Taints the non-acquire RMW's store address with the load part
[oota-llvm.git] / lib / Analysis / CFLAliasAnalysis.cpp
1 //===- CFLAliasAnalysis.cpp - CFL-Based Alias Analysis Implementation ------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a CFL-based context-insensitive alias analysis
11 // algorithm. It does not depend on types. The algorithm is a mixture of the one
12 // described in "Demand-driven alias analysis for C" by Xin Zheng and Radu
13 // Rugina, and "Fast algorithms for Dyck-CFL-reachability with applications to
14 // Alias Analysis" by Zhang Q, Lyu M R, Yuan H, and Su Z. -- to summarize the
15 // papers, we build a graph of the uses of a variable, where each node is a
16 // memory location, and each edge is an action that happened on that memory
17 // location.  The "actions" can be one of Dereference, Reference, or Assign.
18 //
19 // Two variables are considered as aliasing iff you can reach one value's node
20 // from the other value's node and the language formed by concatenating all of
21 // the edge labels (actions) conforms to a context-free grammar.
22 //
23 // Because this algorithm requires a graph search on each query, we execute the
24 // algorithm outlined in "Fast algorithms..." (mentioned above)
25 // in order to transform the graph into sets of variables that may alias in
26 // ~nlogn time (n = number of variables.), which makes queries take constant
27 // time.
28 //===----------------------------------------------------------------------===//
29
30 #include "llvm/Analysis/CFLAliasAnalysis.h"
31 #include "StratifiedSets.h"
32 #include "llvm/ADT/BitVector.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/None.h"
35 #include "llvm/ADT/Optional.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/InstVisitor.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/Allocator.h"
43 #include "llvm/Support/Compiler.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <memory>
50 #include <tuple>
51
52 using namespace llvm;
53
54 #define DEBUG_TYPE "cfl-aa"
55
56 CFLAAResult::CFLAAResult(const TargetLibraryInfo &TLI) : AAResultBase(TLI) {}
57 CFLAAResult::CFLAAResult(CFLAAResult &&Arg) : AAResultBase(std::move(Arg)) {}
58
59 // \brief Information we have about a function and would like to keep around
60 struct CFLAAResult::FunctionInfo {
61   StratifiedSets<Value *> Sets;
62   // Lots of functions have < 4 returns. Adjust as necessary.
63   SmallVector<Value *, 4> ReturnedValues;
64
65   FunctionInfo(StratifiedSets<Value *> &&S, SmallVector<Value *, 4> &&RV)
66       : Sets(std::move(S)), ReturnedValues(std::move(RV)) {}
67 };
68
69 // Try to go from a Value* to a Function*. Never returns nullptr.
70 static Optional<Function *> parentFunctionOfValue(Value *);
71
72 // Returns possible functions called by the Inst* into the given
73 // SmallVectorImpl. Returns true if targets found, false otherwise.
74 // This is templated because InvokeInst/CallInst give us the same
75 // set of functions that we care about, and I don't like repeating
76 // myself.
77 template <typename Inst>
78 static bool getPossibleTargets(Inst *, SmallVectorImpl<Function *> &);
79
80 // Some instructions need to have their users tracked. Instructions like
81 // `add` require you to get the users of the Instruction* itself, other
82 // instructions like `store` require you to get the users of the first
83 // operand. This function gets the "proper" value to track for each
84 // type of instruction we support.
85 static Optional<Value *> getTargetValue(Instruction *);
86
87 // There are certain instructions (i.e. FenceInst, etc.) that we ignore.
88 // This notes that we should ignore those.
89 static bool hasUsefulEdges(Instruction *);
90
91 const StratifiedIndex StratifiedLink::SetSentinel =
92     std::numeric_limits<StratifiedIndex>::max();
93
94 namespace {
95 // StratifiedInfo Attribute things.
96 typedef unsigned StratifiedAttr;
97 LLVM_CONSTEXPR unsigned MaxStratifiedAttrIndex = NumStratifiedAttrs;
98 LLVM_CONSTEXPR unsigned AttrAllIndex = 0;
99 LLVM_CONSTEXPR unsigned AttrGlobalIndex = 1;
100 LLVM_CONSTEXPR unsigned AttrUnknownIndex = 2;
101 LLVM_CONSTEXPR unsigned AttrFirstArgIndex = 3;
102 LLVM_CONSTEXPR unsigned AttrLastArgIndex = MaxStratifiedAttrIndex;
103 LLVM_CONSTEXPR unsigned AttrMaxNumArgs = AttrLastArgIndex - AttrFirstArgIndex;
104
105 LLVM_CONSTEXPR StratifiedAttr AttrNone = 0;
106 LLVM_CONSTEXPR StratifiedAttr AttrUnknown = 1 << AttrUnknownIndex;
107 LLVM_CONSTEXPR StratifiedAttr AttrAll = ~AttrNone;
108
109 // \brief StratifiedSets call for knowledge of "direction", so this is how we
110 // represent that locally.
111 enum class Level { Same, Above, Below };
112
113 // \brief Edges can be one of four "weights" -- each weight must have an inverse
114 // weight (Assign has Assign; Reference has Dereference).
115 enum class EdgeType {
116   // The weight assigned when assigning from or to a value. For example, in:
117   // %b = getelementptr %a, 0
118   // ...The relationships are %b assign %a, and %a assign %b. This used to be
119   // two edges, but having a distinction bought us nothing.
120   Assign,
121
122   // The edge used when we have an edge going from some handle to a Value.
