[AArch64] Emit clrex in the expanded cmpxchg fail block.
[oota-llvm.git] / include / llvm / Target / TargetLowering.h
1 //===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This file describes how to lower LLVM code to machine code.  This has two
12 /// main components:
13 ///
14 ///  1. Which ValueTypes are natively supported by the target.
15 ///  2. Which operations are supported for supported ValueTypes.
16 ///  3. Cost thresholds for alternative implementations of certain operations.
17 ///
18 /// In addition it has a few other components, like information about FP
19 /// immediates.
20 ///
21 //===----------------------------------------------------------------------===//
22
23 #ifndef LLVM_TARGET_TARGETLOWERING_H
24 #define LLVM_TARGET_TARGETLOWERING_H
25
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/CodeGen/DAGCombine.h"
28 #include "llvm/CodeGen/RuntimeLibcalls.h"
29 #include "llvm/CodeGen/SelectionDAGNodes.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/MC/MCRegisterInfo.h"
37 #include "llvm/Target/TargetCallingConv.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include <climits>
40 #include <map>
41 #include <vector>
42
43 namespace llvm {
44   class CallInst;
45   class CCState;
46   class FastISel;
47   class FunctionLoweringInfo;
48   class ImmutableCallSite;
49   class IntrinsicInst;
50   class MachineBasicBlock;
51   class MachineFunction;
52   class MachineInstr;
53   class MachineJumpTableInfo;
54   class MachineLoop;
55   class Mangler;
56   class MCContext;
57   class MCExpr;
58   class MCSymbol;
59   template<typename T> class SmallVectorImpl;
60   class DataLayout;
61   class TargetRegisterClass;
62   class TargetLibraryInfo;
63   class TargetLoweringObjectFile;
64   class Value;
65
66   namespace Sched {
67     enum Preference {
68       None,             // No preference
69       Source,           // Follow source order.
70       RegPressure,      // Scheduling for lowest register pressure.
71       Hybrid,           // Scheduling for both latency and register pressure.
72       ILP,              // Scheduling for ILP in low register pressure mode.
73       VLIW              // Scheduling for VLIW targets.
74     };
75   }
76
77 /// This base class for TargetLowering contains the SelectionDAG-independent
78 /// parts that can be used from the rest of CodeGen.
79 class TargetLoweringBase {
80   TargetLoweringBase(const TargetLoweringBase&) = delete;
81   void operator=(const TargetLoweringBase&) = delete;
82
83 public:
84   /// This enum indicates whether operations are valid for a target, and if not,
85   /// what action should be used to make them valid.
86   enum LegalizeAction {
87     Legal,      // The target natively supports this operation.
88     Promote,    // This operation should be executed in a larger type.
89     Expand,     // Try to expand this to other ops, otherwise use a libcall.
90     Custom      // Use the LowerOperation hook to implement custom lowering.
91   };
92
93   /// This enum indicates whether a types are legal for a target, and if not,
94   /// what action should be used to make them valid.
95   enum LegalizeTypeAction {
96     TypeLegal,           // The target natively supports this type.
97     TypePromoteInteger,  // Replace this integer with a larger one.
98     TypeExpandInteger,   // Split this integer into two of half the size.
99     TypeSoftenFloat,     // Convert this float to a same size integer type.
100     TypeExpandFloat,     // Split this float into two of half the size.
101     TypeScalarizeVector, // Replace this one-element vector with its element.
102     TypeSplitVector,     // Split this vector into two of half the size.
103     TypeWidenVector,     // This vector should be widened into a larger vector.
104     TypePromoteFloat     // Replace this float with a larger one.
105   };
106
107   /// LegalizeKind holds the legalization kind that needs to happen to EVT
108   /// in order to type-legalize it.
109   typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
110
111   /// Enum that describes how the target represents true/false values.
112   enum BooleanContent {
113     UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
114     ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
115     ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
116   };
117
118   /// Enum that describes what type of support for selects the target has.
119   enum SelectSupportKind {
120     ScalarValSelect,      // The target supports scalar selects (ex: cmov).
121     ScalarCondVectorVal,  // The target supports selects with a scalar condition
122                           // and vector values (ex: cmov).
123     VectorMaskSelect      // The target supports vector selects with a vector
124                           // mask (ex: x86 blends).
125   };
126
127   /// Enum that specifies what an atomic load/AtomicRMWInst is expanded
128   /// to, if at all. Exists because different targets have different levels of
129   /// support for these atomic instructions, and also have different options
130   /// w.r.t. what they should expand to.
131   enum class AtomicExpansionKind {
132     None,      // Don't expand the instruction.
133     LLSC,      // Expand the instruction into loadlinked/storeconditional; used
134                // by ARM/AArch64.
135     CmpXChg,   // Expand the instruction into cmpxchg; used by at least X86.
136   };
137
138   static ISD::NodeType getExtendForContent(BooleanContent Content) {
139     switch (Content) {
140     case UndefinedBooleanContent:
141       // Extend by adding rubbish bits.
142       return ISD::ANY_EXTEND;
143     case ZeroOrOneBooleanContent:
144       // Extend by adding zero bits.
145       return ISD::ZERO_EXTEND;
146     case ZeroOrNegativeOneBooleanContent:
147       // Extend by copying the sign bit.
148       return ISD::SIGN_EXTEND;
149     }
150     llvm_unreachable("Invalid content kind");
151   }
152
153   /// NOTE: The TargetMachine owns TLOF.
154   explicit TargetLoweringBase(const TargetMachine &TM);
155   virtual ~TargetLoweringBase() {}
156
157 protected:
158   /// \brief Initialize all of the actions to default values.
159   void initActions();
160
161 public:
162   const TargetMachine &getTargetMachine() const { return TM; }
163
164   virtual bool useSoftFloat() const { return false; }
165
166   /// Return the pointer type for the given address space, defaults to
167   /// the pointer type from the data layout.
168   /// FIXME: The default needs to be removed once all the code is updated.
169   MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const {
170     return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
171   }
172
173   /// EVT is not used in-tree, but is used by out-of-tree target.
174   /// A documentation for this function would be nice...
175   virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const;
176
177   EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const;
178
179   /// Returns the type to be used for the index operand of:
180   /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
181   /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
182   virtual MVT getVectorIdxTy(const DataLayout &DL) const {
183     return getPointerTy(DL);
184   }
185
186   /// Return true if the select operation is expensive for this target.
187   bool isSelectExpensive() const { return SelectIsExpensive; }
188
189   virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
190     return true;
191   }
192
193   /// Return true if multiple condition registers are available.
194   bool hasMultipleConditionRegisters() const {
195     return HasMultipleConditionRegisters;
196   }
197
198   /// Return true if the target has BitExtract instructions.
199   bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
200
201   /// Return the preferred vector type legalization action.
202   virtual TargetLoweringBase::LegalizeTypeAction
203   getPreferredVectorAction(EVT VT) const {
204     // The default action for one element vectors is to scalarize
205     if (VT.getVectorNumElements() == 1)
206       return TypeScalarizeVector;
207     // The default action for other vectors is to promote
208     return TypePromoteInteger;
209   }
210
211   // There are two general methods for expanding a BUILD_VECTOR node:
212   //  1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
213   //     them together.
214   //  2. Build the vector on the stack and then load it.
215   // If this function returns true, then method (1) will be used, subject to
216   // the constraint that all of the necessary shuffles are legal (as determined
217   // by isShuffleMaskLegal). If this function returns false, then method (2) is
218   // always used. The vector type, and the number of defined values, are
219   // provided.
220   virtual bool
221   shouldExpandBuildVectorWithShuffles(EVT /* VT */,
222                                       unsigned DefinedValues) const {
223     return DefinedValues < 3;
224   }
225
226   /// Return true if integer divide is usually cheaper than a sequence of
227   /// several shifts, adds, and multiplies for this target.
228   /// The definition of "cheaper" may depend on whether we're optimizing
229   /// for speed or for size.
230   virtual bool isIntDivCheap(EVT VT, AttributeSet Attr) const {
231     return false;
232   }
233
234   /// Return true if sqrt(x) is as cheap or cheaper than 1 / rsqrt(x)
235   bool isFsqrtCheap() const {
236     return FsqrtIsCheap;
237   }
238
239   /// Returns true if target has indicated at least one type should be bypassed.
240   bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
241
242   /// Returns map of slow types for division or remainder with corresponding
243   /// fast types
244   const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
245     return BypassSlowDivWidths;
246   }
247
248   /// Return true if Flow Control is an expensive operation that should be
249   /// avoided.
250   bool isJumpExpensive() const { return JumpIsExpensive; }
251
252   /// Return true if selects are only cheaper than branches if the branch is
253   /// unlikely to be predicted right.
254   bool isPredictableSelectExpensive() const {
255     return PredictableSelectIsExpensive;
256   }
257
258   /// isLoadBitCastBeneficial() - Return true if the following transform
259   /// is beneficial.
260   /// fold (conv (load x)) -> (load (conv*)x)
261   /// On architectures that don't natively support some vector loads
262   /// efficiently, casting the load to a smaller vector of larger types and
263   /// loading is more efficient, however, this can be undone by optimizations in
264   /// dag combiner.
265   virtual bool isLoadBitCastBeneficial(EVT /* Load */,
266                                        EVT /* Bitcast */) const {
267     return true;
268   }
269
270   /// Return true if it is expected to be cheaper to do a store of a non-zero
271   /// vector constant with the given size and type for the address space than to
272   /// store the individual scalar element constants.
273   virtual bool storeOfVectorConstantIsCheap(EVT MemVT,
274                                             unsigned NumElem,
275                                             unsigned AddrSpace) const {
276     return false;
277   }
278
279   /// \brief Return true if it is cheap to speculate a call to intrinsic cttz.
280   virtual bool isCheapToSpeculateCttz() const {
281     return false;
282   }
283
284   /// \brief Return true if it is cheap to speculate a call to intrinsic ctlz.
285   virtual bool isCheapToSpeculateCtlz() const {
286     return false;
287   }
288
289   /// \brief Return if the target supports combining a
290   /// chain like:
291   /// \code
292   ///   %andResult = and %val1, #imm-with-one-bit-set;
293   ///   %icmpResult = icmp %andResult, 0
294   ///   br i1 %icmpResult, label %dest1, label %dest2
295   /// \endcode
296   /// into a single machine instruction of a form like:
297   /// \code
298   ///   brOnBitSet %register, #bitNumber, dest
299   /// \endcode
300   bool isMaskAndBranchFoldingLegal() const {
301     return MaskAndBranchFoldingIsLegal;
302   }
303
304   /// \brief Return true if the target wants to use the optimization that
305   /// turns ext(promotableInst1(...(promotableInstN(load)))) into
306   /// promotedInst1(...(promotedInstN(ext(load)))).
307   bool enableExtLdPromotion() const { return EnableExtLdPromotion; }
308
309   /// Return true if the target can combine store(extractelement VectorTy,
310   /// Idx).
311   /// \p Cost[out] gives the cost of that transformation when this is true.
312   virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
313                                          unsigned &Cost) const {
314     return false;
315   }
316
317   /// Return true if target supports floating point exceptions.
318   bool hasFloatingPointExceptions() const {
319     return HasFloatingPointExceptions;
320   }
321
322   /// Return true if target always beneficiates from combining into FMA for a
323   /// given value type. This must typically return false on targets where FMA
324   /// takes more cycles to execute than FADD.
325   virtual bool enableAggressiveFMAFusion(EVT VT) const {
326     return false;
327   }
328
329   /// Return the ValueType of the result of SETCC operations.
330   virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
331                                  EVT VT) const;
332
333   /// Return the ValueType for comparison libcalls. Comparions libcalls include
334   /// floating point comparion calls, and Ordered/Unordered check calls on
335   /// floating point numbers.
336   virtual
337   MVT::SimpleValueType getCmpLibcallReturnType() const;
338
339   /// For targets without i1 registers, this gives the nature of the high-bits
340   /// of boolean values held in types wider than i1.
341   ///
342   /// "Boolean values" are special true/false values produced by nodes like
343   /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
344   /// Not to be confused with general values promoted from i1.  Some cpus
345   /// distinguish between vectors of boolean and scalars; the isVec parameter
346   /// selects between the two kinds.  For example on X86 a scalar boolean should
347   /// be zero extended from i1, while the elements of a vector of booleans
348   /// should be sign extended from i1.
349   ///
350   /// Some cpus also treat floating point types the same way as they treat
351   /// vectors instead of the way they treat scalars.
352   BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
353     if (isVec)
354       return BooleanVectorContents;
355     return isFloat ? BooleanFloatContents : BooleanContents;
356   }
357
358   BooleanContent getBooleanContents(EVT Type) const {
359     return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
360   }
361
362   /// Return target scheduling preference.
363   Sched::Preference getSchedulingPreference() const {
364     return SchedPreferenceInfo;
365   }
366
367   /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
368   /// for different nodes. This function returns the preference (or none) for
369   /// the given node.
370   virtual Sched::Preference getSchedulingPreference(SDNode *) const {
371     return Sched::None;
372   }
373
374   /// Return the register class that should be used for the specified value
375   /// type.
376   virtual const TargetRegisterClass *getRegClassFor(MVT VT) const {
377     const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
378     assert(RC && "This value type is not natively supported!");
379     return RC;
380   }
381
382   /// Return the 'representative' register class for the specified value
383   /// type.
384   ///
385   /// The 'representative' register class is the largest legal super-reg
386   /// register class for the register class of the value type.  For example, on
387   /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
388   /// register class is GR64 on x86_64.
389   virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
390     const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
391     return RC;
392   }
393
394   /// Return the cost of the 'representative' register class for the specified
395   /// value type.
