5bc84f43f9eaa9c539a7b57724c013237da2e524
[oota-llvm.git] / lib / Analysis / ConstantFolding.cpp
1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines routines for folding instructions into constants.
11 //
12 // Also, to supplement the basic IR ConstantExpr simplifications,
13 // this file defines some additional folding routines that can make use of
14 // DataLayout information. These functions cannot go in IR due to library
15 // dependency issues.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Config/config.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GetElementPtrTypeIterator.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include <cerrno>
38 #include <cmath>
39
40 #ifdef HAVE_FENV_H
41 #include <fenv.h>
42 #endif
43
44 using namespace llvm;
45
46 //===----------------------------------------------------------------------===//
47 // Constant Folding internal helper functions
48 //===----------------------------------------------------------------------===//
49
50 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
51 /// This always returns a non-null constant, but it may be a
52 /// ConstantExpr if unfoldable.
53 static Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
54   // Catch the obvious splat cases.
55   if (C->isNullValue() && !DestTy->isX86_MMXTy())
56     return Constant::getNullValue(DestTy);
57   if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
58       !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
59     return Constant::getAllOnesValue(DestTy);
60
61   // Handle a vector->integer cast.
62   if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
63     VectorType *VTy = dyn_cast<VectorType>(C->getType());
64     if (!VTy)
65       return ConstantExpr::getBitCast(C, DestTy);
66
67     unsigned NumSrcElts = VTy->getNumElements();
68     Type *SrcEltTy = VTy->getElementType();
69
70     // If the vector is a vector of floating point, convert it to vector of int
71     // to simplify things.
72     if (SrcEltTy->isFloatingPointTy()) {
73       unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
74       Type *SrcIVTy =
75         VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
76       // Ask IR to do the conversion now that #elts line up.
77       C = ConstantExpr::getBitCast(C, SrcIVTy);
78     }
79
80     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
81     if (!CDV)
82       return ConstantExpr::getBitCast(C, DestTy);
83
84     // Now that we know that the input value is a vector of integers, just shift
85     // and insert them into our result.
86     unsigned BitShift = DL.getTypeAllocSizeInBits(SrcEltTy);
87     APInt Result(IT->getBitWidth(), 0);
88     for (unsigned i = 0; i != NumSrcElts; ++i) {
89       Result <<= BitShift;
90       if (DL.isLittleEndian())
91         Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
92       else
93         Result |= CDV->getElementAsInteger(i);
94     }
95
96     return ConstantInt::get(IT, Result);
97   }
98
99   // The code below only handles casts to vectors currently.
100   VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
101   if (!DestVTy)
102     return ConstantExpr::getBitCast(C, DestTy);
103
104   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
105   // vector so the code below can handle it uniformly.
106   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
107     Constant *Ops = C; // don't take the address of C!
108     return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
109   }
110
111   // If this is a bitcast from constant vector -> vector, fold it.
112   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
113     return ConstantExpr::getBitCast(C, DestTy);
114
115   // If the element types match, IR can fold it.
116   unsigned NumDstElt = DestVTy->getNumElements();
117   unsigned NumSrcElt = C->getType()->getVectorNumElements();
118   if (NumDstElt == NumSrcElt)
119     return ConstantExpr::getBitCast(C, DestTy);
120
121   Type *SrcEltTy = C->getType()->getVectorElementType();
122   Type *DstEltTy = DestVTy->getElementType();
123
124   // Otherwise, we're changing the number of elements in a vector, which
125   // requires endianness information to do the right thing.  For example,
126   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
127   // folds to (little endian):
128   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
129   // and to (big endian):
130   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
131
132   // First thing is first.  We only want to think about integer here, so if
133   // we have something in FP form, recast it as integer.
134   if (DstEltTy->isFloatingPointTy()) {
135     // Fold to an vector of integers with same size as our FP type.
136     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
137     Type *DestIVTy =
138       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
139     // Recursively handle this integer conversion, if possible.
140     C = FoldBitCast(C, DestIVTy, DL);
141
142     // Finally, IR can handle this now that #elts line up.
143     return ConstantExpr::getBitCast(C, DestTy);
144   }
145
146   // Okay, we know the destination is integer, if the input is FP, convert
147   // it to integer first.
148   if (SrcEltTy->isFloatingPointTy()) {
149     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
150     Type *SrcIVTy =
151       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
152     // Ask IR to do the conversion now that #elts line up.
153     C = ConstantExpr::getBitCast(C, SrcIVTy);
154     // If IR wasn't able to fold it, bail out.
155     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
156         !isa<ConstantDataVector>(C))
157       return C;
158   }
159
160   // Now we know that the input and output vectors are both integer vectors
161   // of the same size, and that their #elements is not the same.  Do the
162   // conversion here, which depends on whether the input or output has
163   // more elements.
164   bool isLittleEndian = DL.isLittleEndian();
165
166   SmallVector<Constant*, 32> Result;
167   if (NumDstElt < NumSrcElt) {
168     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
169     Constant *Zero = Constant::getNullValue(DstEltTy);
170     unsigned Ratio = NumSrcElt/NumDstElt;
171     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
172     unsigned SrcElt = 0;
173     for (unsigned i = 0; i != NumDstElt; ++i) {
174       // Build each element of the result.
175       Constant *Elt = Zero;
176       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
177       for (unsigned j = 0; j != Ratio; ++j) {
178         Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
179         if (!Src)  // Reject constantexpr elements.
180           return ConstantExpr::getBitCast(C, DestTy);
181
182         // Zero extend the element to the right size.
183         Src = ConstantExpr::getZExt(Src, Elt->getType());
184
185         // Shift it to the right place, depending on endianness.
186         Src = ConstantExpr::getShl(Src,
187                                    ConstantInt::get(Src->getType(), ShiftAmt));
188         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
189
190         // Mix it in.
191         Elt = ConstantExpr::getOr(Elt, Src);
192       }
193       Result.push_back(Elt);
194     }
195     return ConstantVector::get(Result);
196   }
197
198   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
199   unsigned Ratio = NumDstElt/NumSrcElt;
200   unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
201
202   // Loop over each source value, expanding into multiple results.
203   for (unsigned i = 0; i != NumSrcElt; ++i) {
204     Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
205     if (!Src)  // Reject constantexpr elements.
206       return ConstantExpr::getBitCast(C, DestTy);
207
208     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
209     for (unsigned j = 0; j != Ratio; ++j) {
210       // Shift the piece of the value into the right place, depending on
211       // endianness.
212       Constant *Elt = ConstantExpr::getLShr(Src,
213                                   ConstantInt::get(Src->getType(), ShiftAmt));
214       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
215
216       // Truncate the element to an integer with the same pointer size and
217       // convert the element back to a pointer using a inttoptr.
218       if (DstEltTy->isPointerTy()) {
219         IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
220         Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
221         Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
222         continue;
223       }
224
225       // Truncate and remember this piece.
226       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
227     }
228   }
229
230   return ConstantVector::get(Result);
231 }
232
233
234 /// If this constant is a constant offset from a global, return the global and
235 /// the constant. Because of constantexprs, this function is recursive.
236 static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
237                                        APInt &Offset, const DataLayout &DL) {
238   // Trivial case, constant is the global.
239   if ((GV = dyn_cast<GlobalValue>(C))) {
240     unsigned BitWidth = DL.getPointerTypeSizeInBits(GV->getType());
241     Offset = APInt(BitWidth, 0);
242     return true;
243   }
244
245   // Otherwise, if this isn't a constant expr, bail out.
246   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
247   if (!CE) return false;
248
249   // Look through ptr->int and ptr->ptr casts.
