Change condition for determining whether a function is small for inlining metrics...
[oota-llvm.git] / lib / Analysis / InlineCost.cpp
1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements inline cost analysis.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Analysis/InlineCost.h"
15 #include "llvm/Support/CallSite.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/IntrinsicInst.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19
20 using namespace llvm;
21
22 /// callIsSmall - If a call is likely to lower to a single target instruction,
23 /// or is otherwise deemed small return true.
24 /// TODO: Perhaps calls like memcpy, strcpy, etc?
25 bool llvm::callIsSmall(const Function *F) {
26   if (!F) return false;
27   
28   if (F->hasLocalLinkage()) return false;
29   
30   if (!F->hasName()) return false;
31   
32   StringRef Name = F->getName();
33   
34   // These will all likely lower to a single selection DAG node.
35   if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
36       Name == "fabs" || Name == "fabsf" || Name == "fabsl" ||
37       Name == "sin" || Name == "sinf" || Name == "sinl" ||
38       Name == "cos" || Name == "cosf" || Name == "cosl" ||
39       Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl" )
40     return true;
41   
42   // These are all likely to be optimized into something smaller.
43   if (Name == "pow" || Name == "powf" || Name == "powl" ||
44       Name == "exp2" || Name == "exp2l" || Name == "exp2f" ||
45       Name == "floor" || Name == "floorf" || Name == "ceil" ||
46       Name == "round" || Name == "ffs" || Name == "ffsl" ||
47       Name == "abs" || Name == "labs" || Name == "llabs")
48     return true;
49   
50   return false;
51 }
52
53 /// analyzeBasicBlock - Fill in the current structure with information gleaned
54 /// from the specified block.
55 void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB) {
56   ++NumBlocks;
57   unsigned NumInstsBeforeThisBB = NumInsts;
58   for (BasicBlock::const_iterator II = BB->begin(), E = BB->end();
59        II != E; ++II) {
60     if (isa<PHINode>(II)) continue;           // PHI nodes don't count.
61
62     // Special handling for calls.
63     if (isa<CallInst>(II) || isa<InvokeInst>(II)) {
64       if (isa<DbgInfoIntrinsic>(II))
65         continue;  // Debug intrinsics don't count as size.
66
67       ImmutableCallSite CS(cast<Instruction>(II));
68
69       if (const Function *F = CS.getCalledFunction()) {
70         // If a function is both internal and has a single use, then it is 
71         // extremely likely to get inlined in the future (it was probably 
72         // exposed by an interleaved devirtualization pass).
73         if (F->hasInternalLinkage() && F->hasOneUse())
74           ++NumInlineCandidates;
75
76         // If this call is to function itself, then the function is recursive.
77         // Inlining it into other functions is a bad idea, because this is
78         // basically just a form of loop peeling, and our metrics aren't useful
79         // for that case.
80         if (F == BB->getParent())
81           isRecursive = true;
82       }
83
84       if (!isa<IntrinsicInst>(II) && !callIsSmall(CS.getCalledFunction())) {
85         // Each argument to a call takes on average one instruction to set up.
86         NumInsts += CS.arg_size();
87
88         // We don't want inline asm to count as a call - that would prevent loop
89         // unrolling. The argument setup cost is still real, though.
90         if (!isa<InlineAsm>(CS.getCalledValue()))
91           ++NumCalls;
92       }
93     }
94     
95     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
96       if (!AI->isStaticAlloca())
97         this->usesDynamicAlloca = true;
98     }
99
100     if (isa<ExtractElementInst>(II) || II->getType()->isVectorTy())
101       ++NumVectorInsts; 
102     
103     if (const CastInst *CI = dyn_cast<CastInst>(II)) {
104       // Noop casts, including ptr <-> int,  don't count.
105       if (CI->isLosslessCast() || isa<IntToPtrInst>(CI) || 
106           isa<PtrToIntInst>(CI))
107         continue;
108       // Result of a cmp instruction is often extended (to be used by other
109       // cmp instructions, logical or return instructions). These are usually
110       // nop on most sane targets.
111       if (isa<CmpInst>(CI->getOperand(0)))
112         continue;
113     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(II)){
114       // If a GEP has all constant indices, it will probably be folded with
115       // a load/store.
