[PM/AA] Clean up and homogenize comments throughout basic-aa.
[oota-llvm.git] / lib / Analysis / CostModel.cpp
1 //===- CostModel.cpp ------ Cost Model Analysis ---------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the cost model analysis. It provides a very basic cost
11 // estimation for LLVM-IR. This analysis uses the services of the codegen
12 // to approximate the cost of any IR instruction when lowered to machine
13 // instructions. The cost results are unit-less and the cost number represents
14 // the throughput of the machine assuming that all loads hit the cache, all
15 // branches are predicted, etc. The cost numbers can be added in order to
16 // compare two or more transformation alternatives.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/Analysis/Passes.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 using namespace llvm;
32
33 #define CM_NAME "cost-model"
34 #define DEBUG_TYPE CM_NAME
35
36 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
37                                      cl::Hidden,
38                                      cl::desc("Recognize reduction patterns."));
39
40 namespace {
41   class CostModelAnalysis : public FunctionPass {
42
43   public:
44     static char ID; // Class identification, replacement for typeinfo
45     CostModelAnalysis() : FunctionPass(ID), F(nullptr), TTI(nullptr) {
46       initializeCostModelAnalysisPass(
47         *PassRegistry::getPassRegistry());
48     }
49
50     /// Returns the expected cost of the instruction.
51     /// Returns -1 if the cost is unknown.
52     /// Note, this method does not cache the cost calculation and it
53     /// can be expensive in some cases.
54     unsigned getInstructionCost(const Instruction *I) const;
55
56   private:
57     void getAnalysisUsage(AnalysisUsage &AU) const override;
58     bool runOnFunction(Function &F) override;
59     void print(raw_ostream &OS, const Module*) const override;
60
61     /// The function that we analyze.
62     Function *F;
63     /// Target information.
64     const TargetTransformInfo *TTI;
65   };
66 }  // End of anonymous namespace
67
68 // Register this pass.
69 char CostModelAnalysis::ID = 0;
70 static const char cm_name[] = "Cost Model Analysis";
71 INITIALIZE_PASS_BEGIN(CostModelAnalysis, CM_NAME, cm_name, false, true)
72 INITIALIZE_PASS_END  (CostModelAnalysis, CM_NAME, cm_name, false, true)
73
74 FunctionPass *llvm::createCostModelAnalysisPass() {
75   return new CostModelAnalysis();
76 }
77
78 void
79 CostModelAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
80   AU.setPreservesAll();
81 }
82
83 bool
84 CostModelAnalysis::runOnFunction(Function &F) {
85  this->F = &F;
86  auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
87  TTI = TTIWP ? &TTIWP->getTTI(F) : nullptr;
88
89  return false;
90 }
91
92 static bool isReverseVectorMask(SmallVectorImpl<int> &Mask) {
93   for (unsigned i = 0, MaskSize = Mask.size(); i < MaskSize; ++i)
94     if (Mask[i] > 0 && Mask[i] != (int)(MaskSize - 1 - i))
95       return false;
96   return true;
97 }
98
99 static bool isAlternateVectorMask(SmallVectorImpl<int> &Mask) {
100   bool isAlternate = true;
101   unsigned MaskSize = Mask.size();
102
103   // Example: shufflevector A, B, <0,5,2,7>
104   for (unsigned i = 0; i < MaskSize && isAlternate; ++i) {
105     if (Mask[i] < 0)
106       continue;
107     isAlternate = Mask[i] == (int)((i & 1) ? MaskSize + i : i);
108   }
109
110   if (isAlternate)
111     return true;
112
113   isAlternate = true;
114   // Example: shufflevector A, B, <4,1,6,3>
115   for (unsigned i = 0; i < MaskSize && isAlternate; ++i) {
116     if (Mask[i] < 0)
117       continue;
118     isAlternate = Mask[i] == (int)((i & 1) ? i : MaskSize + i);
119   }
120
121   return isAlternate;
122 }
123
124 static TargetTransformInfo::OperandValueKind getOperandInfo(Value *V) {
125   TargetTransformInfo::OperandValueKind OpInfo =
126     TargetTransformInfo::OK_AnyValue;
127
128   // Check for a splat of a constant or for a non uniform vector of constants.
129   if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
130     OpInfo = TargetTransformInfo::OK_NonUniformConstantValue;
131     if (cast<Constant>(V)->getSplatValue() != nullptr)
132       OpInfo = TargetTransformInfo::OK_UniformConstantValue;
133   }
134
135   return OpInfo;
136 }
137
138 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
139                                      unsigned Level) {
140   // We don't need a shuffle if we just want to have element 0 in position 0 of
141   // the vector.