396   virtual uint8_t getRepRegClassCostFor(MVT VT) const {
397     return RepRegClassCostForVT[VT.SimpleTy];
398   }
399
400   /// Return true if the target has native support for the specified value type.
401   /// This means that it has a register that directly holds it without
402   /// promotions or expansions.
403   bool isTypeLegal(EVT VT) const {
404     assert(!VT.isSimple() ||
405            (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
406     return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
407   }
408
409   class ValueTypeActionImpl {
410     /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
411     /// that indicates how instruction selection should deal with the type.
412     uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
413
414   public:
415     ValueTypeActionImpl() {
416       std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions), 0);
417     }
418
419     LegalizeTypeAction getTypeAction(MVT VT) const {
420       return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
421     }
422
423     void setTypeAction(MVT VT, LegalizeTypeAction Action) {
424       unsigned I = VT.SimpleTy;
425       ValueTypeActions[I] = Action;
426     }
427   };
428
429   const ValueTypeActionImpl &getValueTypeActions() const {
430     return ValueTypeActions;
431   }
432
433   /// Return how we should legalize values of this type, either it is already
434   /// legal (return 'Legal') or we need to promote it to a larger type (return
435   /// 'Promote'), or we need to expand it into multiple registers of smaller
436   /// integer type (return 'Expand').  'Custom' is not an option.
437   LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
438     return getTypeConversion(Context, VT).first;
439   }
440   LegalizeTypeAction getTypeAction(MVT VT) const {
441     return ValueTypeActions.getTypeAction(VT);
442   }
443
444   /// For types supported by the target, this is an identity function.  For
445   /// types that must be promoted to larger types, this returns the larger type
446   /// to promote to.  For integer types that are larger than the largest integer
447   /// register, this contains one step in the expansion to get to the smaller
448   /// register. For illegal floating point types, this returns the integer type
449   /// to transform to.
450   EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
451     return getTypeConversion(Context, VT).second;
452   }
453
454   /// For types supported by the target, this is an identity function.  For
455   /// types that must be expanded (i.e. integer types that are larger than the
456   /// largest integer register or illegal floating point types), this returns
457   /// the largest legal type it will be expanded to.
458   EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
459     assert(!VT.isVector());
460     while (true) {
461       switch (getTypeAction(Context, VT)) {
462       case TypeLegal:
463         return VT;
464       case TypeExpandInteger:
465         VT = getTypeToTransformTo(Context, VT);
466         break;
467       default:
468         llvm_unreachable("Type is not legal nor is it to be expanded!");
469       }
470     }
471   }
472
473   /// Vector types are broken down into some number of legal first class types.
474   /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
475   /// promoted EVT::f64 values with the X86 FP stack.  Similarly, EVT::v2i64
476   /// turns into 4 EVT::i32 values with both PPC and X86.
477   ///
478   /// This method returns the number of registers needed, and the VT for each
479   /// register.  It also returns the VT and quantity of the intermediate values
480   /// before they are promoted/expanded.
481   unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
482                                   EVT &IntermediateVT,
483                                   unsigned &NumIntermediates,
484                                   MVT &RegisterVT) const;
485
486   struct IntrinsicInfo {
487     unsigned     opc;         // target opcode
488     EVT          memVT;       // memory VT
489     const Value* ptrVal;      // value representing memory location
490     int          offset;      // offset off of ptrVal
491     unsigned     size;        // the size of the memory location
492                               // (taken from memVT if zero)
493     unsigned     align;       // alignment
494     bool         vol;         // is volatile?
495     bool         readMem;     // reads memory?
496     bool         writeMem;    // writes memory?
497
498     IntrinsicInfo() : opc(0), ptrVal(nullptr), offset(0), size(0), align(1),
499                       vol(false), readMem(false), writeMem(false) {}
500   };
501
502   /// Given an intrinsic, checks if on the target the intrinsic will need to map
503   /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
504   /// true and store the intrinsic information into the IntrinsicInfo that was
505   /// passed to the function.
506   virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
507                                   unsigned /*Intrinsic*/) const {
508     return false;
509   }
510
511   /// Returns true if the target can instruction select the specified FP
512   /// immediate natively. If false, the legalizer will materialize the FP
513   /// immediate as a load from a constant pool.
514   virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
515     return false;
516   }
517
518   /// Targets can use this to indicate that they only support *some*
519   /// VECTOR_SHUFFLE operations, those with specific masks.  By default, if a
520   /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
521   /// legal.
522   virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
523                                   EVT /*VT*/) const {
524     return true;
525   }
526
527   /// Returns true if the operation can trap for the value type.
528   ///
529   /// VT must be a legal type. By default, we optimistically assume most
530   /// operations don't trap except for divide and remainder.
531   virtual bool canOpTrap(unsigned Op, EVT VT) const;
532
533   /// Similar to isShuffleMaskLegal. This is used by Targets can use this to
534   /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to replace
535   /// a VAND with a constant pool entry.
536   virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
537                                       EVT /*VT*/) const {
538     return false;
539   }
540
541   /// Return how this operation should be treated: either it is legal, needs to
542   /// be promoted to a larger size, needs to be expanded to some other code
543   /// sequence, or the target has a custom expander for it.
544   LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
545     if (VT.isExtended()) return Expand;
546     // If a target-specific SDNode requires legalization, require the target
547     // to provide custom legalization for it.
548     if (Op > array_lengthof(OpActions[0])) return Custom;
549     unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
550     return (LegalizeAction)OpActions[I][Op];
551   }
552
553   /// Return true if the specified operation is legal on this target or can be
554   /// made legal with custom lowering. This is used to help guide high-level
555   /// lowering decisions.
556   bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
557     return (VT == MVT::Other || isTypeLegal(VT)) &&
558       (getOperationAction(Op, VT) == Legal ||
559        getOperationAction(Op, VT) == Custom);
560   }
561
562   /// Return true if the specified operation is legal on this target or can be
563   /// made legal using promotion. This is used to help guide high-level lowering
564   /// decisions.
565   bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
566     return (VT == MVT::Other || isTypeLegal(VT)) &&
567       (getOperationAction(Op, VT) == Legal ||
568        getOperationAction(Op, VT) == Promote);
569   }
570
571   /// Return true if the specified operation is illegal on this target or
572   /// unlikely to be made legal with custom lowering. This is used to help guide
573   /// high-level lowering decisions.
574   bool isOperationExpand(unsigned Op, EVT VT) const {
575     return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
576   }
577
578   /// Return true if the specified operation is legal on this target.
579   bool isOperationLegal(unsigned Op, EVT VT) const {
580     return (VT == MVT::Other || isTypeLegal(VT)) &&
581            getOperationAction(Op, VT) == Legal;
582   }
583
584   /// Return how this load with extension should be treated: either it is legal,
585   /// needs to be promoted to a larger size, needs to be expanded to some other
586   /// code sequence, or the target has a custom expander for it.
587   LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT,
588                                   EVT MemVT) const {
589     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
590     unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
591     unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
592     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::LAST_VALUETYPE &&
593            MemI < MVT::LAST_VALUETYPE && "Table isn't big enough!");
594     return (LegalizeAction)LoadExtActions[ValI][MemI][ExtType];
595   }
596
597   /// Return true if the specified load with extension is legal on this target.
598   bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
599     return ValVT.isSimple() && MemVT.isSimple() &&
600       getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
601   }
602
603   /// Return true if the specified load with extension is legal or custom
604   /// on this target.
605   bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
606     return ValVT.isSimple() && MemVT.isSimple() &&
607       (getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
608        getLoadExtAction(ExtType, ValVT, MemVT) == Custom);
609   }
610
611   /// Return how this store with truncation should be treated: either it is
612   /// legal, needs to be promoted to a larger size, needs to be expanded to some
613   /// other code sequence, or the target has a custom expander for it.
614   LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
615     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
616     unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
617     unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
618     assert(ValI < MVT::LAST_VALUETYPE && MemI < MVT::LAST_VALUETYPE &&
619            "Table isn't big enough!");
620     return (LegalizeAction)TruncStoreActions[ValI][MemI];
621   }
622
623   /// Return true if the specified store with truncation is legal on this
624   /// target.
625   bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
626     return isTypeLegal(ValVT) && MemVT.isSimple() &&
627       getTruncStoreAction(ValVT.getSimpleVT(), MemVT.getSimpleVT()) == Legal;
628   }
629
630   /// Return how the indexed load should be treated: either it is legal, needs
631   /// to be promoted to a larger size, needs to be expanded to some other code
632   /// sequence, or the target has a custom expander for it.
633   LegalizeAction
634   getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
635     assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
636            "Table isn't big enough!");
637     unsigned Ty = (unsigned)VT.SimpleTy;
638     return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
639   }
640
641   /// Return true if the specified indexed load is legal on this target.
642   bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
643     return VT.isSimple() &&
644       (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
645        getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
646   }
647
648   /// Return how the indexed store should be treated: either it is legal, needs
649   /// to be promoted to a larger size, needs to be expanded to some other code
650   /// sequence, or the target has a custom expander for it.
651   LegalizeAction
652   getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
653     assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
654            "Table isn't big enough!");
655     unsigned Ty = (unsigned)VT.SimpleTy;
656     return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
657   }
658
659   /// Return true if the specified indexed load is legal on this target.
660   bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
661     return VT.isSimple() &&
662       (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
663        getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
664   }
665
666   /// Return how the condition code should be treated: either it is legal, needs
667   /// to be expanded to some other code sequence, or the target has a custom
668   /// expander for it.
669   LegalizeAction
670   getCondCodeAction(ISD::CondCode CC, MVT VT) const {
671     assert((unsigned)CC < array_lengthof(CondCodeActions) &&
672            ((unsigned)VT.SimpleTy >> 4) < array_lengthof(CondCodeActions[0]) &&
673            "Table isn't big enough!");
674     // See setCondCodeAction for how this is encoded.
675     uint32_t Shift = 2 * (VT.SimpleTy & 0xF);
676     uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 4];
677     LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0x3);
678     assert(Action != Promote && "Can't promote condition code!");
679     return Action;
680   }
681
682   /// Return true if the specified condition code is legal on this target.
683   bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
684     return
685       getCondCodeAction(CC, VT) == Legal ||
686       getCondCodeAction(CC, VT) == Custom;
687   }
688
689
690   /// If the action for this operation is to promote, this method returns the
691   /// ValueType to promote to.
692   MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
693     assert(getOperationAction(Op, VT) == Promote &&
694            "This operation isn't promoted!");
695
696     // See if this has an explicit type specified.
697     std::map<std::pair<unsigned, MVT::SimpleValueType>,
698              MVT::SimpleValueType>::const_iterator PTTI =
699       PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
700     if (PTTI != PromoteToType.end()) return PTTI->second;
701
702     assert((VT.isInteger() || VT.isFloatingPoint()) &&
703            "Cannot autopromote this type, add it with AddPromotedToType.");
704
705     MVT NVT = VT;
706     do {
707       NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
708       assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
709              "Didn't find type to promote to!");
710     } while (!isTypeLegal(NVT) ||
711               getOperationAction(Op, NVT) == Promote);
712     return NVT;
713   }
714
715   /// Return the EVT corresponding to this LLVM type.  This is fixed by the LLVM
716   /// operations except for the pointer size.  If AllowUnknown is true, this
717   /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
718   /// otherwise it will assert.
719   EVT getValueType(const DataLayout &DL, Type *Ty,
720                    bool AllowUnknown = false) const {
721     // Lower scalar pointers to native pointer types.
722     if (PointerType *PTy = dyn_cast<PointerType>(Ty))
723       return getPointerTy(DL, PTy->getAddressSpace());
724
725     if (Ty->isVectorTy()) {
726       VectorType *VTy = cast<VectorType>(Ty);
727       Type *Elm = VTy->getElementType();
728       // Lower vectors of pointers to native pointer types.
729       if (PointerType *PT = dyn_cast<PointerType>(Elm)) {
730         EVT PointerTy(getPointerTy(DL, PT->getAddressSpace()));
731         Elm = PointerTy.getTypeForEVT(Ty->getContext());
732       }
733
734       return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
735                        VTy->getNumElements());
736     }
737     return EVT::getEVT(Ty, AllowUnknown);
738   }
739
740   /// Return the MVT corresponding to this LLVM type. See getValueType.
741   MVT getSimpleValueType(const DataLayout &DL, Type *Ty,
742                          bool AllowUnknown = false) const {
743     return getValueType(DL, Ty, AllowUnknown).getSimpleVT();
744   }
745
746   /// Return the desired alignment for ByVal or InAlloca aggregate function
747   /// arguments in the caller parameter area.  This is the actual alignment, not
748   /// its logarithm.
749   virtual unsigned getByValTypeAlignment(Type *Ty, const DataLayout &DL) const;
750
751   /// Return the type of registers that this ValueType will eventually require.
752   MVT getRegisterType(MVT VT) const {
753     assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
754     return RegisterTypeForVT[VT.SimpleTy];
755   }
756
757   /// Return the type of registers that this ValueType will eventually require.
758   MVT getRegisterType(LLVMContext &Context, EVT VT) const {
759     if (VT.isSimple()) {
760       assert((unsigned)VT.getSimpleVT().SimpleTy <
761                 array_lengthof(RegisterTypeForVT));
762       return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
763     }
764     if (VT.isVector()) {
765       EVT VT1;
766       MVT RegisterVT;
767       unsigned NumIntermediates;
768       (void)getVectorTypeBreakdown(Context, VT, VT1,
769                                    NumIntermediates, RegisterVT);
770       return RegisterVT;
771     }
772     if (VT.isInteger()) {
773       return getRegisterType(Context, getTypeToTransformTo(Context, VT));
774     }
775     llvm_unreachable("Unsupported extended type!");
776   }
777
778   /// Return the number of registers that this ValueType will eventually
779   /// require.
