c78763f206952330772eb0caccd56da8293f3e10
[oota-llvm.git] / lib / Analysis / LazyValueInfo.cpp
1 //===- LazyValueInfo.cpp - Value constraint analysis ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interface for lazy computation of value constraint
11 // information.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "lazy-value-info"
16 #include "llvm/Analysis/LazyValueInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/CFG.h"
27 #include "llvm/Support/ConstantRange.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ValueHandle.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Target/TargetLibraryInfo.h"
32 #include <map>
33 #include <stack>
34 using namespace llvm;
35 using namespace PatternMatch;
36
37 char LazyValueInfo::ID = 0;
38 INITIALIZE_PASS_BEGIN(LazyValueInfo, "lazy-value-info",
39                 "Lazy Value Information Analysis", false, true)
40 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
41 INITIALIZE_PASS_END(LazyValueInfo, "lazy-value-info",
42                 "Lazy Value Information Analysis", false, true)
43
44 namespace llvm {
45   FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); }
46 }
47
48
49 //===----------------------------------------------------------------------===//
50 //                               LVILatticeVal
51 //===----------------------------------------------------------------------===//
52
53 /// LVILatticeVal - This is the information tracked by LazyValueInfo for each
54 /// value.
55 ///
56 /// FIXME: This is basically just for bringup, this can be made a lot more rich
57 /// in the future.
58 ///
59 namespace {
60 class LVILatticeVal {
61   enum LatticeValueTy {
62     /// undefined - This Value has no known value yet.
63     undefined,
64     
65     /// constant - This Value has a specific constant value.
66     constant,
67     /// notconstant - This Value is known to not have the specified value.
68     notconstant,
69
70     /// constantrange - The Value falls within this range.
71     constantrange,
72
73     /// overdefined - This value is not known to be constant, and we know that
74     /// it has a value.
75     overdefined
76   };
77   
78   /// Val: This stores the current lattice value along with the Constant* for
79   /// the constant if this is a 'constant' or 'notconstant' value.
80   LatticeValueTy Tag;
81   Constant *Val;
82   ConstantRange Range;
83   
84 public:
85   LVILatticeVal() : Tag(undefined), Val(0), Range(1, true) {}
86
87   static LVILatticeVal get(Constant *C) {
88     LVILatticeVal Res;
89     if (!isa<UndefValue>(C))
90       Res.markConstant(C);
91     return Res;
92   }
93   static LVILatticeVal getNot(Constant *C) {
94     LVILatticeVal Res;
95     if (!isa<UndefValue>(C))
96       Res.markNotConstant(C);
97     return Res;
98   }
99   static LVILatticeVal getRange(ConstantRange CR) {
100     LVILatticeVal Res;
101     Res.markConstantRange(CR);
102     return Res;
103   }
104   
105   bool isUndefined() const     { return Tag == undefined; }
106   bool isConstant() const      { return Tag == constant; }
107   bool isNotConstant() const   { return Tag == notconstant; }
108   bool isConstantRange() const { return Tag == constantrange; }
109   bool isOverdefined() const   { return Tag == overdefined; }
110   
111   Constant *getConstant() const {
112     assert(isConstant() && "Cannot get the constant of a non-constant!");
113     return Val;
114   }
115   
116   Constant *getNotConstant() const {
117     assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
118     return Val;
119   }
120   
121   ConstantRange getConstantRange() const {
122     assert(isConstantRange() &&
123            "Cannot get the constant-range of a non-constant-range!");
124     return Range;
125   }
126   
127   /// markOverdefined - Return true if this is a change in status.
128   bool markOverdefined() {
129     if (isOverdefined())
130       return false;
131     Tag = overdefined;
132     return true;
133   }
134
135   /// markConstant - Return true if this is a change in status.
136   bool markConstant(Constant *V) {
137     assert(V && "Marking constant with NULL");
138     if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
139       return markConstantRange(ConstantRange(CI->getValue()));
140     if (isa<UndefValue>(V))
141       return false;
142
143     assert((!isConstant() || getConstant() == V) &&
144            "Marking constant with different value");
145     assert(isUndefined());
146     Tag = constant;
147     Val = V;
148     return true;
149   }
150   
151   /// markNotConstant - Return true if this is a change in status.
152   bool markNotConstant(Constant *V) {
153     assert(V && "Marking constant with NULL");
154     if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
155       return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue()));
156     if (isa<UndefValue>(V))
157       return false;
158
159     assert((!isConstant() || getConstant() != V) &&
160            "Marking constant !constant with same value");
161     assert((!isNotConstant() || getNotConstant() == V) &&
162            "Marking !constant with different value");
163     assert(isUndefined() || isConstant());
164     Tag = notconstant;
165     Val = V;
166     return true;
167   }
168   
169   /// markConstantRange - Return true if this is a change in status.