116       if (GEPI->hasAllConstantIndices())
117         continue;
118     }
119
120     ++NumInsts;
121   }
122   
123   if (isa<ReturnInst>(BB->getTerminator()))
124     ++NumRets;
125   
126   // We never want to inline functions that contain an indirectbr.  This is
127   // incorrect because all the blockaddress's (in static global initializers
128   // for example) would be referring to the original function, and this indirect
129   // jump would jump from the inlined copy of the function into the original
130   // function which is extremely undefined behavior.
131   if (isa<IndirectBrInst>(BB->getTerminator()))
132     containsIndirectBr = true;
133
134   // Remember NumInsts for this BB.
135   NumBBInsts[BB] = NumInsts - NumInstsBeforeThisBB;
136 }
137
138 // CountCodeReductionForConstant - Figure out an approximation for how many
139 // instructions will be constant folded if the specified value is constant.
140 //
141 unsigned CodeMetrics::CountCodeReductionForConstant(Value *V) {
142   unsigned Reduction = 0;
143   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
144     User *U = *UI;
145     if (isa<BranchInst>(U) || isa<SwitchInst>(U)) {
146       // We will be able to eliminate all but one of the successors.
147       const TerminatorInst &TI = cast<TerminatorInst>(*U);
148       const unsigned NumSucc = TI.getNumSuccessors();
149       unsigned Instrs = 0;
150       for (unsigned I = 0; I != NumSucc; ++I)
151         Instrs += NumBBInsts[TI.getSuccessor(I)];
152       // We don't know which blocks will be eliminated, so use the average size.
153       Reduction += InlineConstants::InstrCost*Instrs*(NumSucc-1)/NumSucc;
154     } else {
155       // Figure out if this instruction will be removed due to simple constant
156       // propagation.
157       Instruction &Inst = cast<Instruction>(*U);
158
159       // We can't constant propagate instructions which have effects or
160       // read memory.
161       //
162       // FIXME: It would be nice to capture the fact that a load from a
163       // pointer-to-constant-global is actually a *really* good thing to zap.
164       // Unfortunately, we don't know the pointer that may get propagated here,
165       // so we can't make this decision.
166       if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() ||
167           isa<AllocaInst>(Inst))
168         continue;
169
170       bool AllOperandsConstant = true;
171       for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
172         if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
173           AllOperandsConstant = false;
174           break;
175         }
176
177       if (AllOperandsConstant) {
178         // We will get to remove this instruction...
179         Reduction += InlineConstants::InstrCost;
180
181         // And any other instructions that use it which become constants
182         // themselves.
183         Reduction += CountCodeReductionForConstant(&Inst);
184       }
185     }
186   }
187   return Reduction;
188 }
189
190 // CountCodeReductionForAlloca - Figure out an approximation of how much smaller
191 // the function will be if it is inlined into a context where an argument
192 // becomes an alloca.
193 //
194 unsigned CodeMetrics::CountCodeReductionForAlloca(Value *V) {
195   if (!V->getType()->isPointerTy()) return 0;  // Not a pointer
196   unsigned Reduction = 0;
197   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
198     Instruction *I = cast<Instruction>(*UI);
199     if (isa<LoadInst>(I) || isa<StoreInst>(I))
200       Reduction += InlineConstants::InstrCost;
201     else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
202       // If the GEP has variable indices, we won't be able to do much with it.
203       if (GEP->hasAllConstantIndices())
204         Reduction += CountCodeReductionForAlloca(GEP);
205     } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(I)) {
206       // Track pointer through bitcasts.
207       Reduction += CountCodeReductionForAlloca(BCI);
208     } else {
209       // If there is some other strange instruction, we're not going to be able
210       // to do much if we inline this.
211       return 0;
212     }
213   }
214
215   return Reduction;
216 }
217
218 /// analyzeFunction - Fill in the current structure with information gleaned
219 /// from the specified function.
220 void CodeMetrics::analyzeFunction(Function *F) {
221   // If this function contains a call to setjmp or _setjmp, never inline
222   // it.  This is a hack because we depend on the user marking their local
223   // variables as volatile if they are live across a setjmp call, and they
224   // probably won't do this in callers.
225   if (F->callsFunctionThatReturnsTwice())
226     callsSetJmp = true;
227
228   // Look at the size of the callee.
229   for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
230     analyzeBasicBlock(&*BB);
231 }
232
233 /// analyzeFunction - Fill in the current structure with information gleaned
234 /// from the specified function.
235 void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F) {
236   Metrics.analyzeFunction(F);
237
238   // A function with exactly one return has it removed during the inlining
239   // process (see InlineFunction), so don't count it.