780   ///
781   /// This is one for any types promoted to live in larger registers, but may be
782   /// more than one for types (like i64) that are split into pieces.  For types
783   /// like i140, which are first promoted then expanded, it is the number of
784   /// registers needed to hold all the bits of the original type.  For an i140
785   /// on a 32 bit machine this means 5 registers.
786   unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
787     if (VT.isSimple()) {
788       assert((unsigned)VT.getSimpleVT().SimpleTy <
789                 array_lengthof(NumRegistersForVT));
790       return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
791     }
792     if (VT.isVector()) {
793       EVT VT1;
794       MVT VT2;
795       unsigned NumIntermediates;
796       return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
797     }
798     if (VT.isInteger()) {
799       unsigned BitWidth = VT.getSizeInBits();
800       unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
801       return (BitWidth + RegWidth - 1) / RegWidth;
802     }
803     llvm_unreachable("Unsupported extended type!");
804   }
805
806   /// If true, then instruction selection should seek to shrink the FP constant
807   /// of the specified type to a smaller type in order to save space and / or
808   /// reduce runtime.
809   virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
810
811   // Return true if it is profitable to reduce the given load node to a smaller
812   // type.
813   //
814   // e.g. (i16 (trunc (i32 (load x))) -> i16 load x should be performed
815   virtual bool shouldReduceLoadWidth(SDNode *Load,
816                                      ISD::LoadExtType ExtTy,
817                                      EVT NewVT) const {
818     return true;
819   }
820
821   /// When splitting a value of the specified type into parts, does the Lo
822   /// or Hi part come first?  This usually follows the endianness, except
823   /// for ppcf128, where the Hi part always comes first.
824   bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const {
825     return DL.isBigEndian() || VT == MVT::ppcf128;
826   }
827
828   /// If true, the target has custom DAG combine transformations that it can
829   /// perform for the specified node.
830   bool hasTargetDAGCombine(ISD::NodeType NT) const {
831     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
832     return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
833   }
834
835   /// \brief Get maximum # of store operations permitted for llvm.memset
836   ///
837   /// This function returns the maximum number of store operations permitted
838   /// to replace a call to llvm.memset. The value is set by the target at the
839   /// performance threshold for such a replacement. If OptSize is true,
840   /// return the limit for functions that have OptSize attribute.
841   unsigned getMaxStoresPerMemset(bool OptSize) const {
842     return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
843   }
844
845   /// \brief Get maximum # of store operations permitted for llvm.memcpy
846   ///
847   /// This function returns the maximum number of store operations permitted
848   /// to replace a call to llvm.memcpy. The value is set by the target at the
849   /// performance threshold for such a replacement. If OptSize is true,
850   /// return the limit for functions that have OptSize attribute.
851   unsigned getMaxStoresPerMemcpy(bool OptSize) const {
852     return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
853   }
854
855   /// \brief Get maximum # of store operations permitted for llvm.memmove
856   ///
857   /// This function returns the maximum number of store operations permitted
858   /// to replace a call to llvm.memmove. The value is set by the target at the
859   /// performance threshold for such a replacement. If OptSize is true,
860   /// return the limit for functions that have OptSize attribute.
861   unsigned getMaxStoresPerMemmove(bool OptSize) const {
862     return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
863   }
864
865   /// \brief Determine if the target supports unaligned memory accesses.
866   ///
867   /// This function returns true if the target allows unaligned memory accesses
868   /// of the specified type in the given address space. If true, it also returns
869   /// whether the unaligned memory access is "fast" in the last argument by
870   /// reference. This is used, for example, in situations where an array
871   /// copy/move/set is converted to a sequence of store operations. Its use
872   /// helps to ensure that such replacements don't generate code that causes an
873   /// alignment error (trap) on the target machine.
874   virtual bool allowsMisalignedMemoryAccesses(EVT,
875                                               unsigned AddrSpace = 0,
876                                               unsigned Align = 1,
877                                               bool * /*Fast*/ = nullptr) const {
878     return false;
879   }
880
881   /// Return true if the target supports a memory access of this type for the
882   /// given address space and alignment. If the access is allowed, the optional
883   /// final parameter returns if the access is also fast (as defined by the
884   /// target).
885   bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
886                           unsigned AddrSpace = 0, unsigned Alignment = 1,
887                           bool *Fast = nullptr) const;
888   
889   /// Returns the target specific optimal type for load and store operations as
890   /// a result of memset, memcpy, and memmove lowering.
891   ///
892   /// If DstAlign is zero that means it's safe to destination alignment can
893   /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
894   /// a need to check it against alignment requirement, probably because the
895   /// source does not need to be loaded. If 'IsMemset' is true, that means it's
896   /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
897   /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
898   /// does not need to be loaded.  It returns EVT::Other if the type should be
899   /// determined using generic target-independent logic.
900   virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
901                                   unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
902                                   bool /*IsMemset*/,
903                                   bool /*ZeroMemset*/,
904                                   bool /*MemcpyStrSrc*/,
905                                   MachineFunction &/*MF*/) const {
906     return MVT::Other;
907   }
908
909   /// Returns true if it's safe to use load / store of the specified type to
910   /// expand memcpy / memset inline.
911   ///
912   /// This is mostly true for all types except for some special cases. For
913   /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
914   /// fstpl which also does type conversion. Note the specified type doesn't
915   /// have to be legal as the hook is used before type legalization.
916   virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
917
918   /// Determine if we should use _setjmp or setjmp to implement llvm.setjmp.
919   bool usesUnderscoreSetJmp() const {
920     return UseUnderscoreSetJmp;
921   }
922
923   /// Determine if we should use _longjmp or longjmp to implement llvm.longjmp.
924   bool usesUnderscoreLongJmp() const {
925     return UseUnderscoreLongJmp;
926   }
927
928   /// Return integer threshold on number of blocks to use jump tables rather
929   /// than if sequence.
930   int getMinimumJumpTableEntries() const {
931     return MinimumJumpTableEntries;
932   }
933
934   /// If a physical register, this specifies the register that
935   /// llvm.savestack/llvm.restorestack should save and restore.
936   unsigned getStackPointerRegisterToSaveRestore() const {
937     return StackPointerRegisterToSaveRestore;
938   }
939
940   /// If a physical register, this returns the register that receives the
941   /// exception address on entry to a landing pad.
942   unsigned getExceptionPointerRegister() const {
943     return ExceptionPointerRegister;
944   }
945
946   /// If a physical register, this returns the register that receives the
947   /// exception typeid on entry to a landing pad.
948   unsigned getExceptionSelectorRegister() const {
949     return ExceptionSelectorRegister;
950   }
951
952   /// Returns the target's jmp_buf size in bytes (if never set, the default is
953   /// 200)
954   unsigned getJumpBufSize() const {
955     return JumpBufSize;
956   }
957
958   /// Returns the target's jmp_buf alignment in bytes (if never set, the default
959   /// is 0)
960   unsigned getJumpBufAlignment() const {
961     return JumpBufAlignment;
962   }
963
964   /// Return the minimum stack alignment of an argument.
965   unsigned getMinStackArgumentAlignment() const {
966     return MinStackArgumentAlignment;
967   }
968
969   /// Return the minimum function alignment.
970   unsigned getMinFunctionAlignment() const {
971     return MinFunctionAlignment;
972   }
973
974   /// Return the preferred function alignment.
975   unsigned getPrefFunctionAlignment() const {
976     return PrefFunctionAlignment;
977   }
978
979   /// Return the preferred loop alignment.
980   virtual unsigned getPrefLoopAlignment(MachineLoop *ML = nullptr) const {
981     return PrefLoopAlignment;
982   }
983
984   /// Return whether the DAG builder should automatically insert fences and
985   /// reduce ordering for atomics.
986   bool getInsertFencesForAtomic() const {
987     return InsertFencesForAtomic;
988   }
989
990   /// Return true if the target stores stack protector cookies at a fixed offset
991   /// in some non-standard address space, and populates the address space and
992   /// offset as appropriate.
993   virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
994                                       unsigned &/*Offset*/) const {
995     return false;
996   }
997
998   /// Returns true if a cast between SrcAS and DestAS is a noop.
999   virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
1000     return false;
1001   }
1002
1003   /// Return true if the pointer arguments to CI should be aligned by aligning
1004   /// the object whose address is being passed. If so then MinSize is set to the
1005   /// minimum size the object must be to be aligned and PrefAlign is set to the
1006   /// preferred alignment.
1007   virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/,
1008                                       unsigned & /*PrefAlign*/) const {
1009     return false;
1010   }
1011
1012   //===--------------------------------------------------------------------===//
1013   /// \name Helpers for TargetTransformInfo implementations
1014   /// @{
1015
1016   /// Get the ISD node that corresponds to the Instruction class opcode.
1017   int InstructionOpcodeToISD(unsigned Opcode) const;
1018
1019   /// Estimate the cost of type-legalization and the legalized type.
1020   std::pair<int, MVT> getTypeLegalizationCost(const DataLayout &DL,
1021                                               Type *Ty) const;
1022
1023   /// @}
1024
1025   //===--------------------------------------------------------------------===//
1026   /// \name Helpers for atomic expansion.
1027   /// @{
1028
1029   /// Perform a load-linked operation on Addr, returning a "Value *" with the
1030   /// corresponding pointee type. This may entail some non-trivial operations to
1031   /// truncate or reconstruct types that will be illegal in the backend. See
1032   /// ARMISelLowering for an example implementation.
1033   virtual Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
1034                                 AtomicOrdering Ord) const {
1035     llvm_unreachable("Load linked unimplemented on this target");
1036   }
1037
1038   /// Perform a store-conditional operation to Addr. Return the status of the
1039   /// store. This should be 0 if the store succeeded, non-zero otherwise.
1040   virtual Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
1041                                       Value *Addr, AtomicOrdering Ord) const {
1042     llvm_unreachable("Store conditional unimplemented on this target");
1043   }
1044
1045   /// Inserts in the IR a target-specific intrinsic specifying a fence.
1046   /// It is called by AtomicExpandPass before expanding an
1047   ///   AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad.
1048   /// RMW and CmpXchg set both IsStore and IsLoad to true.
1049   /// This function should either return a nullptr, or a pointer to an IR-level
1050   ///   Instruction*. Even complex fence sequences can be represented by a
1051   ///   single Instruction* through an intrinsic to be lowered later.
1052   /// Backends with !getInsertFencesForAtomic() should keep a no-op here.
1053   /// Backends should override this method to produce target-specific intrinsic
1054   ///   for their fences.
1055   /// FIXME: Please note that the default implementation here in terms of
1056   ///   IR-level fences exists for historical/compatibility reasons and is
1057   ///   *unsound* ! Fences cannot, in general, be used to restore sequential
1058   ///   consistency. For example, consider the following example:
1059   /// atomic<int> x = y = 0;
1060   /// int r1, r2, r3, r4;
1061   /// Thread 0:
1062   ///   x.store(1);
1063   /// Thread 1:
1064   ///   y.store(1);
1065   /// Thread 2:
1066   ///   r1 = x.load();
1067   ///   r2 = y.load();
1068   /// Thread 3:
1069   ///   r3 = y.load();
1070   ///   r4 = x.load();
1071   ///  r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all
1072   ///  seq_cst. But if they are lowered to monotonic accesses, no amount of
1073   ///  IR-level fences can prevent it.
1074   /// @{
1075   virtual Instruction *emitLeadingFence(IRBuilder<> &Builder,
1076                                         AtomicOrdering Ord, bool IsStore,
1077                                         bool IsLoad) const {
1078     if (!getInsertFencesForAtomic())
1079       return nullptr;
1080
1081     if (isAtLeastRelease(Ord) && IsStore)
1082       return Builder.CreateFence(Ord);
1083     else
1084       return nullptr;
1085   }
1086
1087   virtual Instruction *emitTrailingFence(IRBuilder<> &Builder,
1088                                          AtomicOrdering Ord, bool IsStore,
1089                                          bool IsLoad) const {
1090     if (!getInsertFencesForAtomic())
1091       return nullptr;
1092
1093     if (isAtLeastAcquire(Ord))
1094       return Builder.CreateFence(Ord);
1095     else
1096       return nullptr;
1097   }
1098   /// @}
1099
1100   // Emits code that executes when the comparison result in the ll/sc
1101   // expansion of a cmpxchg instruction is such that the store-conditional will
1102   // not execute.  This makes it possible to balance out the load-linked with
1103   // a dedicated instruction, if desired.
1104   // E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would
1105   // be unnecessarily held, except if clrex, inserted by this hook, is executed.
1106   virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> &Builder) const {}
1107
1108   /// Returns true if the given (atomic) store should be expanded by the
1109   /// IR-level AtomicExpand pass into an "atomic xchg" which ignores its input.
1110   virtual bool shouldExpandAtomicStoreInIR(StoreInst *SI) const {
1111     return false;
1112   }
1113
1114   /// Returns true if arguments should be sign-extended in lib calls.
1115   virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
1116     return IsSigned;
1117   }
1118
1119   /// Returns how the given (atomic) load should be expanded by the
1120   /// IR-level AtomicExpand pass.
1121   virtual AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const {
1122     return AtomicExpansionKind::None;
1123   }
1124
1125   /// Returns true if the given atomic cmpxchg should be expanded by the
1126   /// IR-level AtomicExpand pass into a load-linked/store-conditional sequence
1127   /// (through emitLoadLinked() and emitStoreConditional()).