250   if (CE->getOpcode() == Instruction::PtrToInt ||
251       CE->getOpcode() == Instruction::BitCast ||
252       CE->getOpcode() == Instruction::AddrSpaceCast)
253     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL);
254
255   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
256   GEPOperator *GEP = dyn_cast<GEPOperator>(CE);
257   if (!GEP)
258     return false;
259
260   unsigned BitWidth = DL.getPointerTypeSizeInBits(GEP->getType());
261   APInt TmpOffset(BitWidth, 0);
262
263   // If the base isn't a global+constant, we aren't either.
264   if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL))
265     return false;
266
267   // Otherwise, add any offset that our operands provide.
268   if (!GEP->accumulateConstantOffset(DL, TmpOffset))
269     return false;
270
271   Offset = TmpOffset;
272   return true;
273 }
274
275 /// Recursive helper to read bits out of global. C is the constant being copied
276 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
277 /// results into and BytesLeft is the number of bytes left in
278 /// the CurPtr buffer. DL is the DataLayout.
279 static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
280                                unsigned char *CurPtr, unsigned BytesLeft,
281                                const DataLayout &DL) {
282   assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
283          "Out of range access");
284
285   // If this element is zero or undefined, we can just return since *CurPtr is
286   // zero initialized.
287   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
288     return true;
289
290   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
291     if (CI->getBitWidth() > 64 ||
292         (CI->getBitWidth() & 7) != 0)
293       return false;
294
295     uint64_t Val = CI->getZExtValue();
296     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
297
298     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
299       int n = ByteOffset;
300       if (!DL.isLittleEndian())
301         n = IntBytes - n - 1;
302       CurPtr[i] = (unsigned char)(Val >> (n * 8));
303       ++ByteOffset;
304     }
305     return true;
306   }
307
308   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
309     if (CFP->getType()->isDoubleTy()) {
310       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
311       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
312     }
313     if (CFP->getType()->isFloatTy()){
314       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
315       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
316     }
317     if (CFP->getType()->isHalfTy()){
318       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
319       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
320     }
321     return false;
322   }
323
324   if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
325     const StructLayout *SL = DL.getStructLayout(CS->getType());
326     unsigned Index = SL->getElementContainingOffset(ByteOffset);
327     uint64_t CurEltOffset = SL->getElementOffset(Index);
328     ByteOffset -= CurEltOffset;
329
330     while (1) {
331       // If the element access is to the element itself and not to tail padding,
332       // read the bytes from the element.
333       uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
334
335       if (ByteOffset < EltSize &&
336           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
337                               BytesLeft, DL))
338         return false;
339
340       ++Index;
341
342       // Check to see if we read from the last struct element, if so we're done.
343       if (Index == CS->getType()->getNumElements())
344         return true;
345
346       // If we read all of the bytes we needed from this element we're done.
347       uint64_t NextEltOffset = SL->getElementOffset(Index);
348
349       if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
350         return true;
351
352       // Move to the next element of the struct.
353       CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
354       BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
355       ByteOffset = 0;
356       CurEltOffset = NextEltOffset;
357     }
358     // not reached.
359   }
360
361   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
362       isa<ConstantDataSequential>(C)) {
363     Type *EltTy = C->getType()->getSequentialElementType();
364     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
365     uint64_t Index = ByteOffset / EltSize;
366     uint64_t Offset = ByteOffset - Index * EltSize;
367     uint64_t NumElts;
368     if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
369       NumElts = AT->getNumElements();
370     else
371       NumElts = C->getType()->getVectorNumElements();
372
373     for (; Index != NumElts; ++Index) {
374       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
375                               BytesLeft, DL))
376         return false;
377
378       uint64_t BytesWritten = EltSize - Offset;
379       assert(BytesWritten <= EltSize && "Not indexing into this element?");
380       if (BytesWritten >= BytesLeft)
381         return true;
382
383       Offset = 0;
384       BytesLeft -= BytesWritten;
385       CurPtr += BytesWritten;
386     }
387     return true;
388   }
389
390   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
391     if (CE->getOpcode() == Instruction::IntToPtr &&
392         CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
393       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
394                                 BytesLeft, DL);
395     }
396   }
397
398   // Otherwise, unknown initializer type.
399   return false;
400 }
401
402 static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
403                                                  const DataLayout &DL) {
404   PointerType *PTy = cast<PointerType>(C->getType());
405   Type *LoadTy = PTy->getElementType();
406   IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
407
408   // If this isn't an integer load we can't fold it directly.
409   if (!IntType) {
410     unsigned AS = PTy->getAddressSpace();
411
412     // If this is a float/double load, we can try folding it as an int32/64 load
413     // and then bitcast the result.  This can be useful for union cases.  Note
414     // that address spaces don't matter here since we're not going to result in
415     // an actual new load.
416     Type *MapTy;
417     if (LoadTy->isHalfTy())
418       MapTy = Type::getInt16PtrTy(C->getContext(), AS);
419     else if (LoadTy->isFloatTy())
420       MapTy = Type::getInt32PtrTy(C->getContext(), AS);
421     else if (LoadTy->isDoubleTy())
422       MapTy = Type::getInt64PtrTy(C->getContext(), AS);
423     else if (LoadTy->isVectorTy()) {
424       MapTy = PointerType::getIntNPtrTy(C->getContext(),
425                                         DL.getTypeAllocSizeInBits(LoadTy), AS);
426     } else
427       return nullptr;
428
429     C = FoldBitCast(C, MapTy, DL);
430     if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, DL))
431       return FoldBitCast(Res, LoadTy, DL);
432     return nullptr;
433   }
434
435   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
436   if (BytesLoaded > 32 || BytesLoaded == 0)
437     return nullptr;
438
439   GlobalValue *GVal;
440   APInt Offset;
441   if (!IsConstantOffsetFromGlobal(C, GVal, Offset, DL))
442     return nullptr;
443
444   GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
445   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
446       !GV->getInitializer()->getType()->isSized())
447     return nullptr;
448
449   // If we're loading off the beginning of the global, some bytes may be valid,
450   // but we don't try to handle this.
451   if (Offset.isNegative())
452     return nullptr;
453
454   // If we're not accessing anything in this constant, the result is undefined.
455   if (Offset.getZExtValue() >=
456       DL.getTypeAllocSize(GV->getInitializer()->getType()))
457     return UndefValue::get(IntType);
458
459   unsigned char RawBytes[32] = {0};
460   if (!ReadDataFromGlobal(GV->getInitializer(), Offset.getZExtValue(), RawBytes,
461                           BytesLoaded, DL))
462     return nullptr;
463
464   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
465   if (DL.isLittleEndian()) {
466     ResultVal = RawBytes[BytesLoaded - 1];
467     for (unsigned i = 1; i != BytesLoaded; ++i) {
468       ResultVal <<= 8;
469       ResultVal |= RawBytes[BytesLoaded - 1 - i];
470     }
471   } else {
472     ResultVal = RawBytes[0];
473     for (unsigned i = 1; i != BytesLoaded; ++i) {
474       ResultVal <<= 8;
475       ResultVal |= RawBytes[i];
476     }
477   }
478
479   return ConstantInt::get(IntType->getContext(), ResultVal);
480 }
481
482 static Constant *ConstantFoldLoadThroughBitcast(ConstantExpr *CE,
483                                                 const DataLayout &DL) {
484   auto *DestPtrTy = dyn_cast<PointerType>(CE->getType());
485   if (!DestPtrTy)
486     return nullptr;
487   Type *DestTy = DestPtrTy->getElementType();
488
489   Constant *C = ConstantFoldLoadFromConstPtr(CE->getOperand(0), DL);
490   if (!C)
491     return nullptr;
492
493   do {
494     Type *SrcTy = C->getType();
495
496     // If the type sizes are the same and a cast is legal, just directly
497     // cast the constant.