170   bool markConstantRange(const ConstantRange NewR) {
171     if (isConstantRange()) {
172       if (NewR.isEmptySet())
173         return markOverdefined();
174       
175       bool changed = Range != NewR;
176       Range = NewR;
177       return changed;
178     }
179     
180     assert(isUndefined());
181     if (NewR.isEmptySet())
182       return markOverdefined();
183     
184     Tag = constantrange;
185     Range = NewR;
186     return true;
187   }
188   
189   /// mergeIn - Merge the specified lattice value into this one, updating this
190   /// one and returning true if anything changed.
191   bool mergeIn(const LVILatticeVal &RHS) {
192     if (RHS.isUndefined() || isOverdefined()) return false;
193     if (RHS.isOverdefined()) return markOverdefined();
194
195     if (isUndefined()) {
196       Tag = RHS.Tag;
197       Val = RHS.Val;
198       Range = RHS.Range;
199       return true;
200     }
201
202     if (isConstant()) {
203       if (RHS.isConstant()) {
204         if (Val == RHS.Val)
205           return false;
206         return markOverdefined();
207       }
208
209       if (RHS.isNotConstant()) {
210         if (Val == RHS.Val)
211           return markOverdefined();
212
213         // Unless we can prove that the two Constants are different, we must
214         // move to overdefined.
215         // FIXME: use DataLayout/TargetLibraryInfo for smarter constant folding.
216         if (ConstantInt *Res = dyn_cast<ConstantInt>(
217                 ConstantFoldCompareInstOperands(CmpInst::ICMP_NE,
218                                                 getConstant(),
219                                                 RHS.getNotConstant())))
220           if (Res->isOne())
221             return markNotConstant(RHS.getNotConstant());
222
223         return markOverdefined();
224       }
225
226       // RHS is a ConstantRange, LHS is a non-integer Constant.
227
228       // FIXME: consider the case where RHS is a range [1, 0) and LHS is
229       // a function. The correct result is to pick up RHS.
230
231       return markOverdefined();
232     }
233
234     if (isNotConstant()) {
235       if (RHS.isConstant()) {
236         if (Val == RHS.Val)
237           return markOverdefined();
238
239         // Unless we can prove that the two Constants are different, we must
240         // move to overdefined.
241         // FIXME: use DataLayout/TargetLibraryInfo for smarter constant folding.
242         if (ConstantInt *Res = dyn_cast<ConstantInt>(
243                 ConstantFoldCompareInstOperands(CmpInst::ICMP_NE,
244                                                 getNotConstant(),
245                                                 RHS.getConstant())))
246           if (Res->isOne())
247             return false;
248
249         return markOverdefined();
250       }
251
252       if (RHS.isNotConstant()) {
253         if (Val == RHS.Val)
254           return false;
255         return markOverdefined();
256       }
257
258       return markOverdefined();
259     }
260
261     assert(isConstantRange() && "New LVILattice type?");
262     if (!RHS.isConstantRange())
263       return markOverdefined();
264
265     ConstantRange NewR = Range.unionWith(RHS.getConstantRange());
266     if (NewR.isFullSet())
267       return markOverdefined();
268     return markConstantRange(NewR);
269   }
270 };
271   
272 } // end anonymous namespace.
273
274 namespace llvm {
275 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val)
276     LLVM_ATTRIBUTE_USED;
277 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
278   if (Val.isUndefined())
279     return OS << "undefined";
280   if (Val.isOverdefined())
281     return OS << "overdefined";
282
283   if (Val.isNotConstant())
284     return OS << "notconstant<" << *Val.getNotConstant() << '>';
285   else if (Val.isConstantRange())
286     return OS << "constantrange<" << Val.getConstantRange().getLower() << ", "
287               << Val.getConstantRange().getUpper() << '>';
288   return OS << "constant<" << *Val.getConstant() << '>';
289 }
290 }
291
292 //===----------------------------------------------------------------------===//
293 //                          LazyValueInfoCache Decl
294 //===----------------------------------------------------------------------===//
295
296 namespace {
297   /// LVIValueHandle - A callback value handle updates the cache when
298   /// values are erased.
299   class LazyValueInfoCache;
300   struct LVIValueHandle : public CallbackVH {
301     LazyValueInfoCache *Parent;
302       
303     LVIValueHandle(Value *V, LazyValueInfoCache *P)
304       : CallbackVH(V), Parent(P) { }
305       
306     void deleted();
307     void allUsesReplacedWith(Value *V) {
308       deleted();
309     }
310   };
311 }
312
313 namespace { 
314   /// LazyValueInfoCache - This is the cache kept by LazyValueInfo which
315   /// maintains information about queries across the clients' queries.
316   class LazyValueInfoCache {
317     /// ValueCacheEntryTy - This is all of the cached block information for
318     /// exactly one Value*.  The entries are sorted by the BasicBlock* of the
319     /// entries, allowing us to do a lookup with a binary search.
320     typedef std::map<AssertingVH<BasicBlock>, LVILatticeVal> ValueCacheEntryTy;
321
322     /// ValueCache - This is all of the cached information for all values,
323     /// mapped from Value* to key information.