142   if (!SI && Level == 0 && IsLeft)
143     return true;
144   else if (!SI)
145     return false;
146
147   SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1);
148
149   // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
150   // we look at the left or right side.
151   for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
152     Mask[i] = val;
153
154   SmallVector<int, 16> ActualMask = SI->getShuffleMask();
155   if (Mask != ActualMask)
156     return false;
157
158   return true;
159 }
160
161 static bool matchPairwiseReductionAtLevel(const BinaryOperator *BinOp,
162                                           unsigned Level, unsigned NumLevels) {
163   // Match one level of pairwise operations.
164   // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
165   //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
166   // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
167   //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
168   // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
169   if (BinOp == nullptr)
170     return false;
171
172   assert(BinOp->getType()->isVectorTy() && "Expecting a vector type");
173
174   unsigned Opcode = BinOp->getOpcode();
175   Value *L = BinOp->getOperand(0);
176   Value *R = BinOp->getOperand(1);
177
178   ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(L);
179   if (!LS && Level)
180     return false;
181   ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(R);
182   if (!RS && Level)
183     return false;
184
185   // On level 0 we can omit one shufflevector instruction.
186   if (!Level && !RS && !LS)
187     return false;
188
189   // Shuffle inputs must match.
190   Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
191   Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
192   Value *NextLevelOp = nullptr;
193   if (NextLevelOpR && NextLevelOpL) {
194     // If we have two shuffles their operands must match.
195     if (NextLevelOpL != NextLevelOpR)
196       return false;
197
198     NextLevelOp = NextLevelOpL;
199   } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
200     // On the first level we can omit the shufflevector <0, undef,...>. So the
201     // input to the other shufflevector <1, undef> must match with one of the
202     // inputs to the current binary operation.
203     // Example:
204     //  %NextLevelOpL = shufflevector %R, <1, undef ...>
205     //  %BinOp        = fadd          %NextLevelOpL, %R
206     if (NextLevelOpL && NextLevelOpL != R)
207       return false;
208     else if (NextLevelOpR && NextLevelOpR != L)
209       return false;
210
211     NextLevelOp = NextLevelOpL ? R : L;
212   } else
213     return false;
214
215   // Check that the next levels binary operation exists and matches with the
216   // current one.
217   BinaryOperator *NextLevelBinOp = nullptr;
218   if (Level + 1 != NumLevels) {
219     if (!(NextLevelBinOp = dyn_cast<BinaryOperator>(NextLevelOp)))
220       return false;
221     else if (NextLevelBinOp->getOpcode() != Opcode)
222       return false;
223   }
224
225   // Shuffle mask for pairwise operation must match.
226   if (matchPairwiseShuffleMask(LS, true, Level)) {
227     if (!matchPairwiseShuffleMask(RS, false, Level))
228       return false;
229   } else if (matchPairwiseShuffleMask(RS, true, Level)) {
230     if (!matchPairwiseShuffleMask(LS, false, Level))
231       return false;
232   } else
233     return false;
234
235   if (++Level == NumLevels)
236     return true;
237
238   // Match next level.
239   return matchPairwiseReductionAtLevel(NextLevelBinOp, Level, NumLevels);
240 }
241
242 static bool matchPairwiseReduction(const ExtractElementInst *ReduxRoot,
243                                    unsigned &Opcode, Type *&Ty) {
244   if (!EnableReduxCost)
245     return false;
246
247   // Need to extract the first element.
248   ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
249   unsigned Idx = ~0u;
250   if (CI)
251     Idx = CI->getZExtValue();
252   if (Idx != 0)
253     return false;
254
255   BinaryOperator *RdxStart = dyn_cast<BinaryOperator>(ReduxRoot->getOperand(0));
256   if (!RdxStart)
257     return false;
258
259   Type *VecTy = ReduxRoot->getOperand(0)->getType();
260   unsigned NumVecElems = VecTy->getVectorNumElements();
261   if (!isPowerOf2_32(NumVecElems))
262     return false;
263
264   // We look for a sequence of shuffle,shuffle,add triples like the following
265   // that builds a pairwise reduction tree.
