1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements an analysis that determines, for a given memory
11 // operation, what preceding memory operations it depends on. It builds on
12 // alias analysis information, and tries to provide a lazy, caching interface to
13 // a common kind of alias information query.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/MemoryBuiltins.h"
24 #include "llvm/Analysis/PHITransAddr.h"
25 #include "llvm/Analysis/OrderedBasicBlock.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/PredIteratorCache.h"
35 #include "llvm/Support/Debug.h"
38 #define DEBUG_TYPE "memdep"
40 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
41 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
42 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
44 STATISTIC(NumCacheNonLocalPtr,
45 "Number of fully cached non-local ptr responses");
46 STATISTIC(NumCacheDirtyNonLocalPtr,
47 "Number of cached, but dirty, non-local ptr responses");
48 STATISTIC(NumUncacheNonLocalPtr,
49 "Number of uncached non-local ptr responses");
50 STATISTIC(NumCacheCompleteNonLocalPtr,
51 "Number of block queries that were completely cached");
53 // Limit for the number of instructions to scan in a block.
55 static cl::opt<unsigned> BlockScanLimit(
56 "memdep-block-scan-limit", cl::Hidden, cl::init(100),
57 cl::desc("The number of instructions to scan in a block in memory "
58 "dependency analysis (default = 100)"));
60 // Limit on the number of memdep results to process.
61 static const unsigned int NumResultsLimit = 100;
63 char MemoryDependenceAnalysis::ID = 0;
65 // Register this pass...
66 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
67 "Memory Dependence Analysis", false, true)
68 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
69 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
70 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
71 "Memory Dependence Analysis", false, true)
73 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
75 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
77 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
80 /// Clean up memory in between runs
81 void MemoryDependenceAnalysis::releaseMemory() {
84 NonLocalPointerDeps.clear();
85 ReverseLocalDeps.clear();
86 ReverseNonLocalDeps.clear();
87 ReverseNonLocalPtrDeps.clear();
91 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
93 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
95 AU.addRequired<AssumptionCacheTracker>();
96 AU.addRequiredTransitive<AliasAnalysis>();
97 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
100 bool MemoryDependenceAnalysis::runOnFunction(Function &F) {
101 AA = &getAnalysis<AliasAnalysis>();
102 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
103 DominatorTreeWrapperPass *DTWP =
104 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
105 DT = DTWP ? &DTWP->getDomTree() : nullptr;
106 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
110 /// RemoveFromReverseMap - This is a helper function that removes Val from
111 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry.
112 template <typename KeyTy>
113 static void RemoveFromReverseMap(DenseMap<Instruction*,
114 SmallPtrSet<KeyTy, 4> > &ReverseMap,
115 Instruction *Inst, KeyTy Val) {
116 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
117 InstIt = ReverseMap.find(Inst);
118 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
119 bool Found = InstIt->second.erase(Val);
120 assert(Found && "Invalid reverse map!"); (void)Found;
121 if (InstIt->second.empty())
122 ReverseMap.erase(InstIt);
125 /// GetLocation - If the given instruction references a specific memory
126 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
127 /// Return a ModRefInfo value describing the general behavior of the
129 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
130 const TargetLibraryInfo &TLI) {
131 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
132 if (LI->isUnordered()) {
133 Loc = MemoryLocation::get(LI);
136 if (LI->getOrdering() == Monotonic) {
137 Loc = MemoryLocation::get(LI);
140 Loc = MemoryLocation();
144 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
145 if (SI->isUnordered()) {
146 Loc = MemoryLocation::get(SI);
149 if (SI->getOrdering() == Monotonic) {
150 Loc = MemoryLocation::get(SI);
153 Loc = MemoryLocation();
157 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
158 Loc = MemoryLocation::get(V);
162 if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
163 // calls to free() deallocate the entire structure
164 Loc = MemoryLocation(CI->getArgOperand(0));
168 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
171 switch (II->getIntrinsicID()) {
172 case Intrinsic::lifetime_start:
173 case Intrinsic::lifetime_end:
174 case Intrinsic::invariant_start:
175 II->getAAMetadata(AAInfo);
176 Loc = MemoryLocation(
177 II->getArgOperand(1),
178 cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(), AAInfo);
179 // These intrinsics don't really modify the memory, but returning Mod
180 // will allow them to be handled conservatively.
182 case Intrinsic::invariant_end:
183 II->getAAMetadata(AAInfo);
184 Loc = MemoryLocation(
185 II->getArgOperand(2),
186 cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(), AAInfo);
187 // These intrinsics don't really modify the memory, but returning Mod
188 // will allow them to be handled conservatively.
195 // Otherwise, just do the coarse-grained thing that always works.
196 if (Inst->mayWriteToMemory())
198 if (Inst->mayReadFromMemory())
203 /// getCallSiteDependencyFrom - Private helper for finding the local
204 /// dependencies of a call site.
205 MemDepResult MemoryDependenceAnalysis::
206 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
207 BasicBlock::iterator ScanIt, BasicBlock *BB) {
208 unsigned Limit = BlockScanLimit;
210 // Walk backwards through the block, looking for dependencies
211 while (ScanIt != BB->begin()) {
212 // Limit the amount of scanning we do so we don't end up with quadratic
213 // running time on extreme testcases.
216 return MemDepResult::getUnknown();
218 Instruction *Inst = --ScanIt;
220 // If this inst is a memory op, get the pointer it accessed
222 ModRefInfo MR = GetLocation(Inst, Loc, *TLI);
224 // A simple instruction.
225 if (AA->getModRefInfo(CS, Loc) != MRI_NoModRef)
226 return MemDepResult::getClobber(Inst);
230 if (auto InstCS = CallSite(Inst)) {
231 // Debug intrinsics don't cause dependences.
232 if (isa<DbgInfoIntrinsic>(Inst)) continue;
233 // If these two calls do not interfere, look past it.
234 switch (AA->getModRefInfo(CS, InstCS)) {
236 // If the two calls are the same, return InstCS as a Def, so that
237 // CS can be found redundant and eliminated.
238 if (isReadOnlyCall && !(MR & MRI_Mod) &&
239 CS.getInstruction()->isIdenticalToWhenDefined(Inst))
240 return MemDepResult::getDef(Inst);
242 // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
246 return MemDepResult::getClobber(Inst);
250 // If we could not obtain a pointer for the instruction and the instruction
251 // touches memory then assume that this is a dependency.
252 if (MR != MRI_NoModRef)
253 return MemDepResult::getClobber(Inst);
256 // No dependence found. If this is the entry block of the function, it is
257 // unknown, otherwise it is non-local.