1128   virtual bool shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
1129     return false;
1130   }
1131
1132   /// Returns how the IR-level AtomicExpand pass should expand the given
1133   /// AtomicRMW, if at all. Default is to never expand.
1134   virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *) const {
1135     return AtomicExpansionKind::None;
1136   }
1137
1138   /// On some platforms, an AtomicRMW that never actually modifies the value
1139   /// (such as fetch_add of 0) can be turned into a fence followed by an
1140   /// atomic load. This may sound useless, but it makes it possible for the
1141   /// processor to keep the cacheline shared, dramatically improving
1142   /// performance. And such idempotent RMWs are useful for implementing some
1143   /// kinds of locks, see for example (justification + benchmarks):
1144   /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
1145   /// This method tries doing that transformation, returning the atomic load if
1146   /// it succeeds, and nullptr otherwise.
1147   /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
1148   /// another round of expansion.
1149   virtual LoadInst *
1150   lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const {
1151     return nullptr;
1152   }
1153
1154   /// Returns true if we should normalize
1155   /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
1156   /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
1157   /// that it saves us from materializing N0 and N1 in an integer register.
1158   /// Targets that are able to perform and/or on flags should return false here.
1159   virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context,
1160                                                EVT VT) const {
1161     // If a target has multiple condition registers, then it likely has logical
1162     // operations on those registers.
1163     if (hasMultipleConditionRegisters())
1164       return false;
1165     // Only do the transform if the value won't be split into multiple
1166     // registers.
1167     LegalizeTypeAction Action = getTypeAction(Context, VT);
1168     return Action != TypeExpandInteger && Action != TypeExpandFloat &&
1169       Action != TypeSplitVector;
1170   }
1171
1172   //===--------------------------------------------------------------------===//
1173   // TargetLowering Configuration Methods - These methods should be invoked by
1174   // the derived class constructor to configure this object for the target.
1175   //
1176 protected:
1177   /// Specify how the target extends the result of integer and floating point
1178   /// boolean values from i1 to a wider type.  See getBooleanContents.
1179   void setBooleanContents(BooleanContent Ty) {
1180     BooleanContents = Ty;
1181     BooleanFloatContents = Ty;
1182   }
1183
1184   /// Specify how the target extends the result of integer and floating point
1185   /// boolean values from i1 to a wider type.  See getBooleanContents.
1186   void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) {
1187     BooleanContents = IntTy;
1188     BooleanFloatContents = FloatTy;
1189   }
1190
1191   /// Specify how the target extends the result of a vector boolean value from a
1192   /// vector of i1 to a wider type.  See getBooleanContents.
1193   void setBooleanVectorContents(BooleanContent Ty) {
1194     BooleanVectorContents = Ty;
1195   }
1196
1197   /// Specify the target scheduling preference.
1198   void setSchedulingPreference(Sched::Preference Pref) {
1199     SchedPreferenceInfo = Pref;
1200   }
1201
1202   /// Indicate whether this target prefers to use _setjmp to implement
1203   /// llvm.setjmp or the version without _.  Defaults to false.
1204   void setUseUnderscoreSetJmp(bool Val) {
1205     UseUnderscoreSetJmp = Val;
1206   }
1207
1208   /// Indicate whether this target prefers to use _longjmp to implement
1209   /// llvm.longjmp or the version without _.  Defaults to false.
1210   void setUseUnderscoreLongJmp(bool Val) {
1211     UseUnderscoreLongJmp = Val;
1212   }
1213
1214   /// Indicate the number of blocks to generate jump tables rather than if
1215   /// sequence.
1216   void setMinimumJumpTableEntries(int Val) {
1217     MinimumJumpTableEntries = Val;
1218   }
1219
1220   /// If set to a physical register, this specifies the register that
1221   /// llvm.savestack/llvm.restorestack should save and restore.
1222   void setStackPointerRegisterToSaveRestore(unsigned R) {
1223     StackPointerRegisterToSaveRestore = R;
1224   }
1225
1226   /// If set to a physical register, this sets the register that receives the
1227   /// exception address on entry to a landing pad.
1228   void setExceptionPointerRegister(unsigned R) {
1229     ExceptionPointerRegister = R;
1230   }
1231
1232   /// If set to a physical register, this sets the register that receives the
1233   /// exception typeid on entry to a landing pad.
1234   void setExceptionSelectorRegister(unsigned R) {
1235     ExceptionSelectorRegister = R;
1236   }
1237
1238   /// Tells the code generator not to expand operations into sequences that use
1239   /// the select operations if possible.
1240   void setSelectIsExpensive(bool isExpensive = true) {
1241     SelectIsExpensive = isExpensive;
1242   }
1243
1244   /// Tells the code generator that the target has multiple (allocatable)
1245   /// condition registers that can be used to store the results of comparisons
1246   /// for use by selects and conditional branches. With multiple condition
1247   /// registers, the code generator will not aggressively sink comparisons into
1248   /// the blocks of their users.
1249   void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
1250     HasMultipleConditionRegisters = hasManyRegs;
1251   }
1252
1253   /// Tells the code generator that the target has BitExtract instructions.
1254   /// The code generator will aggressively sink "shift"s into the blocks of
1255   /// their users if the users will generate "and" instructions which can be
1256   /// combined with "shift" to BitExtract instructions.
1257   void setHasExtractBitsInsn(bool hasExtractInsn = true) {
1258     HasExtractBitsInsn = hasExtractInsn;
1259   }
1260
1261   /// Tells the code generator not to expand logic operations on comparison
1262   /// predicates into separate sequences that increase the amount of flow
1263   /// control.
1264   void setJumpIsExpensive(bool isExpensive = true);
1265
1266   /// Tells the code generator that fsqrt is cheap, and should not be replaced
1267   /// with an alternative sequence of instructions.
1268   void setFsqrtIsCheap(bool isCheap = true) { FsqrtIsCheap = isCheap; }
1269
1270   /// Tells the code generator that this target supports floating point
1271   /// exceptions and cares about preserving floating point exception behavior.
1272   void setHasFloatingPointExceptions(bool FPExceptions = true) {
1273     HasFloatingPointExceptions = FPExceptions;
1274   }
1275
1276   /// Tells the code generator which bitwidths to bypass.
1277   void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
1278     BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
1279   }
1280
1281   /// Add the specified register class as an available regclass for the
1282   /// specified value type. This indicates the selector can handle values of
1283   /// that class natively.
1284   void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
1285     assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
1286     AvailableRegClasses.push_back(std::make_pair(VT, RC));
1287     RegClassForVT[VT.SimpleTy] = RC;
1288   }
1289
1290   /// Remove all register classes.
1291   void clearRegisterClasses() {
1292     memset(RegClassForVT, 0,MVT::LAST_VALUETYPE * sizeof(TargetRegisterClass*));
1293
1294     AvailableRegClasses.clear();
1295   }
1296
1297   /// \brief Remove all operation actions.
1298   void clearOperationActions() {
1299   }
1300
1301   /// Return the largest legal super-reg register class of the register class
1302   /// for the specified type and its associated "cost".
1303   virtual std::pair<const TargetRegisterClass *, uint8_t>
1304   findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const;
1305
1306   /// Once all of the register classes are added, this allows us to compute
1307   /// derived properties we expose.
1308   void computeRegisterProperties(const TargetRegisterInfo *TRI);
1309
1310   /// Indicate that the specified operation does not work with the specified
1311   /// type and indicate what to do about it.
1312   void setOperationAction(unsigned Op, MVT VT,
1313                           LegalizeAction Action) {
1314     assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1315     OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
1316   }
1317
1318   /// Indicate that the specified load with extension does not work with the
1319   /// specified type and indicate what to do about it.
1320   void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
1321                         LegalizeAction Action) {
1322     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
1323            MemVT.isValid() && "Table isn't big enough!");
1324     LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy][ExtType] = (uint8_t)Action;
1325   }
1326
1327   /// Indicate that the specified truncating store does not work with the
1328   /// specified type and indicate what to do about it.
1329   void setTruncStoreAction(MVT ValVT, MVT MemVT,
1330                            LegalizeAction Action) {
1331     assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
1332     TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1333   }
1334
1335   /// Indicate that the specified indexed load does or does not work with the
1336   /// specified type and indicate what to do abort it.
1337   ///
1338   /// NOTE: All indexed mode loads are initialized to Expand in
1339   /// TargetLowering.cpp
1340   void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1341                             LegalizeAction Action) {
1342     assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
1343            (unsigned)Action < 0xf && "Table isn't big enough!");
1344     // Load action are kept in the upper half.
1345     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1346     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1347   }
1348
1349   /// Indicate that the specified indexed store does or does not work with the
1350   /// specified type and indicate what to do about it.
1351   ///
1352   /// NOTE: All indexed mode stores are initialized to Expand in
1353   /// TargetLowering.cpp
1354   void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1355                              LegalizeAction Action) {
1356     assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
1357            (unsigned)Action < 0xf && "Table isn't big enough!");
1358     // Store action are kept in the lower half.
1359     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1360     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1361   }
1362
1363   /// Indicate that the specified condition code is or isn't supported on the
1364   /// target and indicate what to do about it.
1365   void setCondCodeAction(ISD::CondCode CC, MVT VT,
1366                          LegalizeAction Action) {
1367     assert(VT.isValid() && (unsigned)CC < array_lengthof(CondCodeActions) &&
1368            "Table isn't big enough!");
1369     /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 32-bit
1370     /// value and the upper 27 bits index into the second dimension of the array
1371     /// to select what 32-bit value to use.
1372     uint32_t Shift = 2 * (VT.SimpleTy & 0xF);
1373     CondCodeActions[CC][VT.SimpleTy >> 4] &= ~((uint32_t)0x3 << Shift);
1374     CondCodeActions[CC][VT.SimpleTy >> 4] |= (uint32_t)Action << Shift;
1375   }
1376
1377   /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
1378   /// to trying a larger integer/fp until it can find one that works. If that
1379   /// default is insufficient, this method can be used by the target to override
1380   /// the default.
1381   void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1382     PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1383   }
1384
1385   /// Targets should invoke this method for each target independent node that
1386   /// they want to provide a custom DAG combiner for by implementing the
1387   /// PerformDAGCombine virtual method.
1388   void setTargetDAGCombine(ISD::NodeType NT) {
1389     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1390     TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1391   }
1392
1393   /// Set the target's required jmp_buf buffer size (in bytes); default is 200
1394   void setJumpBufSize(unsigned Size) {
1395     JumpBufSize = Size;
1396   }
1397
1398   /// Set the target's required jmp_buf buffer alignment (in bytes); default is
1399   /// 0
1400   void setJumpBufAlignment(unsigned Align) {
1401     JumpBufAlignment = Align;
1402   }
1403
1404   /// Set the target's minimum function alignment (in log2(bytes))
1405   void setMinFunctionAlignment(unsigned Align) {
1406     MinFunctionAlignment = Align;
1407   }
1408
1409   /// Set the target's preferred function alignment.  This should be set if
1410   /// there is a performance benefit to higher-than-minimum alignment (in
1411   /// log2(bytes))
1412   void setPrefFunctionAlignment(unsigned Align) {
1413     PrefFunctionAlignment = Align;
1414   }
1415
1416   /// Set the target's preferred loop alignment. Default alignment is zero, it
1417   /// means the target does not care about loop alignment.  The alignment is
1418   /// specified in log2(bytes). The target may also override
1419   /// getPrefLoopAlignment to provide per-loop values.
1420   void setPrefLoopAlignment(unsigned Align) {
1421     PrefLoopAlignment = Align;
1422   }
1423
1424   /// Set the minimum stack alignment of an argument (in log2(bytes)).
1425   void setMinStackArgumentAlignment(unsigned Align) {
1426     MinStackArgumentAlignment = Align;
1427   }
1428
1429   /// Set if the DAG builder should automatically insert fences and reduce the
1430   /// order of atomic memory operations to Monotonic.
1431   void setInsertFencesForAtomic(bool fence) {
1432     InsertFencesForAtomic = fence;
1433   }
1434
1435 public:
1436   //===--------------------------------------------------------------------===//
1437   // Addressing mode description hooks (used by LSR etc).
1438   //
1439
1440   /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
1441   /// instructions reading the address. This allows as much computation as
1442   /// possible to be done in the address mode for that operand. This hook lets
1443   /// targets also pass back when this should be done on intrinsics which
1444   /// load/store.
1445   virtual bool GetAddrModeArguments(IntrinsicInst * /*I*/,
1446                                     SmallVectorImpl<Value*> &/*Ops*/,
1447                                     Type *&/*AccessTy*/,
1448                                     unsigned AddrSpace = 0) const {
1449     return false;
1450   }
1451
1452   /// This represents an addressing mode of:
1453   ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1454   /// If BaseGV is null,  there is no BaseGV.
1455   /// If BaseOffs is zero, there is no base offset.
1456   /// If HasBaseReg is false, there is no base register.
1457   /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1458   /// no scale.
1459   struct AddrMode {
1460     GlobalValue *BaseGV;
1461     int64_t      BaseOffs;
1462     bool         HasBaseReg;
1463     int64_t      Scale;
1464     AddrMode() : BaseGV(nullptr), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1465   };
1466
1467   /// Return true if the addressing mode represented by AM is legal for this
1468   /// target, for a load/store of the specified type.
1469   ///
1470   /// The type may be VoidTy, in which case only return true if the addressing
1471   /// mode is legal for a load/store of any legal type.  TODO: Handle
1472   /// pre/postinc as well.
1473   ///
1474   /// If the address space cannot be determined, it will be -1.
