Enhance BranchProbabilityInfo::calcUnreachableHeuristics for InvokeInst
[oota-llvm.git] / lib / Analysis / DemandedBits.cpp
1 //===---- DemandedBits.cpp - Determine demanded bits ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements a demanded bits analysis. A demanded bit is one that
11 // contributes to a result; bits that are not demanded can be either zero or
12 // one without affecting control or data flow. For example in this sequence:
13 //
14 //   %1 = add i32 %x, %y
15 //   %2 = trunc i32 %1 to i16
16 //
17 // Only the lowest 16 bits of %1 are demanded; the rest are removed by the
18 // trunc.
19 //
20 //===----------------------------------------------------------------------===//
21
22 #include "llvm/Analysis/DemandedBits.h"
23 #include "llvm/Transforms/Scalar.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/Analysis/AssumptionCache.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/InstIterator.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 using namespace llvm;
44
45 #define DEBUG_TYPE "demanded-bits"
46
47 char DemandedBits::ID = 0;
48 INITIALIZE_PASS_BEGIN(DemandedBits, "demanded-bits", "Demanded bits analysis",
49                       false, false)
50 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
51 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
52 INITIALIZE_PASS_END(DemandedBits, "demanded-bits", "Demanded bits analysis",
53                     false, false)
54
55 DemandedBits::DemandedBits() : FunctionPass(ID), F(nullptr), Analyzed(false) {
56   initializeDemandedBitsPass(*PassRegistry::getPassRegistry());
57 }
58
59 void DemandedBits::getAnalysisUsage(AnalysisUsage &AU) const {
60   AU.setPreservesCFG();
61   AU.addRequired<AssumptionCacheTracker>();
62   AU.addRequired<DominatorTreeWrapperPass>();
63   AU.setPreservesAll();
64 }
65
66 static bool isAlwaysLive(Instruction *I) {
67   return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
68       I->isEHPad() || I->mayHaveSideEffects();
69 }
70
71 void DemandedBits::determineLiveOperandBits(
72     const Instruction *UserI, const Instruction *I, unsigned OperandNo,
73     const APInt &AOut, APInt &AB, APInt &KnownZero, APInt &KnownOne,
74     APInt &KnownZero2, APInt &KnownOne2) {
75   unsigned BitWidth = AB.getBitWidth();
76
77   // We're called once per operand, but for some instructions, we need to
78   // compute known bits of both operands in order to determine the live bits of
79   // either (when both operands are instructions themselves). We don't,
80   // however, want to do this twice, so we cache the result in APInts that live
81   // in the caller. For the two-relevant-operands case, both operand values are
82   // provided here.
83   auto ComputeKnownBits =
84       [&](unsigned BitWidth, const Value *V1, const Value *V2) {
85         const DataLayout &DL = I->getModule()->getDataLayout();
86         KnownZero = APInt(BitWidth, 0);
87         KnownOne = APInt(BitWidth, 0);
88         computeKnownBits(const_cast<Value *>(V1), KnownZero, KnownOne, DL, 0,
89                          AC, UserI, DT);
90
91         if (V2) {
92           KnownZero2 = APInt(BitWidth, 0);
93           KnownOne2 = APInt(BitWidth, 0);
94           computeKnownBits(const_cast<Value *>(V2), KnownZero2, KnownOne2, DL,
95                            0, AC, UserI, DT);
96         }
97       };
98
99   switch (UserI->getOpcode()) {
100   default: break;
101   case Instruction::Call:
102   case Instruction::Invoke:
103     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
104       switch (II->getIntrinsicID()) {
105       default: break;
106       case Intrinsic::bswap:
107         // The alive bits of the input are the swapped alive bits of
108         // the output.
109         AB = AOut.byteSwap();
110         break;
111       case Intrinsic::ctlz:
112         if (OperandNo == 0) {
113           // We need some output bits, so we need all bits of the
114           // input to the left of, and including, the leftmost bit
115           // known to be one.
116           ComputeKnownBits(BitWidth, I, nullptr);
117           AB = APInt::getHighBitsSet(BitWidth,
118                  std::min(BitWidth, KnownOne.countLeadingZeros()+1));
119         }
120         break;
121       case Intrinsic::cttz:
122         if (OperandNo == 0) {
123           // We need some output bits, so we need all bits of the
124           // input to the right of, and including, the rightmost bit
125           // known to be one.