258 if (BB != &BB->getParent()->getEntryBlock())
259 return MemDepResult::getNonLocal();
260 return MemDepResult::getNonFuncLocal();
263 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
264 /// would fully overlap MemLoc if done as a wider legal integer load.
266 /// MemLocBase, MemLocOffset are lazily computed here the first time the
267 /// base/offs of memloc is needed.
268 static bool isLoadLoadClobberIfExtendedToFullWidth(const MemoryLocation &MemLoc,
269 const Value *&MemLocBase,
271 const LoadInst *LI) {
272 const DataLayout &DL = LI->getModule()->getDataLayout();
274 // If we haven't already computed the base/offset of MemLoc, do so now.
276 MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL);
278 unsigned Size = MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize(
279 MemLocBase, MemLocOffs, MemLoc.Size, LI);
283 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
284 /// looks at a memory location for a load (specified by MemLocBase, Offs,
285 /// and Size) and compares it against a load. If the specified load could
286 /// be safely widened to a larger integer load that is 1) still efficient,
287 /// 2) safe for the target, and 3) would provide the specified memory
288 /// location value, then this function returns the size in bytes of the
289 /// load width to use. If not, this returns zero.
290 unsigned MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize(
291 const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize,
292 const LoadInst *LI) {
293 // We can only extend simple integer loads.
294 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0;
296 // Load widening is hostile to ThreadSanitizer: it may cause false positives
297 // or make the reports more cryptic (access sizes are wrong).
298 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
301 const DataLayout &DL = LI->getModule()->getDataLayout();
303 // Get the base of this load.
305 const Value *LIBase =
306 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL);
308 // If the two pointers are not based on the same pointer, we can't tell that
310 if (LIBase != MemLocBase) return 0;
312 // Okay, the two values are based on the same pointer, but returned as
313 // no-alias. This happens when we have things like two byte loads at "P+1"
314 // and "P+3". Check to see if increasing the size of the "LI" load up to its
315 // alignment (or the largest native integer type) will allow us to load all
316 // the bits required by MemLoc.
318 // If MemLoc is before LI, then no widening of LI will help us out.
319 if (MemLocOffs < LIOffs) return 0;
321 // Get the alignment of the load in bytes. We assume that it is safe to load
322 // any legal integer up to this size without a problem. For example, if we're
323 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
324 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it
326 unsigned LoadAlign = LI->getAlignment();
328 int64_t MemLocEnd = MemLocOffs+MemLocSize;
330 // If no amount of rounding up will let MemLoc fit into LI, then bail out.
331 if (LIOffs+LoadAlign < MemLocEnd) return 0;
333 // This is the size of the load to try. Start with the next larger power of
335 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U;
336 NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
339 // If this load size is bigger than our known alignment or would not fit
340 // into a native integer register, then we fail.
341 if (NewLoadByteSize > LoadAlign ||
342 !DL.fitsInLegalInteger(NewLoadByteSize*8))
345 if (LIOffs + NewLoadByteSize > MemLocEnd &&
346 LI->getParent()->getParent()->hasFnAttribute(
347 Attribute::SanitizeAddress))
348 // We will be reading past the location accessed by the original program.
349 // While this is safe in a regular build, Address Safety analysis tools
350 // may start reporting false warnings. So, don't do widening.
353 // If a load of this width would include all of MemLoc, then we succeed.
354 if (LIOffs+NewLoadByteSize >= MemLocEnd)
355 return NewLoadByteSize;
357 NewLoadByteSize <<= 1;
361 static bool isVolatile(Instruction *Inst) {
362 if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
363 return LI->isVolatile();
364 else if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
365 return SI->isVolatile();
366 else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(Inst))
367 return AI->isVolatile();
372 /// getPointerDependencyFrom - Return the instruction on which a memory
373 /// location depends. If isLoad is true, this routine ignores may-aliases with
374 /// read-only operations. If isLoad is false, this routine ignores may-aliases
375 /// with reads from read-only locations. If possible, pass the query
376 /// instruction as well; this function may take advantage of the metadata
377 /// annotated to the query instruction to refine the result.
378 MemDepResult MemoryDependenceAnalysis::getPointerDependencyFrom(
379 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
380 BasicBlock *BB, Instruction *QueryInst) {
382 const Value *MemLocBase = nullptr;
383 int64_t MemLocOffset = 0;
384 unsigned Limit = BlockScanLimit;
385 bool isInvariantLoad = false;
387 // We must be careful with atomic accesses, as they may allow another thread
388 // to touch this location, cloberring it. We are conservative: if the
389 // QueryInst is not a simple (non-atomic) memory access, we automatically
390 // return getClobber.
391 // If it is simple, we know based on the results of
392 // "Compiler testing via a theory of sound optimisations in the C11/C++11
393 // memory model" in PLDI 2013, that a non-atomic location can only be
394 // clobbered between a pair of a release and an acquire action, with no
395 // access to the location in between.
396 // Here is an example for giving the general intuition behind this rule.
397 // In the following code:
399 // release action; [1]
400 // acquire action; [4]
402 // It is unsafe to replace %val by 0 because another thread may be running:
403 // acquire action; [2]
405 // release action; [3]
406 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
407 // being 42. A key property of this program however is that if either
408 // 1 or 4 were missing, there would be a race between the store of 42
409 // either the store of 0 or the load (making the whole progam racy).
410 // The paper mentionned above shows that the same property is respected
411 // by every program that can detect any optimisation of that kind: either
412 // it is racy (undefined) or there is a release followed by an acquire
413 // between the pair of accesses under consideration.
415 // If the load is invariant, we "know" that it doesn't alias *any* write. We
416 // do want to respect mustalias results since defs are useful for value
417 // forwarding, but any mayalias write can be assumed to be noalias.
418 // Arguably, this logic should be pushed inside AliasAnalysis itself.
419 if (isLoad && QueryInst) {
420 LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
421 if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr)
422 isInvariantLoad = true;
425 const DataLayout &DL = BB->getModule()->getDataLayout();
427 // Create a numbered basic block to lazily compute and cache instruction
428 // positions inside a BB. This is used to provide fast queries for relative
429 // position between two instructions in a BB and can be used by
430 // AliasAnalysis::callCapturesBefore.
431 OrderedBasicBlock OBB(BB);
433 // Walk backwards through the basic block, looking for dependencies.
434 while (ScanIt != BB->begin()) {
435 Instruction *Inst = --ScanIt;
437 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
438 // Debug intrinsics don't (and can't) cause dependencies.
439 if (isa<DbgInfoIntrinsic>(II)) continue;
441 // Limit the amount of scanning we do so we don't end up with quadratic
442 // running time on extreme testcases.