123   // Examples of this include:
124   // %b = load %a              (%b Dereference %a)
125   // %b = extractelement %a, 0 (%a Dereference %b)
126   Dereference,
127
128   // The edge used when our edge goes from a value to a handle that may have
129   // contained it at some point. Examples:
130   // %b = load %a              (%a Reference %b)
131   // %b = extractelement %a, 0 (%b Reference %a)
132   Reference
133 };
134
135 // \brief Encodes the notion of a "use"
136 struct Edge {
137   // \brief Which value the edge is coming from
138   Value *From;
139
140   // \brief Which value the edge is pointing to
141   Value *To;
142
143   // \brief Edge weight
144   EdgeType Weight;
145
146   // \brief Whether we aliased any external values along the way that may be
147   // invisible to the analysis (i.e. landingpad for exceptions, calls for
148   // interprocedural analysis, etc.)
149   StratifiedAttrs AdditionalAttrs;
150
151   Edge(Value *From, Value *To, EdgeType W, StratifiedAttrs A)
152       : From(From), To(To), Weight(W), AdditionalAttrs(A) {}
153 };
154
155 // \brief Gets the edges our graph should have, based on an Instruction*
156 class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> {
157   CFLAAResult &AA;
158   SmallVectorImpl<Edge> &Output;
159
160 public:
161   GetEdgesVisitor(CFLAAResult &AA, SmallVectorImpl<Edge> &Output)
162       : AA(AA), Output(Output) {}
163
164   void visitInstruction(Instruction &) {
165     llvm_unreachable("Unsupported instruction encountered");
166   }
167
168   void visitPtrToIntInst(PtrToIntInst &Inst) {
169     auto *Ptr = Inst.getOperand(0);
170     Output.push_back(Edge(Ptr, Ptr, EdgeType::Assign, AttrUnknown));
171   }
172
173   void visitIntToPtrInst(IntToPtrInst &Inst) {
174     auto *Ptr = &Inst;
175     Output.push_back(Edge(Ptr, Ptr, EdgeType::Assign, AttrUnknown));
176   }
177
178   void visitCastInst(CastInst &Inst) {
179     Output.push_back(
180         Edge(&Inst, Inst.getOperand(0), EdgeType::Assign, AttrNone));
181   }
182
183   void visitBinaryOperator(BinaryOperator &Inst) {
184     auto *Op1 = Inst.getOperand(0);
185     auto *Op2 = Inst.getOperand(1);
186     Output.push_back(Edge(&Inst, Op1, EdgeType::Assign, AttrNone));
187     Output.push_back(Edge(&Inst, Op2, EdgeType::Assign, AttrNone));
188   }
189
190   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
191     auto *Ptr = Inst.getPointerOperand();
192     auto *Val = Inst.getNewValOperand();
193     Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
194   }
195
196   void visitAtomicRMWInst(AtomicRMWInst &Inst) {
197     auto *Ptr = Inst.getPointerOperand();
198     auto *Val = Inst.getValOperand();
199     Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
200   }
201
202   void visitPHINode(PHINode &Inst) {
203     for (Value *Val : Inst.incoming_values()) {
204       Output.push_back(Edge(&Inst, Val, EdgeType::Assign, AttrNone));
205     }
206   }
207
208   void visitGetElementPtrInst(GetElementPtrInst &Inst) {
209     auto *Op = Inst.getPointerOperand();
210     Output.push_back(Edge(&Inst, Op, EdgeType::Assign, AttrNone));
211     for (auto I = Inst.idx_begin(), E = Inst.idx_end(); I != E; ++I)
212       Output.push_back(Edge(&Inst, *I, EdgeType::Assign, AttrNone));
213   }
214
215   void visitSelectInst(SelectInst &Inst) {
216     // Condition is not processed here (The actual statement producing
217     // the condition result is processed elsewhere). For select, the
218     // condition is evaluated, but not loaded, stored, or assigned
219     // simply as a result of being the condition of a select.
220
221     auto *TrueVal = Inst.getTrueValue();
222     Output.push_back(Edge(&Inst, TrueVal, EdgeType::Assign, AttrNone));
223     auto *FalseVal = Inst.getFalseValue();
224     Output.push_back(Edge(&Inst, FalseVal, EdgeType::Assign, AttrNone));
225   }
226
227   void visitAllocaInst(AllocaInst &) {}
228
229   void visitLoadInst(LoadInst &Inst) {
230     auto *Ptr = Inst.getPointerOperand();
231     auto *Val = &Inst;
232     Output.push_back(Edge(Val, Ptr, EdgeType::Reference, AttrNone));
233   }
234
235   void visitStoreInst(StoreInst &Inst) {
236     auto *Ptr = Inst.getPointerOperand();
237     auto *Val = Inst.getValueOperand();
238     Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
239   }
240
241   void visitVAArgInst(VAArgInst &Inst) {
242     // We can't fully model va_arg here. For *Ptr = Inst.getOperand(0), it does
243     // two things:
244     //  1. Loads a value from *((T*)*Ptr).
245     //  2. Increments (stores to) *Ptr by some target-specific amount.
246     // For now, we'll handle this like a landingpad instruction (by placing the
247     // result in its own group, and having that group alias externals).
248     auto *Val = &Inst;
249     Output.push_back(Edge(Val, Val, EdgeType::Assign, AttrAll));
250   }
251
252   static bool isFunctionExternal(Function *Fn) {
253     return Fn->isDeclaration() || !Fn->hasLocalLinkage();
254   }
255
256   // Gets whether the sets at Index1 above, below, or equal to the sets at
257   // Index2. Returns None if they are not in the same set chain.