324     std::map<LVIValueHandle, ValueCacheEntryTy> ValueCache;
325     
326     /// OverDefinedCache - This tracks, on a per-block basis, the set of 
327     /// values that are over-defined at the end of that block.  This is required
328     /// for cache updating.
329     typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
330     DenseSet<OverDefinedPairTy> OverDefinedCache;
331
332     /// SeenBlocks - Keep track of all blocks that we have ever seen, so we
333     /// don't spend time removing unused blocks from our caches.
334     DenseSet<AssertingVH<BasicBlock> > SeenBlocks;
335
336     /// BlockValueStack - This stack holds the state of the value solver
337     /// during a query.  It basically emulates the callstack of the naive
338     /// recursive value lookup process.
339     std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack;
340     
341     friend struct LVIValueHandle;
342     
343     /// OverDefinedCacheUpdater - A helper object that ensures that the
344     /// OverDefinedCache is updated whenever solveBlockValue returns.
345     struct OverDefinedCacheUpdater {
346       LazyValueInfoCache *Parent;
347       Value *Val;
348       BasicBlock *BB;
349       LVILatticeVal &BBLV;
350       
351       OverDefinedCacheUpdater(Value *V, BasicBlock *B, LVILatticeVal &LV,
352                        LazyValueInfoCache *P)
353         : Parent(P), Val(V), BB(B), BBLV(LV) { }
354       
355       bool markResult(bool changed) { 
356         if (changed && BBLV.isOverdefined())
357           Parent->OverDefinedCache.insert(std::make_pair(BB, Val));
358         return changed;
359       }
360     };
361     
362
363
364     LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB);
365     bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
366                       LVILatticeVal &Result);
367     bool hasBlockValue(Value *Val, BasicBlock *BB);
368
369     // These methods process one work item and may add more. A false value
370     // returned means that the work item was not completely processed and must
371     // be revisited after going through the new items.
372     bool solveBlockValue(Value *Val, BasicBlock *BB);
373     bool solveBlockValueNonLocal(LVILatticeVal &BBLV,
374                                  Value *Val, BasicBlock *BB);
375     bool solveBlockValuePHINode(LVILatticeVal &BBLV,
376                                 PHINode *PN, BasicBlock *BB);
377     bool solveBlockValueConstantRange(LVILatticeVal &BBLV,
378                                       Instruction *BBI, BasicBlock *BB);
379
380     void solve();
381     
382     ValueCacheEntryTy &lookup(Value *V) {
383       return ValueCache[LVIValueHandle(V, this)];
384     }
385
386   public:
387     /// getValueInBlock - This is the query interface to determine the lattice
388     /// value for the specified Value* at the end of the specified block.
389     LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB);
390
391     /// getValueOnEdge - This is the query interface to determine the lattice
392     /// value for the specified Value* that is true on the specified edge.
393     LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB);
394     
395     /// threadEdge - This is the update interface to inform the cache that an
396     /// edge from PredBB to OldSucc has been threaded to be from PredBB to
397     /// NewSucc.
398     void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
399     
400     /// eraseBlock - This is part of the update interface to inform the cache
401     /// that a block has been deleted.
402     void eraseBlock(BasicBlock *BB);
403     
404     /// clear - Empty the cache.
405     void clear() {
406       SeenBlocks.clear();
407       ValueCache.clear();
408       OverDefinedCache.clear();
409     }
410   };
411 } // end anonymous namespace
412
413 void LVIValueHandle::deleted() {
414   typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
415   
416   SmallVector<OverDefinedPairTy, 4> ToErase;
417   for (DenseSet<OverDefinedPairTy>::iterator 
418        I = Parent->OverDefinedCache.begin(),
419        E = Parent->OverDefinedCache.end();
420        I != E; ++I) {
421     if (I->second == getValPtr())
422       ToErase.push_back(*I);
423   }
424
425   for (SmallVectorImpl<OverDefinedPairTy>::iterator I = ToErase.begin(),
426        E = ToErase.end(); I != E; ++I)
427     Parent->OverDefinedCache.erase(*I);
428   
429   // This erasure deallocates *this, so it MUST happen after we're done
430   // using any and all members of *this.
431   Parent->ValueCache.erase(*this);
432 }
433
434 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
435   // Shortcut if we have never seen this block.
436   DenseSet<AssertingVH<BasicBlock> >::iterator I = SeenBlocks.find(BB);
437   if (I == SeenBlocks.end())
438     return;
439   SeenBlocks.erase(I);
440
441   SmallVector<OverDefinedPairTy, 4> ToErase;
442   for (DenseSet<OverDefinedPairTy>::iterator  I = OverDefinedCache.begin(),
443        E = OverDefinedCache.end(); I != E; ++I) {
444     if (I->first == BB)
445       ToErase.push_back(*I);
446   }
447
448   for (SmallVectorImpl<OverDefinedPairTy>::iterator I = ToErase.begin(),
449        E = ToErase.end(); I != E; ++I)
450     OverDefinedCache.erase(*I);
451
452   for (std::map<LVIValueHandle, ValueCacheEntryTy>::iterator
453        I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I)
454     I->second.erase(BB);
455 }
456
457 void LazyValueInfoCache::solve() {
458   while (!BlockValueStack.empty()) {
459     std::pair<BasicBlock*, Value*> &e = BlockValueStack.top();
460     if (solveBlockValue(e.second, e.first)) {
461       assert(BlockValueStack.top() == e);
462       BlockValueStack.pop();
463     }
464   }
465 }
466
467 bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) {
468   // If already a constant, there is nothing to compute.