445 return MemDepResult::getUnknown();
447 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
448 // If we reach a lifetime begin or end marker, then the query ends here
449 // because the value is undefined.
450 if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
451 // FIXME: This only considers queries directly on the invariant-tagged
452 // pointer, not on query pointers that are indexed off of them. It'd
453 // be nice to handle that at some point (the right approach is to use
454 // GetPointerBaseWithConstantOffset).
455 if (AA->isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc))
456 return MemDepResult::getDef(II);
461 // Values depend on loads if the pointers are must aliased. This means that
462 // a load depends on another must aliased load from the same value.
463 // One exception is atomic loads: a value can depend on an atomic load that it
464 // does not alias with when this atomic load indicates that another thread may
465 // be accessing the location.
466 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
468 // While volatile access cannot be eliminated, they do not have to clobber
469 // non-aliasing locations, as normal accesses, for example, can be safely
470 // reordered with volatile accesses.
471 if (LI->isVolatile()) {
473 // Original QueryInst *may* be volatile
474 return MemDepResult::getClobber(LI);
475 if (isVolatile(QueryInst))
476 // Ordering required if QueryInst is itself volatile
477 return MemDepResult::getClobber(LI);
478 // Otherwise, volatile doesn't imply any special ordering
481 // Atomic loads have complications involved.
482 // A Monotonic (or higher) load is OK if the query inst is itself not atomic.
483 // FIXME: This is overly conservative.
484 if (LI->isAtomic() && LI->getOrdering() > Unordered) {
486 return MemDepResult::getClobber(LI);
487 if (LI->getOrdering() != Monotonic)
488 return MemDepResult::getClobber(LI);
489 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) {
490 if (!QueryLI->isSimple())
491 return MemDepResult::getClobber(LI);
492 } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) {
493 if (!QuerySI->isSimple())
494 return MemDepResult::getClobber(LI);
495 } else if (QueryInst->mayReadOrWriteMemory()) {
496 return MemDepResult::getClobber(LI);
500 MemoryLocation LoadLoc = MemoryLocation::get(LI);
502 // If we found a pointer, check if it could be the same as our pointer.
503 AliasResult R = AA->alias(LoadLoc, MemLoc);
507 // If this is an over-aligned integer load (for example,
508 // "load i8* %P, align 4") see if it would obviously overlap with the
509 // queried location if widened to a larger load (e.g. if the queried
510 // location is 1 byte at P+1). If so, return it as a load/load
511 // clobber result, allowing the client to decide to widen the load if
513 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
514 if (LI->getAlignment() * 8 > ITy->getPrimitiveSizeInBits() &&
515 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
517 return MemDepResult::getClobber(Inst);
522 // Must aliased loads are defs of each other.
524 return MemDepResult::getDef(Inst);
526 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
527 // in terms of clobbering loads, but since it does this by looking
528 // at the clobbering load directly, it doesn't know about any
529 // phi translation that may have happened along the way.
531 // If we have a partial alias, then return this as a clobber for the
533 if (R == PartialAlias)
534 return MemDepResult::getClobber(Inst);
537 // Random may-alias loads don't depend on each other without a
542 // Stores don't depend on other no-aliased accesses.
546 // Stores don't alias loads from read-only memory.
547 if (AA->pointsToConstantMemory(LoadLoc))
550 // Stores depend on may/must aliased loads.
551 return MemDepResult::getDef(Inst);
554 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
555 // Atomic stores have complications involved.
556 // A Monotonic store is OK if the query inst is itself not atomic.
557 // FIXME: This is overly conservative.
558 if (!SI->isUnordered()) {
560 return MemDepResult::getClobber(SI);
561 if (SI->getOrdering() != Monotonic)
562 return MemDepResult::getClobber(SI);
563 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) {
564 if (!QueryLI->isSimple())
565 return MemDepResult::getClobber(SI);
566 } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) {
567 if (!QuerySI->isSimple())
568 return MemDepResult::getClobber(SI);
569 } else if (QueryInst->mayReadOrWriteMemory()) {
570 return MemDepResult::getClobber(SI);
574 // FIXME: this is overly conservative.
575 // While volatile access cannot be eliminated, they do not have to clobber
576 // non-aliasing locations, as normal accesses can for example be reordered
577 // with volatile accesses.
578 if (SI->isVolatile())
579 return MemDepResult::getClobber(SI);
581 // If alias analysis can tell that this store is guaranteed to not modify
582 // the query pointer, ignore it. Use getModRefInfo to handle cases where
583 // the query pointer points to constant memory etc.
584 if (AA->getModRefInfo(SI, MemLoc) == MRI_NoModRef)
587 // Ok, this store might clobber the query pointer. Check to see if it is
588 // a must alias: in this case, we want to return this as a def.
589 MemoryLocation StoreLoc = MemoryLocation::get(SI);
591 // If we found a pointer, check if it could be the same as our pointer.
592 AliasResult R = AA->alias(StoreLoc, MemLoc);
597 return MemDepResult::getDef(Inst);
600 return MemDepResult::getClobber(Inst);
603 // If this is an allocation, and if we know that the accessed pointer is to
604 // the allocation, return Def. This means that there is no dependence and
605 // the access can be optimized based on that. For example, a load could
607 // Note: Only determine this to be a malloc if Inst is the malloc call, not
608 // a subsequent bitcast of the malloc call result. There can be stores to
609 // the malloced memory between the malloc call and its bitcast uses, and we
610 // need to continue scanning until the malloc call.
611 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) {
612 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL);
614 if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
615 return MemDepResult::getDef(Inst);
618 // Be conservative if the accessed pointer may alias the allocation.
619 if (AA->alias(Inst, AccessPtr) != NoAlias)
620 return MemDepResult::getClobber(Inst);
621 // If the allocation is not aliased and does not read memory (like
622 // strdup), it is safe to ignore.
623 if (isa<AllocaInst>(Inst) ||
624 isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI))
631 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
632 ModRefInfo MR = AA->getModRefInfo(Inst, MemLoc);
633 // If necessary, perform additional analysis.
634 if (MR == MRI_ModRef)
635 MR = AA->callCapturesBefore(Inst, MemLoc, DT, &OBB);
638 // If the call has no effect on the queried pointer, just ignore it.
641 return MemDepResult::getClobber(Inst);
643 // If the call is known to never store to the pointer, and if this is a
644 // load query, we can safely ignore it (scan past it).
648 // Otherwise, there is a potential dependence. Return a clobber.
649 return MemDepResult::getClobber(Inst);
653 // No dependence found. If this is the entry block of the function, it is
654 // unknown, otherwise it is non-local.