1475   ///
1476   /// TODO: Remove default argument
1477   virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
1478                                      Type *Ty, unsigned AddrSpace) const;
1479
1480   /// \brief Return the cost of the scaling factor used in the addressing mode
1481   /// represented by AM for this target, for a load/store of the specified type.
1482   ///
1483   /// If the AM is supported, the return value must be >= 0.
1484   /// If the AM is not supported, it returns a negative value.
1485   /// TODO: Handle pre/postinc as well.
1486   /// TODO: Remove default argument
1487   virtual int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM,
1488                                    Type *Ty, unsigned AS = 0) const {
1489     // Default: assume that any scaling factor used in a legal AM is free.
1490     if (isLegalAddressingMode(DL, AM, Ty, AS))
1491       return 0;
1492     return -1;
1493   }
1494
1495   /// Return true if the specified immediate is legal icmp immediate, that is
1496   /// the target has icmp instructions which can compare a register against the
1497   /// immediate without having to materialize the immediate into a register.
1498   virtual bool isLegalICmpImmediate(int64_t) const {
1499     return true;
1500   }
1501
1502   /// Return true if the specified immediate is legal add immediate, that is the
1503   /// target has add instructions which can add a register with the immediate
1504   /// without having to materialize the immediate into a register.
1505   virtual bool isLegalAddImmediate(int64_t) const {
1506     return true;
1507   }
1508
1509   /// Return true if it's significantly cheaper to shift a vector by a uniform
1510   /// scalar than by an amount which will vary across each lane. On x86, for
1511   /// example, there is a "psllw" instruction for the former case, but no simple
1512   /// instruction for a general "a << b" operation on vectors.
1513   virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
1514     return false;
1515   }
1516
1517   /// Return true if it's free to truncate a value of type FromTy to type
1518   /// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
1519   /// by referencing its sub-register AX.
1520   /// Targets must return false when FromTy <= ToTy.
1521   virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const {
1522     return false;
1523   }
1524
1525   /// Return true if a truncation from FromTy to ToTy is permitted when deciding
1526   /// whether a call is in tail position. Typically this means that both results
1527   /// would be assigned to the same register or stack slot, but it could mean
1528   /// the target performs adequate checks of its own before proceeding with the
1529   /// tail call.  Targets must return false when FromTy <= ToTy.
1530   virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const {
1531     return false;
1532   }
1533
1534   virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const {
1535     return false;
1536   }
1537
1538   virtual bool isProfitableToHoist(Instruction *I) const { return true; }
1539
1540   /// Return true if the extension represented by \p I is free.
1541   /// Unlikely the is[Z|FP]ExtFree family which is based on types,
1542   /// this method can use the context provided by \p I to decide
1543   /// whether or not \p I is free.
1544   /// This method extends the behavior of the is[Z|FP]ExtFree family.
1545   /// In other words, if is[Z|FP]Free returns true, then this method
1546   /// returns true as well. The converse is not true.
1547   /// The target can perform the adequate checks by overriding isExtFreeImpl.
1548   /// \pre \p I must be a sign, zero, or fp extension.
1549   bool isExtFree(const Instruction *I) const {
1550     switch (I->getOpcode()) {
1551     case Instruction::FPExt:
1552       if (isFPExtFree(EVT::getEVT(I->getType())))
1553         return true;
1554       break;
1555     case Instruction::ZExt:
1556       if (isZExtFree(I->getOperand(0)->getType(), I->getType()))
1557         return true;
1558       break;
1559     case Instruction::SExt:
1560       break;
1561     default:
1562       llvm_unreachable("Instruction is not an extension");
1563     }
1564     return isExtFreeImpl(I);
1565   }
1566
1567   /// Return true if any actual instruction that defines a value of type FromTy
1568   /// implicitly zero-extends the value to ToTy in the result register.
1569   ///
1570   /// The function should return true when it is likely that the truncate can
1571   /// be freely folded with an instruction defining a value of FromTy. If
1572   /// the defining instruction is unknown (because you're looking at a
1573   /// function argument, PHI, etc.) then the target may require an
1574   /// explicit truncate, which is not necessarily free, but this function
1575   /// does not deal with those cases.
1576   /// Targets must return false when FromTy >= ToTy.
1577   virtual bool isZExtFree(Type *FromTy, Type *ToTy) const {
1578     return false;
1579   }
1580
1581   virtual bool isZExtFree(EVT FromTy, EVT ToTy) const {
1582     return false;
1583   }
1584
1585   /// Return true if the target supplies and combines to a paired load
1586   /// two loaded values of type LoadedType next to each other in memory.
1587   /// RequiredAlignment gives the minimal alignment constraints that must be met
1588   /// to be able to select this paired load.
1589   ///
1590   /// This information is *not* used to generate actual paired loads, but it is
1591   /// used to generate a sequence of loads that is easier to combine into a
1592   /// paired load.
1593   /// For instance, something like this:
1594   /// a = load i64* addr
1595   /// b = trunc i64 a to i32
1596   /// c = lshr i64 a, 32
1597   /// d = trunc i64 c to i32
1598   /// will be optimized into:
1599   /// b = load i32* addr1
1600   /// d = load i32* addr2
1601   /// Where addr1 = addr2 +/- sizeof(i32).
1602   ///
1603   /// In other words, unless the target performs a post-isel load combining,
1604   /// this information should not be provided because it will generate more
1605   /// loads.
1606   virtual bool hasPairedLoad(Type * /*LoadedType*/,
1607                              unsigned & /*RequiredAligment*/) const {
1608     return false;
1609   }
1610
1611   virtual bool hasPairedLoad(EVT /*LoadedType*/,
1612                              unsigned & /*RequiredAligment*/) const {
1613     return false;
1614   }
1615
1616   /// \brief Get the maximum supported factor for interleaved memory accesses.
1617   /// Default to be the minimum interleave factor: 2.
1618   virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; }
1619
1620   /// \brief Lower an interleaved load to target specific intrinsics. Return
1621   /// true on success.
1622   ///
1623   /// \p LI is the vector load instruction.
1624   /// \p Shuffles is the shufflevector list to DE-interleave the loaded vector.
1625   /// \p Indices is the corresponding indices for each shufflevector.
1626   /// \p Factor is the interleave factor.
1627   virtual bool lowerInterleavedLoad(LoadInst *LI,
1628                                     ArrayRef<ShuffleVectorInst *> Shuffles,
1629                                     ArrayRef<unsigned> Indices,
1630                                     unsigned Factor) const {
1631     return false;
1632   }
1633
1634   /// \brief Lower an interleaved store to target specific intrinsics. Return
1635   /// true on success.
1636   ///
1637   /// \p SI is the vector store instruction.
1638   /// \p SVI is the shufflevector to RE-interleave the stored vector.
1639   /// \p Factor is the interleave factor.
1640   virtual bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
1641                                      unsigned Factor) const {
1642     return false;
1643   }
1644
1645   /// Return true if zero-extending the specific node Val to type VT2 is free
1646   /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
1647   /// because it's folded such as X86 zero-extending loads).
1648   virtual bool isZExtFree(SDValue Val, EVT VT2) const {
1649     return isZExtFree(Val.getValueType(), VT2);
1650   }
1651
1652   /// Return true if an fpext operation is free (for instance, because
1653   /// single-precision floating-point numbers are implicitly extended to
1654   /// double-precision).
1655   virtual bool isFPExtFree(EVT VT) const {
1656     assert(VT.isFloatingPoint());
1657     return false;
1658   }
1659
1660   /// Return true if folding a vector load into ExtVal (a sign, zero, or any
1661   /// extend node) is profitable.
1662   virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
1663
1664   /// Return true if an fneg operation is free to the point where it is never
1665   /// worthwhile to replace it with a bitwise operation.
1666   virtual bool isFNegFree(EVT VT) const {
1667     assert(VT.isFloatingPoint());
1668     return false;
1669   }
1670
1671   /// Return true if an fabs operation is free to the point where it is never
1672   /// worthwhile to replace it with a bitwise operation.
1673   virtual bool isFAbsFree(EVT VT) const {
1674     assert(VT.isFloatingPoint());
1675     return false;
1676   }
1677
1678   /// Return true if an FMA operation is faster than a pair of fmul and fadd
1679   /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
1680   /// returns true, otherwise fmuladd is expanded to fmul + fadd.
1681   ///
1682   /// NOTE: This may be called before legalization on types for which FMAs are
1683   /// not legal, but should return true if those types will eventually legalize
1684   /// to types that support FMAs. After legalization, it will only be called on
1685   /// types that support FMAs (via Legal or Custom actions)
1686   virtual bool isFMAFasterThanFMulAndFAdd(EVT) const {
1687     return false;
1688   }
1689
1690   /// Return true if it's profitable to narrow operations of type VT1 to
1691   /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
1692   /// i32 to i16.
1693   virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
1694     return false;
1695   }
1696
1697   /// \brief Return true if it is beneficial to convert a load of a constant to
1698   /// just the constant itself.
1699   /// On some targets it might be more efficient to use a combination of
1700   /// arithmetic instructions to materialize the constant instead of loading it
1701   /// from a constant pool.
1702   virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
1703                                                  Type *Ty) const {
1704     return false;
1705   }
1706
1707   /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
1708   /// with this index. This is needed because EXTRACT_SUBVECTOR usually
1709   /// has custom lowering that depends on the index of the first element,
1710   /// and only the target knows which lowering is cheap.
1711   virtual bool isExtractSubvectorCheap(EVT ResVT, unsigned Index) const {
1712     return false;
1713   }
1714
1715   //===--------------------------------------------------------------------===//
1716   // Runtime Library hooks
1717   //
1718
1719   /// Rename the default libcall routine name for the specified libcall.
1720   void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1721     LibcallRoutineNames[Call] = Name;
1722   }
1723
1724   /// Get the libcall routine name for the specified libcall.
1725   const char *getLibcallName(RTLIB::Libcall Call) const {
1726     return LibcallRoutineNames[Call];
1727   }
1728
1729   /// Override the default CondCode to be used to test the result of the
1730   /// comparison libcall against zero.
1731   void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1732     CmpLibcallCCs[Call] = CC;
1733   }
1734
1735   /// Get the CondCode that's to be used to test the result of the comparison
1736   /// libcall against zero.
1737   ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1738     return CmpLibcallCCs[Call];
1739   }
1740
1741   /// Set the CallingConv that should be used for the specified libcall.
1742   void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1743     LibcallCallingConvs[Call] = CC;
1744   }
1745
1746   /// Get the CallingConv that should be used for the specified libcall.
1747   CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1748     return LibcallCallingConvs[Call];
1749   }
1750
1751 private:
1752   const TargetMachine &TM;
1753
1754   /// Tells the code generator not to expand operations into sequences that use
1755   /// the select operations if possible.
1756   bool SelectIsExpensive;
1757
1758   /// Tells the code generator that the target has multiple (allocatable)
1759   /// condition registers that can be used to store the results of comparisons
1760   /// for use by selects and conditional branches. With multiple condition
1761   /// registers, the code generator will not aggressively sink comparisons into
1762   /// the blocks of their users.
1763   bool HasMultipleConditionRegisters;
1764
1765   /// Tells the code generator that the target has BitExtract instructions.
1766   /// The code generator will aggressively sink "shift"s into the blocks of
1767   /// their users if the users will generate "and" instructions which can be
1768   /// combined with "shift" to BitExtract instructions.
1769   bool HasExtractBitsInsn;
1770
1771   // Don't expand fsqrt with an approximation based on the inverse sqrt.
1772   bool FsqrtIsCheap;
1773
1774   /// Tells the code generator to bypass slow divide or remainder
1775   /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
1776   /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
1777   /// div/rem when the operands are positive and less than 256.
1778   DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
1779
1780   /// Tells the code generator that it shouldn't generate extra flow control
1781   /// instructions and should attempt to combine flow control instructions via
1782   /// predication.
1783   bool JumpIsExpensive;
1784
1785   /// Whether the target supports or cares about preserving floating point
1786   /// exception behavior.
1787   bool HasFloatingPointExceptions;
1788
1789   /// This target prefers to use _setjmp to implement llvm.setjmp.
1790   ///
1791   /// Defaults to false.
1792   bool UseUnderscoreSetJmp;
1793
1794   /// This target prefers to use _longjmp to implement llvm.longjmp.
1795   ///
1796   /// Defaults to false.
1797   bool UseUnderscoreLongJmp;
1798
1799   /// Number of blocks threshold to use jump tables.
1800   int MinimumJumpTableEntries;
1801
1802   /// Information about the contents of the high-bits in boolean values held in
1803   /// a type wider than i1. See getBooleanContents.
1804   BooleanContent BooleanContents;
1805
1806   /// Information about the contents of the high-bits in boolean values held in
1807   /// a type wider than i1. See getBooleanContents.
1808   BooleanContent BooleanFloatContents;
1809
1810   /// Information about the contents of the high-bits in boolean vector values
1811   /// when the element type is wider than i1. See getBooleanContents.
1812   BooleanContent BooleanVectorContents;
1813
1814   /// The target scheduling preference: shortest possible total cycles or lowest
1815   /// register usage.
1816   Sched::Preference SchedPreferenceInfo;
1817
1818   /// The size, in bytes, of the target's jmp_buf buffers
1819   unsigned JumpBufSize;
1820
1821   /// The alignment, in bytes, of the target's jmp_buf buffers
1822   unsigned JumpBufAlignment;
1823
1824   /// The minimum alignment that any argument on the stack needs to have.
1825   unsigned MinStackArgumentAlignment;
1826
1827   /// The minimum function alignment (used when optimizing for size, and to
1828   /// prevent explicitly provided alignment from leading to incorrect code).
1829   unsigned MinFunctionAlignment;
1830
1831   /// The preferred function alignment (used when alignment unspecified and
1832   /// optimizing for speed).
