[opaque pointer type] Change GetElementPtrInst::getIndexedType to take the pointee...
[oota-llvm.git] / lib / Analysis / BasicAliasAnalysis.cpp
1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the primary stateless implementation of the
11 // Alias Analysis interface that implements identities (two different
12 // globals cannot alias, etc), but does no stateful analysis.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Analysis/Passes.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/CaptureTracking.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include <algorithm>
43 using namespace llvm;
44
45 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
46 /// in a cycle. Because we are analysing 'through' phi nodes we need to be
47 /// careful with value equivalence. We use reachability to make sure a value
48 /// cannot be involved in a cycle.
49 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
50
51 // The max limit of the search depth in DecomposeGEPExpression() and
52 // GetUnderlyingObject(), both functions need to use the same search
53 // depth otherwise the algorithm in aliasGEP will assert.
54 static const unsigned MaxLookupSearchDepth = 6;
55
56 //===----------------------------------------------------------------------===//
57 // Useful predicates
58 //===----------------------------------------------------------------------===//
59
60 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local
61 /// object that never escapes from the function.
62 static bool isNonEscapingLocalObject(const Value *V) {
63   // If this is a local allocation, check to see if it escapes.
64   if (isa<AllocaInst>(V) || isNoAliasCall(V))
65     // Set StoreCaptures to True so that we can assume in our callers that the
66     // pointer is not the result of a load instruction. Currently
67     // PointerMayBeCaptured doesn't have any special analysis for the
68     // StoreCaptures=false case; if it did, our callers could be refined to be
69     // more precise.
70     return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
71
72   // If this is an argument that corresponds to a byval or noalias argument,
73   // then it has not escaped before entering the function.  Check if it escapes
74   // inside the function.
75   if (const Argument *A = dyn_cast<Argument>(V))
76     if (A->hasByValAttr() || A->hasNoAliasAttr())
77       // Note even if the argument is marked nocapture we still need to check
78       // for copies made inside the function. The nocapture attribute only
79       // specifies that there are no copies made that outlive the function.
80       return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
81
82   return false;
83 }
84
85 /// isEscapeSource - Return true if the pointer is one which would have
86 /// been considered an escape by isNonEscapingLocalObject.
87 static bool isEscapeSource(const Value *V) {
88   if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
89     return true;
90
91   // The load case works because isNonEscapingLocalObject considers all
92   // stores to be escapes (it passes true for the StoreCaptures argument
93   // to PointerMayBeCaptured).
94   if (isa<LoadInst>(V))
95     return true;
96
97   return false;
98 }
99
100 /// getObjectSize - Return the size of the object specified by V, or
101 /// UnknownSize if unknown.
102 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
103                               const TargetLibraryInfo &TLI,
104                               bool RoundToAlign = false) {
105   uint64_t Size;
106   if (getObjectSize(V, Size, DL, &TLI, RoundToAlign))
107     return Size;
108   return AliasAnalysis::UnknownSize;
109 }
110
111 /// isObjectSmallerThan - Return true if we can prove that the object specified
112 /// by V is smaller than Size.
113 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
114                                 const DataLayout &DL,
115                                 const TargetLibraryInfo &TLI) {
116   // Note that the meanings of the "object" are slightly different in the
117   // following contexts:
118   //    c1: llvm::getObjectSize()
119   //    c2: llvm.objectsize() intrinsic
120   //    c3: isObjectSmallerThan()
121   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
122   // refers to the "entire object".
123   //
124   //  Consider this example:
125   //     char *p = (char*)malloc(100)
126   //     char *q = p+80;
127   //
128   //  In the context of c1 and c2, the "object" pointed by q refers to the
129   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
130   //
131   //  However, in the context of c3, the "object" refers to the chunk of memory
132   // being allocated. So, the "object" has 100 bytes, and q points to the middle
133   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
134   // parameter, before the llvm::getObjectSize() is called to get the size of
135   // entire object, we should:
136   //    - either rewind the pointer q to the base-address of the object in
137   //      question (in this case rewind to p), or
138   //    - just give up. It is up to caller to make sure the pointer is pointing
139   //      to the base address the object.
140   //
141   // We go for 2nd option for simplicity.
142   if (!isIdentifiedObject(V))
143     return false;
144
145   // This function needs to use the aligned object size because we allow
146   // reads a bit past the end given sufficient alignment.
147   uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/true);
148
149   return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size;
150 }
151
152 /// isObjectSize - Return true if we can prove that the object specified
153 /// by V has size Size.
154 static bool isObjectSize(const Value *V, uint64_t Size,
155                          const DataLayout &DL, const TargetLibraryInfo &TLI) {
156   uint64_t ObjectSize = getObjectSize(V, DL, TLI);
157   return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size;
158 }
159
160 //===----------------------------------------------------------------------===//
161 // GetElementPtr Instruction Decomposition and Analysis
162 //===----------------------------------------------------------------------===//
163
164 namespace {
165   enum ExtensionKind {
166     EK_NotExtended,
167     EK_SignExt,
168     EK_ZeroExt
169   };
170
171   struct VariableGEPIndex {
172     const Value *V;
173     ExtensionKind Extension;
174     int64_t Scale;
175
176     bool operator==(const VariableGEPIndex &Other) const {
177       return V == Other.V && Extension == Other.Extension &&
178         Scale == Other.Scale;
179     }
180
181     bool operator!=(const VariableGEPIndex &Other) const {
182       return !operator==(Other);
183     }
184   };
185 }
186
187
188 /// GetLinearExpression - Analyze the specified value as a linear expression:
189 /// "A*V + B", where A and B are constant integers.  Return the scale and offset
190 /// values as APInts and return V as a Value*, and return whether we looked
191 /// through any sign or zero extends.  The incoming Value is known to have
192 /// IntegerType and it may already be sign or zero extended.
193 ///
194 /// Note that this looks through extends, so the high bits may not be
195 /// represented in the result.
196 static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
197                                   ExtensionKind &Extension,
198                                   const DataLayout &DL, unsigned Depth,
199                                   AssumptionCache *AC, DominatorTree *DT) {
200   assert(V->getType()->isIntegerTy() && "Not an integer value");
201
202   // Limit our recursion depth.
203   if (Depth == 6) {
204     Scale = 1;
205     Offset = 0;
206     return V;
207   }
208
209   if (ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
210     // if it's a constant, just convert it to an offset
211     // and remove the variable.
212     Offset += Const->getValue();
213     assert(Scale == 0 && "Constant values don't have a scale");
214     return V;
215   }
216
217   if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
218     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
219       switch (BOp->getOpcode()) {
220       default: break;
221       case Instruction::Or:
222         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
223         // analyze it.
224         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
225                                BOp, DT))
226           break;
227         // FALL THROUGH.