258   static Optional<Level> getIndexRelation(const StratifiedSets<Value *> &Sets,
259                                           StratifiedIndex Index1,
260                                           StratifiedIndex Index2) {
261     if (Index1 == Index2)
262       return Level::Same;
263
264     const auto *Current = &Sets.getLink(Index1);
265     while (Current->hasBelow()) {
266       if (Current->Below == Index2)
267         return Level::Below;
268       Current = &Sets.getLink(Current->Below);
269     }
270
271     Current = &Sets.getLink(Index1);
272     while (Current->hasAbove()) {
273       if (Current->Above == Index2)
274         return Level::Above;
275       Current = &Sets.getLink(Current->Above);
276     }
277
278     return NoneType();
279   }
280
281   bool
282   tryInterproceduralAnalysis(const SmallVectorImpl<Function *> &Fns,
283                              Value *FuncValue,
284                              const iterator_range<User::op_iterator> &Args) {
285     const unsigned ExpectedMaxArgs = 8;
286     const unsigned MaxSupportedArgs = 50;
287     assert(Fns.size() > 0);
288
289     // I put this here to give us an upper bound on time taken by IPA. Is it
290     // really (realistically) needed? Keep in mind that we do have an n^2 algo.
291     if (std::distance(Args.begin(), Args.end()) > (int)MaxSupportedArgs)
292       return false;
293
294     // Exit early if we'll fail anyway
295     for (auto *Fn : Fns) {
296       if (isFunctionExternal(Fn) || Fn->isVarArg())
297         return false;
298       auto &MaybeInfo = AA.ensureCached(Fn);
299       if (!MaybeInfo.hasValue())
300         return false;
301     }
302
303     SmallVector<Value *, ExpectedMaxArgs> Arguments(Args.begin(), Args.end());
304     SmallVector<StratifiedInfo, ExpectedMaxArgs> Parameters;
305     for (auto *Fn : Fns) {
306       auto &Info = *AA.ensureCached(Fn);
307       auto &Sets = Info.Sets;
308       auto &RetVals = Info.ReturnedValues;
309
310       Parameters.clear();
311       for (auto &Param : Fn->args()) {
312         auto MaybeInfo = Sets.find(&Param);
313         // Did a new parameter somehow get added to the function/slip by?
314         if (!MaybeInfo.hasValue())
315           return false;
316         Parameters.push_back(*MaybeInfo);
317       }
318
319       // Adding an edge from argument -> return value for each parameter that
320       // may alias the return value
321       for (unsigned I = 0, E = Parameters.size(); I != E; ++I) {
322         auto &ParamInfo = Parameters[I];
323         auto &ArgVal = Arguments[I];
324         bool AddEdge = false;
325         StratifiedAttrs Externals;
326         for (unsigned X = 0, XE = RetVals.size(); X != XE; ++X) {
327           auto MaybeInfo = Sets.find(RetVals[X]);
328           if (!MaybeInfo.hasValue())
329             return false;
330
331           auto &RetInfo = *MaybeInfo;
332           auto RetAttrs = Sets.getLink(RetInfo.Index).Attrs;
333           auto ParamAttrs = Sets.getLink(ParamInfo.Index).Attrs;
334           auto MaybeRelation =
335               getIndexRelation(Sets, ParamInfo.Index, RetInfo.Index);
336           if (MaybeRelation.hasValue()) {
337             AddEdge = true;
338             Externals |= RetAttrs | ParamAttrs;
339           }
340         }
341         if (AddEdge)
342           Output.push_back(Edge(FuncValue, ArgVal, EdgeType::Assign,
343                                 StratifiedAttrs().flip()));
344       }
345
346       if (Parameters.size() != Arguments.size())
347         return false;
348
349       // Adding edges between arguments for arguments that may end up aliasing
350       // each other. This is necessary for functions such as
351       // void foo(int** a, int** b) { *a = *b; }
352       // (Technically, the proper sets for this would be those below
353       // Arguments[I] and Arguments[X], but our algorithm will produce
354       // extremely similar, and equally correct, results either way)
355       for (unsigned I = 0, E = Arguments.size(); I != E; ++I) {
356         auto &MainVal = Arguments[I];
357         auto &MainInfo = Parameters[I];
358         auto &MainAttrs = Sets.getLink(MainInfo.Index).Attrs;
359         for (unsigned X = I + 1; X != E; ++X) {
360           auto &SubInfo = Parameters[X];
361           auto &SubVal = Arguments[X];
362           auto &SubAttrs = Sets.getLink(SubInfo.Index).Attrs;
363           auto MaybeRelation =
364               getIndexRelation(Sets, MainInfo.Index, SubInfo.Index);
365
366           if (!MaybeRelation.hasValue())
367             continue;
368
369           auto NewAttrs = SubAttrs | MainAttrs;
370           Output.push_back(Edge(MainVal, SubVal, EdgeType::Assign, NewAttrs));
371         }
372       }
373     }
374     return true;
375   }
376
377   template <typename InstT> void visitCallLikeInst(InstT &Inst) {
378     // TODO: Add support for noalias args/all the other fun function attributes
379     // that we can tack on.
380     SmallVector<Function *, 4> Targets;
381     if (getPossibleTargets(&Inst, Targets)) {
382       if (tryInterproceduralAnalysis(Targets, &Inst, Inst.arg_operands()))
383         return;
384       // Cleanup from interprocedural analysis
385       Output.clear();
386     }
387
388     // Because the function is opaque, we need to note that anything
389     // could have happened to the arguments, and that the result could alias
390     // just about anything, too.
391     // The goal of the loop is in part to unify many Values into one set, so we
392     // don't care if the function is void there.
393     for (Value *V : Inst.arg_operands())
394       Output.push_back(Edge(&Inst, V, EdgeType::Assign, AttrAll));
395     if (Inst.getNumArgOperands() == 0 &&
396         Inst.getType() != Type::getVoidTy(Inst.getContext()))
397       Output.push_back(Edge(&Inst, &Inst, EdgeType::Assign, AttrAll));
398   }
399
400   void visitCallInst(CallInst &Inst) { visitCallLikeInst(Inst); }
401
402   void visitInvokeInst(InvokeInst &Inst) { visitCallLikeInst(Inst); }
403
404   // Because vectors/aggregates are immutable and unaddressable,
405   // there's nothing we can do to coax a value out of them, other
406   // than calling Extract{Element,Value}. We can effectively treat
407   // them as pointers to arbitrary memory locations we can store in
408   // and load from.