469   if (isa<Constant>(Val))
470     return true;
471
472   LVIValueHandle ValHandle(Val, this);
473   std::map<LVIValueHandle, ValueCacheEntryTy>::iterator I =
474     ValueCache.find(ValHandle);
475   if (I == ValueCache.end()) return false;
476   return I->second.count(BB);
477 }
478
479 LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) {
480   // If already a constant, there is nothing to compute.
481   if (Constant *VC = dyn_cast<Constant>(Val))
482     return LVILatticeVal::get(VC);
483
484   SeenBlocks.insert(BB);
485   return lookup(Val)[BB];
486 }
487
488 bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) {
489   if (isa<Constant>(Val))
490     return true;
491
492   ValueCacheEntryTy &Cache = lookup(Val);
493   SeenBlocks.insert(BB);
494   LVILatticeVal &BBLV = Cache[BB];
495   
496   // OverDefinedCacheUpdater is a helper object that will update
497   // the OverDefinedCache for us when this method exits.  Make sure to
498   // call markResult on it as we exist, passing a bool to indicate if the
499   // cache needs updating, i.e. if we have solve a new value or not.
500   OverDefinedCacheUpdater ODCacheUpdater(Val, BB, BBLV, this);
501
502   // If we've already computed this block's value, return it.
503   if (!BBLV.isUndefined()) {
504     DEBUG(dbgs() << "  reuse BB '" << BB->getName() << "' val=" << BBLV <<'\n');
505     
506     // Since we're reusing a cached value here, we don't need to update the 
507     // OverDefinedCahce.  The cache will have been properly updated 
508     // whenever the cached value was inserted.
509     ODCacheUpdater.markResult(false);
510     return true;
511   }
512
513   // Otherwise, this is the first time we're seeing this block.  Reset the
514   // lattice value to overdefined, so that cycles will terminate and be
515   // conservatively correct.
516   BBLV.markOverdefined();
517   
518   Instruction *BBI = dyn_cast<Instruction>(Val);
519   if (BBI == 0 || BBI->getParent() != BB) {
520     return ODCacheUpdater.markResult(solveBlockValueNonLocal(BBLV, Val, BB));
521   }
522
523   if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
524     return ODCacheUpdater.markResult(solveBlockValuePHINode(BBLV, PN, BB));
525   }
526
527   if (AllocaInst *AI = dyn_cast<AllocaInst>(BBI)) {
528     BBLV = LVILatticeVal::getNot(ConstantPointerNull::get(AI->getType()));
529     return ODCacheUpdater.markResult(true);
530   }
531
532   // We can only analyze the definitions of certain classes of instructions
533   // (integral binops and casts at the moment), so bail if this isn't one.
534   LVILatticeVal Result;
535   if ((!isa<BinaryOperator>(BBI) && !isa<CastInst>(BBI)) ||
536      !BBI->getType()->isIntegerTy()) {
537     DEBUG(dbgs() << " compute BB '" << BB->getName()
538                  << "' - overdefined because inst def found.\n");
539     BBLV.markOverdefined();
540     return ODCacheUpdater.markResult(true);
541   }
542
543   // FIXME: We're currently limited to binops with a constant RHS.  This should
544   // be improved.
545   BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI);
546   if (BO && !isa<ConstantInt>(BO->getOperand(1))) { 
547     DEBUG(dbgs() << " compute BB '" << BB->getName()
548                  << "' - overdefined because inst def found.\n");
549
550     BBLV.markOverdefined();
551     return ODCacheUpdater.markResult(true);
552   }
553
554   return ODCacheUpdater.markResult(solveBlockValueConstantRange(BBLV, BBI, BB));
555 }
556
557 static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
558   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
559     return L->getPointerAddressSpace() == 0 &&
560         GetUnderlyingObject(L->getPointerOperand()) == Ptr;
561   }
562   if (StoreInst *S = dyn_cast<StoreInst>(I)) {
563     return S->getPointerAddressSpace() == 0 &&
564         GetUnderlyingObject(S->getPointerOperand()) == Ptr;
565   }
566   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
567     if (MI->isVolatile()) return false;
568
569     // FIXME: check whether it has a valuerange that excludes zero?