266   //
267   //  (X0, X1, X2, X3)
268   //   (X0 + X1, X2 + X3, undef, undef)
269   //    ((X0 + X1) + (X2 + X3), undef, undef, undef)
270   //
271   // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
272   //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
273   // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
274   //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
275   // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
276   // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
277   //       <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
278   // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
279   //       <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
280   // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
281   // %r = extractelement <4 x float> %bin.rdx8, i32 0
282   if (!matchPairwiseReductionAtLevel(RdxStart, 0,  Log2_32(NumVecElems)))
283     return false;
284
285   Opcode = RdxStart->getOpcode();
286   Ty = VecTy;
287
288   return true;
289 }
290
291 static std::pair<Value *, ShuffleVectorInst *>
292 getShuffleAndOtherOprd(BinaryOperator *B) {
293
294   Value *L = B->getOperand(0);
295   Value *R = B->getOperand(1);
296   ShuffleVectorInst *S = nullptr;
297
298   if ((S = dyn_cast<ShuffleVectorInst>(L)))
299     return std::make_pair(R, S);
300
301   S = dyn_cast<ShuffleVectorInst>(R);
302   return std::make_pair(L, S);
303 }
304
305 static bool matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
306                                           unsigned &Opcode, Type *&Ty) {
307   if (!EnableReduxCost)
308     return false;
309
310   // Need to extract the first element.
311   ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
312   unsigned Idx = ~0u;
313   if (CI)
314     Idx = CI->getZExtValue();
315   if (Idx != 0)
316     return false;
317
318   BinaryOperator *RdxStart = dyn_cast<BinaryOperator>(ReduxRoot->getOperand(0));
319   if (!RdxStart)
320     return false;
321   unsigned RdxOpcode = RdxStart->getOpcode();
322
323   Type *VecTy = ReduxRoot->getOperand(0)->getType();
324   unsigned NumVecElems = VecTy->getVectorNumElements();
325   if (!isPowerOf2_32(NumVecElems))
326     return false;
327
328   // We look for a sequence of shuffles and adds like the following matching one
329   // fadd, shuffle vector pair at a time.
330   //
331   // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
332   //                           <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
333   // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
334   // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
335   //                          <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
336   // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
337   // %r = extractelement <4 x float> %bin.rdx8, i32 0
338
339   unsigned MaskStart = 1;
340   Value *RdxOp = RdxStart;
341   SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
342   unsigned NumVecElemsRemain = NumVecElems;
343   while (NumVecElemsRemain - 1) {
344     // Check for the right reduction operation.
345     BinaryOperator *BinOp;
346     if (!(BinOp = dyn_cast<BinaryOperator>(RdxOp)))
347       return false;
348     if (BinOp->getOpcode() != RdxOpcode)
349       return false;
350
351     Value *NextRdxOp;
352     ShuffleVectorInst *Shuffle;
353     std::tie(NextRdxOp, Shuffle) = getShuffleAndOtherOprd(BinOp);
354
355     // Check the current reduction operation and the shuffle use the same value.
356     if (Shuffle == nullptr)
357       return false;
358     if (Shuffle->getOperand(0) != NextRdxOp)
359       return false;
360
361     // Check that shuffle masks matches.
362     for (unsigned j = 0; j != MaskStart; ++j)
363       ShuffleMask[j] = MaskStart + j;
364     // Fill the rest of the mask with -1 for undef.
365     std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
366
367     SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
368     if (ShuffleMask != Mask)
369       return false;
370
371     RdxOp = NextRdxOp;
372     NumVecElemsRemain /= 2;
373     MaskStart *= 2;
374   }
375
376   Opcode = RdxOpcode;
377   Ty = VecTy;
378   return true;
379 }
380
381 unsigned CostModelAnalysis::getInstructionCost(const Instruction *I) const {
382   if (!TTI)
383     return -1;
384
385   switch (I->getOpcode()) {
386   case Instruction::GetElementPtr:
387     return TTI->getUserCost(I);
388
389   case Instruction::Ret:
390   case Instruction::PHI:
391   case Instruction::Br: {
392     return TTI->getCFInstrCost(I->getOpcode());
393   }
394   case Instruction::Add:
395   case Instruction::FAdd:
396   case Instruction::Sub:
397   case Instruction::FSub:
398   case Instruction::Mul:
399   case Instruction::FMul:
400   case Instruction::UDiv:
401   case Instruction::SDiv:
402   case Instruction::FDiv:
403   case Instruction::URem:
404   case Instruction::SRem:
405   case Instruction::FRem:
406   case Instruction::Shl:
407   case Instruction::LShr:
408   case Instruction::AShr:
409   case Instruction::And:
410   case Instruction::Or:
