredList used inside loop.
968   SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList;
969
970   // Keep track of the entries that we know are sorted.  Previously cached
971   // entries will all be sorted.  The entries we add we only sort on demand (we
972   // don't insert every element into its sorted position).  We know that we
973   // won't get any reuse from currently inserted values, because we don't
974   // revisit blocks after we insert info for them.
975   unsigned NumSortedEntries = Cache->size();
976   DEBUG(AssertSorted(*Cache));
977   
978   while (!Worklist.empty()) {
979     BasicBlock *BB = Worklist.pop_back_val();
980     
981     // Skip the first block if we have it.
982     if (!SkipFirstBlock) {
983       // Analyze the dependency of *Pointer in FromBB.  See if we already have
984       // been here.
985       assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
986
987       // Get the dependency info for Pointer in BB.  If we have cached
988       // information, we will use it, otherwise we compute it.
989       DEBUG(AssertSorted(*Cache, NumSortedEntries));
990       MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache,
991                                                  NumSortedEntries);
992       
993       // If we got a Def or Clobber, add this to the list of results.
994       if (!Dep.isNonLocal()) {
995         Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
996         continue;
997       }
998     }
999     
1000     // If 'Pointer' is an instruction defined in this block, then we need to do
1001     // phi translation to change it into a value live in the predecessor block.
1002     // If not, we just add the predecessors to the worklist and scan them with
1003     // the same Pointer.
1004     if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1005       SkipFirstBlock = false;
1006       SmallVector<BasicBlock*, 16> NewBlocks;
1007       for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1008         // Verify that we haven't looked at this block yet.
1009         std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1010           InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
1011         if (InsertRes.second) {
1012           // First time we've looked at *PI.
1013           NewBlocks.push_back(*PI);
1014           continue;
1015         }
1016         
1017         // If we have seen this block before, but it was with a different
1018         // pointer then we have a phi translation failure and we have to treat
1019         // this as a clobber.
1020         if (InsertRes.first->second != Pointer.getAddr()) {
1021           // Make sure to clean up the Visited map before continuing on to
1022           // PredTranslationFailure.
1023           for (unsigned i = 0; i < NewBlocks.size(); i++)
1024             Visited.erase(NewBlocks[i]);
1025           goto PredTranslationFailure;
1026         }
1027       }
1028       Worklist.append(NewBlocks.begin(), NewBlocks.end());
1029       continue;
1030     }
1031     
1032     // We do need to do phi translation, if we know ahead of time we can't phi
1033     // translate this value, don't even try.
1034     if (!Pointer.IsPotentiallyPHITranslatable())
1035       goto PredTranslationFailure;
1036     
1037     // We may have added values to the cache list before this PHI translation.
1038     // If so, we haven't done anything to ensure that the cache remains sorted.
1039     // Sort it now (if needed) so that recursive invocations of
1040     // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1041     // value will only see properly sorted cache arrays.
1042     if (Cache && NumSortedEntries != Cache->size()) {
1043       SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1044       NumSortedEntries = Cache->size();
1045     }
1046     Cache = 0;
1047
1048     PredList.clear();
1049     for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1050       BasicBlock *Pred = *PI;
1051       PredList.push_back(std::make_pair(Pred, Pointer));
1052
1053       // Get the PHI translated pointer in this predecessor.  This can fail if
1054       // not translatable, in which case the getAddr() returns null.
1055       PHITransAddr &PredPointer = PredList.back().second;
1056       PredPointer.PHITranslateValue(BB, Pred, 0);
1057
1058       Value *PredPtrVal = PredPointer.getAddr();
1059       
1060       // Check to see if we have already visited this pred block with another
1061       // pointer.  If so, we can't do this lookup.  This failure can occur
1062       // with PHI translation when a critical edge exists and the PHI node in
1063       // the successor translates to a pointer value different than the
1064       // pointer the block was first analyzed with.
1065       std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1066         InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
1067
1068       if (!InsertRes.second) {
1069         // We found the pred; take it off the list of preds to visit.
1070         PredList.pop_back();
1071
1072         // If the predecessor was visited with PredPtr, then we already did
1073         // the analysis and can ignore it.
1074         if (InsertRes.first->second == PredPtrVal)
1075           continue;
1076         
1077         // Otherwise, the block was previously analyzed with a different
1078         // pointer.  We can't represent the result of this case, so we just
1079         // treat this as a phi translation failure.
1080
1081         // Make sure to clean up the Visited map before continuing on to
1082         // PredTranslationFailure.