1833   unsigned PrefFunctionAlignment;
1834
1835   /// The preferred loop alignment.
1836   unsigned PrefLoopAlignment;
1837
1838   /// Whether the DAG builder should automatically insert fences and reduce
1839   /// ordering for atomics.  (This will be set for for most architectures with
1840   /// weak memory ordering.)
1841   bool InsertFencesForAtomic;
1842
1843   /// If set to a physical register, this specifies the register that
1844   /// llvm.savestack/llvm.restorestack should save and restore.
1845   unsigned StackPointerRegisterToSaveRestore;
1846
1847   /// If set to a physical register, this specifies the register that receives
1848   /// the exception address on entry to a landing pad.
1849   unsigned ExceptionPointerRegister;
1850
1851   /// If set to a physical register, this specifies the register that receives
1852   /// the exception typeid on entry to a landing pad.
1853   unsigned ExceptionSelectorRegister;
1854
1855   /// This indicates the default register class to use for each ValueType the
1856   /// target supports natively.
1857   const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1858   unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1859   MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1860
1861   /// This indicates the "representative" register class to use for each
1862   /// ValueType the target supports natively. This information is used by the
1863   /// scheduler to track register pressure. By default, the representative
1864   /// register class is the largest legal super-reg register class of the
1865   /// register class of the specified type. e.g. On x86, i8, i16, and i32's
1866   /// representative class would be GR32.
1867   const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1868
1869   /// This indicates the "cost" of the "representative" register class for each
1870   /// ValueType. The cost is used by the scheduler to approximate register
1871   /// pressure.
1872   uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1873
1874   /// For any value types we are promoting or expanding, this contains the value
1875   /// type that we are changing to.  For Expanded types, this contains one step
1876   /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
1877   /// (e.g. i64 -> i16).  For types natively supported by the system, this holds
1878   /// the same type (e.g. i32 -> i32).
1879   MVT TransformToType[MVT::LAST_VALUETYPE];
1880
1881   /// For each operation and each value type, keep a LegalizeAction that
1882   /// indicates how instruction selection should deal with the operation.  Most
1883   /// operations are Legal (aka, supported natively by the target), but
1884   /// operations that are not should be described.  Note that operations on
1885   /// non-legal value types are not described here.
1886   uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1887
1888   /// For each load extension type and each value type, keep a LegalizeAction
1889   /// that indicates how instruction selection should deal with a load of a
1890   /// specific value type and extension type.
1891   uint8_t LoadExtActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE]
1892                         [ISD::LAST_LOADEXT_TYPE];
1893
1894   /// For each value type pair keep a LegalizeAction that indicates whether a
1895   /// truncating store of a specific value type and truncating type is legal.
1896   uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1897
1898   /// For each indexed mode and each value type, keep a pair of LegalizeAction
1899   /// that indicates how instruction selection should deal with the load /
1900   /// store.
1901   ///
1902   /// The first dimension is the value_type for the reference. The second
1903   /// dimension represents the various modes for load store.
1904   uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1905
1906   /// For each condition code (ISD::CondCode) keep a LegalizeAction that
1907   /// indicates how instruction selection should deal with the condition code.
1908   ///
1909   /// Because each CC action takes up 2 bits, we need to have the array size be
1910   /// large enough to fit all of the value types. This can be done by rounding
1911   /// up the MVT::LAST_VALUETYPE value to the next multiple of 16.
1912   uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 15) / 16];
1913
1914   ValueTypeActionImpl ValueTypeActions;
1915
1916 private:
1917   LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const;
1918
1919 private:
1920   std::vector<std::pair<MVT, const TargetRegisterClass*> > AvailableRegClasses;
1921
1922   /// Targets can specify ISD nodes that they would like PerformDAGCombine
1923   /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
1924   /// array.
1925   unsigned char
1926   TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1927
1928   /// For operations that must be promoted to a specific type, this holds the
1929   /// destination type.  This map should be sparse, so don't hold it as an
1930   /// array.
1931   ///
1932   /// Targets add entries to this map with AddPromotedToType(..), clients access
1933   /// this with getTypeToPromoteTo(..).
1934   std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1935     PromoteToType;
1936
1937   /// Stores the name each libcall.
1938   const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1939
1940   /// The ISD::CondCode that should be used to test the result of each of the
1941   /// comparison libcall against zero.
1942   ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1943
1944   /// Stores the CallingConv that should be used for each libcall.
1945   CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1946
1947 protected:
1948   /// Return true if the extension represented by \p I is free.
1949   /// \pre \p I is a sign, zero, or fp extension and
1950   ///      is[Z|FP]ExtFree of the related types is not true.
1951   virtual bool isExtFreeImpl(const Instruction *I) const { return false; }
1952
1953   /// \brief Specify maximum number of store instructions per memset call.
1954   ///
1955   /// When lowering \@llvm.memset this field specifies the maximum number of
1956   /// store operations that may be substituted for the call to memset. Targets
1957   /// must set this value based on the cost threshold for that target. Targets
1958   /// should assume that the memset will be done using as many of the largest
1959   /// store operations first, followed by smaller ones, if necessary, per
1960   /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1961   /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1962   /// store.  This only applies to setting a constant array of a constant size.
1963   unsigned MaxStoresPerMemset;
1964
1965   /// Maximum number of stores operations that may be substituted for the call
1966   /// to memset, used for functions with OptSize attribute.
1967   unsigned MaxStoresPerMemsetOptSize;
1968
1969   /// \brief Specify maximum bytes of store instructions per memcpy call.
1970   ///
1971   /// When lowering \@llvm.memcpy this field specifies the maximum number of
1972   /// store operations that may be substituted for a call to memcpy. Targets
1973   /// must set this value based on the cost threshold for that target. Targets
1974   /// should assume that the memcpy will be done using as many of the largest
1975   /// store operations first, followed by smaller ones, if necessary, per
1976   /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1977   /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1978   /// and one 1-byte store. This only applies to copying a constant array of
1979   /// constant size.
1980   unsigned MaxStoresPerMemcpy;
1981
1982   /// Maximum number of store operations that may be substituted for a call to
1983   /// memcpy, used for functions with OptSize attribute.
1984   unsigned MaxStoresPerMemcpyOptSize;
1985
1986   /// \brief Specify maximum bytes of store instructions per memmove call.
1987   ///
1988   /// When lowering \@llvm.memmove this field specifies the maximum number of
1989   /// store instructions that may be substituted for a call to memmove. Targets
1990   /// must set this value based on the cost threshold for that target. Targets
1991   /// should assume that the memmove will be done using as many of the largest
1992   /// store operations first, followed by smaller ones, if necessary, per
1993   /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1994   /// with 8-bit alignment would result in nine 1-byte stores.  This only
1995   /// applies to copying a constant array of constant size.
1996   unsigned MaxStoresPerMemmove;
1997
1998   /// Maximum number of store instructions that may be substituted for a call to
1999   /// memmove, used for functions with OptSize attribute.
2000   unsigned MaxStoresPerMemmoveOptSize;
2001
2002   /// Tells the code generator that select is more expensive than a branch if
2003   /// the branch is usually predicted right.
2004   bool PredictableSelectIsExpensive;
2005
2006   /// MaskAndBranchFoldingIsLegal - Indicates if the target supports folding
2007   /// a mask of a single bit, a compare, and a branch into a single instruction.
2008   bool MaskAndBranchFoldingIsLegal;
2009
2010   /// \see enableExtLdPromotion.
2011   bool EnableExtLdPromotion;
2012
2013 protected:
2014   /// Return true if the value types that can be represented by the specified
2015   /// register class are all legal.
2016   bool isLegalRC(const TargetRegisterClass *RC) const;
2017
2018   /// Replace/modify any TargetFrameIndex operands with a targte-dependent
2019   /// sequence of memory operands that is recognized by PrologEpilogInserter.
2020   MachineBasicBlock *emitPatchPoint(MachineInstr *MI,
2021                                     MachineBasicBlock *MBB) const;
2022 };
2023
2024 /// This class defines information used to lower LLVM code to legal SelectionDAG
2025 /// operators that the target instruction selector can accept natively.
2026 ///
2027 /// This class also defines callbacks that targets must implement to lower
2028 /// target-specific constructs to SelectionDAG operators.
2029 class TargetLowering : public TargetLoweringBase {
2030   TargetLowering(const TargetLowering&) = delete;
2031   void operator=(const TargetLowering&) = delete;
2032
2033 public:
2034   /// NOTE: The TargetMachine owns TLOF.
2035   explicit TargetLowering(const TargetMachine &TM);
2036
2037   /// Returns true by value, base pointer and offset pointer and addressing mode
2038   /// by reference if the node's address can be legally represented as
2039   /// pre-indexed load / store address.
2040   virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
2041                                          SDValue &/*Offset*/,
2042                                          ISD::MemIndexedMode &/*AM*/,
2043                                          SelectionDAG &/*DAG*/) const {
2044     return false;
2045   }
2046
2047   /// Returns true by value, base pointer and offset pointer and addressing mode
2048   /// by reference if this node can be combined with a load / store to form a
2049   /// post-indexed load / store.
2050   virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
2051                                           SDValue &/*Base*/,
2052                                           SDValue &/*Offset*/,
2053                                           ISD::MemIndexedMode &/*AM*/,
2054                                           SelectionDAG &/*DAG*/) const {
2055     return false;
2056   }
2057
2058   /// Return the entry encoding for a jump table in the current function.  The
2059   /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
2060   virtual unsigned getJumpTableEncoding() const;
2061
2062   virtual const MCExpr *
2063   LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
2064                             const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
2065                             MCContext &/*Ctx*/) const {
2066     llvm_unreachable("Need to implement this hook if target has custom JTIs");
2067   }
2068
2069   /// Returns relocation base for the given PIC jumptable.
2070   virtual SDValue getPICJumpTableRelocBase(SDValue Table,
2071                                            SelectionDAG &DAG) const;
2072
2073   /// This returns the relocation base for the given PIC jumptable, the same as
2074   /// getPICJumpTableRelocBase, but as an MCExpr.
2075   virtual const MCExpr *
2076   getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2077                                unsigned JTI, MCContext &Ctx) const;
2078
2079   /// Return true if folding a constant offset with the given GlobalAddress is
2080   /// legal.  It is frequently not legal in PIC relocation models.
2081   virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
2082
2083   bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
2084                             SDValue &Chain) const;
2085
2086   void softenSetCCOperands(SelectionDAG &DAG, EVT VT,
2087                            SDValue &NewLHS, SDValue &NewRHS,
2088                            ISD::CondCode &CCCode, SDLoc DL) const;
2089
2090   /// Returns a pair of (return value, chain).
2091   /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
2092   std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
2093                                           EVT RetVT, const SDValue *Ops,
2094                                           unsigned NumOps, bool isSigned,
2095                                           SDLoc dl, bool doesNotReturn = false,
2096                                           bool isReturnValueUsed = true) const;
2097
2098   //===--------------------------------------------------------------------===//
2099   // TargetLowering Optimization Methods
2100   //
2101
2102   /// A convenience struct that encapsulates a DAG, and two SDValues for
2103   /// returning information from TargetLowering to its clients that want to
2104   /// combine.
2105   struct TargetLoweringOpt {
2106     SelectionDAG &DAG;
2107     bool LegalTys;
2108     bool LegalOps;
2109     SDValue Old;
2110     SDValue New;
2111
2112     explicit TargetLoweringOpt(SelectionDAG &InDAG,
2113                                bool LT, bool LO) :
2114       DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
2115
2116     bool LegalTypes() const { return LegalTys; }
2117     bool LegalOperations() const { return LegalOps; }
2118
2119     bool CombineTo(SDValue O, SDValue N) {
2120       Old = O;
2121       New = N;
2122       return true;
2123     }
2124
2125     /// Check to see if the specified operand of the specified instruction is a
2126     /// constant integer.  If so, check to see if there are any bits set in the
2127     /// constant that are not demanded.  If so, shrink the constant and return
2128     /// true.
2129     bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
2130
2131     /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.  This
2132     /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
2133     /// generalized for targets with other types of implicit widening casts.
2134     bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
2135                           SDLoc dl);
2136   };
2137
2138   /// Look at Op.  At this point, we know that only the DemandedMask bits of the
2139   /// result of Op are ever used downstream.  If we can use this information to
2140   /// simplify Op, create a new simplified DAG node and return true, returning
2141   /// the original and new nodes in Old and New.  Otherwise, analyze the
2142   /// expression and return a mask of KnownOne and KnownZero bits for the
2143   /// expression (used to simplify the caller).  The KnownZero/One bits may only
2144   /// be accurate for those bits in the DemandedMask.
2145   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
2146                             APInt &KnownZero, APInt &KnownOne,
2147                             TargetLoweringOpt &TLO, unsigned Depth = 0) const;
2148
2149   /// Determine which of the bits specified in Mask are known to be either zero
2150   /// or one and return them in the KnownZero/KnownOne bitsets.
2151   virtual void computeKnownBitsForTargetNode(const SDValue Op,
2152                                              APInt &KnownZero,
2153                                              APInt &KnownOne,
2154                                              const SelectionDAG &DAG,
2155                                              unsigned Depth = 0) const;
2156
2157   /// This method can be implemented by targets that want to expose additional
2158   /// information about sign bits to the DAG Combiner.
2159   virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
2160                                                    const SelectionDAG &DAG,
2161                                                    unsigned Depth = 0) const;
2162
2163   struct DAGCombinerInfo {
2164     void *DC;  // The DAG Combiner object.