126           ComputeKnownBits(BitWidth, I, nullptr);
127           AB = APInt::getLowBitsSet(BitWidth,
128                  std::min(BitWidth, KnownOne.countTrailingZeros()+1));
129         }
130         break;
131       }
132     break;
133   case Instruction::Add:
134   case Instruction::Sub:
135   case Instruction::Mul:
136     // Find the highest live output bit. We don't need any more input
137     // bits than that (adds, and thus subtracts, ripple only to the
138     // left).
139     AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
140     break;
141   case Instruction::Shl:
142     if (OperandNo == 0)
143       if (ConstantInt *CI =
144             dyn_cast<ConstantInt>(UserI->getOperand(1))) {
145         uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
146         AB = AOut.lshr(ShiftAmt);
147
148         // If the shift is nuw/nsw, then the high bits are not dead
149         // (because we've promised that they *must* be zero).
150         const ShlOperator *S = cast<ShlOperator>(UserI);
151         if (S->hasNoSignedWrap())
152           AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
153         else if (S->hasNoUnsignedWrap())
154           AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
155       }
156     break;
157   case Instruction::LShr:
158     if (OperandNo == 0)
159       if (ConstantInt *CI =
160             dyn_cast<ConstantInt>(UserI->getOperand(1))) {
161         uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
162         AB = AOut.shl(ShiftAmt);
163
164         // If the shift is exact, then the low bits are not dead
165         // (they must be zero).
166         if (cast<LShrOperator>(UserI)->isExact())
167           AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
168       }
169     break;
170   case Instruction::AShr:
171     if (OperandNo == 0)
172       if (ConstantInt *CI =
173             dyn_cast<ConstantInt>(UserI->getOperand(1))) {
174         uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
175         AB = AOut.shl(ShiftAmt);
176         // Because the high input bit is replicated into the
177         // high-order bits of the result, if we need any of those
178         // bits, then we must keep the highest input bit.
179         if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
180             .getBoolValue())
181           AB.setBit(BitWidth-1);
182
183         // If the shift is exact, then the low bits are not dead
184         // (they must be zero).
185         if (cast<AShrOperator>(UserI)->isExact())
186           AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
187       }
188     break;
189   case Instruction::And:
190     AB = AOut;
191
192     // For bits that are known zero, the corresponding bits in the
193     // other operand are dead (unless they're both zero, in which
194     // case they can't both be dead, so just mark the LHS bits as
195     // dead).
196     if (OperandNo == 0) {
197       ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
198       AB &= ~KnownZero2;
199     } else {
200       if (!isa<Instruction>(UserI->getOperand(0)))
201         ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
202       AB &= ~(KnownZero & ~KnownZero2);
203     }
204     break;
205   case Instruction::Or:
206     AB = AOut;
207
208     // For bits that are known one, the corresponding bits in the
209     // other operand are dead (unless they're both one, in which
210     // case they can't both be dead, so just mark the LHS bits as
211     // dead).
212     if (OperandNo == 0) {
213       ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
214       AB &= ~KnownOne2;
215     } else {
216       if (!isa<Instruction>(UserI->getOperand(0)))
217         ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
218       AB &= ~(KnownOne & ~KnownOne2);
219     }
220     break;
221   case Instruction::Xor:
222   case Instruction::PHI:
223     AB = AOut;
224     break;
225   case Instruction::Trunc:
226     AB = AOut.zext(BitWidth);
227     break;
228   case Instruction::ZExt:
229     AB = AOut.trunc(BitWidth);
230     break;
231   case Instruction::SExt:
232     AB = AOut.trunc(BitWidth);
233     // Because the high input bit is replicated into the
234     // high-order bits of the result, if we need any of those
235     // bits, then we must keep the highest input bit.
236     if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
237                                       AOut.getBitWidth() - BitWidth))
238         .getBoolValue())
239       AB.setBit(BitWidth-1);
240     break;
241   case Instruction::Select:
242     if (OperandNo != 0)
243       AB = AOut;
244     break;
245   case Instruction::ICmp:
246     // Count the number of leading zeroes in each operand.
247     ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
248     auto NumLeadingZeroes = std::min(KnownZero.countLeadingOnes(),
249                                      KnownZero2.countLeadingOnes());
250     AB = ~APInt::getHighBitsSet(BitWidth, NumLeadingZeroes);
251     break;
252   }
253 }
254
255 bool DemandedBits::runOnFunction(Function& Fn) {
256   F = &Fn;
257   Analyzed = false;
258   return false;
259 }
260
261 void DemandedBits::performAnalysis() {
262   if (Analyzed)
263     // Analysis already completed for this function.