240   // FIXME: This knowledge should really be encoded outside of FunctionInfo.
241   if (Metrics.NumRets==1)
242     --Metrics.NumInsts;
243
244   // Check out all of the arguments to the function, figuring out how much
245   // code can be eliminated if one of the arguments is a constant.
246   ArgumentWeights.reserve(F->arg_size());
247   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
248     ArgumentWeights.push_back(ArgInfo(Metrics.CountCodeReductionForConstant(I),
249                                       Metrics.CountCodeReductionForAlloca(I)));
250 }
251
252 /// NeverInline - returns true if the function should never be inlined into
253 /// any caller
254 bool InlineCostAnalyzer::FunctionInfo::NeverInline() {
255   return (Metrics.callsSetJmp || Metrics.isRecursive || 
256           Metrics.containsIndirectBr);
257 }
258 // getSpecializationBonus - The heuristic used to determine the per-call
259 // performance boost for using a specialization of Callee with argument
260 // specializedArgNo replaced by a constant.
261 int InlineCostAnalyzer::getSpecializationBonus(Function *Callee,
262          SmallVectorImpl<unsigned> &SpecializedArgNos)
263 {
264   if (Callee->mayBeOverridden())
265     return 0;
266   
267   int Bonus = 0;
268   // If this function uses the coldcc calling convention, prefer not to
269   // specialize it.
270   if (Callee->getCallingConv() == CallingConv::Cold)
271     Bonus -= InlineConstants::ColdccPenalty;
272   
273   // Get information about the callee.
274   FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee];
275   
276   // If we haven't calculated this information yet, do so now.
277   if (CalleeFI->Metrics.NumBlocks == 0)
278     CalleeFI->analyzeFunction(Callee);
279
280   unsigned ArgNo = 0;
281   unsigned i = 0;
282   for (Function::arg_iterator I = Callee->arg_begin(), E = Callee->arg_end();
283        I != E; ++I, ++ArgNo)
284     if (ArgNo == SpecializedArgNos[i]) {
285       ++i;
286       Bonus += CountBonusForConstant(I);
287     }
288
289   // Calls usually take a long time, so they make the specialization gain 
290   // smaller.
291   Bonus -= CalleeFI->Metrics.NumCalls * InlineConstants::CallPenalty;
292
293   return Bonus;
294 }
295
296 // ConstantFunctionBonus - Figure out how much of a bonus we can get for
297 // possibly devirtualizing a function. We'll subtract the size of the function
298 // we may wish to inline from the indirect call bonus providing a limit on
299 // growth. Leave an upper limit of 0 for the bonus - we don't want to penalize
300 // inlining because we decide we don't want to give a bonus for
301 // devirtualizing.
302 int InlineCostAnalyzer::ConstantFunctionBonus(CallSite CS, Constant *C) {
303   
304   // This could just be NULL.
305   if (!C) return 0;
306   
307   Function *F = dyn_cast<Function>(C);
308   if (!F) return 0;
309   
310   int Bonus = InlineConstants::IndirectCallBonus + getInlineSize(CS, F);
311   return (Bonus > 0) ? 0 : Bonus;
312 }
313
314 // CountBonusForConstant - Figure out an approximation for how much per-call
315 // performance boost we can expect if the specified value is constant.
316 int InlineCostAnalyzer::CountBonusForConstant(Value *V, Constant *C) {
317   unsigned Bonus = 0;
318   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
319     User *U = *UI;
320     if (CallInst *CI = dyn_cast<CallInst>(U)) {
321       // Turning an indirect call into a direct call is a BIG win
322       if (CI->getCalledValue() == V)
323         Bonus += ConstantFunctionBonus(CallSite(CI), C);
324     } else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) {
325       // Turning an indirect call into a direct call is a BIG win
326       if (II->getCalledValue() == V)
327         Bonus += ConstantFunctionBonus(CallSite(II), C);
328     }
329     // FIXME: Eliminating conditional branches and switches should
330     // also yield a per-call performance boost.
331     else {
332       // Figure out the bonuses that wll accrue due to simple constant
333       // propagation.
334       Instruction &Inst = cast<Instruction>(*U);
335
336       // We can't constant propagate instructions which have effects or
337       // read memory.
338       //
339       // FIXME: It would be nice to capture the fact that a load from a
340       // pointer-to-constant-global is actually a *really* good thing to zap.