228       case Instruction::Add:
229         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
230                                 DL, Depth + 1, AC, DT);
231         Offset += RHSC->getValue();
232         return V;
233       case Instruction::Mul:
234         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
235                                 DL, Depth + 1, AC, DT);
236         Offset *= RHSC->getValue();
237         Scale *= RHSC->getValue();
238         return V;
239       case Instruction::Shl:
240         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
241                                 DL, Depth + 1, AC, DT);
242         Offset <<= RHSC->getValue().getLimitedValue();
243         Scale <<= RHSC->getValue().getLimitedValue();
244         return V;
245       }
246     }
247   }
248
249   // Since GEP indices are sign extended anyway, we don't care about the high
250   // bits of a sign or zero extended value - just scales and offsets.  The
251   // extensions have to be consistent though.
252   if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
253       (isa<ZExtInst>(V) && Extension != EK_SignExt)) {
254     Value *CastOp = cast<CastInst>(V)->getOperand(0);
255     unsigned OldWidth = Scale.getBitWidth();
256     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
257     Scale = Scale.trunc(SmallWidth);
258     Offset = Offset.trunc(SmallWidth);
259     Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
260
261     Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, DL,
262                                         Depth + 1, AC, DT);
263     Scale = Scale.zext(OldWidth);
264
265     // We have to sign-extend even if Extension == EK_ZeroExt as we can't
266     // decompose a sign extension (i.e. zext(x - 1) != zext(x) - zext(-1)).
267     Offset = Offset.sext(OldWidth);
268
269     return Result;
270   }
271
272   Scale = 1;
273   Offset = 0;
274   return V;
275 }
276
277 /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
278 /// into a base pointer with a constant offset and a number of scaled symbolic
279 /// offsets.
280 ///
281 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
282 /// the VarIndices vector) are Value*'s that are known to be scaled by the
283 /// specified amount, but which may have other unrepresented high bits. As such,
284 /// the gep cannot necessarily be reconstructed from its decomposed form.
285 ///
286 /// When DataLayout is around, this function is capable of analyzing everything
287 /// that GetUnderlyingObject can look through. To be able to do that
288 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
289 /// depth (MaxLookupSearchDepth).
290 /// When DataLayout not is around, it just looks through pointer casts.
291 ///
292 static const Value *
293 DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
294                        SmallVectorImpl<VariableGEPIndex> &VarIndices,
295                        bool &MaxLookupReached, const DataLayout &DL,
296                        AssumptionCache *AC, DominatorTree *DT) {
297   // Limit recursion depth to limit compile time in crazy cases.
298   unsigned MaxLookup = MaxLookupSearchDepth;
299   MaxLookupReached = false;
300
301   BaseOffs = 0;
302   do {
303     // See if this is a bitcast or GEP.
304     const Operator *Op = dyn_cast<Operator>(V);
305     if (!Op) {
306       // The only non-operator case we can handle are GlobalAliases.
307       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
308         if (!GA->mayBeOverridden()) {
309           V = GA->getAliasee();
310           continue;
311         }
312       }
313       return V;
314     }
315
316     if (Op->getOpcode() == Instruction::BitCast ||
317         Op->getOpcode() == Instruction::AddrSpaceCast) {
318       V = Op->getOperand(0);
319       continue;
320     }
321
322     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
323     if (!GEPOp) {
324       // If it's not a GEP, hand it off to SimplifyInstruction to see if it
325       // can come up with something. This matches what GetUnderlyingObject does.
326       if (const Instruction *I = dyn_cast<Instruction>(V))
327         // TODO: Get a DominatorTree and AssumptionCache and use them here
328         // (these are both now available in this function, but this should be
329         // updated when GetUnderlyingObject is updated). TLI should be
330         // provided also.
331         if (const Value *Simplified =
332               SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
333           V = Simplified;
334           continue;
335         }
336
337       return V;
338     }
339
340     // Don't attempt to analyze GEPs over unsized objects.
341     if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized())
342       return V;
343
344     unsigned AS = GEPOp->getPointerAddressSpace();
345     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
346     gep_type_iterator GTI = gep_type_begin(GEPOp);
347     for (User::const_op_iterator I = GEPOp->op_begin()+1,
348          E = GEPOp->op_end(); I != E; ++I) {
349       Value *Index = *I;
350       // Compute the (potentially symbolic) offset in bytes for this index.
351       if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
352         // For a struct, add the member offset.
353         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
354         if (FieldNo == 0) continue;
355
356         BaseOffs += DL.getStructLayout(STy)->getElementOffset(FieldNo);
357         continue;
358       }
359
360       // For an array/pointer, add the element offset, explicitly scaled.
361       if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
362         if (CIdx->isZero()) continue;
363         BaseOffs += DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue();
364         continue;
365       }
366
367       uint64_t Scale = DL.getTypeAllocSize(*GTI);
368       ExtensionKind Extension = EK_NotExtended;
369
370       // If the integer type is smaller than the pointer size, it is implicitly
371       // sign extended to pointer size.
372       unsigned Width = Index->getType()->getIntegerBitWidth();
373       if (DL.getPointerSizeInBits(AS) > Width)
374         Extension = EK_SignExt;
375
376       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
377       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
378       Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension, DL,
379                                   0, AC, DT);
380
381       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
382       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
383       BaseOffs += IndexOffset.getSExtValue()*Scale;
384       Scale *= IndexScale.getSExtValue();
385
386       // If we already had an occurrence of this index variable, merge this
387       // scale into it.  For example, we want to handle:
388       //   A[x][x] -> x*16 + x*4 -> x*20
389       // This also ensures that 'x' only appears in the index list once.
390       for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
391         if (VarIndices[i].V == Index &&
392             VarIndices[i].Extension == Extension) {
393           Scale += VarIndices[i].Scale;
394           VarIndices.erase(VarIndices.begin()+i);
395           break;
396         }
397       }
398
399       // Make sure that we have a scale that makes sense for this target's
400       // pointer size.
401       if (unsigned ShiftBits = 64 - DL.getPointerSizeInBits(AS)) {
402         Scale <<= ShiftBits;
403         Scale = (int64_t)Scale >> ShiftBits;
404       }
405
406       if (Scale) {
407         VariableGEPIndex Entry = {Index, Extension,
408                                   static_cast<int64_t>(Scale)};
409         VarIndices.push_back(Entry);
410       }
411     }
412
413     // Analyze the base pointer next.
414     V = GEPOp->getOperand(0);
415   } while (--MaxLookup);
416
417   // If the chain of expressions is too deep, just return early.
418   MaxLookupReached = true;
419   return V;
420 }
421
422 //===----------------------------------------------------------------------===//
423 // BasicAliasAnalysis Pass
424 //===----------------------------------------------------------------------===//
425
426 #ifndef NDEBUG
427 static const Function *getParent(const Value *V) {
428   if (const Instruction *inst = dyn_cast<Instruction>(V))
429     return inst->getParent()->getParent();
430
431   if (const Argument *arg = dyn_cast<Argument>(V))
432     return arg->getParent();
433
434   return nullptr;
435 }
436
437 static bool notDifferentParent(const Value *O1, const Value *O2) {
438
439   const Function *F1 = getParent(O1);
440   const Function *F2 = getParent(O2);
441
442   return !F1 || !F2 || F1 == F2;
443 }
444 #endif
445
446 namespace {
447   /// BasicAliasAnalysis - This is the primary alias analysis implementation.