2165     CombineLevel Level;
2166     bool CalledByLegalizer;
2167   public:
2168     SelectionDAG &DAG;
2169
2170     DAGCombinerInfo(SelectionDAG &dag, CombineLevel level,  bool cl, void *dc)
2171       : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
2172
2173     bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
2174     bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
2175     bool isAfterLegalizeVectorOps() const {
2176       return Level == AfterLegalizeDAG;
2177     }
2178     CombineLevel getDAGCombineLevel() { return Level; }
2179     bool isCalledByLegalizer() const { return CalledByLegalizer; }
2180
2181     void AddToWorklist(SDNode *N);
2182     void RemoveFromWorklist(SDNode *N);
2183     SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true);
2184     SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
2185     SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
2186
2187     void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
2188   };
2189
2190   /// Return if the N is a constant or constant vector equal to the true value
2191   /// from getBooleanContents().
2192   bool isConstTrueVal(const SDNode *N) const;
2193
2194   /// Return if the N is a constant or constant vector equal to the false value
2195   /// from getBooleanContents().
2196   bool isConstFalseVal(const SDNode *N) const;
2197
2198   /// Try to simplify a setcc built with the specified operands and cc. If it is
2199   /// unable to simplify it, return a null SDValue.
2200   SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
2201                           ISD::CondCode Cond, bool foldBooleans,
2202                           DAGCombinerInfo &DCI, SDLoc dl) const;
2203
2204   /// Returns true (and the GlobalValue and the offset) if the node is a
2205   /// GlobalAddress + offset.
2206   virtual bool
2207   isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
2208
2209   /// This method will be invoked for all target nodes and for any
2210   /// target-independent nodes that the target has registered with invoke it
2211   /// for.
2212   ///
2213   /// The semantics are as follows:
2214   /// Return Value:
2215   ///   SDValue.Val == 0   - No change was made
2216   ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
2217   ///   otherwise          - N should be replaced by the returned Operand.
2218   ///
2219   /// In addition, methods provided by DAGCombinerInfo may be used to perform
2220   /// more complex transformations.
2221   ///
2222   virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
2223
2224   /// Return true if it is profitable to move a following shift through this
2225   //  node, adjusting any immediate operands as necessary to preserve semantics.
2226   //  This transformation may not be desirable if it disrupts a particularly
2227   //  auspicious target-specific tree (e.g. bitfield extraction in AArch64).
2228   //  By default, it returns true.
2229   virtual bool isDesirableToCommuteWithShift(const SDNode *N /*Op*/) const {
2230     return true;
2231   }
2232
2233   /// Return true if the target has native support for the specified value type
2234   /// and it is 'desirable' to use the type for the given node type. e.g. On x86
2235   /// i16 is legal, but undesirable since i16 instruction encodings are longer
2236   /// and some i16 instructions are slow.
2237   virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
2238     // By default, assume all legal types are desirable.
2239     return isTypeLegal(VT);
2240   }
2241
2242   /// Return true if it is profitable for dag combiner to transform a floating
2243   /// point op of specified opcode to a equivalent op of an integer
2244   /// type. e.g. f32 load -> i32 load can be profitable on ARM.
2245   virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
2246                                                  EVT /*VT*/) const {
2247     return false;
2248   }
2249
2250   /// This method query the target whether it is beneficial for dag combiner to
2251   /// promote the specified node. If true, it should return the desired
2252   /// promotion type by reference.
2253   virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
2254     return false;
2255   }
2256
2257   //===--------------------------------------------------------------------===//
2258   // Lowering methods - These methods must be implemented by targets so that
2259   // the SelectionDAGBuilder code knows how to lower these.
2260   //
2261
2262   /// This hook must be implemented to lower the incoming (formal) arguments,
2263   /// described by the Ins array, into the specified DAG. The implementation
2264   /// should fill in the InVals array with legal-type argument values, and
2265   /// return the resulting token chain value.
2266   ///
2267   virtual SDValue
2268     LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
2269                          bool /*isVarArg*/,
2270                          const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
2271                          SDLoc /*dl*/, SelectionDAG &/*DAG*/,
2272                          SmallVectorImpl<SDValue> &/*InVals*/) const {
2273     llvm_unreachable("Not Implemented");
2274   }
2275
2276   struct ArgListEntry {
2277     SDValue Node;
2278     Type* Ty;
2279     bool isSExt     : 1;
2280     bool isZExt     : 1;
2281     bool isInReg    : 1;
2282     bool isSRet     : 1;
2283     bool isNest     : 1;
2284     bool isByVal    : 1;
2285     bool isInAlloca : 1;
2286     bool isReturned : 1;
2287     uint16_t Alignment;
2288
2289     ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
2290       isSRet(false), isNest(false), isByVal(false), isInAlloca(false),
2291       isReturned(false), Alignment(0) { }
2292
2293     void setAttributes(ImmutableCallSite *CS, unsigned AttrIdx);
2294   };
2295   typedef std::vector<ArgListEntry> ArgListTy;
2296
2297   /// This structure contains all information that is necessary for lowering
2298   /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
2299   /// needs to lower a call, and targets will see this struct in their LowerCall
2300   /// implementation.
2301   struct CallLoweringInfo {
2302     SDValue Chain;
2303     Type *RetTy;
2304     bool RetSExt           : 1;
2305     bool RetZExt           : 1;
2306     bool IsVarArg          : 1;
2307     bool IsInReg           : 1;
2308     bool DoesNotReturn     : 1;
2309     bool IsReturnValueUsed : 1;
2310
2311     // IsTailCall should be modified by implementations of
2312     // TargetLowering::LowerCall that perform tail call conversions.
2313     bool IsTailCall;
2314
2315     unsigned NumFixedArgs;
2316     CallingConv::ID CallConv;
2317     SDValue Callee;
2318     ArgListTy Args;
2319     SelectionDAG &DAG;
2320     SDLoc DL;
2321     ImmutableCallSite *CS;
2322     bool IsPatchPoint;
2323     SmallVector<ISD::OutputArg, 32> Outs;
2324     SmallVector<SDValue, 32> OutVals;
2325     SmallVector<ISD::InputArg, 32> Ins;
2326
2327     CallLoweringInfo(SelectionDAG &DAG)
2328       : RetTy(nullptr), RetSExt(false), RetZExt(false), IsVarArg(false),
2329         IsInReg(false), DoesNotReturn(false), IsReturnValueUsed(true),
2330         IsTailCall(false), NumFixedArgs(-1), CallConv(CallingConv::C),
2331         DAG(DAG), CS(nullptr), IsPatchPoint(false) {}
2332
2333     CallLoweringInfo &setDebugLoc(SDLoc dl) {
2334       DL = dl;
2335       return *this;
2336     }
2337
2338     CallLoweringInfo &setChain(SDValue InChain) {
2339       Chain = InChain;
2340       return *this;
2341     }
2342
2343     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType,
2344                                 SDValue Target, ArgListTy &&ArgsList,
2345                                 unsigned FixedArgs = -1) {
2346       RetTy = ResultType;
2347       Callee = Target;
2348       CallConv = CC;
2349       NumFixedArgs =
2350         (FixedArgs == static_cast<unsigned>(-1) ? Args.size() : FixedArgs);
2351       Args = std::move(ArgsList);
2352       return *this;
2353     }
2354
2355     CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy,
2356                                 SDValue Target, ArgListTy &&ArgsList,
2357                                 ImmutableCallSite &Call) {
2358       RetTy = ResultType;
2359
2360       IsInReg = Call.paramHasAttr(0, Attribute::InReg);
2361       DoesNotReturn = Call.doesNotReturn();
2362       IsVarArg = FTy->isVarArg();
2363       IsReturnValueUsed = !Call.getInstruction()->use_empty();
2364       RetSExt = Call.paramHasAttr(0, Attribute::SExt);
2365       RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
2366
2367       Callee = Target;
2368
2369       CallConv = Call.getCallingConv();
2370       NumFixedArgs = FTy->getNumParams();
2371       Args = std::move(ArgsList);
2372
2373       CS = &Call;
2374
2375       return *this;
2376     }
2377
2378     CallLoweringInfo &setInRegister(bool Value = true) {
2379       IsInReg = Value;
2380       return *this;
2381     }
2382
2383     CallLoweringInfo &setNoReturn(bool Value = true) {
2384       DoesNotReturn = Value;
2385       return *this;
2386     }
2387
2388     CallLoweringInfo &setVarArg(bool Value = true) {
2389       IsVarArg = Value;
2390       return *this;
2391     }
2392
2393     CallLoweringInfo &setTailCall(bool Value = true) {
2394       IsTailCall = Value;
2395       return *this;
2396     }
2397
2398     CallLoweringInfo &setDiscardResult(bool Value = true) {
2399       IsReturnValueUsed = !Value;
2400       return *this;
2401     }
2402
2403     CallLoweringInfo &setSExtResult(bool Value = true) {
2404       RetSExt = Value;
2405       return *this;
2406     }
2407
2408     CallLoweringInfo &setZExtResult(bool Value = true) {
2409       RetZExt = Value;
2410       return *this;
2411     }
2412
2413     CallLoweringInfo &setIsPatchPoint(bool Value = true) {
2414       IsPatchPoint = Value;
2415       return *this;
2416     }
2417
2418     ArgListTy &getArgs() {
2419       return Args;
2420     }
2421
2422   };
2423
2424   /// This function lowers an abstract call to a function into an actual call.
2425   /// This returns a pair of operands.  The first element is the return value
2426   /// for the function (if RetTy is not VoidTy).  The second element is the
2427   /// outgoing token chain. It calls LowerCall to do the actual lowering.
2428   std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
2429
2430   /// This hook must be implemented to lower calls into the specified
2431   /// DAG. The outgoing arguments to the call are described by the Outs array,
2432   /// and the values to be returned by the call are described by the Ins
2433   /// array. The implementation should fill in the InVals array with legal-type
2434   /// return values from the call, and return the resulting token chain value.
2435   virtual SDValue
2436     LowerCall(CallLoweringInfo &/*CLI*/,
2437               SmallVectorImpl<SDValue> &/*InVals*/) const {
2438     llvm_unreachable("Not Implemented");
2439   }
2440
2441   /// Target-specific cleanup for formal ByVal parameters.
2442   virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
2443
2444   /// This hook should be implemented to check whether the return values
2445   /// described by the Outs array can fit into the return registers.  If false
2446   /// is returned, an sret-demotion is performed.
2447   virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
2448                               MachineFunction &/*MF*/, bool /*isVarArg*/,
2449                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
2450                LLVMContext &/*Context*/) const
2451   {
2452     // Return true by default to get preexisting behavior.
2453     return true;
2454   }
2455
2456   /// This hook must be implemented to lower outgoing return values, described
2457   /// by the Outs array, into the specified DAG. The implementation should
2458   /// return the resulting token chain value.
2459   virtual SDValue
2460     LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
2461                 bool /*isVarArg*/,
2462                 const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
2463                 const SmallVectorImpl<SDValue> &/*OutVals*/,
2464                 SDLoc /*dl*/, SelectionDAG &/*DAG*/) const {
2465     llvm_unreachable("Not Implemented");
2466   }
2467
2468   /// Return true if result of the specified node is used by a return node
2469   /// only. It also compute and return the input chain for the tail call.
2470   ///
2471   /// This is used to determine whether it is possible to codegen a libcall as
2472   /// tail call at legalization time.
2473   virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
2474     return false;
2475   }
2476
2477   /// Return true if the target may be able emit the call instruction as a tail
2478   /// call. This is used by optimization passes to determine if it's profitable
2479   /// to duplicate return instructions to enable tailcall optimization.
2480   virtual bool mayBeEmittedAsTailCall(CallInst *) const {
2481     return false;
2482   }
2483
2484   /// Return the builtin name for the __builtin___clear_cache intrinsic
2485   /// Default is to invoke the clear cache library call
2486   virtual const char * getClearCacheBuiltinName() const {
2487     return "__clear_cache";
2488   }
2489
2490   /// Return the register ID of the name passed in. Used by named register
2491   /// global variables extension. There is no target-independent behaviour
2492   /// so the default action is to bail.
2493   virtual unsigned getRegisterByName(const char* RegName, EVT VT,
2494                                      SelectionDAG &DAG) const {
2495     report_fatal_error("Named registers not implemented for this target");
2496   }
2497
2498   /// Return the type that should be used to zero or sign extend a
2499   /// zeroext/signext integer argument or return value.  FIXME: Most C calling
2500   /// convention requires the return type to be promoted, but this is not true
2501   /// all the time, e.g. i1 on x86-64. It is also not necessary for non-C
2502   /// calling conventions. The frontend should handle this and include all of
2503   /// the necessary information.
2504   virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
2505                                        ISD::NodeType /*ExtendKind*/) const {
2506     EVT MinVT = getRegisterType(Context, MVT::i32);
2507     return VT.bitsLT(MinVT) ? MinVT : VT;
2508   }
2509
2510   /// For some targets, an LLVM struct type must be broken down into multiple
2511   /// simple types, but the calling convention specifies that the entire struct
2512   /// must be passed in a block of consecutive registers.
2513   virtual bool
2514   functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv,
2515                                             bool isVarArg) const {
2516     return false;
2517   }
2518
2519   /// Returns a 0 terminated array of registers that can be safely used as
2520   /// scratch registers.
2521   virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const {
2522     return nullptr;
2523   }
2524
2525   /// This callback is used to prepare for a volatile or atomic load.
2526   /// It takes a chain node as input and returns the chain for the load itself.
2527   ///
2528   /// Having a callback like this is necessary for targets like SystemZ,
2529   /// which allows a CPU to reuse the result of a previous load indefinitely,
2530   /// even if a cache-coherent store is performed by another CPU.  The default
2531   /// implementation does nothing.