341       // Unfortunately, we don't know the pointer that may get propagated here,
342       // so we can't make this decision.
343       if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() ||
344           isa<AllocaInst>(Inst))
345         continue;
346
347       bool AllOperandsConstant = true;
348       for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
349         if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
350           AllOperandsConstant = false;
351           break;
352         }
353
354       if (AllOperandsConstant)
355         Bonus += CountBonusForConstant(&Inst);
356     }
357   }
358   
359   return Bonus;
360 }
361
362 int InlineCostAnalyzer::getInlineSize(CallSite CS, Function *Callee) {
363   // Get information about the callee.
364   FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee];
365   
366   // If we haven't calculated this information yet, do so now.
367   if (CalleeFI->Metrics.NumBlocks == 0)
368     CalleeFI->analyzeFunction(Callee);
369   
370   // InlineCost - This value measures how good of an inline candidate this call
371   // site is to inline.  A lower inline cost make is more likely for the call to
372   // be inlined.  This value may go negative.
373   //
374   int InlineCost = 0;
375
376   // Compute any size reductions we can expect due to arguments being passed into
377   // the function.
378   //
379   unsigned ArgNo = 0;
380   CallSite::arg_iterator I = CS.arg_begin();
381   for (Function::arg_iterator FI = Callee->arg_begin(), FE = Callee->arg_end();
382        FI != FE; ++I, ++FI, ++ArgNo) {
383
384     // If an alloca is passed in, inlining this function is likely to allow
385     // significant future optimization possibilities (like scalar promotion, and
386     // scalarization), so encourage the inlining of the function.
387     //
388     if (isa<AllocaInst>(I))
389       InlineCost -= CalleeFI->ArgumentWeights[ArgNo].AllocaWeight;
390
391     // If this is a constant being passed into the function, use the argument
392     // weights calculated for the callee to determine how much will be folded
393     // away with this information.
394     else if (isa<Constant>(I))
395       InlineCost -= CalleeFI->ArgumentWeights[ArgNo].ConstantWeight;       
396   }
397   
398   // Each argument passed in has a cost at both the caller and the callee
399   // sides.  Measurements show that each argument costs about the same as an
400   // instruction.
401   InlineCost -= (CS.arg_size() * InlineConstants::InstrCost);
402
403   // Now that we have considered all of the factors that make the call site more
404   // likely to be inlined, look at factors that make us not want to inline it.
405
406   // Calls usually take a long time, so they make the inlining gain smaller.
407   InlineCost += CalleeFI->Metrics.NumCalls * InlineConstants::CallPenalty;
408
409   // Look at the size of the callee. Each instruction counts as 5.
410   InlineCost += CalleeFI->Metrics.NumInsts*InlineConstants::InstrCost;
411   
412   return InlineCost;
413 }
414
415 int InlineCostAnalyzer::getInlineBonuses(CallSite CS, Function *Callee) {
416   // Get information about the callee.
417   FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee];
418   
419   // If we haven't calculated this information yet, do so now.
420   if (CalleeFI->Metrics.NumBlocks == 0)
421     CalleeFI->analyzeFunction(Callee);
422     
423   bool isDirectCall = CS.getCalledFunction() == Callee;
424   Instruction *TheCall = CS.getInstruction();
425   int Bonus = 0;
426   
427   // If there is only one call of the function, and it has internal linkage,
428   // make it almost guaranteed to be inlined.
429   //
430   if (Callee->hasLocalLinkage() && Callee->hasOneUse() && isDirectCall)
431     Bonus += InlineConstants::LastCallToStaticBonus;
432   
433   // If the instruction after the call, or if the normal destination of the
434   // invoke is an unreachable instruction, the function is noreturn.  As such,
435   // there is little point in inlining this.
436   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
437     if (isa<UnreachableInst>(II->getNormalDest()->begin()))
438       Bonus += InlineConstants::NoreturnPenalty;
439   } else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall)))
440     Bonus += InlineConstants::NoreturnPenalty;
441   
442   // If this function uses the coldcc calling convention, prefer not to inline
443   // it.
444   if (Callee->getCallingConv() == CallingConv::Cold)
445     Bonus += InlineConstants::ColdccPenalty;
446   
447   // Add to the inline quality for properties that make the call valuable to
448   // inline.  This includes factors that indicate that the result of inlining
449   // the function will be optimizable.  Currently this just looks at arguments
450   // passed into the function.