498     if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) {
499       Instruction::CastOps Cast = Instruction::BitCast;
500       // If we are going from a pointer to int or vice versa, we spell the cast
501       // differently.
502       if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
503         Cast = Instruction::IntToPtr;
504       else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
505         Cast = Instruction::PtrToInt;
506
507       if (CastInst::castIsValid(Cast, C, DestTy))
508         return ConstantExpr::getCast(Cast, C, DestTy);
509     }
510
511     // If this isn't an aggregate type, there is nothing we can do to drill down
512     // and find a bitcastable constant.
513     if (!SrcTy->isAggregateType())
514       return nullptr;
515
516     // We're simulating a load through a pointer that was bitcast to point to
517     // a different type, so we can try to walk down through the initial
518     // elements of an aggregate to see if some part of th e aggregate is
519     // castable to implement the "load" semantic model.
520     C = C->getAggregateElement(0u);
521   } while (C);
522
523   return nullptr;
524 }
525
526 /// Return the value that a load from C would produce if it is constant and
527 /// determinable. If this is not determinable, return null.
528 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
529                                              const DataLayout &DL) {
530   // First, try the easy cases:
531   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
532     if (GV->isConstant() && GV->hasDefinitiveInitializer())
533       return GV->getInitializer();
534
535   // If the loaded value isn't a constant expr, we can't handle it.
536   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
537   if (!CE)
538     return nullptr;
539
540   if (CE->getOpcode() == Instruction::GetElementPtr) {
541     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
542       if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
543         if (Constant *V =
544              ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
545           return V;
546       }
547     }
548   }
549
550   if (CE->getOpcode() == Instruction::BitCast)
551     if (Constant *LoadedC = ConstantFoldLoadThroughBitcast(CE, DL))
552       return LoadedC;
553
554   // Instead of loading constant c string, use corresponding integer value
555   // directly if string length is small enough.
556   StringRef Str;
557   if (getConstantStringInfo(CE, Str) && !Str.empty()) {
558     unsigned StrLen = Str.size();
559     Type *Ty = cast<PointerType>(CE->getType())->getElementType();
560     unsigned NumBits = Ty->getPrimitiveSizeInBits();
561     // Replace load with immediate integer if the result is an integer or fp
562     // value.
563     if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
564         (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
565       APInt StrVal(NumBits, 0);
566       APInt SingleChar(NumBits, 0);
567       if (DL.isLittleEndian()) {
568         for (signed i = StrLen-1; i >= 0; i--) {
569           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
570           StrVal = (StrVal << 8) | SingleChar;
571         }
572       } else {
573         for (unsigned i = 0; i < StrLen; i++) {
574           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
575           StrVal = (StrVal << 8) | SingleChar;
576         }
577         // Append NULL at the end.
578         SingleChar = 0;
579         StrVal = (StrVal << 8) | SingleChar;
580       }
581
582       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
583       if (Ty->isFloatingPointTy())
584         Res = ConstantExpr::getBitCast(Res, Ty);
585       return Res;
586     }
587   }
588
589   // If this load comes from anywhere in a constant global, and if the global
590   // is all undef or zero, we know what it loads.
591   if (GlobalVariable *GV =
592           dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) {
593     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
594       Type *ResTy = cast<PointerType>(C->getType())->getElementType();
595       if (GV->getInitializer()->isNullValue())
596         return Constant::getNullValue(ResTy);
597       if (isa<UndefValue>(GV->getInitializer()))
598         return UndefValue::get(ResTy);
599     }
600   }
601
602   // Try hard to fold loads from bitcasted strange and non-type-safe things.
603   return FoldReinterpretLoadFromConstPtr(CE, DL);
604 }
605
606 static Constant *ConstantFoldLoadInst(const LoadInst *LI,
607                                       const DataLayout &DL) {
608   if (LI->isVolatile()) return nullptr;
609
610   if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
611     return ConstantFoldLoadFromConstPtr(C, DL);
612
613   return nullptr;
614 }
615
616 /// One of Op0/Op1 is a constant expression.
617 /// Attempt to symbolically evaluate the result of a binary operator merging
618 /// these together.  If target data info is available, it is provided as DL,
619 /// otherwise DL is null.
620 static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
621                                            Constant *Op1,
622                                            const DataLayout &DL) {
623   // SROA
624
625   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
626   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
627   // bits.
628
629   if (Opc == Instruction::And) {
630     unsigned BitWidth = DL.getTypeSizeInBits(Op0->getType()->getScalarType());
631     APInt KnownZero0(BitWidth, 0), KnownOne0(BitWidth, 0);
632     APInt KnownZero1(BitWidth, 0), KnownOne1(BitWidth, 0);
633     computeKnownBits(Op0, KnownZero0, KnownOne0, DL);
634     computeKnownBits(Op1, KnownZero1, KnownOne1, DL);
635     if ((KnownOne1 | KnownZero0).isAllOnesValue()) {
636       // All the bits of Op0 that the 'and' could be masking are already zero.
637       return Op0;
638     }
639     if ((KnownOne0 | KnownZero1).isAllOnesValue()) {
640       // All the bits of Op1 that the 'and' could be masking are already zero.
641       return Op1;
642     }
643
644     APInt KnownZero = KnownZero0 | KnownZero1;
645     APInt KnownOne = KnownOne0 & KnownOne1;
646     if ((KnownZero | KnownOne).isAllOnesValue()) {
647       return ConstantInt::get(Op0->getType(), KnownOne);
648     }
649   }
650
651   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
652   // constant.  This happens frequently when iterating over a global array.
653   if (Opc == Instruction::Sub) {
654     GlobalValue *GV1, *GV2;
655     APInt Offs1, Offs2;
656
657     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
658       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
659         unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
660
661         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
662         // PtrToInt may change the bitwidth so we have convert to the right size
663         // first.
664         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
665                                                 Offs2.zextOrTrunc(OpSize));
666       }
667   }
668
669   return nullptr;
670 }
671
672 /// If array indices are not pointer-sized integers, explicitly cast them so
673 /// that they aren't implicitly casted by the getelementptr.
674 static Constant *CastGEPIndices(ArrayRef<Constant *> Ops, Type *ResultTy,
675                                 const DataLayout &DL,
676                                 const TargetLibraryInfo *TLI) {
677   Type *IntPtrTy = DL.getIntPtrType(ResultTy);
678
679   bool Any = false;
680   SmallVector<Constant*, 32> NewIdxs;
681   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
682     if ((i == 1 ||
683          !isa<StructType>(GetElementPtrInst::getIndexedType(
684              cast<PointerType>(Ops[0]->getType()->getScalarType())
685                  ->getElementType(),
686              Ops.slice(1, i - 1)))) &&
687         Ops[i]->getType() != IntPtrTy) {
688       Any = true;
689       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
690                                                                       true,
691                                                                       IntPtrTy,
692                                                                       true),
693                                               Ops[i], IntPtrTy));
694     } else
695       NewIdxs.push_back(Ops[i]);
696   }
697
698   if (!Any)
699     return nullptr;
700
701   Constant *C = ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
702   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
703     if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
704       C = Folded;
705   }
706
707   return C;
708 }
709
710 /// Strip the pointer casts, but preserve the address space information.