448   struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
449     static char ID; // Class identification, replacement for typeinfo
450     BasicAliasAnalysis() : ImmutablePass(ID) {
451       initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
452     }
453
454     bool doInitialization(Module &M) override;
455
456     void getAnalysisUsage(AnalysisUsage &AU) const override {
457       AU.addRequired<AliasAnalysis>();
458       AU.addRequired<AssumptionCacheTracker>();
459       AU.addRequired<TargetLibraryInfoWrapperPass>();
460     }
461
462     AliasResult alias(const Location &LocA, const Location &LocB) override {
463       assert(AliasCache.empty() && "AliasCache must be cleared after use!");
464       assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
465              "BasicAliasAnalysis doesn't support interprocedural queries.");
466       AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags,
467                                      LocB.Ptr, LocB.Size, LocB.AATags);
468       // AliasCache rarely has more than 1 or 2 elements, always use
469       // shrink_and_clear so it quickly returns to the inline capacity of the
470       // SmallDenseMap if it ever grows larger.
471       // FIXME: This should really be shrink_to_inline_capacity_and_clear().
472       AliasCache.shrink_and_clear();
473       VisitedPhiBBs.clear();
474       return Alias;
475     }
476
477     ModRefResult getModRefInfo(ImmutableCallSite CS,
478                                const Location &Loc) override;
479
480     ModRefResult getModRefInfo(ImmutableCallSite CS1,
481                                ImmutableCallSite CS2) override;
482
483     /// pointsToConstantMemory - Chase pointers until we find a (constant
484     /// global) or not.
485     bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override;
486
487     /// Get the location associated with a pointer argument of a callsite.
488     Location getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
489                             ModRefResult &Mask) override;
490
491     /// getModRefBehavior - Return the behavior when calling the given
492     /// call site.
493     ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
494
495     /// getModRefBehavior - Return the behavior when calling the given function.
496     /// For use when the call site is not known.
497     ModRefBehavior getModRefBehavior(const Function *F) override;
498
499     /// getAdjustedAnalysisPointer - This method is used when a pass implements
500     /// an analysis interface through multiple inheritance.  If needed, it
501     /// should override this to adjust the this pointer as needed for the
502     /// specified pass info.
503     void *getAdjustedAnalysisPointer(const void *ID) override {
504       if (ID == &AliasAnalysis::ID)
505         return (AliasAnalysis*)this;
506       return this;
507     }
508
509   private:
510     // AliasCache - Track alias queries to guard against recursion.
511     typedef std::pair<Location, Location> LocPair;
512     typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy;
513     AliasCacheTy AliasCache;
514
515     /// \brief Track phi nodes we have visited. When interpret "Value" pointer
516     /// equality as value equality we need to make sure that the "Value" is not
517     /// part of a cycle. Otherwise, two uses could come from different
518     /// "iterations" of a cycle and see different values for the same "Value"
519     /// pointer.
520     /// The following example shows the problem:
521     ///   %p = phi(%alloca1, %addr2)
522     ///   %l = load %ptr
523     ///   %addr1 = gep, %alloca2, 0, %l
524     ///   %addr2 = gep  %alloca2, 0, (%l + 1)
525     ///      alias(%p, %addr1) -> MayAlias !
526     ///   store %l, ...
527     SmallPtrSet<const BasicBlock*, 8> VisitedPhiBBs;
528
529     // Visited - Track instructions visited by pointsToConstantMemory.
530     SmallPtrSet<const Value*, 16> Visited;
531
532     /// \brief Check whether two Values can be considered equivalent.
533     ///
534     /// In addition to pointer equivalence of \p V1 and \p V2 this checks
535     /// whether they can not be part of a cycle in the value graph by looking at
536     /// all visited phi nodes an making sure that the phis cannot reach the
537     /// value. We have to do this because we are looking through phi nodes (That
538     /// is we say noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
539     bool isValueEqualInPotentialCycles(const Value *V1, const Value *V2);
540
541     /// \brief Dest and Src are the variable indices from two decomposed
542     /// GetElementPtr instructions GEP1 and GEP2 which have common base
543     /// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
544     /// difference between the two pointers.
545     void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
546                             const SmallVectorImpl<VariableGEPIndex> &Src);
547
548     // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
549     // instruction against another.
550     AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
551                          const AAMDNodes &V1AAInfo,
552                          const Value *V2, uint64_t V2Size,
553                          const AAMDNodes &V2AAInfo,
554                          const Value *UnderlyingV1, const Value *UnderlyingV2);
555
556     // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
557     // instruction against another.
558     AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
559                          const AAMDNodes &PNAAInfo,
560                          const Value *V2, uint64_t V2Size,
561                          const AAMDNodes &V2AAInfo);
562
563     /// aliasSelect - Disambiguate a Select instruction against another value.
564     AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
565                             const AAMDNodes &SIAAInfo,
566                             const Value *V2, uint64_t V2Size,
567                             const AAMDNodes &V2AAInfo);
568
569     AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
570                            AAMDNodes V1AATag,
571                            const Value *V2, uint64_t V2Size,
572                            AAMDNodes V2AATag);
573   };
574 }  // End of anonymous namespace
575
576 // Register this pass...
577 char BasicAliasAnalysis::ID = 0;
578 INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa",
579                    "Basic Alias Analysis (stateless AA impl)",
580                    false, true, false)
581 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
582 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
583 INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa",
584                    "Basic Alias Analysis (stateless AA impl)",
585                    false, true, false)
586
587
588 ImmutablePass *llvm::createBasicAliasAnalysisPass() {
589   return new BasicAliasAnalysis();
590 }
591
592 /// pointsToConstantMemory - Returns whether the given pointer value
593 /// points to memory that is local to the function, with global constants being
594 /// considered local to all functions.
595 bool
596 BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
597   assert(Visited.empty() && "Visited must be cleared after use!");
598
599   unsigned MaxLookup = 8;
600   SmallVector<const Value *, 16> Worklist;
601   Worklist.push_back(Loc.Ptr);
602   do {
603     const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), *DL);
604     if (!Visited.insert(V).second) {
605       Visited.clear();
606       return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
607     }
608
609     // An alloca instruction defines local memory.
610     if (OrLocal && isa<AllocaInst>(V))
611       continue;
612
613     // A global constant counts as local memory for our purposes.
614     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
615       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
616       // global to be marked constant in some modules and non-constant in
617       // others.  GV may even be a declaration, not a definition.
618       if (!GV->isConstant()) {
619         Visited.clear();
620         return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
621       }
622       continue;
623     }
624
625     // If both select values point to local memory, then so does the select.
626     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
627       Worklist.push_back(SI->getTrueValue());
628       Worklist.push_back(SI->getFalseValue());
629       continue;
630     }
631
632     // If all values incoming to a phi node point to local memory, then so does
633     // the phi.
634     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
635       // Don't bother inspecting phi nodes with many operands.
636       if (PN->getNumIncomingValues() > MaxLookup) {
637         Visited.clear();
638         return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
639       }
640       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
641         Worklist.push_back(PN->getIncomingValue(i));
642       continue;
643     }
644
645     // Otherwise be conservative.