451   //
452   CallSite::arg_iterator I = CS.arg_begin();
453   for (Function::arg_iterator FI = Callee->arg_begin(), FE = Callee->arg_end();
454        FI != FE; ++I, ++FI)
455     // Compute any constant bonus due to inlining we want to give here.
456     if (isa<Constant>(I))
457       Bonus += CountBonusForConstant(FI, cast<Constant>(I));
458       
459   return Bonus;
460 }
461
462 // getInlineCost - The heuristic used to determine if we should inline the
463 // function call or not.
464 //
465 InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS,
466                                SmallPtrSet<const Function*, 16> &NeverInline) {
467   return getInlineCost(CS, CS.getCalledFunction(), NeverInline);
468 }
469
470 InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS,
471                                Function *Callee,
472                                SmallPtrSet<const Function*, 16> &NeverInline) {
473   Instruction *TheCall = CS.getInstruction();
474   Function *Caller = TheCall->getParent()->getParent();
475
476   // Don't inline functions which can be redefined at link-time to mean
477   // something else.  Don't inline functions marked noinline or call sites
478   // marked noinline.
479   if (Callee->mayBeOverridden() ||
480       Callee->hasFnAttr(Attribute::NoInline) || NeverInline.count(Callee) ||
481       CS.isNoInline())
482     return llvm::InlineCost::getNever();
483
484   // Get information about the callee.
485   FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee];
486   
487   // If we haven't calculated this information yet, do so now.
488   if (CalleeFI->Metrics.NumBlocks == 0)
489     CalleeFI->analyzeFunction(Callee);
490
491   // If we should never inline this, return a huge cost.
492   if (CalleeFI->NeverInline())
493     return InlineCost::getNever();
494
495   // FIXME: It would be nice to kill off CalleeFI->NeverInline. Then we
496   // could move this up and avoid computing the FunctionInfo for
497   // things we are going to just return always inline for. This
498   // requires handling setjmp somewhere else, however.
499   if (!Callee->isDeclaration() && Callee->hasFnAttr(Attribute::AlwaysInline))
500     return InlineCost::getAlways();
501     
502   if (CalleeFI->Metrics.usesDynamicAlloca) {
503     // Get information about the caller.
504     FunctionInfo &CallerFI = CachedFunctionInfo[Caller];
505
506     // If we haven't calculated this information yet, do so now.
507     if (CallerFI.Metrics.NumBlocks == 0) {
508       CallerFI.analyzeFunction(Caller);
509      
510       // Recompute the CalleeFI pointer, getting Caller could have invalidated
511       // it.
512       CalleeFI = &CachedFunctionInfo[Callee];
513     }
514
515     // Don't inline a callee with dynamic alloca into a caller without them.
516     // Functions containing dynamic alloca's are inefficient in various ways;
517     // don't create more inefficiency.
518     if (!CallerFI.Metrics.usesDynamicAlloca)
519       return InlineCost::getNever();
520   }
521
522   // InlineCost - This value measures how good of an inline candidate this call
523   // site is to inline.  A lower inline cost make is more likely for the call to
524   // be inlined.  This value may go negative due to the fact that bonuses
525   // are negative numbers.
526   //
527   int InlineCost = getInlineSize(CS, Callee) + getInlineBonuses(CS, Callee);
528   return llvm::InlineCost::get(InlineCost);
529 }
530
531 // getSpecializationCost - The heuristic used to determine the code-size
532 // impact of creating a specialized version of Callee with argument
533 // SpecializedArgNo replaced by a constant.
534 InlineCost InlineCostAnalyzer::getSpecializationCost(Function *Callee,
535                                SmallVectorImpl<unsigned> &SpecializedArgNos)
536 {
537   // Don't specialize functions which can be redefined at link-time to mean
538   // something else.
539   if (Callee->mayBeOverridden())
540     return llvm::InlineCost::getNever();
541   
542   // Get information about the callee.
543   FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee];
544   
545   // If we haven't calculated this information yet, do so now.
546   if (CalleeFI->Metrics.NumBlocks == 0)
547     CalleeFI->analyzeFunction(Callee);
548
549   int Cost = 0;
550   
551   // Look at the original size of the callee.  Each instruction counts as 5.
552   Cost += CalleeFI->Metrics.NumInsts * InlineConstants::InstrCost;
553
554   // Offset that with the amount of code that can be constant-folded
555   // away with the given arguments replaced by constants.