409   void visitExtractElementInst(ExtractElementInst &Inst) {
410     auto *Ptr = Inst.getVectorOperand();
411     auto *Val = &Inst;
412     Output.push_back(Edge(Val, Ptr, EdgeType::Reference, AttrNone));
413   }
414
415   void visitInsertElementInst(InsertElementInst &Inst) {
416     auto *Vec = Inst.getOperand(0);
417     auto *Val = Inst.getOperand(1);
418     Output.push_back(Edge(&Inst, Vec, EdgeType::Assign, AttrNone));
419     Output.push_back(Edge(&Inst, Val, EdgeType::Dereference, AttrNone));
420   }
421
422   void visitLandingPadInst(LandingPadInst &Inst) {
423     // Exceptions come from "nowhere", from our analysis' perspective.
424     // So we place the instruction its own group, noting that said group may
425     // alias externals
426     Output.push_back(Edge(&Inst, &Inst, EdgeType::Assign, AttrAll));
427   }
428
429   void visitInsertValueInst(InsertValueInst &Inst) {
430     auto *Agg = Inst.getOperand(0);
431     auto *Val = Inst.getOperand(1);
432     Output.push_back(Edge(&Inst, Agg, EdgeType::Assign, AttrNone));
433     Output.push_back(Edge(&Inst, Val, EdgeType::Dereference, AttrNone));
434   }
435
436   void visitExtractValueInst(ExtractValueInst &Inst) {
437     auto *Ptr = Inst.getAggregateOperand();
438     Output.push_back(Edge(&Inst, Ptr, EdgeType::Reference, AttrNone));
439   }
440
441   void visitShuffleVectorInst(ShuffleVectorInst &Inst) {
442     auto *From1 = Inst.getOperand(0);
443     auto *From2 = Inst.getOperand(1);
444     Output.push_back(Edge(&Inst, From1, EdgeType::Assign, AttrNone));
445     Output.push_back(Edge(&Inst, From2, EdgeType::Assign, AttrNone));
446   }
447
448   void visitConstantExpr(ConstantExpr *CE) {
449     switch (CE->getOpcode()) {
450     default:
451       llvm_unreachable("Unknown instruction type encountered!");
452 // Build the switch statement using the Instruction.def file.
453 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
454   case Instruction::OPCODE:                                                    \
455     visit##OPCODE(*(CLASS *)CE);                                               \
456     break;
457 #include "llvm/IR/Instruction.def"
458     }
459   }
460 };
461
462 // For a given instruction, we need to know which Value* to get the
463 // users of in order to build our graph. In some cases (i.e. add),
464 // we simply need the Instruction*. In other cases (i.e. store),
465 // finding the users of the Instruction* is useless; we need to find
466 // the users of the first operand. This handles determining which
467 // value to follow for us.
468 //
469 // Note: we *need* to keep this in sync with GetEdgesVisitor. Add
470 // something to GetEdgesVisitor, add it here -- remove something from
471 // GetEdgesVisitor, remove it here.
472 class GetTargetValueVisitor
473     : public InstVisitor<GetTargetValueVisitor, Value *> {
474 public:
475   Value *visitInstruction(Instruction &Inst) { return &Inst; }
476
477   Value *visitStoreInst(StoreInst &Inst) { return Inst.getPointerOperand(); }
478
479   Value *visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
480     return Inst.getPointerOperand();
481   }
482
483   Value *visitAtomicRMWInst(AtomicRMWInst &Inst) {
484     return Inst.getPointerOperand();
485   }
486
487   Value *visitInsertElementInst(InsertElementInst &Inst) {
488     return Inst.getOperand(0);
489   }
490
491   Value *visitInsertValueInst(InsertValueInst &Inst) {
492     return Inst.getAggregateOperand();
493   }
494 };
495
496 // Set building requires a weighted bidirectional graph.
497 template <typename EdgeTypeT> class WeightedBidirectionalGraph {
498 public:
499   typedef std::size_t Node;
500
501 private:
502   const static Node StartNode = Node(0);
503
504   struct Edge {
505     EdgeTypeT Weight;
506     Node Other;
507
508     Edge(const EdgeTypeT &W, const Node &N) : Weight(W), Other(N) {}
509
510     bool operator==(const Edge &E) const {
511       return Weight == E.Weight && Other == E.Other;
512     }
513
514     bool operator!=(const Edge &E) const { return !operator==(E); }
515   };
516
517   struct NodeImpl {
518     std::vector<Edge> Edges;
519   };
520
521   std::vector<NodeImpl> NodeImpls;
522
523   bool inbounds(Node NodeIndex) const { return NodeIndex < NodeImpls.size(); }
524
525   const NodeImpl &getNode(Node N) const { return NodeImpls[N]; }
526   NodeImpl &getNode(Node N) { return NodeImpls[N]; }
527
528 public:
529   // ----- Various Edge iterators for the graph ----- //
530
531   // \brief Iterator for edges. Because this graph is bidirected, we don't
532   // allow modification of the edges using this iterator. Additionally, the
533   // iterator becomes invalid if you add edges to or from the node you're
534   // getting the edges of.
535   struct EdgeIterator : public std::iterator<std::forward_iterator_tag,
536                                              std::tuple<EdgeTypeT, Node *>> {
537     EdgeIterator(const typename std::vector<Edge>::const_iterator &Iter)
538         : Current(Iter) {}
539
540     EdgeIterator(NodeImpl &Impl) : Current(Impl.begin()) {}
541
542     EdgeIterator &operator++() {
543       ++Current;
544       return *this;
545     }
546
547     EdgeIterator operator++(int) {
548       EdgeIterator Copy(Current);
549       operator++();
550       return Copy;
551     }
552
553     std::tuple<EdgeTypeT, Node> &operator*() {
554       Store = std::make_tuple(Current->Weight, Current->Other);
555       return Store;
556     }
557
558     bool operator==(const EdgeIterator &Other) const {
559       return Current == Other.Current;
560     }
561
562     bool operator!=(const EdgeIterator &Other) const {
563       return !operator==(Other);
564     }
565
566   private:
567     typename std::vector<Edge>::const_iterator Current;
568     std::tuple<EdgeTypeT, Node> Store;
569   };
570
571   // Wrapper for EdgeIterator with begin()/end() calls.