646     Visited.clear();
647     return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
648
649   } while (!Worklist.empty() && --MaxLookup);
650
651   Visited.clear();
652   return Worklist.empty();
653 }
654
655 static bool isMemsetPattern16(const Function *MS,
656                               const TargetLibraryInfo &TLI) {
657   if (TLI.has(LibFunc::memset_pattern16) &&
658       MS->getName() == "memset_pattern16") {
659     FunctionType *MemsetType = MS->getFunctionType();
660     if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
661         isa<PointerType>(MemsetType->getParamType(0)) &&
662         isa<PointerType>(MemsetType->getParamType(1)) &&
663         isa<IntegerType>(MemsetType->getParamType(2)))
664       return true;
665   }
666
667   return false;
668 }
669
670 /// getModRefBehavior - Return the behavior when calling the given call site.
671 AliasAnalysis::ModRefBehavior
672 BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
673   if (CS.doesNotAccessMemory())
674     // Can't do better than this.
675     return DoesNotAccessMemory;
676
677   ModRefBehavior Min = UnknownModRefBehavior;
678
679   // If the callsite knows it only reads memory, don't return worse
680   // than that.
681   if (CS.onlyReadsMemory())
682     Min = OnlyReadsMemory;
683
684   // The AliasAnalysis base class has some smarts, lets use them.
685   return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
686 }
687
688 /// getModRefBehavior - Return the behavior when calling the given function.
689 /// For use when the call site is not known.
690 AliasAnalysis::ModRefBehavior
691 BasicAliasAnalysis::getModRefBehavior(const Function *F) {
692   // If the function declares it doesn't access memory, we can't do better.
693   if (F->doesNotAccessMemory())
694     return DoesNotAccessMemory;
695
696   // For intrinsics, we can check the table.
697   if (unsigned iid = F->getIntrinsicID()) {
698 #define GET_INTRINSIC_MODREF_BEHAVIOR
699 #include "llvm/IR/Intrinsics.gen"
700 #undef GET_INTRINSIC_MODREF_BEHAVIOR
701   }
702
703   ModRefBehavior Min = UnknownModRefBehavior;
704
705   // If the function declares it only reads memory, go with that.
706   if (F->onlyReadsMemory())
707     Min = OnlyReadsMemory;
708
709   const TargetLibraryInfo &TLI =
710       getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
711   if (isMemsetPattern16(F, TLI))
712     Min = OnlyAccessesArgumentPointees;
713
714   // Otherwise be conservative.
715   return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
716 }
717
718 AliasAnalysis::Location
719 BasicAliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
720                                    ModRefResult &Mask) {
721   Location Loc = AliasAnalysis::getArgLocation(CS, ArgIdx, Mask);
722   const TargetLibraryInfo &TLI =
723       getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
724   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
725   if (II != nullptr)
726     switch (II->getIntrinsicID()) {
727     default: break;
728     case Intrinsic::memset:
729     case Intrinsic::memcpy:
730     case Intrinsic::memmove: {
731       assert((ArgIdx == 0 || ArgIdx == 1) &&
732              "Invalid argument index for memory intrinsic");
733       if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
734         Loc.Size = LenCI->getZExtValue();
735       assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
736              "Memory intrinsic location pointer not argument?");
737       Mask = ArgIdx ? Ref : Mod;
738       break;
739     }
740     case Intrinsic::lifetime_start:
741     case Intrinsic::lifetime_end:
742     case Intrinsic::invariant_start: {
743       assert(ArgIdx == 1 && "Invalid argument index");
744       assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
745              "Intrinsic location pointer not argument?");
746       Loc.Size = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
747       break;
748     }
749     case Intrinsic::invariant_end: {
750       assert(ArgIdx == 2 && "Invalid argument index");
751       assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
752              "Intrinsic location pointer not argument?");
753       Loc.Size = cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
754       break;
755     }
756     case Intrinsic::arm_neon_vld1: {
757       assert(ArgIdx == 0 && "Invalid argument index");
758       assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
759              "Intrinsic location pointer not argument?");
760       // LLVM's vld1 and vst1 intrinsics currently only support a single
761       // vector register.
762       if (DL)
763         Loc.Size = DL->getTypeStoreSize(II->getType());
764       break;
765     }
766     case Intrinsic::arm_neon_vst1: {
767       assert(ArgIdx == 0 && "Invalid argument index");
768       assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
769              "Intrinsic location pointer not argument?");
770       if (DL)
771         Loc.Size = DL->getTypeStoreSize(II->getArgOperand(1)->getType());
772       break;
773     }
774     }
775
776   // We can bound the aliasing properties of memset_pattern16 just as we can
777   // for memcpy/memset.  This is particularly important because the
778   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
779   // whenever possible.
780   else if (CS.getCalledFunction() &&
781            isMemsetPattern16(CS.getCalledFunction(), TLI)) {
782     assert((ArgIdx == 0 || ArgIdx == 1) &&
783            "Invalid argument index for memset_pattern16");
784     if (ArgIdx == 1)
785       Loc.Size = 16;
786     else if (const ConstantInt *LenCI =
787              dyn_cast<ConstantInt>(CS.getArgument(2)))
788       Loc.Size = LenCI->getZExtValue();
789     assert(Loc.Ptr == CS.getArgument(ArgIdx) &&
790            "memset_pattern16 location pointer not argument?");
791     Mask = ArgIdx ? Ref : Mod;
792   }
793   // FIXME: Handle memset_pattern4 and memset_pattern8 also.
794
795   return Loc;
796 }
797
798 static bool isAssumeIntrinsic(ImmutableCallSite CS) {
799   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
800   if (II && II->getIntrinsicID() == Intrinsic::assume)
801     return true;
802
803   return false;
804 }
805
806 bool BasicAliasAnalysis::doInitialization(Module &M) {
807   InitializeAliasAnalysis(this, &M.getDataLayout());
808   return true;
809 }
810
811 /// getModRefInfo - Check to see if the specified callsite can clobber the
812 /// specified memory object.  Since we only look at local properties of this
813 /// function, we really can't say much about this query.  We do, however, use
814 /// simple "address taken" analysis on local objects.
815 AliasAnalysis::ModRefResult
816 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
817                                   const Location &Loc) {
818   assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
819          "AliasAnalysis query involving multiple functions!");
820
821   const Value *Object = GetUnderlyingObject(Loc.Ptr, *DL);
822
823   // If this is a tail call and Loc.Ptr points to a stack location, we know that
824   // the tail call cannot access or modify the local stack.
825   // We cannot exclude byval arguments here; these belong to the caller of
826   // the current function not to the current function, and a tail callee
827   // may reference them.
828   if (isa<AllocaInst>(Object))
829     if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
830       if (CI->isTailCall())
831         return NoModRef;
832
833   // If the pointer is to a locally allocated object that does not escape,
834   // then the call can not mod/ref the pointer unless the call takes the pointer
835   // as an argument, and itself doesn't capture it.