570     ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
571     if (!Len || Len->isZero()) return false;
572
573     if (MI->getDestAddressSpace() == 0)
574       if (GetUnderlyingObject(MI->getRawDest()) == Ptr)
575         return true;
576     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
577       if (MTI->getSourceAddressSpace() == 0)
578         if (GetUnderlyingObject(MTI->getRawSource()) == Ptr)
579           return true;
580   }
581   return false;
582 }
583
584 bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV,
585                                                  Value *Val, BasicBlock *BB) {
586   LVILatticeVal Result;  // Start Undefined.
587
588   // If this is a pointer, and there's a load from that pointer in this BB,
589   // then we know that the pointer can't be NULL.
590   bool NotNull = false;
591   if (Val->getType()->isPointerTy()) {
592     if (isKnownNonNull(Val)) {
593       NotNull = true;
594     } else {
595       Value *UnderlyingVal = GetUnderlyingObject(Val);
596       // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
597       // inside InstructionDereferencesPointer either.
598       if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, NULL, 1)) {
599         for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
600              BI != BE; ++BI) {
601           if (InstructionDereferencesPointer(BI, UnderlyingVal)) {
602             NotNull = true;
603             break;
604           }
605         }
606       }
607     }
608   }
609
610   // If this is the entry block, we must be asking about an argument.  The
611   // value is overdefined.
612   if (BB == &BB->getParent()->getEntryBlock()) {
613     assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
614     if (NotNull) {
615       PointerType *PTy = cast<PointerType>(Val->getType());
616       Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
617     } else {
618       Result.markOverdefined();
619     }
620     BBLV = Result;
621     return true;
622   }
623
624   // Loop over all of our predecessors, merging what we know from them into
625   // result.
626   bool EdgesMissing = false;
627   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
628     LVILatticeVal EdgeResult;
629     EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult);
630     if (EdgesMissing)
631       continue;
632
633     Result.mergeIn(EdgeResult);
634
635     // If we hit overdefined, exit early.  The BlockVals entry is already set
636     // to overdefined.
637     if (Result.isOverdefined()) {
638       DEBUG(dbgs() << " compute BB '" << BB->getName()
639             << "' - overdefined because of pred.\n");
640       // If we previously determined that this is a pointer that can't be null
641       // then return that rather than giving up entirely.
642       if (NotNull) {
643         PointerType *PTy = cast<PointerType>(Val->getType());
644         Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
645       }
646       
647       BBLV = Result;
648       return true;
649     }
650   }
651   if (EdgesMissing)
652     return false;
653
654   // Return the merged value, which is more precise than 'overdefined'.
655   assert(!Result.isOverdefined());
656   BBLV = Result;
657   return true;
658 }
659   
660 bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV,
661                                                 PHINode *PN, BasicBlock *BB) {
662   LVILatticeVal Result;  // Start Undefined.
663
664   // Loop over all of our predecessors, merging what we know from them into
665   // result.
666   bool EdgesMissing = false;
667   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
668     BasicBlock *PhiBB = PN->getIncomingBlock(i);
669     Value *PhiVal = PN->getIncomingValue(i);
670     LVILatticeVal EdgeResult;
671     EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult);
672     if (EdgesMissing)
673       continue;
674
675     Result.mergeIn(EdgeResult);
676
677     // If we hit overdefined, exit early.  The BlockVals entry is already set
678     // to overdefined.
679     if (Result.isOverdefined()) {
680       DEBUG(dbgs() << " compute BB '" << BB->getName()
681             << "' - overdefined because of pred.\n");
682       
683       BBLV = Result;
684       return true;
685     }
686   }
687   if (EdgesMissing)
688     return false;
689
690   // Return the merged value, which is more precise than 'overdefined'.
691   assert(!Result.isOverdefined() && "Possible PHI in entry block?");
692   BBLV = Result;
693   return true;
694 }
695
696 bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV,
697                                                       Instruction *BBI,
698                                                       BasicBlock *BB) {
699   // Figure out the range of the LHS.  If that fails, bail.
700   if (!hasBlockValue(BBI->getOperand(0), BB)) {
701     BlockValueStack.push(std::make_pair(BB, BBI->getOperand(0)));
702     return false;
703   }
704
705   LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB);
706   if (!LHSVal.isConstantRange()) {
707     BBLV.markOverdefined();
708     return true;
709   }
710   
711   ConstantRange LHSRange = LHSVal.getConstantRange();
712   ConstantRange RHSRange(1);
713   IntegerType *ResultTy = cast<IntegerType>(BBI->getType());
714   if (isa<BinaryOperator>(BBI)) {
715     if (ConstantInt *RHS = dyn_cast<ConstantInt>(BBI->getOperand(1))) {
716       RHSRange = ConstantRange(RHS->getValue());
717     } else {
718       BBLV.markOverdefined();
719       return true;
720     }
721   }
722
723   // NOTE: We're currently limited by the set of operations that ConstantRange
724   // can evaluate symbolically.  Enhancing that set will allows us to analyze
725   // more definitions.