572   struct EdgeIterable {
573     EdgeIterable(const std::vector<Edge> &Edges)
574         : BeginIter(Edges.begin()), EndIter(Edges.end()) {}
575
576     EdgeIterator begin() { return EdgeIterator(BeginIter); }
577
578     EdgeIterator end() { return EdgeIterator(EndIter); }
579
580   private:
581     typename std::vector<Edge>::const_iterator BeginIter;
582     typename std::vector<Edge>::const_iterator EndIter;
583   };
584
585   // ----- Actual graph-related things ----- //
586
587   WeightedBidirectionalGraph() {}
588
589   WeightedBidirectionalGraph(WeightedBidirectionalGraph<EdgeTypeT> &&Other)
590       : NodeImpls(std::move(Other.NodeImpls)) {}
591
592   WeightedBidirectionalGraph<EdgeTypeT> &
593   operator=(WeightedBidirectionalGraph<EdgeTypeT> &&Other) {
594     NodeImpls = std::move(Other.NodeImpls);
595     return *this;
596   }
597
598   Node addNode() {
599     auto Index = NodeImpls.size();
600     auto NewNode = Node(Index);
601     NodeImpls.push_back(NodeImpl());
602     return NewNode;
603   }
604
605   void addEdge(Node From, Node To, const EdgeTypeT &Weight,
606                const EdgeTypeT &ReverseWeight) {
607     assert(inbounds(From));
608     assert(inbounds(To));
609     auto &FromNode = getNode(From);
610     auto &ToNode = getNode(To);
611     FromNode.Edges.push_back(Edge(Weight, To));
612     ToNode.Edges.push_back(Edge(ReverseWeight, From));
613   }
614
615   EdgeIterable edgesFor(const Node &N) const {
616     const auto &Node = getNode(N);
617     return EdgeIterable(Node.Edges);
618   }
619
620   bool empty() const { return NodeImpls.empty(); }
621   std::size_t size() const { return NodeImpls.size(); }
622
623   // \brief Gets an arbitrary node in the graph as a starting point for
624   // traversal.
625   Node getEntryNode() {
626     assert(inbounds(StartNode));
627     return StartNode;
628   }
629 };
630
631 typedef WeightedBidirectionalGraph<std::pair<EdgeType, StratifiedAttrs>> GraphT;
632 typedef DenseMap<Value *, GraphT::Node> NodeMapT;
633 }
634
635 //===----------------------------------------------------------------------===//
636 // Function declarations that require types defined in the namespace above
637 //===----------------------------------------------------------------------===//
638
639 // Given an argument number, returns the appropriate Attr index to set.
640 static StratifiedAttr argNumberToAttrIndex(StratifiedAttr);
641
642 // Given a Value, potentially return which AttrIndex it maps to.
643 static Optional<StratifiedAttr> valueToAttrIndex(Value *Val);
644
645 // Gets the inverse of a given EdgeType.
646 static EdgeType flipWeight(EdgeType);
647
648 // Gets edges of the given Instruction*, writing them to the SmallVector*.
649 static void argsToEdges(CFLAAResult &, Instruction *, SmallVectorImpl<Edge> &);
650
651 // Gets edges of the given ConstantExpr*, writing them to the SmallVector*.
652 static void argsToEdges(CFLAAResult &, ConstantExpr *, SmallVectorImpl<Edge> &);
653
654 // Gets the "Level" that one should travel in StratifiedSets
655 // given an EdgeType.
656 static Level directionOfEdgeType(EdgeType);
657
658 // Builds the graph needed for constructing the StratifiedSets for the
659 // given function
660 static void buildGraphFrom(CFLAAResult &, Function *,
661                            SmallVectorImpl<Value *> &, NodeMapT &, GraphT &);
662
663 // Gets the edges of a ConstantExpr as if it was an Instruction. This
664 // function also acts on any nested ConstantExprs, adding the edges
665 // of those to the given SmallVector as well.
666 static void constexprToEdges(CFLAAResult &, ConstantExpr &,
667                              SmallVectorImpl<Edge> &);
668
669 // Given an Instruction, this will add it to the graph, along with any
670 // Instructions that are potentially only available from said Instruction
671 // For example, given the following line:
672 //   %0 = load i16* getelementptr ([1 x i16]* @a, 0, 0), align 2
673 // addInstructionToGraph would add both the `load` and `getelementptr`
674 // instructions to the graph appropriately.
675 static void addInstructionToGraph(CFLAAResult &, Instruction &,
676                                   SmallVectorImpl<Value *> &, NodeMapT &,
677                                   GraphT &);
678
679 // Notes whether it would be pointless to add the given Value to our sets.
680 static bool canSkipAddingToSets(Value *Val);
681
682 static Optional<Function *> parentFunctionOfValue(Value *Val) {
683   if (auto *Inst = dyn_cast<Instruction>(Val)) {
684     auto *Bb = Inst->getParent();
685     return Bb->getParent();
686   }
687
688   if (auto *Arg = dyn_cast<Argument>(Val))
689     return Arg->getParent();
690   return NoneType();
691 }
692
693 template <typename Inst>
694 static bool getPossibleTargets(Inst *Call,
695                                SmallVectorImpl<Function *> &Output) {
696   if (auto *Fn = Call->getCalledFunction()) {
697     Output.push_back(Fn);
698     return true;
699   }
700
701   // TODO: If the call is indirect, we might be able to enumerate all potential
702   // targets of the call and return them, rather than just failing.