411   case Instruction::Xor: {
412     TargetTransformInfo::OperandValueKind Op1VK =
413       getOperandInfo(I->getOperand(0));
414     TargetTransformInfo::OperandValueKind Op2VK =
415       getOperandInfo(I->getOperand(1));
416     return TTI->getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK,
417                                        Op2VK);
418   }
419   case Instruction::Select: {
420     const SelectInst *SI = cast<SelectInst>(I);
421     Type *CondTy = SI->getCondition()->getType();
422     return TTI->getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy);
423   }
424   case Instruction::ICmp:
425   case Instruction::FCmp: {
426     Type *ValTy = I->getOperand(0)->getType();
427     return TTI->getCmpSelInstrCost(I->getOpcode(), ValTy);
428   }
429   case Instruction::Store: {
430     const StoreInst *SI = cast<StoreInst>(I);
431     Type *ValTy = SI->getValueOperand()->getType();
432     return TTI->getMemoryOpCost(I->getOpcode(), ValTy,
433                                  SI->getAlignment(),
434                                  SI->getPointerAddressSpace());
435   }
436   case Instruction::Load: {
437     const LoadInst *LI = cast<LoadInst>(I);
438     return TTI->getMemoryOpCost(I->getOpcode(), I->getType(),
439                                  LI->getAlignment(),
440                                  LI->getPointerAddressSpace());
441   }
442   case Instruction::ZExt:
443   case Instruction::SExt:
444   case Instruction::FPToUI:
445   case Instruction::FPToSI:
446   case Instruction::FPExt:
447   case Instruction::PtrToInt:
448   case Instruction::IntToPtr:
449   case Instruction::SIToFP:
450   case Instruction::UIToFP:
451   case Instruction::Trunc:
452   case Instruction::FPTrunc:
453   case Instruction::BitCast:
454   case Instruction::AddrSpaceCast: {
455     Type *SrcTy = I->getOperand(0)->getType();
456     return TTI->getCastInstrCost(I->getOpcode(), I->getType(), SrcTy);
457   }
458   case Instruction::ExtractElement: {
459     const ExtractElementInst * EEI = cast<ExtractElementInst>(I);
460     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
461     unsigned Idx = -1;
462     if (CI)
463       Idx = CI->getZExtValue();
464
465     // Try to match a reduction sequence (series of shufflevector and vector
466     // adds followed by a extractelement).
467     unsigned ReduxOpCode;
468     Type *ReduxType;
469
470     if (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType))
471       return TTI->getReductionCost(ReduxOpCode, ReduxType, false);
472     else if (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType))
473       return TTI->getReductionCost(ReduxOpCode, ReduxType, true);
474
475     return TTI->getVectorInstrCost(I->getOpcode(),
476                                    EEI->getOperand(0)->getType(), Idx);
477   }
478   case Instruction::InsertElement: {
479     const InsertElementInst * IE = cast<InsertElementInst>(I);
480     ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
481     unsigned Idx = -1;
482     if (CI)
483       Idx = CI->getZExtValue();
484     return TTI->getVectorInstrCost(I->getOpcode(),
485                                    IE->getType(), Idx);
486   }
487   case Instruction::ShuffleVector: {
488     const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
489     Type *VecTypOp0 = Shuffle->getOperand(0)->getType();
490     unsigned NumVecElems = VecTypOp0->getVectorNumElements();
491     SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
492
493     if (NumVecElems == Mask.size()) {
494       if (isReverseVectorMask(Mask))
495         return TTI->getShuffleCost(TargetTransformInfo::SK_Reverse, VecTypOp0,
496                                    0, nullptr);
497       if (isAlternateVectorMask(Mask))
498         return TTI->getShuffleCost(TargetTransformInfo::SK_Alternate,
499                                    VecTypOp0, 0, nullptr);
500     }
501
502     return -1;
503   }
504   case Instruction::Call:
505     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
506       SmallVector<Type*, 4> Tys;
507       for (unsigned J = 0, JE = II->getNumArgOperands(); J != JE; ++J)
508         Tys.push_back(II->getArgOperand(J)->getType());
509
510       return TTI->getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(),
511                                         Tys);
512     }
513     return -1;
514   default:
515     // We don't have any information on this instruction.
516     return -1;
517   }
518 }
519
520 void CostModelAnalysis::print(raw_ostream &OS, const Module*) const {
521   if (!F)
522     return;
523
524   for (Function::iterator B = F->begin(), BE = F->end(); B != BE; ++B) {
525     for (BasicBlock::iterator it = B->begin(), e = B->end(); it != e; ++it) {
526       Instruction *Inst = it;
527       unsigned Cost = getInstructionCost(Inst);
528       if (Cost != (unsigned)-1)
529         OS << "Cost Model: Found an estimated cost of " << Cost;
530       else
531         OS << "Cost Model: Unknown cost";
532
533       OS << " for instruction: "<< *Inst << "\n";
534     }
535   }
536 }