655 if (BB != &BB->getParent()->getEntryBlock())
656 return MemDepResult::getNonLocal();
657 return MemDepResult::getNonFuncLocal();
660 /// getDependency - Return the instruction on which a memory operation
662 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
663 Instruction *ScanPos = QueryInst;
665 // Check for a cached result
666 MemDepResult &LocalCache = LocalDeps[QueryInst];
668 // If the cached entry is non-dirty, just return it. Note that this depends
669 // on MemDepResult's default constructing to 'dirty'.
670 if (!LocalCache.isDirty())
673 // Otherwise, if we have a dirty entry, we know we can start the scan at that
674 // instruction, which may save us some work.
675 if (Instruction *Inst = LocalCache.getInst()) {
678 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
681 BasicBlock *QueryParent = QueryInst->getParent();
684 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
685 // No dependence found. If this is the entry block of the function, it is
686 // unknown, otherwise it is non-local.
687 if (QueryParent != &QueryParent->getParent()->getEntryBlock())
688 LocalCache = MemDepResult::getNonLocal();
690 LocalCache = MemDepResult::getNonFuncLocal();
692 MemoryLocation MemLoc;
693 ModRefInfo MR = GetLocation(QueryInst, MemLoc, *TLI);
695 // If we can do a pointer scan, make it happen.
696 bool isLoad = !(MR & MRI_Mod);
697 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
698 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
700 LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos,
701 QueryParent, QueryInst);
702 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
703 CallSite QueryCS(QueryInst);
704 bool isReadOnly = AA->onlyReadsMemory(QueryCS);
705 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
708 // Non-memory instruction.
709 LocalCache = MemDepResult::getUnknown();
712 // Remember the result!
713 if (Instruction *I = LocalCache.getInst())
714 ReverseLocalDeps[I].insert(QueryInst);
720 /// AssertSorted - This method is used when -debug is specified to verify that
721 /// cache arrays are properly kept sorted.
722 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
724 if (Count == -1) Count = Cache.size();
725 if (Count == 0) return;
727 for (unsigned i = 1; i != unsigned(Count); ++i)
728 assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
732 /// getNonLocalCallDependency - Perform a full dependency query for the
733 /// specified call, returning the set of blocks that the value is
734 /// potentially live across. The returned set of results will include a
735 /// "NonLocal" result for all blocks where the value is live across.
737 /// This method assumes the instruction returns a "NonLocal" dependency
738 /// within its own block.
740 /// This returns a reference to an internal data structure that may be
741 /// invalidated on the next non-local query or when an instruction is
742 /// removed. Clients must copy this data if they want it around longer than
744 const MemoryDependenceAnalysis::NonLocalDepInfo &
745 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
746 assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
747 "getNonLocalCallDependency should only be used on calls with non-local deps!");
748 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
749 NonLocalDepInfo &Cache = CacheP.first;
751 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In
752 /// the cached case, this can happen due to instructions being deleted etc. In
753 /// the uncached case, this starts out as the set of predecessors we care
755 SmallVector<BasicBlock*, 32> DirtyBlocks;
757 if (!Cache.empty()) {
758 // Okay, we have a cache entry. If we know it is not dirty, just return it
759 // with no computation.
760 if (!CacheP.second) {
765 // If we already have a partially computed set of results, scan them to
766 // determine what is dirty, seeding our initial DirtyBlocks worklist.
767 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
769 if (I->getResult().isDirty())
770 DirtyBlocks.push_back(I->getBB());
772 // Sort the cache so that we can do fast binary search lookups below.
773 std::sort(Cache.begin(), Cache.end());
775 ++NumCacheDirtyNonLocal;
776 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
777 // << Cache.size() << " cached: " << *QueryInst;
779 // Seed DirtyBlocks with each of the preds of QueryInst's block.
780 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
781 for (BasicBlock *Pred : PredCache.get(QueryBB))
782 DirtyBlocks.push_back(Pred);
783 ++NumUncacheNonLocal;
786 // isReadonlyCall - If this is a read-only call, we can be more aggressive.
787 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
789 SmallPtrSet<BasicBlock*, 64> Visited;
791 unsigned NumSortedEntries = Cache.size();
792 DEBUG(AssertSorted(Cache));
794 // Iterate while we still have blocks to update.
795 while (!DirtyBlocks.empty()) {
796 BasicBlock *DirtyBB = DirtyBlocks.back();
797 DirtyBlocks.pop_back();
799 // Already processed this block?
800 if (!Visited.insert(DirtyBB).second)
803 // Do a binary search to see if we already have an entry for this block in
804 // the cache set. If so, find it.
805 DEBUG(AssertSorted(Cache, NumSortedEntries));
806 NonLocalDepInfo::iterator Entry =
807 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
808 NonLocalDepEntry(DirtyBB));
809 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
812 NonLocalDepEntry *ExistingResult = nullptr;
813 if (Entry != Cache.begin()+NumSortedEntries &&
814 Entry->getBB() == DirtyBB) {
815 // If we already have an entry, and if it isn't already dirty, the block
817 if (!Entry->getResult().isDirty())
820 // Otherwise, remember this slot so we can update the value.
821 ExistingResult = &*Entry;
824 // If the dirty entry has a pointer, start scanning from it so we don't have
825 // to rescan the entire block.
826 BasicBlock::iterator ScanPos = DirtyBB->end();
827 if (ExistingResult) {
828 if (Instruction *Inst = ExistingResult->getResult().getInst()) {
830 // We're removing QueryInst's use of Inst.
831 RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
832 QueryCS.getInstruction());
836 // Find out if this block has a local dependency for QueryInst.
839 if (ScanPos != DirtyBB->begin()) {
840 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
841 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
842 // No dependence found. If this is the entry block of the function, it is
843 // a clobber, otherwise it is unknown.
844 Dep = MemDepResult::getNonLocal();
846 Dep = MemDepResult::getNonFuncLocal();
849 // If we had a dirty entry for the block, update it. Otherwise, just add
852 ExistingResult->setResult(Dep);
854 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
856 // If the block has a dependency (i.e. it isn't completely transparent to
857 // the value), remember the association!
858 if (!Dep.isNonLocal()) {
859 // Keep the ReverseNonLocalDeps map up to date so we can efficiently
860 // update this when we remove instructions.
861 if (Instruction *Inst = Dep.getInst())
862 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
865 // If the block *is* completely transparent to the load, we need to check
866 // the predecessors of this block. Add them to our worklist.
867 for (BasicBlock *Pred : PredCache.get(DirtyBB))
868 DirtyBlocks.push_back(Pred);
875 /// getNonLocalPointerDependency - Perform a full dependency query for an
876 /// access to the specified (non-volatile) memory location, returning the
877 /// set of instructions that either define or clobber the value.