703   return false;
704 }
705
706 static Optional<Value *> getTargetValue(Instruction *Inst) {
707   GetTargetValueVisitor V;
708   return V.visit(Inst);
709 }
710
711 static bool hasUsefulEdges(Instruction *Inst) {
712   bool IsNonInvokeTerminator =
713       isa<TerminatorInst>(Inst) && !isa<InvokeInst>(Inst);
714   return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) && !IsNonInvokeTerminator;
715 }
716
717 static bool hasUsefulEdges(ConstantExpr *CE) {
718   // ConstantExpr doesn't have terminators, invokes, or fences, so only needs
719   // to check for compares.
720   return CE->getOpcode() != Instruction::ICmp &&
721          CE->getOpcode() != Instruction::FCmp;
722 }
723
724 static Optional<StratifiedAttr> valueToAttrIndex(Value *Val) {
725   if (isa<GlobalValue>(Val))
726     return AttrGlobalIndex;
727
728   if (auto *Arg = dyn_cast<Argument>(Val))
729     // Only pointer arguments should have the argument attribute,
730     // because things can't escape through scalars without us seeing a
731     // cast, and thus, interaction with them doesn't matter.
732     if (!Arg->hasNoAliasAttr() && Arg->getType()->isPointerTy())
733       return argNumberToAttrIndex(Arg->getArgNo());
734   return NoneType();
735 }
736
737 static StratifiedAttr argNumberToAttrIndex(unsigned ArgNum) {
738   if (ArgNum >= AttrMaxNumArgs)
739     return AttrAllIndex;
740   return ArgNum + AttrFirstArgIndex;
741 }
742
743 static EdgeType flipWeight(EdgeType Initial) {
744   switch (Initial) {
745   case EdgeType::Assign:
746     return EdgeType::Assign;
747   case EdgeType::Dereference:
748     return EdgeType::Reference;
749   case EdgeType::Reference:
750     return EdgeType::Dereference;
751   }
752   llvm_unreachable("Incomplete coverage of EdgeType enum");
753 }
754
755 static void argsToEdges(CFLAAResult &Analysis, Instruction *Inst,
756                         SmallVectorImpl<Edge> &Output) {
757   assert(hasUsefulEdges(Inst) &&
758          "Expected instructions to have 'useful' edges");
759   GetEdgesVisitor v(Analysis, Output);
760   v.visit(Inst);
761 }
762
763 static void argsToEdges(CFLAAResult &Analysis, ConstantExpr *CE,
764                         SmallVectorImpl<Edge> &Output) {
765   assert(hasUsefulEdges(CE) && "Expected constant expr to have 'useful' edges");
766   GetEdgesVisitor v(Analysis, Output);
767   v.visitConstantExpr(CE);
768 }
769
770 static Level directionOfEdgeType(EdgeType Weight) {
771   switch (Weight) {
772   case EdgeType::Reference:
773     return Level::Above;
774   case EdgeType::Dereference:
775     return Level::Below;
776   case EdgeType::Assign:
777     return Level::Same;
778   }
779   llvm_unreachable("Incomplete switch coverage");
780 }
781
782 static void constexprToEdges(CFLAAResult &Analysis,
783                              ConstantExpr &CExprToCollapse,
784                              SmallVectorImpl<Edge> &Results) {
785   SmallVector<ConstantExpr *, 4> Worklist;
786   Worklist.push_back(&CExprToCollapse);
787
788   SmallVector<Edge, 8> ConstexprEdges;
789   SmallPtrSet<ConstantExpr *, 4> Visited;
790   while (!Worklist.empty()) {
791     auto *CExpr = Worklist.pop_back_val();
792
793     if (!hasUsefulEdges(CExpr))
794       continue;
795
796     ConstexprEdges.clear();
797     argsToEdges(Analysis, CExpr, ConstexprEdges);
798     for (auto &Edge : ConstexprEdges) {
799       if (auto *Nested = dyn_cast<ConstantExpr>(Edge.From))
800         if (Visited.insert(Nested).second)
801           Worklist.push_back(Nested);
802
803       if (auto *Nested = dyn_cast<ConstantExpr>(Edge.To))
804         if (Visited.insert(Nested).second)
805           Worklist.push_back(Nested);
806     }
807
808     Results.append(ConstexprEdges.begin(), ConstexprEdges.end());
809   }
810 }
811
812 static void addInstructionToGraph(CFLAAResult &Analysis, Instruction &Inst,
813                                   SmallVectorImpl<Value *> &ReturnedValues,
814                                   NodeMapT &Map, GraphT &Graph) {
815   const auto findOrInsertNode = [&Map, &Graph](Value *Val) {
816     auto Pair = Map.insert(std::make_pair(Val, GraphT::Node()));
817     auto &Iter = Pair.first;
818     if (Pair.second) {
819       auto NewNode = Graph.addNode();
820       Iter->second = NewNode;
821     }
822     return Iter->second;
823   };
824
825   // We don't want the edges of most "return" instructions, but we *do* want
826   // to know what can be returned.
827   if (isa<ReturnInst>(&Inst))
828     ReturnedValues.push_back(&Inst);
829
830   if (!hasUsefulEdges(&Inst))
831     return;
832
833   SmallVector<Edge, 8> Edges;
834   argsToEdges(Analysis, &Inst, Edges);
835
836   // In the case of an unused alloca (or similar), edges may be empty. Note
837   // that it exists so we can potentially answer NoAlias.