726   LVILatticeVal Result;
727   switch (BBI->getOpcode()) {
728   case Instruction::Add:
729     Result.markConstantRange(LHSRange.add(RHSRange));
730     break;
731   case Instruction::Sub:
732     Result.markConstantRange(LHSRange.sub(RHSRange));
733     break;
734   case Instruction::Mul:
735     Result.markConstantRange(LHSRange.multiply(RHSRange));
736     break;
737   case Instruction::UDiv:
738     Result.markConstantRange(LHSRange.udiv(RHSRange));
739     break;
740   case Instruction::Shl:
741     Result.markConstantRange(LHSRange.shl(RHSRange));
742     break;
743   case Instruction::LShr:
744     Result.markConstantRange(LHSRange.lshr(RHSRange));
745     break;
746   case Instruction::Trunc:
747     Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth()));
748     break;
749   case Instruction::SExt:
750     Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth()));
751     break;
752   case Instruction::ZExt:
753     Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth()));
754     break;
755   case Instruction::BitCast:
756     Result.markConstantRange(LHSRange);
757     break;
758   case Instruction::And:
759     Result.markConstantRange(LHSRange.binaryAnd(RHSRange));
760     break;
761   case Instruction::Or:
762     Result.markConstantRange(LHSRange.binaryOr(RHSRange));
763     break;
764   
765   // Unhandled instructions are overdefined.
766   default:
767     DEBUG(dbgs() << " compute BB '" << BB->getName()
768                  << "' - overdefined because inst def found.\n");
769     Result.markOverdefined();
770     break;
771   }
772   
773   BBLV = Result;
774   return true;
775 }
776
777 /// \brief Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
778 /// Val is not constrained on the edge.
779 static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
780                               BasicBlock *BBTo, LVILatticeVal &Result) {
781   // TODO: Handle more complex conditionals.  If (v == 0 || v2 < 1) is false, we
782   // know that v != 0.
783   if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
784     // If this is a conditional branch and only one successor goes to BBTo, then
785     // we maybe able to infer something from the condition. 
786     if (BI->isConditional() &&
787         BI->getSuccessor(0) != BI->getSuccessor(1)) {
788       bool isTrueDest = BI->getSuccessor(0) == BBTo;
789       assert(BI->getSuccessor(!isTrueDest) == BBTo &&
790              "BBTo isn't a successor of BBFrom");
791       
792       // If V is the condition of the branch itself, then we know exactly what
793       // it is.
794       if (BI->getCondition() == Val) {
795         Result = LVILatticeVal::get(ConstantInt::get(
796                               Type::getInt1Ty(Val->getContext()), isTrueDest));
797         return true;
798       }
799       
800       // If the condition of the branch is an equality comparison, we may be
801       // able to infer the value.
802       ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition());
803       if (ICI && isa<Constant>(ICI->getOperand(1))) {
804         if (ICI->isEquality() && ICI->getOperand(0) == Val) {
805           // We know that V has the RHS constant if this is a true SETEQ or
806           // false SETNE. 
807           if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
808             Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
809           else
810             Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
811           return true;
812         }
813
814         // Recognize the range checking idiom that InstCombine produces.
815         // (X-C1) u< C2 --> [C1, C1+C2)
816         ConstantInt *NegOffset = 0;
817         if (ICI->getPredicate() == ICmpInst::ICMP_ULT)
818           match(ICI->getOperand(0), m_Add(m_Specific(Val),
819                                           m_ConstantInt(NegOffset)));
820
821         ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1));
822         if (CI && (ICI->getOperand(0) == Val || NegOffset)) {
823           // Calculate the range of values that would satisfy the comparison.
824           ConstantRange CmpRange(CI->getValue());
825           ConstantRange TrueValues =
826             ConstantRange::makeICmpRegion(ICI->getPredicate(), CmpRange);
827
828           if (NegOffset) // Apply the offset from above.
829             TrueValues = TrueValues.subtract(NegOffset->getValue());
830
831           // If we're interested in the false dest, invert the condition.
832           if (!isTrueDest) TrueValues = TrueValues.inverse();
833
834           Result = LVILatticeVal::getRange(TrueValues);
835           return true;
836         }
837       }
838     }
839   }
840
841   // If the edge was formed by a switch on the value, then we may know exactly
842   // what it is.
843   if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
844     if (SI->getCondition() != Val)
845       return false;
846
847     bool DefaultCase = SI->getDefaultDest() == BBTo;
848     unsigned BitWidth = Val->getType()->getIntegerBitWidth();
849     ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
850
851     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
852          i != e; ++i) {
853       ConstantRange EdgeVal(i.getCaseValue()->getValue());
854       if (DefaultCase) {
855         // It is possible that the default destination is the destination of
856         // some cases. There is no need to perform difference for those cases.
857         if (i.getCaseSuccessor() != BBTo)
858           EdgesVals = EdgesVals.difference(EdgeVal);
859       } else if (i.getCaseSuccessor() == BBTo)
860         EdgesVals = EdgesVals.unionWith(EdgeVal);
861     }
862     Result = LVILatticeVal::getRange(EdgesVals);
863     return true;
864   }
865   return false;
866 }
867
868 /// \brief Compute the value of Val on the edge BBFrom -> BBTo, or the value at
869 /// the basic block if the edge does not constraint Val.