879 /// This method assumes the pointer has a "NonLocal" dependency within its
882 void MemoryDependenceAnalysis::
883 getNonLocalPointerDependency(Instruction *QueryInst,
884 SmallVectorImpl<NonLocalDepResult> &Result) {
885 const MemoryLocation Loc = MemoryLocation::get(QueryInst);
886 bool isLoad = isa<LoadInst>(QueryInst);
887 BasicBlock *FromBB = QueryInst->getParent();
890 assert(Loc.Ptr->getType()->isPointerTy() &&
891 "Can't get pointer deps of a non-pointer!");
894 // This routine does not expect to deal with volatile instructions.
895 // Doing so would require piping through the QueryInst all the way through.
896 // TODO: volatiles can't be elided, but they can be reordered with other
897 // non-volatile accesses.
899 // We currently give up on any instruction which is ordered, but we do handle
900 // atomic instructions which are unordered.
901 // TODO: Handle ordered instructions
902 auto isOrdered = [](Instruction *Inst) {
903 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
904 return !LI->isUnordered();
905 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
906 return !SI->isUnordered();
910 if (isVolatile(QueryInst) || isOrdered(QueryInst)) {
911 Result.push_back(NonLocalDepResult(FromBB,
912 MemDepResult::getUnknown(),
913 const_cast<Value *>(Loc.Ptr)));
916 const DataLayout &DL = FromBB->getModule()->getDataLayout();
917 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, AC);
919 // This is the set of blocks we've inspected, and the pointer we consider in
920 // each block. Because of critical edges, we currently bail out if querying
921 // a block with multiple different pointers. This can happen during PHI
923 DenseMap<BasicBlock*, Value*> Visited;
924 if (!getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
925 Result, Visited, true))
928 Result.push_back(NonLocalDepResult(FromBB,
929 MemDepResult::getUnknown(),
930 const_cast<Value *>(Loc.Ptr)));
933 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with
934 /// Pointer/PointeeSize using either cached information in Cache or by doing a
935 /// lookup (which may use dirty cache info if available). If we do a lookup,
936 /// add the result to the cache.
937 MemDepResult MemoryDependenceAnalysis::GetNonLocalInfoForBlock(
938 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
939 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
941 // Do a binary search to see if we already have an entry for this block in
942 // the cache set. If so, find it.
943 NonLocalDepInfo::iterator Entry =
944 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
945 NonLocalDepEntry(BB));
946 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
949 NonLocalDepEntry *ExistingResult = nullptr;
950 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
951 ExistingResult = &*Entry;
953 // If we have a cached entry, and it is non-dirty, use it as the value for
955 if (ExistingResult && !ExistingResult->getResult().isDirty()) {
956 ++NumCacheNonLocalPtr;
957 return ExistingResult->getResult();
960 // Otherwise, we have to scan for the value. If we have a dirty cache
961 // entry, start scanning from its position, otherwise we scan from the end
963 BasicBlock::iterator ScanPos = BB->end();
964 if (ExistingResult && ExistingResult->getResult().getInst()) {
965 assert(ExistingResult->getResult().getInst()->getParent() == BB &&
966 "Instruction invalidated?");
967 ++NumCacheDirtyNonLocalPtr;
968 ScanPos = ExistingResult->getResult().getInst();
970 // Eliminating the dirty entry from 'Cache', so update the reverse info.
971 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
972 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
974 ++NumUncacheNonLocalPtr;
977 // Scan the block for the dependency.
978 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB,
981 // If we had a dirty entry for the block, update it. Otherwise, just add
984 ExistingResult->setResult(Dep);
986 Cache->push_back(NonLocalDepEntry(BB, Dep));
988 // If the block has a dependency (i.e. it isn't completely transparent to
989 // the value), remember the reverse association because we just added it
991 if (!Dep.isDef() && !Dep.isClobber())
994 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
995 // update MemDep when we remove instructions.
996 Instruction *Inst = Dep.getInst();
997 assert(Inst && "Didn't depend on anything?");
998 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
999 ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
1003 /// SortNonLocalDepInfoCache - Sort the NonLocalDepInfo cache, given a certain
1004 /// number of elements in the array that are already properly ordered. This is
1005 /// optimized for the case when only a few entries are added.
1007 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
1008 unsigned NumSortedEntries) {
1009 switch (Cache.size() - NumSortedEntries) {
1011 // done, no new entries.
1014 // Two new entries, insert the last one into place.
1015 NonLocalDepEntry Val = Cache.back();
1017 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
1018 std::upper_bound(Cache.begin(), Cache.end()-1, Val);
1019 Cache.insert(Entry, Val);
1023 // One new entry, Just insert the new value at the appropriate position.
1024 if (Cache.size() != 1) {
1025 NonLocalDepEntry Val = Cache.back();
1027 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
1028 std::upper_bound(Cache.begin(), Cache.end(), Val);
1029 Cache.insert(Entry, Val);
1033 // Added many values, do a full scale sort.
1034 std::sort(Cache.begin(), Cache.end());
1039 /// getNonLocalPointerDepFromBB - Perform a dependency query based on
1040 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def
1041 /// results to the results vector and keep track of which blocks are visited in
1044 /// This has special behavior for the first block queries (when SkipFirstBlock
1045 /// is true). In this special case, it ignores the contents of the specified
1046 /// block and starts returning dependence info for its predecessors.
1048 /// This function returns false on success, or true to indicate that it could
1049 /// not compute dependence information for some reason. This should be treated
1050 /// as a clobber dependence on the first instruction in the predecessor block.
1051 bool MemoryDependenceAnalysis::getNonLocalPointerDepFromBB(
1052 Instruction *QueryInst, const PHITransAddr &Pointer,
1053 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1054 SmallVectorImpl<NonLocalDepResult> &Result,
1055 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) {
1056 // Look up the cached info for Pointer.
1057 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1059 // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1060 // CacheKey, this value will be inserted as the associated value. Otherwise,
1061 // it'll be ignored, and we'll have to check to see if the cached size and
1062 // aa tags are consistent with the current query.
1063 NonLocalPointerInfo InitialNLPI;
1064 InitialNLPI.Size = Loc.Size;
1065 InitialNLPI.AATags = Loc.AATags;
1067 // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1068 // already have one.
1069 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1070 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1071 NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1073 // If we already have a cache entry for this CacheKey, we may need to do some
1074 // work to reconcile the cache entry and the current query.
1076 if (CacheInfo->Size < Loc.Size) {
1077 // The query's Size is greater than the cached one. Throw out the
1078 // cached data and proceed with the query at the greater size.