711 static Constant* StripPtrCastKeepAS(Constant* Ptr) {
712   assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
713   PointerType *OldPtrTy = cast<PointerType>(Ptr->getType());
714   Ptr = Ptr->stripPointerCasts();
715   PointerType *NewPtrTy = cast<PointerType>(Ptr->getType());
716
717   // Preserve the address space number of the pointer.
718   if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
719     NewPtrTy = NewPtrTy->getElementType()->getPointerTo(
720       OldPtrTy->getAddressSpace());
721     Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
722   }
723   return Ptr;
724 }
725
726 /// If we can symbolically evaluate the GEP constant expression, do so.
727 static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
728                                          Type *ResultTy, const DataLayout &DL,
729                                          const TargetLibraryInfo *TLI) {
730   Constant *Ptr = Ops[0];
731   if (!Ptr->getType()->getPointerElementType()->isSized() ||
732       !Ptr->getType()->isPointerTy())
733     return nullptr;
734
735   Type *IntPtrTy = DL.getIntPtrType(Ptr->getType());
736   Type *ResultElementTy = ResultTy->getPointerElementType();
737
738   // If this is a constant expr gep that is effectively computing an
739   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
740   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
741     if (!isa<ConstantInt>(Ops[i])) {
742
743       // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
744       // "inttoptr (sub (ptrtoint Ptr), V)"
745       if (Ops.size() == 2 && ResultElementTy->isIntegerTy(8)) {
746         ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
747         assert((!CE || CE->getType() == IntPtrTy) &&
748                "CastGEPIndices didn't canonicalize index types!");
749         if (CE && CE->getOpcode() == Instruction::Sub &&
750             CE->getOperand(0)->isNullValue()) {
751           Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
752           Res = ConstantExpr::getSub(Res, CE->getOperand(1));
753           Res = ConstantExpr::getIntToPtr(Res, ResultTy);
754           if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
755             Res = ConstantFoldConstantExpression(ResCE, DL, TLI);
756           return Res;
757         }
758       }
759       return nullptr;
760     }
761
762   unsigned BitWidth = DL.getTypeSizeInBits(IntPtrTy);
763   APInt Offset =
764       APInt(BitWidth,
765             DL.getIndexedOffset(
766                 Ptr->getType(),
767                 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
768   Ptr = StripPtrCastKeepAS(Ptr);
769
770   // If this is a GEP of a GEP, fold it all into a single GEP.
771   while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
772     SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
773
774     // Do not try the incorporate the sub-GEP if some index is not a number.
775     bool AllConstantInt = true;
776     for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
777       if (!isa<ConstantInt>(NestedOps[i])) {
778         AllConstantInt = false;
779         break;
780       }
781     if (!AllConstantInt)
782       break;
783
784     Ptr = cast<Constant>(GEP->getOperand(0));
785     Offset += APInt(BitWidth, DL.getIndexedOffset(Ptr->getType(), NestedOps));
786     Ptr = StripPtrCastKeepAS(Ptr);
787   }
788
789   // If the base value for this address is a literal integer value, fold the
790   // getelementptr to the resulting integer value casted to the pointer type.
791   APInt BasePtr(BitWidth, 0);
792   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
793     if (CE->getOpcode() == Instruction::IntToPtr) {
794       if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
795         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
796     }
797   }
798
799   if (Ptr->isNullValue() || BasePtr != 0) {
800     Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
801     return ConstantExpr::getIntToPtr(C, ResultTy);
802   }
803
804   // Otherwise form a regular getelementptr. Recompute the indices so that
805   // we eliminate over-indexing of the notional static type array bounds.
806   // This makes it easy to determine if the getelementptr is "inbounds".
807   // Also, this helps GlobalOpt do SROA on GlobalVariables.
808   Type *Ty = Ptr->getType();
809   assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
810   SmallVector<Constant *, 32> NewIdxs;
811
812   do {
813     if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
814       if (ATy->isPointerTy()) {
815         // The only pointer indexing we'll do is on the first index of the GEP.
816         if (!NewIdxs.empty())
817           break;
818
819         // Only handle pointers to sized types, not pointers to functions.
820         if (!ATy->getElementType()->isSized())
821           return nullptr;
822       }
823
824       // Determine which element of the array the offset points into.
825       APInt ElemSize(BitWidth, DL.getTypeAllocSize(ATy->getElementType()));
826       if (ElemSize == 0)
827         // The element size is 0. This may be [0 x Ty]*, so just use a zero
828         // index for this level and proceed to the next level to see if it can
829         // accommodate the offset.
830         NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
831       else {
832         // The element size is non-zero divide the offset by the element
833         // size (rounding down), to compute the index at this level.
834         APInt NewIdx = Offset.udiv(ElemSize);
835         Offset -= NewIdx * ElemSize;
836         NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
837       }
838       Ty = ATy->getElementType();
839     } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
840       // If we end up with an offset that isn't valid for this struct type, we
841       // can't re-form this GEP in a regular form, so bail out. The pointer
842       // operand likely went through casts that are necessary to make the GEP
843       // sensible.
844       const StructLayout &SL = *DL.getStructLayout(STy);
845       if (Offset.uge(SL.getSizeInBytes()))
846         break;
847
848       // Determine which field of the struct the offset points into. The
849       // getZExtValue is fine as we've already ensured that the offset is
850       // within the range representable by the StructLayout API.
851       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
852       NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
853                                          ElIdx));
854       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
855       Ty = STy->getTypeAtIndex(ElIdx);
856     } else {
857       // We've reached some non-indexable type.
858       break;
859     }
860   } while (Ty != ResultElementTy);
861
862   // If we haven't used up the entire offset by descending the static
863   // type, then the offset is pointing into the middle of an indivisible
864   // member, so we can't simplify it.
865   if (Offset != 0)
866     return nullptr;
867
868   // Create a GEP.
869   Constant *C = ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
870   assert(C->getType()->getPointerElementType() == Ty &&
871          "Computed GetElementPtr has unexpected type!");
872
873   // If we ended up indexing a member with a type that doesn't match
874   // the type of what the original indices indexed, add a cast.
875   if (Ty != ResultElementTy)
876     C = FoldBitCast(C, ResultTy, DL);
877
878   return C;
879 }
880
881
882
883 //===----------------------------------------------------------------------===//
884 // Constant Folding public APIs
885 //===----------------------------------------------------------------------===//
886
887 /// Try to constant fold the specified instruction.
888 /// If successful, the constant result is returned, if not, null is returned.
889 /// Note that this fails if not all of the operands are constant.  Otherwise,
890 /// this function can only fail when attempting to fold instructions like loads
891 /// and stores, which have no constant expression form.
892 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
893                                         const TargetLibraryInfo *TLI) {
894   // Handle PHI nodes quickly here...
895   if (PHINode *PN = dyn_cast<PHINode>(I)) {
896     Constant *CommonValue = nullptr;
897
898     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
899       Value *Incoming = PN->getIncomingValue(i);
900       // If the incoming value is undef then skip it.  Note that while we could
901       // skip the value if it is equal to the phi node itself we choose not to
902       // because that would break the rule that constant folding only applies if
903       // all operands are constants.
904       if (isa<UndefValue>(Incoming))
905         continue;
906       // If the incoming value is not a constant, then give up.
907       Constant *C = dyn_cast<Constant>(Incoming);
908       if (!C)
909         return nullptr;
910       // Fold the PHI's operands.
911       if (ConstantExpr *NewC = dyn_cast<ConstantExpr>(C))
912         C = ConstantFoldConstantExpression(NewC, DL, TLI);
913       // If the incoming value is a different constant to
914       // the one we saw previously, then give up.
915       if (CommonValue && C != CommonValue)
916         return nullptr;
917       CommonValue = C;
918     }
919
920
921     // If we reach here, all incoming values are the same constant or undef.