870 bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom,
871                                       BasicBlock *BBTo, LVILatticeVal &Result) {
872   // If already a constant, there is nothing to compute.
873   if (Constant *VC = dyn_cast<Constant>(Val)) {
874     Result = LVILatticeVal::get(VC);
875     return true;
876   }
877
878   if (getEdgeValueLocal(Val, BBFrom, BBTo, Result)) {
879     if (!Result.isConstantRange() ||
880       Result.getConstantRange().getSingleElement())
881       return true;
882
883     // FIXME: this check should be moved to the beginning of the function when
884     // LVI better supports recursive values. Even for the single value case, we
885     // can intersect to detect dead code (an empty range).
886     if (!hasBlockValue(Val, BBFrom)) {
887       BlockValueStack.push(std::make_pair(BBFrom, Val));
888       return false;
889     }
890
891     // Try to intersect ranges of the BB and the constraint on the edge.
892     LVILatticeVal InBlock = getBlockValue(Val, BBFrom);
893     if (!InBlock.isConstantRange())
894       return true;
895
896     ConstantRange Range =
897       Result.getConstantRange().intersectWith(InBlock.getConstantRange());
898     Result = LVILatticeVal::getRange(Range);
899     return true;
900   }
901
902   if (!hasBlockValue(Val, BBFrom)) {
903     BlockValueStack.push(std::make_pair(BBFrom, Val));
904     return false;
905   }
906
907   // if we couldn't compute the value on the edge, use the value from the BB
908   Result = getBlockValue(Val, BBFrom);
909   return true;
910 }
911
912 LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB) {
913   DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
914         << BB->getName() << "'\n");
915   
916   BlockValueStack.push(std::make_pair(BB, V));
917   solve();
918   LVILatticeVal Result = getBlockValue(V, BB);
919
920   DEBUG(dbgs() << "  Result = " << Result << "\n");
921   return Result;
922 }
923
924 LVILatticeVal LazyValueInfoCache::
925 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) {
926   DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
927         << FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
928   
929   LVILatticeVal Result;
930   if (!getEdgeValue(V, FromBB, ToBB, Result)) {
931     solve();
932     bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result);
933     (void)WasFastQuery;
934     assert(WasFastQuery && "More work to do after problem solved?");
935   }
936
937   DEBUG(dbgs() << "  Result = " << Result << "\n");
938   return Result;
939 }
940
941 void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
942                                     BasicBlock *NewSucc) {
943   // When an edge in the graph has been threaded, values that we could not 
944   // determine a value for before (i.e. were marked overdefined) may be possible
945   // to solve now.  We do NOT try to proactively update these values.  Instead,
946   // we clear their entries from the cache, and allow lazy updating to recompute
947   // them when needed.
948   
949   // The updating process is fairly simple: we need to dropped cached info
950   // for all values that were marked overdefined in OldSucc, and for those same
951   // values in any successor of OldSucc (except NewSucc) in which they were
952   // also marked overdefined.
953   std::vector<BasicBlock*> worklist;
954   worklist.push_back(OldSucc);
955   
956   DenseSet<Value*> ClearSet;
957   for (DenseSet<OverDefinedPairTy>::iterator I = OverDefinedCache.begin(),
958        E = OverDefinedCache.end(); I != E; ++I) {
959     if (I->first == OldSucc)
960       ClearSet.insert(I->second);
961   }
962   
963   // Use a worklist to perform a depth-first search of OldSucc's successors.
964   // NOTE: We do not need a visited list since any blocks we have already
965   // visited will have had their overdefined markers cleared already, and we
966   // thus won't loop to their successors.
967   while (!worklist.empty()) {
968     BasicBlock *ToUpdate = worklist.back();
969     worklist.pop_back();
970     
971     // Skip blocks only accessible through NewSucc.
972     if (ToUpdate == NewSucc) continue;
973     
974     bool changed = false;
975     for (DenseSet<Value*>::iterator I = ClearSet.begin(), E = ClearSet.end();
976          I != E; ++I) {
977       // If a value was marked overdefined in OldSucc, and is here too...
978       DenseSet<OverDefinedPairTy>::iterator OI =
979         OverDefinedCache.find(std::make_pair(ToUpdate, *I));
980       if (OI == OverDefinedCache.end()) continue;
981
982       // Remove it from the caches.
983       ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(*I, this)];
984       ValueCacheEntryTy::iterator CI = Entry.find(ToUpdate);
985
986       assert(CI != Entry.end() && "Couldn't find entry to update?");
987       Entry.erase(CI);
988       OverDefinedCache.erase(OI);
989
990       // If we removed anything, then we potentially need to update 
991       // blocks successors too.
992       changed = true;
993     }
994
995     if (!changed) continue;
996     
997     worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
998   }
999 }
1000
1001 //===----------------------------------------------------------------------===//
1002 //                            LazyValueInfo Impl
1003 //===----------------------------------------------------------------------===//
1004
1005 /// getCache - This lazily constructs the LazyValueInfoCache.