1079 CacheInfo->Pair = BBSkipFirstBlockPair();
1080 CacheInfo->Size = Loc.Size;
1081 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
1082 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
1083 if (Instruction *Inst = DI->getResult().getInst())
1084 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1085 CacheInfo->NonLocalDeps.clear();
1086 } else if (CacheInfo->Size > Loc.Size) {
1087 // This query's Size is less than the cached one. Conservatively restart
1088 // the query using the greater size.
1089 return getNonLocalPointerDepFromBB(QueryInst, Pointer,
1090 Loc.getWithNewSize(CacheInfo->Size),
1091 isLoad, StartBB, Result, Visited,
1095 // If the query's AATags are inconsistent with the cached one,
1096 // conservatively throw out the cached data and restart the query with
1097 // no tag if needed.
1098 if (CacheInfo->AATags != Loc.AATags) {
1099 if (CacheInfo->AATags) {
1100 CacheInfo->Pair = BBSkipFirstBlockPair();
1101 CacheInfo->AATags = AAMDNodes();
1102 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
1103 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
1104 if (Instruction *Inst = DI->getResult().getInst())
1105 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1106 CacheInfo->NonLocalDeps.clear();
1109 return getNonLocalPointerDepFromBB(QueryInst,
1110 Pointer, Loc.getWithoutAATags(),
1111 isLoad, StartBB, Result, Visited,
1116 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1118 // If we have valid cached information for exactly the block we are
1119 // investigating, just return it with no recomputation.
1120 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1121 // We have a fully cached result for this query then we can just return the
1122 // cached results and populate the visited set. However, we have to verify
1123 // that we don't already have conflicting results for these blocks. Check
1124 // to ensure that if a block in the results set is in the visited set that
1125 // it was for the same pointer query.
1126 if (!Visited.empty()) {
1127 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
1129 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
1130 if (VI == Visited.end() || VI->second == Pointer.getAddr())
1133 // We have a pointer mismatch in a block. Just return clobber, saying
1134 // that something was clobbered in this result. We could also do a
1135 // non-fully cached query, but there is little point in doing this.
1140 Value *Addr = Pointer.getAddr();
1141 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
1143 Visited.insert(std::make_pair(I->getBB(), Addr));
1144 if (I->getResult().isNonLocal()) {
1149 Result.push_back(NonLocalDepResult(I->getBB(),
1150 MemDepResult::getUnknown(),
1152 } else if (DT->isReachableFromEntry(I->getBB())) {
1153 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
1156 ++NumCacheCompleteNonLocalPtr;
1160 // Otherwise, either this is a new block, a block with an invalid cache
1161 // pointer or one that we're about to invalidate by putting more info into it
1162 // than its valid cache info. If empty, the result will be valid cache info,
1163 // otherwise it isn't.
1165 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1167 CacheInfo->Pair = BBSkipFirstBlockPair();
1169 SmallVector<BasicBlock*, 32> Worklist;
1170 Worklist.push_back(StartBB);
1172 // PredList used inside loop.
1173 SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList;
1175 // Keep track of the entries that we know are sorted. Previously cached
1176 // entries will all be sorted. The entries we add we only sort on demand (we
1177 // don't insert every element into its sorted position). We know that we
1178 // won't get any reuse from currently inserted values, because we don't
1179 // revisit blocks after we insert info for them.
1180 unsigned NumSortedEntries = Cache->size();
1181 DEBUG(AssertSorted(*Cache));
1183 while (!Worklist.empty()) {
1184 BasicBlock *BB = Worklist.pop_back_val();
1186 // If we do process a large number of blocks it becomes very expensive and
1187 // likely it isn't worth worrying about
1188 if (Result.size() > NumResultsLimit) {
1190 // Sort it now (if needed) so that recursive invocations of
1191 // getNonLocalPointerDepFromBB and other routines that could reuse the
1192 // cache value will only see properly sorted cache arrays.
1193 if (Cache && NumSortedEntries != Cache->size()) {
1194 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1196 // Since we bail out, the "Cache" set won't contain all of the
1197 // results for the query. This is ok (we can still use it to accelerate
1198 // specific block queries) but we can't do the fastpath "return all
1199 // results from the set". Clear out the indicator for this.
1200 CacheInfo->Pair = BBSkipFirstBlockPair();
1204 // Skip the first block if we have it.
1205 if (!SkipFirstBlock) {
1206 // Analyze the dependency of *Pointer in FromBB. See if we already have
1208 assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1210 // Get the dependency info for Pointer in BB. If we have cached
1211 // information, we will use it, otherwise we compute it.
1212 DEBUG(AssertSorted(*Cache, NumSortedEntries));
1213 MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst,
1214 Loc, isLoad, BB, Cache,
1217 // If we got a Def or Clobber, add this to the list of results.
1218 if (!Dep.isNonLocal()) {
1220 Result.push_back(NonLocalDepResult(BB,
1221 MemDepResult::getUnknown(),
1222 Pointer.getAddr()));
1224 } else if (DT->isReachableFromEntry(BB)) {
1225 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1231 // If 'Pointer' is an instruction defined in this block, then we need to do
1232 // phi translation to change it into a value live in the predecessor block.
1233 // If not, we just add the predecessors to the worklist and scan them with
1234 // the same Pointer.
1235 if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1236 SkipFirstBlock = false;
1237 SmallVector<BasicBlock*, 16> NewBlocks;
1238 for (BasicBlock *Pred : PredCache.get(BB)) {
1239 // Verify that we haven't looked at this block yet.
1240 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1241 InsertRes = Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1242 if (InsertRes.second) {
1243 // First time we've looked at *PI.
1244 NewBlocks.push_back(Pred);
1248 // If we have seen this block before, but it was with a different
1249 // pointer then we have a phi translation failure and we have to treat
1250 // this as a clobber.
1251 if (InsertRes.first->second != Pointer.getAddr()) {
1252 // Make sure to clean up the Visited map before continuing on to
1253 // PredTranslationFailure.
1254 for (unsigned i = 0; i < NewBlocks.size(); i++)
1255 Visited.erase(NewBlocks[i]);
1256 goto PredTranslationFailure;
1259 Worklist.append(NewBlocks.begin(), NewBlocks.end());
1263 // We do need to do phi translation, if we know ahead of time we can't phi
1264 // translate this value, don't even try.
1265 if (!Pointer.IsPotentiallyPHITranslatable())
1266 goto PredTranslationFailure;
1268 // We may have added values to the cache list before this PHI translation.
1269 // If so, we haven't done anything to ensure that the cache remains sorted.
1270 // Sort it now (if needed) so that recursive invocations of
1271 // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1272 // value will only see properly sorted cache arrays.