836   if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
837       isNonEscapingLocalObject(Object)) {
838     bool PassedAsArg = false;
839     unsigned ArgNo = 0;
840     for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
841          CI != CE; ++CI, ++ArgNo) {
842       // Only look at the no-capture or byval pointer arguments.  If this
843       // pointer were passed to arguments that were neither of these, then it
844       // couldn't be no-capture.
845       if (!(*CI)->getType()->isPointerTy() ||
846           (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
847         continue;
848
849       // If this is a no-capture pointer argument, see if we can tell that it
850       // is impossible to alias the pointer we're checking.  If not, we have to
851       // assume that the call could touch the pointer, even though it doesn't
852       // escape.
853       if (!isNoAlias(Location(*CI), Location(Object))) {
854         PassedAsArg = true;
855         break;
856       }
857     }
858
859     if (!PassedAsArg)
860       return NoModRef;
861   }
862
863   // While the assume intrinsic is marked as arbitrarily writing so that
864   // proper control dependencies will be maintained, it never aliases any
865   // particular memory location.
866   if (isAssumeIntrinsic(CS))
867     return NoModRef;
868
869   // The AliasAnalysis base class has some smarts, lets use them.
870   return AliasAnalysis::getModRefInfo(CS, Loc);
871 }
872
873 AliasAnalysis::ModRefResult
874 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
875                                   ImmutableCallSite CS2) {
876   // While the assume intrinsic is marked as arbitrarily writing so that
877   // proper control dependencies will be maintained, it never aliases any
878   // particular memory location.
879   if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2))
880     return NoModRef;
881
882   // The AliasAnalysis base class has some smarts, lets use them.
883   return AliasAnalysis::getModRefInfo(CS1, CS2);
884 }
885
886 /// \brief Provide ad-hoc rules to disambiguate accesses through two GEP
887 /// operators, both having the exact same pointer operand.
888 static AliasAnalysis::AliasResult
889 aliasSameBasePointerGEPs(const GEPOperator *GEP1, uint64_t V1Size,
890                          const GEPOperator *GEP2, uint64_t V2Size,
891                          const DataLayout &DL) {
892
893   assert(GEP1->getPointerOperand() == GEP2->getPointerOperand() &&
894          "Expected GEPs with the same pointer operand");
895
896   // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
897   // such that the struct field accesses provably cannot alias.
898   // We also need at least two indices (the pointer, and the struct field).
899   if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
900       GEP1->getNumIndices() < 2)
901     return AliasAnalysis::MayAlias;
902
903   // If we don't know the size of the accesses through both GEPs, we can't
904   // determine whether the struct fields accessed can't alias.
905   if (V1Size == AliasAnalysis::UnknownSize ||
906       V2Size == AliasAnalysis::UnknownSize)
907     return AliasAnalysis::MayAlias;
908
909   ConstantInt *C1 =
910       dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
911   ConstantInt *C2 =
912       dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
913
914   // If the last (struct) indices aren't constants, we can't say anything.
915   // If they're identical, the other indices might be also be dynamically
916   // equal, so the GEPs can alias.
917   if (!C1 || !C2 || C1 == C2)
918     return AliasAnalysis::MayAlias;
919
920   // Find the last-indexed type of the GEP, i.e., the type you'd get if
921   // you stripped the last index.
922   // On the way, look at each indexed type.  If there's something other
923   // than an array, different indices can lead to different final types.
924   SmallVector<Value *, 8> IntermediateIndices;
925
926   // Insert the first index; we don't need to check the type indexed
927   // through it as it only drops the pointer indirection.
928   assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
929   IntermediateIndices.push_back(GEP1->getOperand(1));
930
931   // Insert all the remaining indices but the last one.
932   // Also, check that they all index through arrays.
933   for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
934     if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
935             GEP1->getSourceElementType(), IntermediateIndices)))
936       return AliasAnalysis::MayAlias;
937     IntermediateIndices.push_back(GEP1->getOperand(i + 1));
938   }
939
940   StructType *LastIndexedStruct =
941       dyn_cast<StructType>(GetElementPtrInst::getIndexedType(
942           GEP1->getSourceElementType(), IntermediateIndices));
943
944   if (!LastIndexedStruct)
945     return AliasAnalysis::MayAlias;
946
947   // We know that:
948   // - both GEPs begin indexing from the exact same pointer;
949   // - the last indices in both GEPs are constants, indexing into a struct;
950   // - said indices are different, hence, the pointed-to fields are different;
951   // - both GEPs only index through arrays prior to that.
952   //
953   // This lets us determine that the struct that GEP1 indexes into and the
954   // struct that GEP2 indexes into must either precisely overlap or be
955   // completely disjoint.  Because they cannot partially overlap, indexing into
956   // different non-overlapping fields of the struct will never alias.
957
958   // Therefore, the only remaining thing needed to show that both GEPs can't
959   // alias is that the fields are not overlapping.
960   const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
961   const uint64_t StructSize = SL->getSizeInBytes();
962   const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
963   const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
964
965   auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
966                                       uint64_t V2Off, uint64_t V2Size) {
967     return V1Off < V2Off && V1Off + V1Size <= V2Off &&
968            ((V2Off + V2Size <= StructSize) ||
969             (V2Off + V2Size - StructSize <= V1Off));
970   };
971
972   if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
973       EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
974     return AliasAnalysis::NoAlias;
975
976   return AliasAnalysis::MayAlias;
977 }
978
979 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
980 /// against another pointer.  We know that V1 is a GEP, but we don't know
981 /// anything about V2.  UnderlyingV1 is GetUnderlyingObject(GEP1, DL),
982 /// UnderlyingV2 is the same for V2.
983 ///
984 AliasAnalysis::AliasResult
985 BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
986                              const AAMDNodes &V1AAInfo,
987                              const Value *V2, uint64_t V2Size,
988                              const AAMDNodes &V2AAInfo,
989                              const Value *UnderlyingV1,
990                              const Value *UnderlyingV2) {
991   int64_t GEP1BaseOffset;
992   bool GEP1MaxLookupReached;
993   SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
994
995   // We have to get two AssumptionCaches here because GEP1 and V2 may be from
996   // different functions.
997   // FIXME: This really doesn't make any sense. We get a dominator tree below
998   // that can only refer to a single function. But this function (aliasGEP) is
999   // a method on an immutable pass that can be called when there *isn't*
1000   // a single function. The old pass management layer makes this "work", but
1001   // this isn't really a clean solution.
1002   AssumptionCacheTracker &ACT = getAnalysis<AssumptionCacheTracker>();
1003   AssumptionCache *AC1 = nullptr, *AC2 = nullptr;
1004   if (auto *GEP1I = dyn_cast<Instruction>(GEP1))
1005     AC1 = &ACT.getAssumptionCache(
1006         const_cast<Function &>(*GEP1I->getParent()->getParent()));
1007   if (auto *I2 = dyn_cast<Instruction>(V2))
1008     AC2 = &ACT.getAssumptionCache(
1009         const_cast<Function &>(*I2->getParent()->getParent()));
1010
1011   DominatorTreeWrapperPass *DTWP =
1012       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1013   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
1014
1015   // If we have two gep instructions with must-alias or not-alias'ing base
1016   // pointers, figure out if the indexes to the GEP tell us anything about the
1017   // derived pointer.