922     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
923   }
924
925   // Scan the operand list, checking to see if they are all constants, if so,
926   // hand off to ConstantFoldInstOperands.
927   SmallVector<Constant*, 8> Ops;
928   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
929     Constant *Op = dyn_cast<Constant>(*i);
930     if (!Op)
931       return nullptr;  // All operands not constant!
932
933     // Fold the Instruction's operands.
934     if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(Op))
935       Op = ConstantFoldConstantExpression(NewCE, DL, TLI);
936
937     Ops.push_back(Op);
938   }
939
940   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
941     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
942                                            DL, TLI);
943
944   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
945     return ConstantFoldLoadInst(LI, DL);
946
947   if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I)) {
948     return ConstantExpr::getInsertValue(
949                                 cast<Constant>(IVI->getAggregateOperand()),
950                                 cast<Constant>(IVI->getInsertedValueOperand()),
951                                 IVI->getIndices());
952   }
953
954   if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I)) {
955     return ConstantExpr::getExtractValue(
956                                     cast<Constant>(EVI->getAggregateOperand()),
957                                     EVI->getIndices());
958   }
959
960   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, DL, TLI);
961 }
962
963 static Constant *
964 ConstantFoldConstantExpressionImpl(const ConstantExpr *CE, const DataLayout &DL,
965                                    const TargetLibraryInfo *TLI,
966                                    SmallPtrSetImpl<ConstantExpr *> &FoldedOps) {
967   SmallVector<Constant *, 8> Ops;
968   for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end(); i != e;
969        ++i) {
970     Constant *NewC = cast<Constant>(*i);
971     // Recursively fold the ConstantExpr's operands. If we have already folded
972     // a ConstantExpr, we don't have to process it again.
973     if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC)) {
974       if (FoldedOps.insert(NewCE).second)
975         NewC = ConstantFoldConstantExpressionImpl(NewCE, DL, TLI, FoldedOps);
976     }
977     Ops.push_back(NewC);
978   }
979
980   if (CE->isCompare())
981     return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
982                                            DL, TLI);
983   return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, DL, TLI);
984 }
985
986 /// Attempt to fold the constant expression
987 /// using the specified DataLayout.  If successful, the constant result is
988 /// result is returned, if not, null is returned.
989 Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
990                                                const DataLayout &DL,
991                                                const TargetLibraryInfo *TLI) {
992   SmallPtrSet<ConstantExpr *, 4> FoldedOps;
993   return ConstantFoldConstantExpressionImpl(CE, DL, TLI, FoldedOps);
994 }
995
996 /// Attempt to constant fold an instruction with the
997 /// specified opcode and operands.  If successful, the constant result is
998 /// returned, if not, null is returned.  Note that this function can fail when
999 /// attempting to fold instructions like loads and stores, which have no
1000 /// constant expression form.
1001 ///
1002 /// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
1003 /// information, due to only being passed an opcode and operands. Constant
1004 /// folding using this function strips this information.
1005 ///
1006 Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
1007                                          ArrayRef<Constant *> Ops,
1008                                          const DataLayout &DL,
1009                                          const TargetLibraryInfo *TLI) {
1010   // Handle easy binops first.
1011   if (Instruction::isBinaryOp(Opcode)) {
1012     if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1])) {
1013       if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], DL))
1014         return C;
1015     }
1016
1017     return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
1018   }
1019
1020   switch (Opcode) {
1021   default: return nullptr;
1022   case Instruction::ICmp:
1023   case Instruction::FCmp: llvm_unreachable("Invalid for compares");
1024   case Instruction::Call:
1025     if (Function *F = dyn_cast<Function>(Ops.back()))
1026       if (canConstantFoldCallTo(F))
1027         return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
1028     return nullptr;
1029   case Instruction::PtrToInt:
1030     // If the input is a inttoptr, eliminate the pair.  This requires knowing
1031     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1032     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
1033       if (CE->getOpcode() == Instruction::IntToPtr) {
1034         Constant *Input = CE->getOperand(0);
1035         unsigned InWidth = Input->getType()->getScalarSizeInBits();
1036         unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
1037         if (PtrWidth < InWidth) {
1038           Constant *Mask =
1039             ConstantInt::get(CE->getContext(),
1040                              APInt::getLowBitsSet(InWidth, PtrWidth));
1041           Input = ConstantExpr::getAnd(Input, Mask);
1042         }
1043         // Do a zext or trunc to get to the dest size.
1044         return ConstantExpr::getIntegerCast(Input, DestTy, false);
1045       }
1046     }
1047     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1048   case Instruction::IntToPtr:
1049     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1050     // the int size is >= the ptr size and the address spaces are the same.
1051     // This requires knowing the width of a pointer, so it can't be done in
1052     // ConstantExpr::getCast.
1053     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
1054       if (CE->getOpcode() == Instruction::PtrToInt) {
1055         Constant *SrcPtr = CE->getOperand(0);
1056         unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1057         unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1058
1059         if (MidIntSize >= SrcPtrSize) {
1060           unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1061           if (SrcAS == DestTy->getPointerAddressSpace())
1062             return FoldBitCast(CE->getOperand(0), DestTy, DL);
1063         }
1064       }
1065     }
1066
1067     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1068   case Instruction::Trunc:
1069   case Instruction::ZExt:
1070   case Instruction::SExt:
1071   case Instruction::FPTrunc:
1072   case Instruction::FPExt:
1073   case Instruction::UIToFP:
1074   case Instruction::SIToFP:
1075   case Instruction::FPToUI:
1076   case Instruction::FPToSI:
1077   case Instruction::AddrSpaceCast:
1078       return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1079   case Instruction::BitCast:
1080     return FoldBitCast(Ops[0], DestTy, DL);
1081   case Instruction::Select:
1082     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1083   case Instruction::ExtractElement:
1084     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1085   case Instruction::InsertElement:
1086     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1087   case Instruction::ShuffleVector:
1088     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1089   case Instruction::GetElementPtr:
1090     if (Constant *C = CastGEPIndices(Ops, DestTy, DL, TLI))
1091       return C;
1092     if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, DL, TLI))
1093       return C;
1094
1095     return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
1096   }
1097 }
1098
1099 /// Attempt to constant fold a compare
1100 /// instruction (icmp/fcmp) with the specified operands.  If it fails, it
1101 /// returns a constant expression of the specified operands.
1102 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1103                                                 Constant *Ops0, Constant *Ops1,
1104                                                 const DataLayout &DL,
1105                                                 const TargetLibraryInfo *TLI) {
1106   // fold: icmp (inttoptr x), null         -> icmp x, 0
1107   // fold: icmp (ptrtoint x), 0            -> icmp x, null
1108   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1109   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1110   //
1111   // FIXME: The following comment is out of data and the DataLayout is here now.
1112   // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1113   // around to know if bit truncation is happening.
1114   if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1115     if (Ops1->isNullValue()) {
1116       if (CE0->getOpcode() == Instruction::IntToPtr) {
1117         Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1118         // Convert the integer value to the right size to ensure we get the
1119         // proper extension or truncation.
1120         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1121                                                    IntPtrTy, false);
1122         Constant *Null = Constant::getNullValue(C->getType());
1123         return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1124       }
1125
1126       // Only do this transformation if the int is intptrty in size, otherwise
1127       // there is a truncation or extension that we aren't modeling.