1273 if (Cache && NumSortedEntries != Cache->size()) {
1274 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1275 NumSortedEntries = Cache->size();
1280 for (BasicBlock *Pred : PredCache.get(BB)) {
1281 PredList.push_back(std::make_pair(Pred, Pointer));
1283 // Get the PHI translated pointer in this predecessor. This can fail if
1284 // not translatable, in which case the getAddr() returns null.
1285 PHITransAddr &PredPointer = PredList.back().second;
1286 PredPointer.PHITranslateValue(BB, Pred, DT, /*MustDominate=*/false);
1287 Value *PredPtrVal = PredPointer.getAddr();
1289 // Check to see if we have already visited this pred block with another
1290 // pointer. If so, we can't do this lookup. This failure can occur
1291 // with PHI translation when a critical edge exists and the PHI node in
1292 // the successor translates to a pointer value different than the
1293 // pointer the block was first analyzed with.
1294 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1295 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
1297 if (!InsertRes.second) {
1298 // We found the pred; take it off the list of preds to visit.
1299 PredList.pop_back();
1301 // If the predecessor was visited with PredPtr, then we already did
1302 // the analysis and can ignore it.
1303 if (InsertRes.first->second == PredPtrVal)
1306 // Otherwise, the block was previously analyzed with a different
1307 // pointer. We can't represent the result of this case, so we just
1308 // treat this as a phi translation failure.
1310 // Make sure to clean up the Visited map before continuing on to
1311 // PredTranslationFailure.
1312 for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1313 Visited.erase(PredList[i].first);
1315 goto PredTranslationFailure;
1319 // Actually process results here; this need to be a separate loop to avoid
1320 // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1321 // any results for. (getNonLocalPointerDepFromBB will modify our
1322 // datastructures in ways the code after the PredTranslationFailure label
1324 for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1325 BasicBlock *Pred = PredList[i].first;
1326 PHITransAddr &PredPointer = PredList[i].second;
1327 Value *PredPtrVal = PredPointer.getAddr();
1329 bool CanTranslate = true;
1330 // If PHI translation was unable to find an available pointer in this
1331 // predecessor, then we have to assume that the pointer is clobbered in
1332 // that predecessor. We can still do PRE of the load, which would insert
1333 // a computation of the pointer in this predecessor.
1335 CanTranslate = false;
1337 // FIXME: it is entirely possible that PHI translating will end up with
1338 // the same value. Consider PHI translating something like:
1339 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
1340 // to recurse here, pedantically speaking.
1342 // If getNonLocalPointerDepFromBB fails here, that means the cached
1343 // result conflicted with the Visited list; we have to conservatively
1344 // assume it is unknown, but this also does not block PRE of the load.
1345 if (!CanTranslate ||
1346 getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1347 Loc.getWithNewPtr(PredPtrVal),
1350 // Add the entry to the Result list.
1351 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1352 Result.push_back(Entry);
1354 // Since we had a phi translation failure, the cache for CacheKey won't
1355 // include all of the entries that we need to immediately satisfy future
1356 // queries. Mark this in NonLocalPointerDeps by setting the
1357 // BBSkipFirstBlockPair pointer to null. This requires reuse of the
1358 // cached value to do more work but not miss the phi trans failure.
1359 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1360 NLPI.Pair = BBSkipFirstBlockPair();
1365 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1366 CacheInfo = &NonLocalPointerDeps[CacheKey];
1367 Cache = &CacheInfo->NonLocalDeps;
1368 NumSortedEntries = Cache->size();
1370 // Since we did phi translation, the "Cache" set won't contain all of the
1371 // results for the query. This is ok (we can still use it to accelerate
1372 // specific block queries) but we can't do the fastpath "return all
1373 // results from the set" Clear out the indicator for this.
1374 CacheInfo->Pair = BBSkipFirstBlockPair();
1375 SkipFirstBlock = false;
1378 PredTranslationFailure:
1379 // The following code is "failure"; we can't produce a sane translation
1380 // for the given block. It assumes that we haven't modified any of
1381 // our datastructures while processing the current block.
1384 // Refresh the CacheInfo/Cache pointer if it got invalidated.
1385 CacheInfo = &NonLocalPointerDeps[CacheKey];
1386 Cache = &CacheInfo->NonLocalDeps;
1387 NumSortedEntries = Cache->size();
1390 // Since we failed phi translation, the "Cache" set won't contain all of the
1391 // results for the query. This is ok (we can still use it to accelerate
1392 // specific block queries) but we can't do the fastpath "return all
1393 // results from the set". Clear out the indicator for this.
1394 CacheInfo->Pair = BBSkipFirstBlockPair();
1396 // If *nothing* works, mark the pointer as unknown.
1398 // If this is the magic first block, return this as a clobber of the whole
1399 // incoming value. Since we can't phi translate to one of the predecessors,
1400 // we have to bail out.
1404 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
1405 assert(I != Cache->rend() && "Didn't find current block??");
1406 if (I->getBB() != BB)
1409 assert((I->getResult().isNonLocal() || !DT->isReachableFromEntry(BB)) &&
1410 "Should only be here with transparent block");
1411 I->setResult(MemDepResult::getUnknown());
1412 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
1413 Pointer.getAddr()));
1418 // Okay, we're done now. If we added new values to the cache, re-sort it.
1419 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1420 DEBUG(AssertSorted(*Cache));
1424 /// RemoveCachedNonLocalPointerDependencies - If P exists in
1425 /// CachedNonLocalPointerInfo, remove it.
1426 void MemoryDependenceAnalysis::
1427 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
1428 CachedNonLocalPointerInfo::iterator It =
1429 NonLocalPointerDeps.find(P);
1430 if (It == NonLocalPointerDeps.end()) return;
1432 // Remove all of the entries in the BB->val map. This involves removing
1433 // instructions from the reverse map.
1434 NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1436 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1437 Instruction *Target = PInfo[i].getResult().getInst();
1438 if (!Target) continue; // Ignore non-local dep results.
1439 assert(Target->getParent() == PInfo[i].getBB());
1441 // Eliminating the dirty entry from 'Cache', so update the reverse info.
1442 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1445 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1446 NonLocalPointerDeps.erase(It);
1450 /// invalidateCachedPointerInfo - This method is used to invalidate cached
1451 /// information about the specified pointer, because it may be too
1452 /// conservative in memdep. This is an optional call that can be used when
1453 /// the client detects an equivalence between the pointer and some other
1454 /// value and replaces the other value with ptr. This can make Ptr available
1455 /// in more places that cached info does not necessarily keep.
1456 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
1457 // If Ptr isn't really a pointer, just ignore it.
1458 if (!Ptr->getType()->isPointerTy()) return;
1459 // Flush store info for the pointer.
1460 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1461 // Flush load info for the pointer.
1462 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1465 /// invalidateCachedPredecessors - Clear the PredIteratorCache info.