1018   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
1019     // Do the base pointers alias?
1020     AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, AAMDNodes(),
1021                                        UnderlyingV2, UnknownSize, AAMDNodes());
1022
1023     // Check for geps of non-aliasing underlying pointers where the offsets are
1024     // identical.
1025     if ((BaseAlias == MayAlias) && V1Size == V2Size) {
1026       // Do the base pointers alias assuming type and size.
1027       AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size,
1028                                                 V1AAInfo, UnderlyingV2,
1029                                                 V2Size, V2AAInfo);
1030       if (PreciseBaseAlias == NoAlias) {
1031         // See if the computed offset from the common pointer tells us about the
1032         // relation of the resulting pointer.
1033         int64_t GEP2BaseOffset;
1034         bool GEP2MaxLookupReached;
1035         SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
1036         const Value *GEP2BasePtr =
1037             DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
1038                                    GEP2MaxLookupReached, *DL, AC2, DT);
1039         const Value *GEP1BasePtr =
1040             DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
1041                                    GEP1MaxLookupReached, *DL, AC1, DT);
1042         // DecomposeGEPExpression and GetUnderlyingObject should return the
1043         // same result except when DecomposeGEPExpression has no DataLayout.
1044         if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
1045           assert(!DL &&
1046                  "DecomposeGEPExpression and GetUnderlyingObject disagree!");
1047           return MayAlias;
1048         }
1049         // If the max search depth is reached the result is undefined
1050         if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1051           return MayAlias;
1052
1053         // Same offsets.
1054         if (GEP1BaseOffset == GEP2BaseOffset &&
1055             GEP1VariableIndices == GEP2VariableIndices)
1056           return NoAlias;
1057         GEP1VariableIndices.clear();
1058       }
1059     }
1060
1061     // If we get a No or May, then return it immediately, no amount of analysis
1062     // will improve this situation.
1063     if (BaseAlias != MustAlias) return BaseAlias;
1064
1065     // Otherwise, we have a MustAlias.  Since the base pointers alias each other
1066     // exactly, see if the computed offset from the common pointer tells us
1067     // about the relation of the resulting pointer.
1068     const Value *GEP1BasePtr =
1069         DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
1070                                GEP1MaxLookupReached, *DL, AC1, DT);
1071
1072     int64_t GEP2BaseOffset;
1073     bool GEP2MaxLookupReached;
1074     SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
1075     const Value *GEP2BasePtr =
1076         DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
1077                                GEP2MaxLookupReached, *DL, AC2, DT);
1078
1079     // DecomposeGEPExpression and GetUnderlyingObject should return the
1080     // same result except when DecomposeGEPExpression has no DataLayout.
1081     if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
1082       assert(!DL &&
1083              "DecomposeGEPExpression and GetUnderlyingObject disagree!");
1084       return MayAlias;
1085     }
1086
1087     // If we know the two GEPs are based off of the exact same pointer (and not
1088     // just the same underlying object), see if that tells us anything about
1089     // the resulting pointers.
1090     if (DL && GEP1->getPointerOperand() == GEP2->getPointerOperand()) {
1091       AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, *DL);
1092       // If we couldn't find anything interesting, don't abandon just yet.
1093       if (R != MayAlias)
1094         return R;
1095     }
1096
1097     // If the max search depth is reached the result is undefined
1098     if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1099       return MayAlias;
1100
1101     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1102     // symbolic difference.
1103     GEP1BaseOffset -= GEP2BaseOffset;
1104     GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
1105
1106   } else {
1107     // Check to see if these two pointers are related by the getelementptr
1108     // instruction.  If one pointer is a GEP with a non-zero index of the other
1109     // pointer, we know they cannot alias.
1110
1111     // If both accesses are unknown size, we can't do anything useful here.
1112     if (V1Size == UnknownSize && V2Size == UnknownSize)
1113       return MayAlias;
1114
1115     AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, AAMDNodes(),
1116                                V2, V2Size, V2AAInfo);
1117     if (R != MustAlias)
1118       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1119       // If V2 is known not to alias GEP base pointer, then the two values
1120       // cannot alias per GEP semantics: "A pointer value formed from a
1121       // getelementptr instruction is associated with the addresses associated
1122       // with the first operand of the getelementptr".
1123       return R;
1124
1125     const Value *GEP1BasePtr =
1126         DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
1127                                GEP1MaxLookupReached, *DL, AC1, DT);
1128
1129     // DecomposeGEPExpression and GetUnderlyingObject should return the
1130     // same result except when DecomposeGEPExpression has no DataLayout.
1131     if (GEP1BasePtr != UnderlyingV1) {
1132       assert(!DL &&
1133              "DecomposeGEPExpression and GetUnderlyingObject disagree!");
1134       return MayAlias;
1135     }
1136     // If the max search depth is reached the result is undefined
1137     if (GEP1MaxLookupReached)
1138       return MayAlias;
1139   }
1140
1141   // In the two GEP Case, if there is no difference in the offsets of the
1142   // computed pointers, the resultant pointers are a must alias.  This
1143   // hapens when we have two lexically identical GEP's (for example).
1144   //
1145   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1146   // must aliases the GEP, the end result is a must alias also.
1147   if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
1148     return MustAlias;
1149
1150   // If there is a constant difference between the pointers, but the difference
1151   // is less than the size of the associated memory object, then we know
1152   // that the objects are partially overlapping.  If the difference is
1153   // greater, we know they do not overlap.
1154   if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
1155     if (GEP1BaseOffset >= 0) {
1156       if (V2Size != UnknownSize) {
1157         if ((uint64_t)GEP1BaseOffset < V2Size)
1158           return PartialAlias;
1159         return NoAlias;
1160       }
1161     } else {
1162       // We have the situation where:
1163       // +                +
1164       // | BaseOffset     |
1165       // ---------------->|
1166       // |-->V1Size       |-------> V2Size
1167       // GEP1             V2
1168       // We need to know that V2Size is not unknown, otherwise we might have
1169       // stripped a gep with negative index ('gep <ptr>, -1, ...).
1170       if (V1Size != UnknownSize && V2Size != UnknownSize) {
1171         if (-(uint64_t)GEP1BaseOffset < V1Size)
1172           return PartialAlias;
1173         return NoAlias;
1174       }
1175     }
1176   }
1177
1178   if (!GEP1VariableIndices.empty()) {
1179     uint64_t Modulo = 0;
1180     bool AllPositive = true;
1181     for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) {
1182
1183       // Try to distinguish something like &A[i][1] against &A[42][0].
1184       // Grab the least significant bit set in any of the scales. We
1185       // don't need std::abs here (even if the scale's negative) as we'll
1186       // be ^'ing Modulo with itself later.