838   if (Edges.empty()) {
839     auto MaybeVal = getTargetValue(&Inst);
840     assert(MaybeVal.hasValue());
841     auto *Target = *MaybeVal;
842     findOrInsertNode(Target);
843     return;
844   }
845
846   const auto addEdgeToGraph = [&Graph, &findOrInsertNode](const Edge &E) {
847     auto To = findOrInsertNode(E.To);
848     auto From = findOrInsertNode(E.From);
849     auto FlippedWeight = flipWeight(E.Weight);
850     auto Attrs = E.AdditionalAttrs;
851     Graph.addEdge(From, To, std::make_pair(E.Weight, Attrs),
852                   std::make_pair(FlippedWeight, Attrs));
853   };
854
855   SmallVector<ConstantExpr *, 4> ConstantExprs;
856   for (const Edge &E : Edges) {
857     addEdgeToGraph(E);
858     if (auto *Constexpr = dyn_cast<ConstantExpr>(E.To))
859       ConstantExprs.push_back(Constexpr);
860     if (auto *Constexpr = dyn_cast<ConstantExpr>(E.From))
861       ConstantExprs.push_back(Constexpr);
862   }
863
864   for (ConstantExpr *CE : ConstantExprs) {
865     Edges.clear();
866     constexprToEdges(Analysis, *CE, Edges);
867     std::for_each(Edges.begin(), Edges.end(), addEdgeToGraph);
868   }
869 }
870
871 // Aside: We may remove graph construction entirely, because it doesn't really
872 // buy us much that we don't already have. I'd like to add interprocedural
873 // analysis prior to this however, in case that somehow requires the graph
874 // produced by this for efficient execution
875 static void buildGraphFrom(CFLAAResult &Analysis, Function *Fn,
876                            SmallVectorImpl<Value *> &ReturnedValues,
877                            NodeMapT &Map, GraphT &Graph) {
878   for (auto &Bb : Fn->getBasicBlockList())
879     for (auto &Inst : Bb.getInstList())
880       addInstructionToGraph(Analysis, Inst, ReturnedValues, Map, Graph);
881 }
882
883 static bool canSkipAddingToSets(Value *Val) {
884   // Constants can share instances, which may falsely unify multiple
885   // sets, e.g. in
886   // store i32* null, i32** %ptr1
887   // store i32* null, i32** %ptr2
888   // clearly ptr1 and ptr2 should not be unified into the same set, so
889   // we should filter out the (potentially shared) instance to
890   // i32* null.
891   if (isa<Constant>(Val)) {
892     bool Container = isa<ConstantVector>(Val) || isa<ConstantArray>(Val) ||
893                      isa<ConstantStruct>(Val);
894     // TODO: Because all of these things are constant, we can determine whether
895     // the data is *actually* mutable at graph building time. This will probably
896     // come for free/cheap with offset awareness.
897     bool CanStoreMutableData =
898         isa<GlobalValue>(Val) || isa<ConstantExpr>(Val) || Container;
899     return !CanStoreMutableData;
900   }
901
902   return false;
903 }
904
905 // Builds the graph + StratifiedSets for a function.
906 CFLAAResult::FunctionInfo CFLAAResult::buildSetsFrom(Function *Fn) {
907   NodeMapT Map;
908   GraphT Graph;
909   SmallVector<Value *, 4> ReturnedValues;
910
911   buildGraphFrom(*this, Fn, ReturnedValues, Map, Graph);
912
913   DenseMap<GraphT::Node, Value *> NodeValueMap;
914   NodeValueMap.resize(Map.size());
915   for (const auto &Pair : Map)
916     NodeValueMap.insert(std::make_pair(Pair.second, Pair.first));
917
918   const auto findValueOrDie = [&NodeValueMap](GraphT::Node Node) {
919     auto ValIter = NodeValueMap.find(Node);
920     assert(ValIter != NodeValueMap.end());
921     return ValIter->second;
922   };
923
924   StratifiedSetsBuilder<Value *> Builder;
925
926   SmallVector<GraphT::Node, 16> Worklist;
927   for (auto &Pair : Map) {
928     Worklist.clear();
929
930     auto *Value = Pair.first;
931     Builder.add(Value);
932     auto InitialNode = Pair.second;
933     Worklist.push_back(InitialNode);
934     while (!Worklist.empty()) {
935       auto Node = Worklist.pop_back_val();
936       auto *CurValue = findValueOrDie(Node);
937       if (canSkipAddingToSets(CurValue))
938         continue;
939
940       for (const auto &EdgeTuple : Graph.edgesFor(Node)) {
941         auto Weight = std::get<0>(EdgeTuple);
942         auto Label = Weight.first;
943         auto &OtherNode = std::get<1>(EdgeTuple);
944         auto *OtherValue = findValueOrDie(OtherNode);
945
946         if (canSkipAddingToSets(OtherValue))
947           continue;
948
949         bool Added;
950         switch (directionOfEdgeType(Label)) {
951         case Level::Above:
952           Added = Builder.addAbove(CurValue, OtherValue);
953           break;
954         case Level::Below:
955           Added = Builder.addBelow(CurValue, OtherValue);
956           break;
957         case Level::Same:
958           Added = Builder.addWith(CurValue, OtherValue);
959           break;
960         }
961
962         auto Aliasing = Weight.second;
963         if (auto MaybeCurIndex = valueToAttrIndex(CurValue))
964           Aliasing.set(*MaybeCurIndex);
965         if (auto MaybeOtherIndex = valueToAttrIndex(OtherValue))
966           Aliasing.set(*MaybeOtherIndex);
967         Builder.noteAttributes(CurValue, Aliasing);
968         Builder.noteAttributes(OtherValue, Aliasing);
969
970         if (Added)
971           Worklist.push_back(OtherNode);
972       }
973     }
974   }
975
976   // There are times when we end up with parameters not in our graph (i.e. if
977   // it's only used as the condition of a branch). Other bits of code depend on
978   // things that were present during construction being present in the graph.
979   // So, we add all present arguments here.