556   for (SmallVectorImpl<unsigned>::iterator an = SpecializedArgNos.begin(),
557        ae = SpecializedArgNos.end(); an != ae; ++an)
558     Cost -= CalleeFI->ArgumentWeights[*an].ConstantWeight;
559
560   return llvm::InlineCost::get(Cost);
561 }
562
563 // getInlineFudgeFactor - Return a > 1.0 factor if the inliner should use a
564 // higher threshold to determine if the function call should be inlined.
565 float InlineCostAnalyzer::getInlineFudgeFactor(CallSite CS) {
566   Function *Callee = CS.getCalledFunction();
567   
568   // Get information about the callee.
569   FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
570   
571   // If we haven't calculated this information yet, do so now.
572   if (CalleeFI.Metrics.NumBlocks == 0)
573     CalleeFI.analyzeFunction(Callee);
574
575   float Factor = 1.0f;
576   // Single BB functions are often written to be inlined.
577   if (CalleeFI.Metrics.NumBlocks == 1)
578     Factor += 0.5f;
579
580   // Be more aggressive if the function contains a good chunk (if it mades up
581   // at least 10% of the instructions) of vector instructions.
582   if (CalleeFI.Metrics.NumVectorInsts > CalleeFI.Metrics.NumInsts/2)
583     Factor += 2.0f;
584   else if (CalleeFI.Metrics.NumVectorInsts > CalleeFI.Metrics.NumInsts/10)
585     Factor += 1.5f;
586   return Factor;
587 }
588
589 /// growCachedCostInfo - update the cached cost info for Caller after Callee has
590 /// been inlined.
591 void
592 InlineCostAnalyzer::growCachedCostInfo(Function *Caller, Function *Callee) {
593   CodeMetrics &CallerMetrics = CachedFunctionInfo[Caller].Metrics;
594
595   // For small functions we prefer to recalculate the cost for better accuracy.
596   if (CallerMetrics.NumBlocks < 10 && CallerMetrics.NumInsts < 1000) {
597     resetCachedCostInfo(Caller);
598     return;
599   }
600
601   // For large functions, we can save a lot of computation time by skipping
602   // recalculations.
603   if (CallerMetrics.NumCalls > 0)
604     --CallerMetrics.NumCalls;
605
606   if (Callee == 0) return;
607   
608   CodeMetrics &CalleeMetrics = CachedFunctionInfo[Callee].Metrics;
609
610   // If we don't have metrics for the callee, don't recalculate them just to
611   // update an approximation in the caller.  Instead, just recalculate the
612   // caller info from scratch.
613   if (CalleeMetrics.NumBlocks == 0) {
614     resetCachedCostInfo(Caller);
615     return;
616   }
617   
618   // Since CalleeMetrics were already calculated, we know that the CallerMetrics
619   // reference isn't invalidated: both were in the DenseMap.
620   CallerMetrics.usesDynamicAlloca |= CalleeMetrics.usesDynamicAlloca;
621
622   // FIXME: If any of these three are true for the callee, the callee was
623   // not inlined into the caller, so I think they're redundant here.
624   CallerMetrics.callsSetJmp |= CalleeMetrics.callsSetJmp;
625   CallerMetrics.isRecursive |= CalleeMetrics.isRecursive;
626   CallerMetrics.containsIndirectBr |= CalleeMetrics.containsIndirectBr;
627
628   CallerMetrics.NumInsts += CalleeMetrics.NumInsts;
629   CallerMetrics.NumBlocks += CalleeMetrics.NumBlocks;
630   CallerMetrics.NumCalls += CalleeMetrics.NumCalls;
631   CallerMetrics.NumVectorInsts += CalleeMetrics.NumVectorInsts;
632   CallerMetrics.NumRets += CalleeMetrics.NumRets;
633
634   // analyzeBasicBlock counts each function argument as an inst.
635   if (CallerMetrics.NumInsts >= Callee->arg_size())
636     CallerMetrics.NumInsts -= Callee->arg_size();
637   else
638     CallerMetrics.NumInsts = 0;
639   
640   // We are not updating the argument weights. We have already determined that
641   // Caller is a fairly large function, so we accept the loss of precision.
642 }
643
644 /// clear - empty the cache of inline costs
645 void InlineCostAnalyzer::clear() {
646   CachedFunctionInfo.clear();
647 }