1187       Modulo |= (uint64_t) GEP1VariableIndices[i].Scale;
1188
1189       if (AllPositive) {
1190         // If the Value could change between cycles, then any reasoning about
1191         // the Value this cycle may not hold in the next cycle. We'll just
1192         // give up if we can't determine conditions that hold for every cycle:
1193         const Value *V = GEP1VariableIndices[i].V;
1194
1195         bool SignKnownZero, SignKnownOne;
1196         ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, *DL,
1197                        0, AC1, nullptr, DT);
1198
1199         // Zero-extension widens the variable, and so forces the sign
1200         // bit to zero.
1201         bool IsZExt = GEP1VariableIndices[i].Extension == EK_ZeroExt;
1202         SignKnownZero |= IsZExt;
1203         SignKnownOne &= !IsZExt;
1204
1205         // If the variable begins with a zero then we know it's
1206         // positive, regardless of whether the value is signed or
1207         // unsigned.
1208         int64_t Scale = GEP1VariableIndices[i].Scale;
1209         AllPositive =
1210           (SignKnownZero && Scale >= 0) ||
1211           (SignKnownOne && Scale < 0);
1212       }
1213     }
1214
1215     Modulo = Modulo ^ (Modulo & (Modulo - 1));
1216
1217     // We can compute the difference between the two addresses
1218     // mod Modulo. Check whether that difference guarantees that the
1219     // two locations do not alias.
1220     uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
1221     if (V1Size != UnknownSize && V2Size != UnknownSize &&
1222         ModOffset >= V2Size && V1Size <= Modulo - ModOffset)
1223       return NoAlias;
1224
1225     // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1226     // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1227     // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1228     if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t) GEP1BaseOffset)
1229       return NoAlias;
1230   }
1231
1232   // Statically, we can see that the base objects are the same, but the
1233   // pointers have dynamic offsets which we can't resolve. And none of our
1234   // little tricks above worked.
1235   //
1236   // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
1237   // practical effect of this is protecting TBAA in the case of dynamic
1238   // indices into arrays of unions or malloc'd memory.
1239   return PartialAlias;
1240 }
1241
1242 static AliasAnalysis::AliasResult
1243 MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) {
1244   // If the results agree, take it.
1245   if (A == B)
1246     return A;
1247   // A mix of PartialAlias and MustAlias is PartialAlias.
1248   if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) ||
1249       (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias))
1250     return AliasAnalysis::PartialAlias;
1251   // Otherwise, we don't know anything.
1252   return AliasAnalysis::MayAlias;
1253 }
1254
1255 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
1256 /// instruction against another.
1257 AliasAnalysis::AliasResult
1258 BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
1259                                 const AAMDNodes &SIAAInfo,
1260                                 const Value *V2, uint64_t V2Size,
1261                                 const AAMDNodes &V2AAInfo) {
1262   // If the values are Selects with the same condition, we can do a more precise
1263   // check: just check for aliases between the values on corresponding arms.
1264   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1265     if (SI->getCondition() == SI2->getCondition()) {
1266       AliasResult Alias =
1267         aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
1268                    SI2->getTrueValue(), V2Size, V2AAInfo);
1269       if (Alias == MayAlias)
1270         return MayAlias;
1271       AliasResult ThisAlias =
1272         aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1273                    SI2->getFalseValue(), V2Size, V2AAInfo);
1274       return MergeAliasResults(ThisAlias, Alias);
1275     }
1276
1277   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1278   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1279   AliasResult Alias =
1280     aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo);
1281   if (Alias == MayAlias)
1282     return MayAlias;
1283
1284   AliasResult ThisAlias =
1285     aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo);
1286   return MergeAliasResults(ThisAlias, Alias);
1287 }
1288
1289 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
1290 // against another.
1291 AliasAnalysis::AliasResult
1292 BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
1293                              const AAMDNodes &PNAAInfo,
1294                              const Value *V2, uint64_t V2Size,
1295                              const AAMDNodes &V2AAInfo) {
1296   // Track phi nodes we have visited. We use this information when we determine
1297   // value equivalence.
1298   VisitedPhiBBs.insert(PN->getParent());
1299
1300   // If the values are PHIs in the same block, we can do a more precise
1301   // as well as efficient check: just check for aliases between the values
1302   // on corresponding edges.
1303   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1304     if (PN2->getParent() == PN->getParent()) {
1305       LocPair Locs(Location(PN, PNSize, PNAAInfo),
1306                    Location(V2, V2Size, V2AAInfo));
1307       if (PN > V2)
1308         std::swap(Locs.first, Locs.second);
1309       // Analyse the PHIs' inputs under the assumption that the PHIs are
1310       // NoAlias.
1311       // If the PHIs are May/MustAlias there must be (recursively) an input
1312       // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1313       // there must be an operation on the PHIs within the PHIs' value cycle
1314       // that causes a MayAlias.
1315       // Pretend the phis do not alias.
1316       AliasResult Alias = NoAlias;
1317       assert(AliasCache.count(Locs) &&
1318              "There must exist an entry for the phi node");
1319       AliasResult OrigAliasResult = AliasCache[Locs];
1320       AliasCache[Locs] = NoAlias;
1321
1322       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1323         AliasResult ThisAlias =
1324           aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1325                      PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1326                      V2Size, V2AAInfo);
1327         Alias = MergeAliasResults(ThisAlias, Alias);
1328         if (Alias == MayAlias)
1329           break;
1330       }
1331
1332       // Reset if speculation failed.
1333       if (Alias != NoAlias)
1334         AliasCache[Locs] = OrigAliasResult;
1335
1336       return Alias;
1337     }
1338
1339   SmallPtrSet<Value*, 4> UniqueSrc;
1340   SmallVector<Value*, 4> V1Srcs;
1341   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1342     Value *PV1 = PN->getIncomingValue(i);
1343     if (isa<PHINode>(PV1))
1344       // If any of the source itself is a PHI, return MayAlias conservatively
1345       // to avoid compile time explosion. The worst possible case is if both
1346       // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1347       // and 'n' are the number of PHI sources.
1348       return MayAlias;
1349     if (UniqueSrc.insert(PV1).second)
1350       V1Srcs.push_back(PV1);
1351   }
1352
1353   AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo,
1354                                  V1Srcs[0], PNSize, PNAAInfo);
1355   // Early exit if the check of the first PHI source against V2 is MayAlias.
1356   // Other results are not possible.
1357   if (Alias == MayAlias)
1358     return MayAlias;
1359
1360   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1361   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1362   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1363     Value *V = V1Srcs[i];
1364
1365     AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo,
1366                                        V, PNSize, PNAAInfo);
1367     Alias = MergeAliasResults(ThisAlias, Alias);
1368     if (Alias == MayAlias)
1369       break;
1370   }
1371
1372   return Alias;
1373 }
1374
1375 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
1376 // such as array references.
1377 //
1378 AliasAnalysis::AliasResult
1379 BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
1380                                AAMDNodes V1AAInfo,
1381                                const Value *V2, uint64_t V2Size,
1382                                AAMDNodes V2AAInfo) {
1383   // If either of the memory references is empty, it doesn't matter what the
1384   // pointer values are.
1385   if (V1Size == 0 || V2Size == 0)
1386     return NoAlias;
1387
1388   // Strip off any casts if they exist.