980   for (auto &Arg : Fn->args()) {
981     if (!Builder.add(&Arg))
982       continue;
983
984     auto Attrs = valueToAttrIndex(&Arg);
985     if (Attrs.hasValue())
986       Builder.noteAttributes(&Arg, *Attrs);
987   }
988
989   return FunctionInfo(Builder.build(), std::move(ReturnedValues));
990 }
991
992 void CFLAAResult::scan(Function *Fn) {
993   auto InsertPair = Cache.insert(std::make_pair(Fn, Optional<FunctionInfo>()));
994   (void)InsertPair;
995   assert(InsertPair.second &&
996          "Trying to scan a function that has already been cached");
997
998   FunctionInfo Info(buildSetsFrom(Fn));
999   Cache[Fn] = std::move(Info);
1000   Handles.push_front(FunctionHandle(Fn, this));
1001 }
1002
1003 void CFLAAResult::evict(Function *Fn) { Cache.erase(Fn); }
1004
1005 /// \brief Ensures that the given function is available in the cache.
1006 /// Returns the appropriate entry from the cache.
1007 const Optional<CFLAAResult::FunctionInfo> &
1008 CFLAAResult::ensureCached(Function *Fn) {
1009   auto Iter = Cache.find(Fn);
1010   if (Iter == Cache.end()) {
1011     scan(Fn);
1012     Iter = Cache.find(Fn);
1013     assert(Iter != Cache.end());
1014     assert(Iter->second.hasValue());
1015   }
1016   return Iter->second;
1017 }
1018
1019 AliasResult CFLAAResult::query(const MemoryLocation &LocA,
1020                                const MemoryLocation &LocB) {
1021   auto *ValA = const_cast<Value *>(LocA.Ptr);
1022   auto *ValB = const_cast<Value *>(LocB.Ptr);
1023
1024   Function *Fn = nullptr;
1025   auto MaybeFnA = parentFunctionOfValue(ValA);
1026   auto MaybeFnB = parentFunctionOfValue(ValB);
1027   if (!MaybeFnA.hasValue() && !MaybeFnB.hasValue()) {
1028     // The only times this is known to happen are when globals + InlineAsm
1029     // are involved
1030     DEBUG(dbgs() << "CFLAA: could not extract parent function information.\n");
1031     return MayAlias;
1032   }
1033
1034   if (MaybeFnA.hasValue()) {
1035     Fn = *MaybeFnA;
1036     assert((!MaybeFnB.hasValue() || *MaybeFnB == *MaybeFnA) &&
1037            "Interprocedural queries not supported");
1038   } else {
1039     Fn = *MaybeFnB;
1040   }
1041
1042   assert(Fn != nullptr);
1043   auto &MaybeInfo = ensureCached(Fn);
1044   assert(MaybeInfo.hasValue());
1045
1046   auto &Sets = MaybeInfo->Sets;
1047   auto MaybeA = Sets.find(ValA);
1048   if (!MaybeA.hasValue())
1049     return MayAlias;
1050
1051   auto MaybeB = Sets.find(ValB);
1052   if (!MaybeB.hasValue())
1053     return MayAlias;
1054
1055   auto SetA = *MaybeA;
1056   auto SetB = *MaybeB;
1057   auto AttrsA = Sets.getLink(SetA.Index).Attrs;
1058   auto AttrsB = Sets.getLink(SetB.Index).Attrs;
1059
1060   // Stratified set attributes are used as markets to signify whether a member
1061   // of a StratifiedSet (or a member of a set above the current set) has
1062   // interacted with either arguments or globals. "Interacted with" meaning
1063   // its value may be different depending on the value of an argument or
1064   // global. The thought behind this is that, because arguments and globals
1065   // may alias each other, if AttrsA and AttrsB have touched args/globals,
1066   // we must conservatively say that they alias. However, if at least one of
1067   // the sets has no values that could legally be altered by changing the value
1068   // of an argument or global, then we don't have to be as conservative.
1069   if (AttrsA.any() && AttrsB.any())
1070     return MayAlias;
1071
1072   // We currently unify things even if the accesses to them may not be in
1073   // bounds, so we can't return partial alias here because we don't
1074   // know whether the pointer is really within the object or not.
1075   // IE Given an out of bounds GEP and an alloca'd pointer, we may
1076   // unify the two. We can't return partial alias for this case.
1077   // Since we do not currently track enough information to
1078   // differentiate
1079
1080   if (SetA.Index == SetB.Index)
1081     return MayAlias;
1082
1083   return NoAlias;
1084 }
1085
1086 CFLAAResult CFLAA::run(Function &F, AnalysisManager<Function> *AM) {
1087   return CFLAAResult(AM->getResult<TargetLibraryAnalysis>(F));
1088 }
1089
1090 char CFLAA::PassID;
1091
1092 char CFLAAWrapperPass::ID = 0;
1093 INITIALIZE_PASS_BEGIN(CFLAAWrapperPass, "cfl-aa", "CFL-Based Alias Analysis",
1094                       false, true)
1095 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1096 INITIALIZE_PASS_END(CFLAAWrapperPass, "cfl-aa", "CFL-Based Alias Analysis",
1097                     false, true)
1098
1099 ImmutablePass *llvm::createCFLAAWrapperPass() { return new CFLAAWrapperPass(); }
1100
1101 CFLAAWrapperPass::CFLAAWrapperPass() : ImmutablePass(ID) {
1102   initializeCFLAAWrapperPassPass(*PassRegistry::getPassRegistry());
1103 }
1104
1105 bool CFLAAWrapperPass::doInitialization(Module &M) {
1106   Result.reset(
1107       new CFLAAResult(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()));
1108   return false;
1109 }
1110
1111 bool CFLAAWrapperPass::doFinalization(Module &M) {
1112   Result.reset();
1113   return false;
1114 }
1115
1116 void CFLAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1117   AU.setPreservesAll();
1118   AU.addRequired<TargetLibraryInfoWrapperPass>();
1119 }