1128       if (CE0->getOpcode() == Instruction::PtrToInt) {
1129         Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1130         if (CE0->getType() == IntPtrTy) {
1131           Constant *C = CE0->getOperand(0);
1132           Constant *Null = Constant::getNullValue(C->getType());
1133           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1134         }
1135       }
1136     }
1137
1138     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1139       if (CE0->getOpcode() == CE1->getOpcode()) {
1140         if (CE0->getOpcode() == Instruction::IntToPtr) {
1141           Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1142
1143           // Convert the integer value to the right size to ensure we get the
1144           // proper extension or truncation.
1145           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1146                                                       IntPtrTy, false);
1147           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1148                                                       IntPtrTy, false);
1149           return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1150         }
1151
1152         // Only do this transformation if the int is intptrty in size, otherwise
1153         // there is a truncation or extension that we aren't modeling.
1154         if (CE0->getOpcode() == Instruction::PtrToInt) {
1155           Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1156           if (CE0->getType() == IntPtrTy &&
1157               CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1158             return ConstantFoldCompareInstOperands(
1159                 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1160           }
1161         }
1162       }
1163     }
1164
1165     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1166     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1167     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1168         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1169       Constant *LHS = ConstantFoldCompareInstOperands(
1170           Predicate, CE0->getOperand(0), Ops1, DL, TLI);
1171       Constant *RHS = ConstantFoldCompareInstOperands(
1172           Predicate, CE0->getOperand(1), Ops1, DL, TLI);
1173       unsigned OpC =
1174         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1175       Constant *Ops[] = { LHS, RHS };
1176       return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, DL, TLI);
1177     }
1178   }
1179
1180   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1181 }
1182
1183
1184 /// Given a constant and a getelementptr constantexpr, return the constant value
1185 /// being addressed by the constant expression, or null if something is funny
1186 /// and we can't decide.
1187 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1188                                                        ConstantExpr *CE) {
1189   if (!CE->getOperand(1)->isNullValue())
1190     return nullptr;  // Do not allow stepping over the value!
1191
1192   // Loop over all of the operands, tracking down which value we are
1193   // addressing.
1194   for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1195     C = C->getAggregateElement(CE->getOperand(i));
1196     if (!C)
1197       return nullptr;
1198   }
1199   return C;
1200 }
1201
1202 /// Given a constant and getelementptr indices (with an *implied* zero pointer
1203 /// index that is not in the list), return the constant value being addressed by
1204 /// a virtual load, or null if something is funny and we can't decide.
1205 Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1206                                                   ArrayRef<Constant*> Indices) {
1207   // Loop over all of the operands, tracking down which value we are
1208   // addressing.
1209   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1210     C = C->getAggregateElement(Indices[i]);
1211     if (!C)
1212       return nullptr;
1213   }
1214   return C;
1215 }
1216
1217
1218 //===----------------------------------------------------------------------===//
1219 //  Constant Folding for Calls
1220 //
1221
1222 /// Return true if it's even possible to fold a call to the specified function.
1223 bool llvm::canConstantFoldCallTo(const Function *F) {
1224   switch (F->getIntrinsicID()) {
1225   case Intrinsic::fabs:
1226   case Intrinsic::minnum:
1227   case Intrinsic::maxnum:
1228   case Intrinsic::log:
1229   case Intrinsic::log2:
1230   case Intrinsic::log10:
1231   case Intrinsic::exp:
1232   case Intrinsic::exp2:
1233   case Intrinsic::floor:
1234   case Intrinsic::ceil:
1235   case Intrinsic::sqrt:
1236   case Intrinsic::pow:
1237   case Intrinsic::powi:
1238   case Intrinsic::bswap:
1239   case Intrinsic::ctpop:
1240   case Intrinsic::ctlz:
1241   case Intrinsic::cttz:
1242   case Intrinsic::fma:
1243   case Intrinsic::fmuladd:
1244   case Intrinsic::copysign:
1245   case Intrinsic::round:
1246   case Intrinsic::sadd_with_overflow:
1247   case Intrinsic::uadd_with_overflow:
1248   case Intrinsic::ssub_with_overflow:
1249   case Intrinsic::usub_with_overflow:
1250   case Intrinsic::smul_with_overflow:
1251   case Intrinsic::umul_with_overflow:
1252   case Intrinsic::convert_from_fp16:
1253   case Intrinsic::convert_to_fp16:
1254   case Intrinsic::x86_sse_cvtss2si:
1255   case Intrinsic::x86_sse_cvtss2si64:
1256   case Intrinsic::x86_sse_cvttss2si:
1257   case Intrinsic::x86_sse_cvttss2si64:
1258   case Intrinsic::x86_sse2_cvtsd2si:
1259   case Intrinsic::x86_sse2_cvtsd2si64:
1260   case Intrinsic::x86_sse2_cvttsd2si:
1261   case Intrinsic::x86_sse2_cvttsd2si64:
1262     return true;
1263   default:
1264     return false;
1265   case 0: break;
1266   }
1267
1268   if (!F->hasName())
1269     return false;
1270   StringRef Name = F->getName();
1271
1272   // In these cases, the check of the length is required.  We don't want to
1273   // return true for a name like "cos\0blah" which strcmp would return equal to
1274   // "cos", but has length 8.
1275   switch (Name[0]) {
1276   default: return false;
1277   case 'a':
1278     return Name == "acos" || Name == "asin" || Name == "atan" || Name =="atan2";
1279   case 'c':
1280     return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
1281   case 'e':
1282     return Name == "exp" || Name == "exp2";
1283   case 'f':
1284     return Name == "fabs" || Name == "fmod" || Name == "floor";
1285   case 'l':
1286     return Name == "log" || Name == "log10";
1287   case 'p':
1288     return Name == "pow";
1289   case 's':
1290     return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1291       Name == "sinf" || Name == "sqrtf";
1292   case 't':
1293     return Name == "tan" || Name == "tanh";
1294   }
1295 }
1296
1297 static Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1298   if (Ty->isHalfTy()) {
1299     APFloat APF(V);
1300     bool unused;
1301     APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
1302     return ConstantFP::get(Ty->getContext(), APF);
1303   }
1304   if (Ty->isFloatTy())
1305     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1306   if (Ty->isDoubleTy())
1307     return ConstantFP::get(Ty->getContext(), APFloat(V));
1308   llvm_unreachable("Can only constant fold half/float/double");
1309
1310 }
1311
1312 namespace {
1313 /// Clear the floating-point exception state.
1314 static inline void llvm_fenv_clearexcept() {
1315 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1316   feclearexcept(FE_ALL_EXCEPT);
1317 #endif
1318   errno = 0;
1319 }
1320
1321 /// Test if a floating-point exception was raised.
1322 static inline bool llvm_fenv_testexcept() {
1323   int errno_val = errno;
1324   if (errno_val == ERANGE || errno_val == EDOM)
1325     return true;
1326 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1327   if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1328     return true;
1329 #endif
1330   return false;
1331 }
1332 } // End namespace
1333
1334 static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
1335                                 Type *Ty) {
1336   llvm_fenv_clearexcept();
1337   V = NativeFP(V);
1338   if (llvm_fenv_testexcept()) {
1339     llvm_fenv_clearexcept();
1340     return nullptr;
1341   }
1342
1343   return GetConstantFoldFPValue(V, Ty);
1344 }
1345
1346 static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1347                                       double V, double W, Type *Ty) {
1348   llvm_fenv_clearexcept();
1349   V = NativeFP(V, W);
1350   if (llvm_fenv_testexcept()) {
1351     llvm_fenv_clearexcept();
1352     return nullptr;
1353   }
1354
1355   return GetConstantFoldFPValue(V, Ty);
1356 }
1357
1358 /// Attempt to fold an SSE floating point to integer conversion of a constant
1359 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1360 /// used (toward nearest, ties to even). This matches the behavior of the
1361 /// non-truncating SSE instructions in the default rounding mode. The desired
1362 /// integer type Ty is used to select how many bits are available for the
1363 /// result. Returns null if the conversion cannot be performed, otherwise
1364 /// returns the Constant value resulting from the conversion.