1083         for (unsigned i = 0; i < PredList.size(); i++)
1084           Visited.erase(PredList[i].first);
1085
1086         goto PredTranslationFailure;
1087       }
1088     }
1089
1090     // Actually process results here; this need to be a separate loop to avoid
1091     // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1092     // any results for.  (getNonLocalPointerDepFromBB will modify our 
1093     // datastructures in ways the code after the PredTranslationFailure label
1094     // doesn't expect.)
1095     for (unsigned i = 0; i < PredList.size(); i++) {
1096       BasicBlock *Pred = PredList[i].first;
1097       PHITransAddr &PredPointer = PredList[i].second;
1098       Value *PredPtrVal = PredPointer.getAddr();
1099
1100       bool CanTranslate = true;
1101       // If PHI translation was unable to find an available pointer in this
1102       // predecessor, then we have to assume that the pointer is clobbered in
1103       // that predecessor.  We can still do PRE of the load, which would insert
1104       // a computation of the pointer in this predecessor.
1105       if (PredPtrVal == 0)
1106         CanTranslate = false;
1107
1108       // FIXME: it is entirely possible that PHI translating will end up with
1109       // the same value.  Consider PHI translating something like:
1110       // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1111       // to recurse here, pedantically speaking.
1112
1113       // If getNonLocalPointerDepFromBB fails here, that means the cached
1114       // result conflicted with the Visited list; we have to conservatively
1115       // assume it is unknown, but this also does not block PRE of the load.
1116       if (!CanTranslate ||
1117           getNonLocalPointerDepFromBB(PredPointer,
1118                                       Loc.getWithNewPtr(PredPtrVal),
1119                                       isLoad, Pred,
1120                                       Result, Visited)) {
1121         // Add the entry to the Result list.
1122         NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1123         Result.push_back(Entry);
1124
1125         // Since we had a phi translation failure, the cache for CacheKey won't
1126         // include all of the entries that we need to immediately satisfy future
1127         // queries.  Mark this in NonLocalPointerDeps by setting the
1128         // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1129         // cached value to do more work but not miss the phi trans failure.
1130         NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1131         NLPI.Pair = BBSkipFirstBlockPair();
1132         continue;
1133       }
1134     }
1135     
1136     // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1137     CacheInfo = &NonLocalPointerDeps[CacheKey];
1138     Cache = &CacheInfo->NonLocalDeps;
1139     NumSortedEntries = Cache->size();
1140     
1141     // Since we did phi translation, the "Cache" set won't contain all of the
1142     // results for the query.  This is ok (we can still use it to accelerate
1143     // specific block queries) but we can't do the fastpath "return all
1144     // results from the set"  Clear out the indicator for this.
1145     CacheInfo->Pair = BBSkipFirstBlockPair();
1146     SkipFirstBlock = false;
1147     continue;
1148
1149   PredTranslationFailure:
1150     // The following code is "failure"; we can't produce a sane translation
1151     // for the given block.  It assumes that we haven't modified any of
1152     // our datastructures while processing the current block.
1153     
1154     if (Cache == 0) {
1155       // Refresh the CacheInfo/Cache pointer if it got invalidated.
1156       CacheInfo = &NonLocalPointerDeps[CacheKey];
1157       Cache = &CacheInfo->NonLocalDeps;
1158       NumSortedEntries = Cache->size();
1159     }
1160     
1161     // Since we failed phi translation, the "Cache" set won't contain all of the
1162     // results for the query.  This is ok (we can still use it to accelerate
1163     // specific block queries) but we can't do the fastpath "return all
1164     // results from the set".  Clear out the indicator for this.
1165     CacheInfo->Pair = BBSkipFirstBlockPair();
1166     
1167     // If *nothing* works, mark the pointer as unknown.
1168     //
1169     // If this is the magic first block, return this as a clobber of the whole
1170     // incoming value.  Since we can't phi translate to one of the predecessors,
1171     // we have to bail out.
1172     if (SkipFirstBlock)
1173       return true;
1174     
1175     for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
1176       assert(I != Cache->rend() && "Didn't find current block??");
1177       if (I->getBB() != BB)
1178         continue;
1179       
1180       assert(I->getResult().isNonLocal() &&
1181              "Should only be here with transparent block");
1182       I->setResult(MemDepResult::getUnknown());
1183       Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
1184                                          Pointer.getAddr()));
1185       break;
1186     }
1187   }
1188
1189   // Okay, we're done now.  If we added new values to the cache, re-sort it.
1190   SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1191   DEBUG(AssertSorted(*Cache));
1192   return false;
1193 }
1194
1195 /// RemoveCachedNonLocalPointerDependencies - If P exists in
1196 /// CachedNonLocalPointerInfo, remove it.
1197 void MemoryDependenceAnalysis::
1198 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
1199   CachedNonLocalPointerInfo::iterator It = 
1200     NonLocalPointerDeps.find(P);
1201   if (It == NonLocalPointerDeps.end()) return;
1202   
1203   // Remove all of the entries in the BB->val map.  This involves removing
1204   // instructions from the reverse map.