1466 /// This needs to be done when the CFG changes, e.g., due to splitting
1468 void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
1472 /// removeInstruction - Remove an instruction from the dependence analysis,
1473 /// updating the dependence of instructions that previously depended on it.
1474 /// This method attempts to keep the cache coherent using the reverse map.
1475 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
1476 // Walk through the Non-local dependencies, removing this one as the value
1477 // for any cached queries.
1478 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1479 if (NLDI != NonLocalDeps.end()) {
1480 NonLocalDepInfo &BlockMap = NLDI->second.first;
1481 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1483 if (Instruction *Inst = DI->getResult().getInst())
1484 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1485 NonLocalDeps.erase(NLDI);
1488 // If we have a cached local dependence query for this instruction, remove it.
1490 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1491 if (LocalDepEntry != LocalDeps.end()) {
1492 // Remove us from DepInst's reverse set now that the local dep info is gone.
1493 if (Instruction *Inst = LocalDepEntry->second.getInst())
1494 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1496 // Remove this local dependency info.
1497 LocalDeps.erase(LocalDepEntry);
1500 // If we have any cached pointer dependencies on this instruction, remove
1501 // them. If the instruction has non-pointer type, then it can't be a pointer
1504 // Remove it from both the load info and the store info. The instruction
1505 // can't be in either of these maps if it is non-pointer.
1506 if (RemInst->getType()->isPointerTy()) {
1507 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1508 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1511 // Loop over all of the things that depend on the instruction we're removing.
1513 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1515 // If we find RemInst as a clobber or Def in any of the maps for other values,
1516 // we need to replace its entry with a dirty version of the instruction after
1517 // it. If RemInst is a terminator, we use a null dirty value.
1519 // Using a dirty version of the instruction after RemInst saves having to scan
1520 // the entire block to get to this point.
1521 MemDepResult NewDirtyVal;
1522 if (!RemInst->isTerminator())
1523 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
1525 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1526 if (ReverseDepIt != ReverseLocalDeps.end()) {
1527 // RemInst can't be the terminator if it has local stuff depending on it.
1528 assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) &&
1529 "Nothing can locally depend on a terminator");
1531 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1532 assert(InstDependingOnRemInst != RemInst &&
1533 "Already removed our local dep info");
1535 LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1537 // Make sure to remember that new things depend on NewDepInst.
1538 assert(NewDirtyVal.getInst() && "There is no way something else can have "
1539 "a local dep on this if it is a terminator!");
1540 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1541 InstDependingOnRemInst));
1544 ReverseLocalDeps.erase(ReverseDepIt);
1546 // Add new reverse deps after scanning the set, to avoid invalidating the
1547 // 'ReverseDeps' reference.
1548 while (!ReverseDepsToAdd.empty()) {
1549 ReverseLocalDeps[ReverseDepsToAdd.back().first]
1550 .insert(ReverseDepsToAdd.back().second);
1551 ReverseDepsToAdd.pop_back();
1555 ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1556 if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1557 for (Instruction *I : ReverseDepIt->second) {
1558 assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1560 PerInstNLInfo &INLD = NonLocalDeps[I];
1561 // The information is now dirty!
1564 for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1565 DE = INLD.first.end(); DI != DE; ++DI) {
1566 if (DI->getResult().getInst() != RemInst) continue;
1568 // Convert to a dirty entry for the subsequent instruction.
1569 DI->setResult(NewDirtyVal);
1571 if (Instruction *NextI = NewDirtyVal.getInst())
1572 ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1576 ReverseNonLocalDeps.erase(ReverseDepIt);
1578 // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1579 while (!ReverseDepsToAdd.empty()) {
1580 ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1581 .insert(ReverseDepsToAdd.back().second);
1582 ReverseDepsToAdd.pop_back();
1586 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1587 // value in the NonLocalPointerDeps info.
1588 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1589 ReverseNonLocalPtrDeps.find(RemInst);
1590 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1591 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1593 for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1594 assert(P.getPointer() != RemInst &&
1595 "Already removed NonLocalPointerDeps info for RemInst");
1597 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1599 // The cache is not valid for any specific block anymore.
1600 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1602 // Update any entries for RemInst to use the instruction after it.
1603 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1605 if (DI->getResult().getInst() != RemInst) continue;
1607 // Convert to a dirty entry for the subsequent instruction.
1608 DI->setResult(NewDirtyVal);
1610 if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1611 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1614 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
1615 // subsequent value may invalidate the sortedness.
1616 std::sort(NLPDI.begin(), NLPDI.end());
1619 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1621 while (!ReversePtrDepsToAdd.empty()) {
1622 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1623 .insert(ReversePtrDepsToAdd.back().second);
1624 ReversePtrDepsToAdd.pop_back();
1629 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1630 DEBUG(verifyRemoved(RemInst));
1632 /// verifyRemoved - Verify that the specified instruction does not occur
1633 /// in our internal data structures. This function verifies by asserting in
1635 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1637 for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1638 E = LocalDeps.end(); I != E; ++I) {
1639 assert(I->first != D && "Inst occurs in data structures");
1640 assert(I->second.getInst() != D &&
1641 "Inst occurs in data structures");
1644 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1645 E = NonLocalPointerDeps.end(); I != E; ++I) {
1646 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1647 const NonLocalDepInfo &Val = I->second.NonLocalDeps;
1648 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1650 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
1653 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1654 E = NonLocalDeps.end(); I != E; ++I) {
1655 assert(I->first != D && "Inst occurs in data structures");
1656 const PerInstNLInfo &INLD = I->second;
1657 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1658 EE = INLD.first.end(); II != EE; ++II)
1659 assert(II->getResult().getInst() != D && "Inst occurs in data structures");
1662 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1663 E = ReverseLocalDeps.end(); I != E; ++I) {
1664 assert(I->first != D && "Inst occurs in data structures");
1665 for (Instruction *Inst : I->second)
1666 assert(Inst != D && "Inst occurs in data structures");
1669 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1670 E = ReverseNonLocalDeps.end();
1672 assert(I->first != D && "Inst occurs in data structures");
1673 for (Instruction *Inst : I->second)
1674 assert(Inst != D && "Inst occurs in data structures");
1677 for (ReverseNonLocalPtrDepTy::const_iterator
1678 I = ReverseNonLocalPtrDeps.begin(),
1679 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1680 assert(I->first != D && "Inst occurs in rev NLPD map");
1682 for (ValueIsLoadPair P : I->second)
1683 assert(P != ValueIsLoadPair(D, false) &&
1684 P != ValueIsLoadPair(D, true) &&
1685 "Inst occurs in ReverseNonLocalPtrDeps map");