2532   virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL,
2533                                               SelectionDAG &DAG) const {
2534     return Chain;
2535   }
2536
2537   /// This callback is invoked by the type legalizer to legalize nodes with an
2538   /// illegal operand type but legal result types.  It replaces the
2539   /// LowerOperation callback in the type Legalizer.  The reason we can not do
2540   /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
2541   /// use this callback.
2542   ///
2543   /// TODO: Consider merging with ReplaceNodeResults.
2544   ///
2545   /// The target places new result values for the node in Results (their number
2546   /// and types must exactly match those of the original return values of
2547   /// the node), or leaves Results empty, which indicates that the node is not
2548   /// to be custom lowered after all.
2549   /// The default implementation calls LowerOperation.
2550   virtual void LowerOperationWrapper(SDNode *N,
2551                                      SmallVectorImpl<SDValue> &Results,
2552                                      SelectionDAG &DAG) const;
2553
2554   /// This callback is invoked for operations that are unsupported by the
2555   /// target, which are registered to use 'custom' lowering, and whose defined
2556   /// values are all legal.  If the target has no operations that require custom
2557   /// lowering, it need not implement this.  The default implementation of this
2558   /// aborts.
2559   virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
2560
2561   /// This callback is invoked when a node result type is illegal for the
2562   /// target, and the operation was registered to use 'custom' lowering for that
2563   /// result type.  The target places new result values for the node in Results
2564   /// (their number and types must exactly match those of the original return
2565   /// values of the node), or leaves Results empty, which indicates that the
2566   /// node is not to be custom lowered after all.
2567   ///
2568   /// If the target has no operations that require custom lowering, it need not
2569   /// implement this.  The default implementation aborts.
2570   virtual void ReplaceNodeResults(SDNode * /*N*/,
2571                                   SmallVectorImpl<SDValue> &/*Results*/,
2572                                   SelectionDAG &/*DAG*/) const {
2573     llvm_unreachable("ReplaceNodeResults not implemented for this target!");
2574   }
2575
2576   /// This method returns the name of a target specific DAG node.
2577   virtual const char *getTargetNodeName(unsigned Opcode) const;
2578
2579   /// This method returns a target specific FastISel object, or null if the
2580   /// target does not support "fast" ISel.
2581   virtual FastISel *createFastISel(FunctionLoweringInfo &,
2582                                    const TargetLibraryInfo *) const {
2583     return nullptr;
2584   }
2585
2586
2587   bool verifyReturnAddressArgumentIsConstant(SDValue Op,
2588                                              SelectionDAG &DAG) const;
2589
2590   //===--------------------------------------------------------------------===//
2591   // Inline Asm Support hooks
2592   //
2593
2594   /// This hook allows the target to expand an inline asm call to be explicit
2595   /// llvm code if it wants to.  This is useful for turning simple inline asms
2596   /// into LLVM intrinsics, which gives the compiler more information about the
2597   /// behavior of the code.
2598   virtual bool ExpandInlineAsm(CallInst *) const {
2599     return false;
2600   }
2601
2602   enum ConstraintType {
2603     C_Register,            // Constraint represents specific register(s).
2604     C_RegisterClass,       // Constraint represents any of register(s) in class.
2605     C_Memory,              // Memory constraint.
2606     C_Other,               // Something else.
2607     C_Unknown              // Unsupported constraint.
2608   };
2609
2610   enum ConstraintWeight {
2611     // Generic weights.
2612     CW_Invalid  = -1,     // No match.
2613     CW_Okay     = 0,      // Acceptable.
2614     CW_Good     = 1,      // Good weight.
2615     CW_Better   = 2,      // Better weight.
2616     CW_Best     = 3,      // Best weight.
2617
2618     // Well-known weights.
2619     CW_SpecificReg  = CW_Okay,    // Specific register operands.
2620     CW_Register     = CW_Good,    // Register operands.
2621     CW_Memory       = CW_Better,  // Memory operands.
2622     CW_Constant     = CW_Best,    // Constant operand.
2623     CW_Default      = CW_Okay     // Default or don't know type.
2624   };
2625
2626   /// This contains information for each constraint that we are lowering.
2627   struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
2628     /// This contains the actual string for the code, like "m".  TargetLowering
2629     /// picks the 'best' code from ConstraintInfo::Codes that most closely
2630     /// matches the operand.
2631     std::string ConstraintCode;
2632
2633     /// Information about the constraint code, e.g. Register, RegisterClass,
2634     /// Memory, Other, Unknown.
2635     TargetLowering::ConstraintType ConstraintType;
2636
2637     /// If this is the result output operand or a clobber, this is null,
2638     /// otherwise it is the incoming operand to the CallInst.  This gets
2639     /// modified as the asm is processed.
2640     Value *CallOperandVal;
2641
2642     /// The ValueType for the operand value.
2643     MVT ConstraintVT;
2644
2645     /// Return true of this is an input operand that is a matching constraint
2646     /// like "4".
2647     bool isMatchingInputConstraint() const;
2648
2649     /// If this is an input matching constraint, this method returns the output
2650     /// operand it matches.
2651     unsigned getMatchedOperand() const;
2652
2653     /// Copy constructor for copying from a ConstraintInfo.
2654     AsmOperandInfo(InlineAsm::ConstraintInfo Info)
2655         : InlineAsm::ConstraintInfo(std::move(Info)),
2656           ConstraintType(TargetLowering::C_Unknown), CallOperandVal(nullptr),
2657           ConstraintVT(MVT::Other) {}
2658   };
2659
2660   typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
2661
2662   /// Split up the constraint string from the inline assembly value into the
2663   /// specific constraints and their prefixes, and also tie in the associated
2664   /// operand values.  If this returns an empty vector, and if the constraint
2665   /// string itself isn't empty, there was an error parsing.
2666   virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL,
2667                                                 const TargetRegisterInfo *TRI,
2668                                                 ImmutableCallSite CS) const;
2669
2670   /// Examine constraint type and operand type and determine a weight value.
2671   /// The operand object must already have been set up with the operand type.
2672   virtual ConstraintWeight getMultipleConstraintMatchWeight(
2673       AsmOperandInfo &info, int maIndex) const;
2674
2675   /// Examine constraint string and operand type and determine a weight value.
2676   /// The operand object must already have been set up with the operand type.
2677   virtual ConstraintWeight getSingleConstraintMatchWeight(
2678       AsmOperandInfo &info, const char *constraint) const;
2679
2680   /// Determines the constraint code and constraint type to use for the specific
2681   /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
2682   /// If the actual operand being passed in is available, it can be passed in as
2683   /// Op, otherwise an empty SDValue can be passed.
2684   virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2685                                       SDValue Op,
2686                                       SelectionDAG *DAG = nullptr) const;
2687
2688   /// Given a constraint, return the type of constraint it is for this target.
2689   virtual ConstraintType getConstraintType(StringRef Constraint) const;
2690
2691   /// Given a physical register constraint (e.g.  {edx}), return the register
2692   /// number and the register class for the register.
2693   ///
2694   /// Given a register class constraint, like 'r', if this corresponds directly
2695   /// to an LLVM register class, return a register of 0 and the register class
2696   /// pointer.
2697   ///
2698   /// This should only be used for C_Register constraints.  On error, this
2699   /// returns a register number of 0 and a null register class pointer.
2700   virtual std::pair<unsigned, const TargetRegisterClass *>
2701   getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
2702                                StringRef Constraint, MVT VT) const;
2703
2704   virtual unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const {
2705     if (ConstraintCode == "i")
2706       return InlineAsm::Constraint_i;
2707     else if (ConstraintCode == "m")
2708       return InlineAsm::Constraint_m;
2709     return InlineAsm::Constraint_Unknown;
2710   }
2711
2712   /// Try to replace an X constraint, which matches anything, with another that
2713   /// has more specific requirements based on the type of the corresponding
2714   /// operand.  This returns null if there is no replacement to make.
2715   virtual const char *LowerXConstraint(EVT ConstraintVT) const;
2716
2717   /// Lower the specified operand into the Ops vector.  If it is invalid, don't
2718   /// add anything to Ops.
2719   virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
2720                                             std::vector<SDValue> &Ops,
2721                                             SelectionDAG &DAG) const;
2722
2723   //===--------------------------------------------------------------------===//
2724   // Div utility functions
2725   //
2726   SDValue BuildSDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
2727                     bool IsAfterLegalization,
2728                     std::vector<SDNode *> *Created) const;
2729   SDValue BuildUDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
2730                     bool IsAfterLegalization,
2731                     std::vector<SDNode *> *Created) const;
2732
2733   /// Targets may override this function to provide custom SDIV lowering for
2734   /// power-of-2 denominators.  If the target returns an empty SDValue, LLVM
2735   /// assumes SDIV is expensive and replaces it with a series of other integer
2736   /// operations.
2737   virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
2738                                 SelectionDAG &DAG,
2739                                 std::vector<SDNode *> *Created) const;
2740
2741   /// Indicate whether this target prefers to combine FDIVs with the same
2742   /// divisor. If the transform should never be done, return zero. If the
2743   /// transform should be done, return the minimum number of divisor uses
2744   /// that must exist.
2745   virtual unsigned combineRepeatedFPDivisors() const {
2746     return 0;
2747   }
2748
2749   /// Hooks for building estimates in place of slower divisions and square
2750   /// roots.
2751
2752   /// Return a reciprocal square root estimate value for the input operand.
2753   /// The RefinementSteps output is the number of Newton-Raphson refinement
2754   /// iterations required to generate a sufficient (though not necessarily
2755   /// IEEE-754 compliant) estimate for the value type.
2756   /// The boolean UseOneConstNR output is used to select a Newton-Raphson
2757   /// algorithm implementation that uses one constant or two constants.
2758   /// A target may choose to implement its own refinement within this function.
2759   /// If that's true, then return '0' as the number of RefinementSteps to avoid
2760   /// any further refinement of the estimate.
2761   /// An empty SDValue return means no estimate sequence can be created.
2762   virtual SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI,
2763                                    unsigned &RefinementSteps,
2764                                    bool &UseOneConstNR) const {
2765     return SDValue();
2766   }
2767
2768   /// Return a reciprocal estimate value for the input operand.
2769   /// The RefinementSteps output is the number of Newton-Raphson refinement
2770   /// iterations required to generate a sufficient (though not necessarily
2771   /// IEEE-754 compliant) estimate for the value type.
2772   /// A target may choose to implement its own refinement within this function.
2773   /// If that's true, then return '0' as the number of RefinementSteps to avoid
2774   /// any further refinement of the estimate.
2775   /// An empty SDValue return means no estimate sequence can be created.
2776   virtual SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI,
2777                                    unsigned &RefinementSteps) const {
2778     return SDValue();
2779   }
2780
2781   //===--------------------------------------------------------------------===//
2782   // Legalization utility functions
2783   //
2784
2785   /// Expand a MUL into two nodes.  One that computes the high bits of
2786   /// the result and one that computes the low bits.
2787   /// \param HiLoVT The value type to use for the Lo and Hi nodes.
2788   /// \param LL Low bits of the LHS of the MUL.  You can use this parameter
2789   ///        if you want to control how low bits are extracted from the LHS.
2790   /// \param LH High bits of the LHS of the MUL.  See LL for meaning.
2791   /// \param RL Low bits of the RHS of the MUL.  See LL for meaning
2792   /// \param RH High bits of the RHS of the MUL.  See LL for meaning.
2793   /// \returns true if the node has been expanded. false if it has not
2794   bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
2795                  SelectionDAG &DAG, SDValue LL = SDValue(),
2796                  SDValue LH = SDValue(), SDValue RL = SDValue(),
2797                  SDValue RH = SDValue()) const;
2798
2799   /// Expand float(f32) to SINT(i64) conversion
2800   /// \param N Node to expand
2801   /// \param Result output after conversion
2802   /// \returns True, if the expansion was successful, false otherwise
2803   bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
2804
2805   //===--------------------------------------------------------------------===//
2806   // Instruction Emitting Hooks
2807   //
2808
2809   /// This method should be implemented by targets that mark instructions with
2810   /// the 'usesCustomInserter' flag.  These instructions are special in various
2811   /// ways, which require special support to insert.  The specified MachineInstr
2812   /// is created but not inserted into any basic blocks, and this method is
2813   /// called to expand it into a sequence of instructions, potentially also
2814   /// creating new basic blocks and control flow.
2815   /// As long as the returned basic block is different (i.e., we created a new
2816   /// one), the custom inserter is free to modify the rest of \p MBB.
2817   virtual MachineBasicBlock *
2818     EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
2819
2820   /// This method should be implemented by targets that mark instructions with
2821   /// the 'hasPostISelHook' flag. These instructions must be adjusted after
2822   /// instruction selection by target hooks.  e.g. To fill in optional defs for
2823   /// ARM 's' setting instructions.
2824   virtual void
2825   AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
2826
2827   /// If this function returns true, SelectionDAGBuilder emits a
2828   /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
2829   virtual bool useLoadStackGuardNode() const {
2830     return false;
2831   }
2832
2833   /// Lower TLS global address SDNode for target independent emulated TLS model.
2834   virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
2835                                           SelectionDAG &DAG) const;
2836 };
2837
2838 /// Given an LLVM IR type and return type attributes, compute the return value
2839 /// EVTs and flags, and optionally also the offsets, if the return value is
2840 /// being lowered to memory.
2841 void GetReturnInfo(Type *ReturnType, AttributeSet attr,
2842                    SmallVectorImpl<ISD::OutputArg> &Outs,
2843                    const TargetLowering &TLI, const DataLayout &DL);
2844
2845 } // end llvm namespace
2846
2847 #endif