264     return;
265   Analyzed = true;
266   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(*F);
267   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
268   
269   Visited.clear();
270   AliveBits.clear();
271
272   SmallVector<Instruction*, 128> Worklist;
273
274   // Collect the set of "root" instructions that are known live.
275   for (Instruction &I : instructions(*F)) {
276     if (!isAlwaysLive(&I))
277       continue;
278
279     DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
280     // For integer-valued instructions, set up an initial empty set of alive
281     // bits and add the instruction to the work list. For other instructions
282     // add their operands to the work list (for integer values operands, mark
283     // all bits as live).
284     if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
285       if (!AliveBits.count(&I)) {
286         AliveBits[&I] = APInt(IT->getBitWidth(), 0);
287         Worklist.push_back(&I);
288       }
289
290       continue;
291     }
292
293     // Non-integer-typed instructions...
294     for (Use &OI : I.operands()) {
295       if (Instruction *J = dyn_cast<Instruction>(OI)) {
296         if (IntegerType *IT = dyn_cast<IntegerType>(J->getType()))
297           AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth());
298         Worklist.push_back(J);
299       }
300     }
301     // To save memory, we don't add I to the Visited set here. Instead, we
302     // check isAlwaysLive on every instruction when searching for dead
303     // instructions later (we need to check isAlwaysLive for the
304     // integer-typed instructions anyway).
305   }
306
307   // Propagate liveness backwards to operands.
308   while (!Worklist.empty()) {
309     Instruction *UserI = Worklist.pop_back_val();
310
311     DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
312     APInt AOut;
313     if (UserI->getType()->isIntegerTy()) {
314       AOut = AliveBits[UserI];
315       DEBUG(dbgs() << " Alive Out: " << AOut);
316     }
317     DEBUG(dbgs() << "\n");
318
319     if (!UserI->getType()->isIntegerTy())
320       Visited.insert(UserI);
321
322     APInt KnownZero, KnownOne, KnownZero2, KnownOne2;
323     // Compute the set of alive bits for each operand. These are anded into the
324     // existing set, if any, and if that changes the set of alive bits, the
325     // operand is added to the work-list.
326     for (Use &OI : UserI->operands()) {
327       if (Instruction *I = dyn_cast<Instruction>(OI)) {
328         if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) {
329           unsigned BitWidth = IT->getBitWidth();
330           APInt AB = APInt::getAllOnesValue(BitWidth);
331           if (UserI->getType()->isIntegerTy() && !AOut &&
332               !isAlwaysLive(UserI)) {
333             AB = APInt(BitWidth, 0);
334           } else {
335             // If all bits of the output are dead, then all bits of the input
336             // Bits of each operand that are used to compute alive bits of the
337             // output are alive, all others are dead.
338             determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB,
339                                      KnownZero, KnownOne,
340                                      KnownZero2, KnownOne2);
341           }
342
343           // If we've added to the set of alive bits (or the operand has not
344           // been previously visited), then re-queue the operand to be visited
345           // again.
346           APInt ABPrev(BitWidth, 0);
347           auto ABI = AliveBits.find(I);
348           if (ABI != AliveBits.end())
349             ABPrev = ABI->second;
350
351           APInt ABNew = AB | ABPrev;
352           if (ABNew != ABPrev || ABI == AliveBits.end()) {
353             AliveBits[I] = std::move(ABNew);
354             Worklist.push_back(I);
355           }
356         } else if (!Visited.count(I)) {
357           Worklist.push_back(I);
358         }
359       }
360     }
361   }
362 }
363
364 APInt DemandedBits::getDemandedBits(Instruction *I) {
365   performAnalysis();
366   
367   const DataLayout &DL = I->getParent()->getModule()->getDataLayout();
368   if (AliveBits.count(I))
369     return AliveBits[I];
370   return APInt::getAllOnesValue(DL.getTypeSizeInBits(I->getType()));
371 }
372
373 bool DemandedBits::isInstructionDead(Instruction *I) {
374   performAnalysis();
375
376   return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() &&
377     !isAlwaysLive(I);
378 }
379
380 void DemandedBits::print(raw_ostream &OS, const Module *M) const {
381   // This is gross. But the alternative is making all the state mutable
382   // just because of this one debugging method.
383   const_cast<DemandedBits*>(this)->performAnalysis();
384   for (auto &KV : AliveBits) {
385     OS << "DemandedBits: 0x" << utohexstr(KV.second.getLimitedValue()) << " for "
386        << *KV.first << "\n";
387   }
388 }
389
390 FunctionPass *llvm::createDemandedBitsPass() {
391   return new DemandedBits();
392 }