1365 static Constant *ConstantFoldConvertToInt(const APFloat &Val,
1366                                           bool roundTowardZero, Type *Ty) {
1367   // All of these conversion intrinsics form an integer of at most 64bits.
1368   unsigned ResultWidth = Ty->getIntegerBitWidth();
1369   assert(ResultWidth <= 64 &&
1370          "Can only constant fold conversions to 64 and 32 bit ints");
1371
1372   uint64_t UIntVal;
1373   bool isExact = false;
1374   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1375                                               : APFloat::rmNearestTiesToEven;
1376   APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
1377                                                   /*isSigned=*/true, mode,
1378                                                   &isExact);
1379   if (status != APFloat::opOK && status != APFloat::opInexact)
1380     return nullptr;
1381   return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
1382 }
1383
1384 static double getValueAsDouble(ConstantFP *Op) {
1385   Type *Ty = Op->getType();
1386
1387   if (Ty->isFloatTy())
1388     return Op->getValueAPF().convertToFloat();
1389
1390   if (Ty->isDoubleTy())
1391     return Op->getValueAPF().convertToDouble();
1392
1393   bool unused;
1394   APFloat APF = Op->getValueAPF();
1395   APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
1396   return APF.convertToDouble();
1397 }
1398
1399 static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
1400                                         Type *Ty, ArrayRef<Constant *> Operands,
1401                                         const TargetLibraryInfo *TLI) {
1402   if (Operands.size() == 1) {
1403     if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1404       if (IntrinsicID == Intrinsic::convert_to_fp16) {
1405         APFloat Val(Op->getValueAPF());
1406
1407         bool lost = false;
1408         Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1409
1410         return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
1411       }
1412
1413       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1414         return nullptr;
1415
1416       if (IntrinsicID == Intrinsic::round) {
1417         APFloat V = Op->getValueAPF();
1418         V.roundToIntegral(APFloat::rmNearestTiesToAway);
1419         return ConstantFP::get(Ty->getContext(), V);
1420       }
1421
1422       /// We only fold functions with finite arguments. Folding NaN and inf is
1423       /// likely to be aborted with an exception anyway, and some host libms
1424       /// have known errors raising exceptions.
1425       if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1426         return nullptr;
1427
1428       /// Currently APFloat versions of these functions do not exist, so we use
1429       /// the host native double versions.  Float versions are not called
1430       /// directly but for all these it is true (float)(f((double)arg)) ==
1431       /// f(arg).  Long double not supported yet.
1432       double V = getValueAsDouble(Op);
1433
1434       switch (IntrinsicID) {
1435         default: break;
1436         case Intrinsic::fabs:
1437           return ConstantFoldFP(fabs, V, Ty);
1438         case Intrinsic::log2:
1439           return ConstantFoldFP(log2, V, Ty);
1440         case Intrinsic::log:
1441           return ConstantFoldFP(log, V, Ty);
1442         case Intrinsic::log10:
1443           return ConstantFoldFP(log10, V, Ty);
1444         case Intrinsic::exp:
1445           return ConstantFoldFP(exp, V, Ty);
1446         case Intrinsic::exp2:
1447           return ConstantFoldFP(exp2, V, Ty);
1448         case Intrinsic::floor:
1449           return ConstantFoldFP(floor, V, Ty);
1450         case Intrinsic::ceil:
1451           return ConstantFoldFP(ceil, V, Ty);
1452       }
1453
1454       if (!TLI)
1455         return nullptr;
1456
1457       switch (Name[0]) {
1458       case 'a':
1459         if (Name == "acos" && TLI->has(LibFunc::acos))
1460           return ConstantFoldFP(acos, V, Ty);
1461         else if (Name == "asin" && TLI->has(LibFunc::asin))
1462           return ConstantFoldFP(asin, V, Ty);
1463         else if (Name == "atan" && TLI->has(LibFunc::atan))
1464           return ConstantFoldFP(atan, V, Ty);
1465         break;
1466       case 'c':
1467         if (Name == "ceil" && TLI->has(LibFunc::ceil))
1468           return ConstantFoldFP(ceil, V, Ty);
1469         else if (Name == "cos" && TLI->has(LibFunc::cos))
1470           return ConstantFoldFP(cos, V, Ty);
1471         else if (Name == "cosh" && TLI->has(LibFunc::cosh))
1472           return ConstantFoldFP(cosh, V, Ty);
1473         else if (Name == "cosf" && TLI->has(LibFunc::cosf))
1474           return ConstantFoldFP(cos, V, Ty);
1475         break;
1476       case 'e':
1477         if (Name == "exp" && TLI->has(LibFunc::exp))
1478           return ConstantFoldFP(exp, V, Ty);
1479
1480         if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
1481           // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1482           // C99 library.
1483           return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1484         }
1485         break;
1486       case 'f':
1487         if (Name == "fabs" && TLI->has(LibFunc::fabs))
1488           return ConstantFoldFP(fabs, V, Ty);
1489         else if (Name == "floor" && TLI->has(LibFunc::floor))
1490           return ConstantFoldFP(floor, V, Ty);
1491         break;
1492       case 'l':
1493         if (Name == "log" && V > 0 && TLI->has(LibFunc::log))
1494           return ConstantFoldFP(log, V, Ty);
1495         else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10))
1496           return ConstantFoldFP(log10, V, Ty);
1497         else if (IntrinsicID == Intrinsic::sqrt &&
1498                  (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) {
1499           if (V >= -0.0)
1500             return ConstantFoldFP(sqrt, V, Ty);
1501           else {
1502             // Unlike the sqrt definitions in C/C++, POSIX, and IEEE-754 - which
1503             // all guarantee or favor returning NaN - the square root of a
1504             // negative number is not defined for the LLVM sqrt intrinsic.
1505             // This is because the intrinsic should only be emitted in place of
1506             // libm's sqrt function when using "no-nans-fp-math".
1507             return UndefValue::get(Ty);
1508           }
1509         }
1510         break;
1511       case 's':
1512         if (Name == "sin" && TLI->has(LibFunc::sin))
1513           return ConstantFoldFP(sin, V, Ty);
1514         else if (Name == "sinh" && TLI->has(LibFunc::sinh))
1515           return ConstantFoldFP(sinh, V, Ty);
1516         else if (Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt))
1517           return ConstantFoldFP(sqrt, V, Ty);
1518         else if (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf))
1519           return ConstantFoldFP(sqrt, V, Ty);
1520         else if (Name == "sinf" && TLI->has(LibFunc::sinf))
1521           return ConstantFoldFP(sin, V, Ty);
1522         break;
1523       case 't':
1524         if (Name == "tan" && TLI->has(LibFunc::tan))
1525           return ConstantFoldFP(tan, V, Ty);
1526         else if (Name == "tanh" && TLI->has(LibFunc::tanh))
1527           return ConstantFoldFP(tanh, V, Ty);
1528         break;
1529       default:
1530         break;
1531       }
1532       return nullptr;
1533     }
1534
1535     if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1536       switch (IntrinsicID) {
1537       case Intrinsic::bswap:
1538         return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
1539       case Intrinsic::ctpop:
1540         return ConstantInt::get(Ty, Op->getValue().countPopulation());
1541       case Intrinsic::convert_from_fp16: {
1542         APFloat Val(APFloat::IEEEhalf, Op->getValue());
1543
1544         bool lost = false;
1545         APFloat::opStatus status =
1546           Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
1547
1548         // Conversion is always precise.