1205   NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1206   
1207   for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1208     Instruction *Target = PInfo[i].getResult().getInst();
1209     if (Target == 0) continue;  // Ignore non-local dep results.
1210     assert(Target->getParent() == PInfo[i].getBB());
1211     
1212     // Eliminating the dirty entry from 'Cache', so update the reverse info.
1213     RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1214   }
1215   
1216   // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1217   NonLocalPointerDeps.erase(It);
1218 }
1219
1220
1221 /// invalidateCachedPointerInfo - This method is used to invalidate cached
1222 /// information about the specified pointer, because it may be too
1223 /// conservative in memdep.  This is an optional call that can be used when
1224 /// the client detects an equivalence between the pointer and some other
1225 /// value and replaces the other value with ptr. This can make Ptr available
1226 /// in more places that cached info does not necessarily keep.
1227 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
1228   // If Ptr isn't really a pointer, just ignore it.
1229   if (!Ptr->getType()->isPointerTy()) return;
1230   // Flush store info for the pointer.
1231   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1232   // Flush load info for the pointer.
1233   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1234 }
1235
1236 /// invalidateCachedPredecessors - Clear the PredIteratorCache info.
1237 /// This needs to be done when the CFG changes, e.g., due to splitting
1238 /// critical edges.
1239 void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
1240   PredCache->clear();
1241 }
1242
1243 /// removeInstruction - Remove an instruction from the dependence analysis,
1244 /// updating the dependence of instructions that previously depended on it.
1245 /// This method attempts to keep the cache coherent using the reverse map.
1246 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
1247   // Walk through the Non-local dependencies, removing this one as the value
1248   // for any cached queries.
1249   NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1250   if (NLDI != NonLocalDeps.end()) {
1251     NonLocalDepInfo &BlockMap = NLDI->second.first;
1252     for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1253          DI != DE; ++DI)
1254       if (Instruction *Inst = DI->getResult().getInst())
1255         RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1256     NonLocalDeps.erase(NLDI);
1257   }
1258
1259   // If we have a cached local dependence query for this instruction, remove it.
1260   //
1261   LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1262   if (LocalDepEntry != LocalDeps.end()) {
1263     // Remove us from DepInst's reverse set now that the local dep info is gone.
1264     if (Instruction *Inst = LocalDepEntry->second.getInst())
1265       RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1266
1267     // Remove this local dependency info.
1268     LocalDeps.erase(LocalDepEntry);
1269   }
1270   
1271   // If we have any cached pointer dependencies on this instruction, remove
1272   // them.  If the instruction has non-pointer type, then it can't be a pointer
1273   // base.
1274   
1275   // Remove it from both the load info and the store info.  The instruction
1276   // can't be in either of these maps if it is non-pointer.
1277   if (RemInst->getType()->isPointerTy()) {
1278     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1279     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1280   }
1281   
1282   // Loop over all of the things that depend on the instruction we're removing.
1283   // 
1284   SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1285
1286   // If we find RemInst as a clobber or Def in any of the maps for other values,
1287   // we need to replace its entry with a dirty version of the instruction after
1288   // it.  If RemInst is a terminator, we use a null dirty value.
1289   //
1290   // Using a dirty version of the instruction after RemInst saves having to scan
1291   // the entire block to get to this point.
1292   MemDepResult NewDirtyVal;
1293   if (!RemInst->isTerminator())
1294     NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
1295   
1296   ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1297   if (ReverseDepIt != ReverseLocalDeps.end()) {
1298     SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
1299     // RemInst can't be the terminator if it has local stuff depending on it.
1300     assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
1301            "Nothing can locally depend on a terminator");
1302     
1303     for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
1304          E = ReverseDeps.end(); I != E; ++I) {
1305       Instruction *InstDependingOnRemInst = *I;
1306       assert(InstDependingOnRemInst != RemInst &&
1307              "Already removed our local dep info");
1308                         
1309       LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1310       
1311       // Make sure to remember that new things depend on NewDepInst.
1312       assert(NewDirtyVal.getInst() && "There is no way something else can have "
1313              "a local dep on this if it is a terminator!");
1314       ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), 
1315                                                 InstDependingOnRemInst));
1316     }
1317     
1318     ReverseLocalDeps.erase(ReverseDepIt);
1319
1320     // Add new reverse deps after scanning the set, to avoid invalidating the
1321     // 'ReverseDeps' reference.