1389   V1 = V1->stripPointerCasts();
1390   V2 = V2->stripPointerCasts();
1391
1392   // Are we checking for alias of the same value?
1393   // Because we look 'through' phi nodes we could look at "Value" pointers from
1394   // different iterations. We must therefore make sure that this is not the
1395   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1396   // happen by looking at the visited phi nodes and making sure they cannot
1397   // reach the value.
1398   if (isValueEqualInPotentialCycles(V1, V2))
1399     return MustAlias;
1400
1401   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1402     return NoAlias;  // Scalars cannot alias each other
1403
1404   // Figure out what objects these things are pointing to if we can.
1405   const Value *O1 = GetUnderlyingObject(V1, *DL, MaxLookupSearchDepth);
1406   const Value *O2 = GetUnderlyingObject(V2, *DL, MaxLookupSearchDepth);
1407
1408   // Null values in the default address space don't point to any object, so they
1409   // don't alias any other pointer.
1410   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1411     if (CPN->getType()->getAddressSpace() == 0)
1412       return NoAlias;
1413   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1414     if (CPN->getType()->getAddressSpace() == 0)
1415       return NoAlias;
1416
1417   if (O1 != O2) {
1418     // If V1/V2 point to two different objects we know that we have no alias.
1419     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1420       return NoAlias;
1421
1422     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1423     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1424         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1425       return NoAlias;
1426
1427     // Function arguments can't alias with things that are known to be
1428     // unambigously identified at the function level.
1429     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1430         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1431       return NoAlias;
1432
1433     // Most objects can't alias null.
1434     if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
1435         (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
1436       return NoAlias;
1437
1438     // If one pointer is the result of a call/invoke or load and the other is a
1439     // non-escaping local object within the same function, then we know the
1440     // object couldn't escape to a point where the call could return it.
1441     //
1442     // Note that if the pointers are in different functions, there are a
1443     // variety of complications. A call with a nocapture argument may still
1444     // temporary store the nocapture argument's value in a temporary memory
1445     // location if that memory location doesn't escape. Or it may pass a
1446     // nocapture value to other functions as long as they don't capture it.
1447     if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1448       return NoAlias;
1449     if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1450       return NoAlias;
1451   }
1452
1453   // If the size of one access is larger than the entire object on the other
1454   // side, then we know such behavior is undefined and can assume no alias.
1455   if (DL)
1456     if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *DL, *TLI)) ||
1457         (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *DL, *TLI)))
1458       return NoAlias;
1459
1460   // Check the cache before climbing up use-def chains. This also terminates
1461   // otherwise infinitely recursive queries.
1462   LocPair Locs(Location(V1, V1Size, V1AAInfo),
1463                Location(V2, V2Size, V2AAInfo));
1464   if (V1 > V2)
1465     std::swap(Locs.first, Locs.second);
1466   std::pair<AliasCacheTy::iterator, bool> Pair =
1467     AliasCache.insert(std::make_pair(Locs, MayAlias));
1468   if (!Pair.second)
1469     return Pair.first->second;
1470
1471   // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1472   // GEP can't simplify, we don't even look at the PHI cases.
1473   if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1474     std::swap(V1, V2);
1475     std::swap(V1Size, V2Size);
1476     std::swap(O1, O2);
1477     std::swap(V1AAInfo, V2AAInfo);
1478   }
1479   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1480     AliasResult Result = aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
1481     if (Result != MayAlias) return AliasCache[Locs] = Result;
1482   }
1483
1484   if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1485     std::swap(V1, V2);
1486     std::swap(V1Size, V2Size);
1487     std::swap(V1AAInfo, V2AAInfo);
1488   }
1489   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1490     AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo,
1491                                   V2, V2Size, V2AAInfo);
1492     if (Result != MayAlias) return AliasCache[Locs] = Result;
1493   }
1494
1495   if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1496     std::swap(V1, V2);
1497     std::swap(V1Size, V2Size);
1498     std::swap(V1AAInfo, V2AAInfo);
1499   }
1500   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1501     AliasResult Result = aliasSelect(S1, V1Size, V1AAInfo,
1502                                      V2, V2Size, V2AAInfo);
1503     if (Result != MayAlias) return AliasCache[Locs] = Result;
1504   }
1505
1506   // If both pointers are pointing into the same object and one of them
1507   // accesses is accessing the entire object, then the accesses must
1508   // overlap in some way.
1509   if (DL && O1 == O2)
1510     if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *DL, *TLI)) ||
1511         (V2Size != UnknownSize && isObjectSize(O2, V2Size, *DL, *TLI)))
1512       return AliasCache[Locs] = PartialAlias;
1513
1514   AliasResult Result =
1515     AliasAnalysis::alias(Location(V1, V1Size, V1AAInfo),
1516                          Location(V2, V2Size, V2AAInfo));
1517   return AliasCache[Locs] = Result;
1518 }
1519
1520 bool BasicAliasAnalysis::isValueEqualInPotentialCycles(const Value *V,
1521                                                        const Value *V2) {
1522   if (V != V2)
1523     return false;
1524
1525   const Instruction *Inst = dyn_cast<Instruction>(V);
1526   if (!Inst)
1527     return true;
1528
1529   if (VisitedPhiBBs.empty())
1530     return true;
1531
1532   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1533     return false;
1534
1535   // Use dominance or loop info if available.
1536   DominatorTreeWrapperPass *DTWP =
1537       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1538   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
1539   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
1540   LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
1541
1542   // Make sure that the visited phis cannot reach the Value. This ensures that
1543   // the Values cannot come from different iterations of a potential cycle the
1544   // phi nodes could be involved in.
1545   for (auto *P : VisitedPhiBBs)
1546     if (isPotentiallyReachable(P->begin(), Inst, DT, LI))
1547       return false;
1548
1549   return true;
1550 }
1551
1552 /// GetIndexDifference - Dest and Src are the variable indices from two
1553 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
1554 /// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
1555 /// difference between the two pointers.
1556 void BasicAliasAnalysis::GetIndexDifference(
1557     SmallVectorImpl<VariableGEPIndex> &Dest,
1558     const SmallVectorImpl<VariableGEPIndex> &Src) {
1559   if (Src.empty())
1560     return;
1561
1562   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1563     const Value *V = Src[i].V;
1564     ExtensionKind Extension = Src[i].Extension;
1565     int64_t Scale = Src[i].Scale;
1566
1567     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1568     // than a few variable indexes.
1569     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1570       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1571           Dest[j].Extension != Extension)
1572         continue;
1573
1574       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1575       // goes to zero, remove the entry.
1576       if (Dest[j].Scale != Scale)
1577         Dest[j].Scale -= Scale;
1578       else
1579         Dest.erase(Dest.begin() + j);
1580       Scale = 0;
1581       break;
1582     }
1583
1584     // If we didn't consume this entry, add it to the end of the Dest list.
1585     if (Scale) {
1586       VariableGEPIndex Entry = { V, Extension, -Scale };
1587       Dest.push_back(Entry);
1588     }
1589   }
1590 }