1549         (void)status;
1550         assert(status == APFloat::opOK && !lost &&
1551                "Precision lost during fp16 constfolding");
1552
1553         return ConstantFP::get(Ty->getContext(), Val);
1554       }
1555       default:
1556         return nullptr;
1557       }
1558     }
1559
1560     // Support ConstantVector in case we have an Undef in the top.
1561     if (isa<ConstantVector>(Operands[0]) ||
1562         isa<ConstantDataVector>(Operands[0])) {
1563       Constant *Op = cast<Constant>(Operands[0]);
1564       switch (IntrinsicID) {
1565       default: break;
1566       case Intrinsic::x86_sse_cvtss2si:
1567       case Intrinsic::x86_sse_cvtss2si64:
1568       case Intrinsic::x86_sse2_cvtsd2si:
1569       case Intrinsic::x86_sse2_cvtsd2si64:
1570         if (ConstantFP *FPOp =
1571               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1572           return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1573                                           /*roundTowardZero=*/false, Ty);
1574       case Intrinsic::x86_sse_cvttss2si:
1575       case Intrinsic::x86_sse_cvttss2si64:
1576       case Intrinsic::x86_sse2_cvttsd2si:
1577       case Intrinsic::x86_sse2_cvttsd2si64:
1578         if (ConstantFP *FPOp =
1579               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1580           return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1581                                           /*roundTowardZero=*/true, Ty);
1582       }
1583     }
1584
1585     if (isa<UndefValue>(Operands[0])) {
1586       if (IntrinsicID == Intrinsic::bswap)
1587         return Operands[0];
1588       return nullptr;
1589     }
1590
1591     return nullptr;
1592   }
1593
1594   if (Operands.size() == 2) {
1595     if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1596       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1597         return nullptr;
1598       double Op1V = getValueAsDouble(Op1);
1599
1600       if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1601         if (Op2->getType() != Op1->getType())
1602           return nullptr;
1603
1604         double Op2V = getValueAsDouble(Op2);
1605         if (IntrinsicID == Intrinsic::pow) {
1606           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1607         }
1608         if (IntrinsicID == Intrinsic::copysign) {
1609           APFloat V1 = Op1->getValueAPF();
1610           APFloat V2 = Op2->getValueAPF();
1611           V1.copySign(V2);
1612           return ConstantFP::get(Ty->getContext(), V1);
1613         }
1614
1615         if (IntrinsicID == Intrinsic::minnum) {
1616           const APFloat &C1 = Op1->getValueAPF();
1617           const APFloat &C2 = Op2->getValueAPF();
1618           return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
1619         }
1620
1621         if (IntrinsicID == Intrinsic::maxnum) {
1622           const APFloat &C1 = Op1->getValueAPF();
1623           const APFloat &C2 = Op2->getValueAPF();
1624           return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
1625         }
1626
1627         if (!TLI)
1628           return nullptr;
1629         if (Name == "pow" && TLI->has(LibFunc::pow))
1630           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1631         if (Name == "fmod" && TLI->has(LibFunc::fmod))
1632           return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1633         if (Name == "atan2" && TLI->has(LibFunc::atan2))
1634           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1635       } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1636         if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
1637           return ConstantFP::get(Ty->getContext(),
1638                                  APFloat((float)std::pow((float)Op1V,
1639                                                  (int)Op2C->getZExtValue())));
1640         if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
1641           return ConstantFP::get(Ty->getContext(),
1642                                  APFloat((float)std::pow((float)Op1V,
1643                                                  (int)Op2C->getZExtValue())));
1644         if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
1645           return ConstantFP::get(Ty->getContext(),
1646                                  APFloat((double)std::pow((double)Op1V,
1647                                                    (int)Op2C->getZExtValue())));
1648       }
1649       return nullptr;
1650     }
1651
1652     if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1653       if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1654         switch (IntrinsicID) {
1655         default: break;
1656         case Intrinsic::sadd_with_overflow:
1657         case Intrinsic::uadd_with_overflow:
1658         case Intrinsic::ssub_with_overflow:
1659         case Intrinsic::usub_with_overflow:
1660         case Intrinsic::smul_with_overflow:
1661         case Intrinsic::umul_with_overflow: {
1662           APInt Res;
1663           bool Overflow;
1664           switch (IntrinsicID) {
1665           default: llvm_unreachable("Invalid case");
1666           case Intrinsic::sadd_with_overflow:
1667             Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1668             break;
1669           case Intrinsic::uadd_with_overflow:
1670             Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1671             break;
1672           case Intrinsic::ssub_with_overflow:
1673             Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1674             break;
1675           case Intrinsic::usub_with_overflow:
1676             Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1677             break;
1678           case Intrinsic::smul_with_overflow:
1679             Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1680             break;
1681           case Intrinsic::umul_with_overflow:
1682             Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
1683             break;
1684           }
1685           Constant *Ops[] = {
1686             ConstantInt::get(Ty->getContext(), Res),
1687             ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
1688           };
1689           return ConstantStruct::get(cast<StructType>(Ty), Ops);
1690         }
1691         case Intrinsic::cttz:
1692           if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef.
1693             return UndefValue::get(Ty);
1694           return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
1695         case Intrinsic::ctlz:
1696           if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef.
1697             return UndefValue::get(Ty);
1698           return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
1699         }
1700       }
1701
1702       return nullptr;
1703     }
1704     return nullptr;
1705   }
1706
1707   if (Operands.size() != 3)
1708     return nullptr;
1709
1710   if (const ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1711     if (const ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1712       if (const ConstantFP *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
1713         switch (IntrinsicID) {
1714         default: break;
1715         case Intrinsic::fma:
1716         case Intrinsic::fmuladd: {
1717           APFloat V = Op1->getValueAPF();
1718           APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(),
1719                                                    Op3->getValueAPF(),
1720                                                    APFloat::rmNearestTiesToEven);
1721           if (s != APFloat::opInvalidOp)
1722             return ConstantFP::get(Ty->getContext(), V);
1723
1724           return nullptr;
1725         }
1726         }
1727       }
1728     }
1729   }
1730
1731   return nullptr;
1732 }
1733
1734 static Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID,
1735                                         VectorType *VTy,
1736                                         ArrayRef<Constant *> Operands,
1737                                         const TargetLibraryInfo *TLI) {
1738   SmallVector<Constant *, 4> Result(VTy->getNumElements());
1739   SmallVector<Constant *, 4> Lane(Operands.size());
1740   Type *Ty = VTy->getElementType();
1741
1742   for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
1743     // Gather a column of constants.
1744     for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
1745       Constant *Agg = Operands[J]->getAggregateElement(I);
1746       if (!Agg)
1747         return nullptr;
1748
1749       Lane[J] = Agg;
1750     }
1751
1752     // Use the regular scalar folding to simplify this column.
1753     Constant *Folded = ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI);
1754     if (!Folded)
1755       return nullptr;
1756     Result[I] = Folded;
1757   }
1758
1759   return ConstantVector::get(Result);
1760 }
1761
1762 /// Attempt to constant fold a call to the specified function
1763 /// with the specified arguments, returning null if unsuccessful.
1764 Constant *
1765 llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
1766                        const TargetLibraryInfo *TLI) {
1767   if (!F->hasName())
1768     return nullptr;
1769   StringRef Name = F->getName();
1770
1771   Type *Ty = F->getReturnType();
1772
1773   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1774     return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, TLI);
1775
1776   return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI);
1777 }