1322     while (!ReverseDepsToAdd.empty()) {
1323       ReverseLocalDeps[ReverseDepsToAdd.back().first]
1324         .insert(ReverseDepsToAdd.back().second);
1325       ReverseDepsToAdd.pop_back();
1326     }
1327   }
1328   
1329   ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1330   if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1331     SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
1332     for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
1333          I != E; ++I) {
1334       assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
1335       
1336       PerInstNLInfo &INLD = NonLocalDeps[*I];
1337       // The information is now dirty!
1338       INLD.second = true;
1339       
1340       for (NonLocalDepInfo::iterator DI = INLD.first.begin(), 
1341            DE = INLD.first.end(); DI != DE; ++DI) {
1342         if (DI->getResult().getInst() != RemInst) continue;
1343         
1344         // Convert to a dirty entry for the subsequent instruction.
1345         DI->setResult(NewDirtyVal);
1346         
1347         if (Instruction *NextI = NewDirtyVal.getInst())
1348           ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
1349       }
1350     }
1351
1352     ReverseNonLocalDeps.erase(ReverseDepIt);
1353
1354     // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1355     while (!ReverseDepsToAdd.empty()) {
1356       ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1357         .insert(ReverseDepsToAdd.back().second);
1358       ReverseDepsToAdd.pop_back();
1359     }
1360   }
1361   
1362   // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1363   // value in the NonLocalPointerDeps info.
1364   ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1365     ReverseNonLocalPtrDeps.find(RemInst);
1366   if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1367     SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
1368     SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1369     
1370     for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
1371          E = Set.end(); I != E; ++I) {
1372       ValueIsLoadPair P = *I;
1373       assert(P.getPointer() != RemInst &&
1374              "Already removed NonLocalPointerDeps info for RemInst");
1375       
1376       NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1377       
1378       // The cache is not valid for any specific block anymore.
1379       NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1380       
1381       // Update any entries for RemInst to use the instruction after it.
1382       for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1383            DI != DE; ++DI) {
1384         if (DI->getResult().getInst() != RemInst) continue;
1385         
1386         // Convert to a dirty entry for the subsequent instruction.
1387         DI->setResult(NewDirtyVal);
1388         
1389         if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1390           ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1391       }
1392       
1393       // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1394       // subsequent value may invalidate the sortedness.
1395       std::sort(NLPDI.begin(), NLPDI.end());
1396     }
1397     
1398     ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1399     
1400     while (!ReversePtrDepsToAdd.empty()) {
1401       ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1402         .insert(ReversePtrDepsToAdd.back().second);
1403       ReversePtrDepsToAdd.pop_back();
1404     }
1405   }
1406   
1407   
1408   assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1409   AA->deleteValue(RemInst);
1410   DEBUG(verifyRemoved(RemInst));
1411 }
1412 /// verifyRemoved - Verify that the specified instruction does not occur
1413 /// in our internal data structures.
1414 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1415   for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1416        E = LocalDeps.end(); I != E; ++I) {
1417     assert(I->first != D && "Inst occurs in data structures");
1418     assert(I->second.getInst() != D &&
1419            "Inst occurs in data structures");
1420   }
1421   
1422   for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1423        E = NonLocalPointerDeps.end(); I != E; ++I) {
1424     assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1425     const NonLocalDepInfo &Val = I->second.NonLocalDeps;
1426     for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1427          II != E; ++II)
1428       assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
1429   }
1430   
1431   for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1432        E = NonLocalDeps.end(); I != E; ++I) {
1433     assert(I->first != D && "Inst occurs in data structures");
1434     const PerInstNLInfo &INLD = I->second;
1435     for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1436          EE = INLD.first.end(); II  != EE; ++II)
1437       assert(II->getResult().getInst() != D && "Inst occurs in data structures");
1438   }
1439   
1440   for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1441        E = ReverseLocalDeps.end(); I != E; ++I) {
1442     assert(I->first != D && "Inst occurs in data structures");
1443     for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1444          EE = I->second.end(); II != EE; ++II)
1445       assert(*II != D && "Inst occurs in data structures");
1446   }
1447   
1448   for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1449        E = ReverseNonLocalDeps.end();
1450        I != E; ++I) {
1451     assert(I->first != D && "Inst occurs in data structures");
1452     for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1453          EE = I->second.end(); II != EE; ++II)
1454       assert(*II != D && "Inst occurs in data structures");
1455   }
1456   
1457   for (ReverseNonLocalPtrDepTy::const_iterator
1458        I = ReverseNonLocalPtrDeps.begin(),
1459        E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1460     assert(I->first != D && "Inst occurs in rev NLPD map");
1461     
1462     for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
1463          E = I->second.end(); II != E; ++II)
1464       assert(*II != ValueIsLoadPair(D, false) &&
1465              *II != ValueIsLoadPair(D, true) &&
1466              "Inst occurs in ReverseNonLocalPtrDeps map");
1467   }
1468   
1469 }