1006 static LazyValueInfoCache &getCache(void *&PImpl) {
1007   if (!PImpl)
1008     PImpl = new LazyValueInfoCache();
1009   return *static_cast<LazyValueInfoCache*>(PImpl);
1010 }
1011
1012 bool LazyValueInfo::runOnFunction(Function &F) {
1013   if (PImpl)
1014     getCache(PImpl).clear();
1015
1016   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1017   DL = DLP ? &DLP->getDataLayout() : 0;
1018   TLI = &getAnalysis<TargetLibraryInfo>();
1019
1020   // Fully lazy.
1021   return false;
1022 }
1023
1024 void LazyValueInfo::getAnalysisUsage(AnalysisUsage &AU) const {
1025   AU.setPreservesAll();
1026   AU.addRequired<TargetLibraryInfo>();
1027 }
1028
1029 void LazyValueInfo::releaseMemory() {
1030   // If the cache was allocated, free it.
1031   if (PImpl) {
1032     delete &getCache(PImpl);
1033     PImpl = 0;
1034   }
1035 }
1036
1037 Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) {
1038   LVILatticeVal Result = getCache(PImpl).getValueInBlock(V, BB);
1039   
1040   if (Result.isConstant())
1041     return Result.getConstant();
1042   if (Result.isConstantRange()) {
1043     ConstantRange CR = Result.getConstantRange();
1044     if (const APInt *SingleVal = CR.getSingleElement())
1045       return ConstantInt::get(V->getContext(), *SingleVal);
1046   }
1047   return 0;
1048 }
1049
1050 /// getConstantOnEdge - Determine whether the specified value is known to be a
1051 /// constant on the specified edge.  Return null if not.
1052 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
1053                                            BasicBlock *ToBB) {
1054   LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
1055   
1056   if (Result.isConstant())
1057     return Result.getConstant();
1058   if (Result.isConstantRange()) {
1059     ConstantRange CR = Result.getConstantRange();
1060     if (const APInt *SingleVal = CR.getSingleElement())
1061       return ConstantInt::get(V->getContext(), *SingleVal);
1062   }
1063   return 0;
1064 }
1065
1066 /// getPredicateOnEdge - Determine whether the specified value comparison
1067 /// with a constant is known to be true or false on the specified CFG edge.
1068 /// Pred is a CmpInst predicate.
1069 LazyValueInfo::Tristate
1070 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
1071                                   BasicBlock *FromBB, BasicBlock *ToBB) {
1072   LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
1073   
1074   // If we know the value is a constant, evaluate the conditional.
1075   Constant *Res = 0;
1076   if (Result.isConstant()) {
1077     Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, DL,
1078                                           TLI);
1079     if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
1080       return ResCI->isZero() ? False : True;
1081     return Unknown;
1082   }
1083   
1084   if (Result.isConstantRange()) {
1085     ConstantInt *CI = dyn_cast<ConstantInt>(C);
1086     if (!CI) return Unknown;
1087     
1088     ConstantRange CR = Result.getConstantRange();
1089     if (Pred == ICmpInst::ICMP_EQ) {
1090       if (!CR.contains(CI->getValue()))
1091         return False;
1092       
1093       if (CR.isSingleElement() && CR.contains(CI->getValue()))
1094         return True;
1095     } else if (Pred == ICmpInst::ICMP_NE) {
1096       if (!CR.contains(CI->getValue()))
1097         return True;
1098       
1099       if (CR.isSingleElement() && CR.contains(CI->getValue()))
1100         return False;
1101     }
1102     
1103     // Handle more complex predicates.
1104     ConstantRange TrueValues =
1105         ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue());
1106     if (TrueValues.contains(CR))
1107       return True;
1108     if (TrueValues.inverse().contains(CR))
1109       return False;
1110     return Unknown;
1111   }
1112   
1113   if (Result.isNotConstant()) {
1114     // If this is an equality comparison, we can try to fold it knowing that
1115     // "V != C1".
1116     if (Pred == ICmpInst::ICMP_EQ) {
1117       // !C1 == C -> false iff C1 == C.
1118       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1119                                             Result.getNotConstant(), C, DL,
1120                                             TLI);
1121       if (Res->isNullValue())
1122         return False;
1123     } else if (Pred == ICmpInst::ICMP_NE) {
1124       // !C1 != C -> true iff C1 == C.
1125       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1126                                             Result.getNotConstant(), C, DL,
1127                                             TLI);
1128       if (Res->isNullValue())
1129         return True;
1130     }
1131     return Unknown;
1132   }
1133   
1134   return Unknown;
1135 }
1136
1137 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1138                                BasicBlock *NewSucc) {
1139   if (PImpl) getCache(PImpl).threadEdge(PredBB, OldSucc, NewSucc);
1140 }
1141
1142 void LazyValueInfo::eraseBlock(BasicBlock *BB) {
1143   if (PImpl) getCache(PImpl).eraseBlock(BB);
1144 }