1baf82ee5c453babb8fabc6fd6098990752ce993
[oota-llvm.git] / include / llvm / MC / MCInstrDesc.h
1 //===-- llvm/MC/MCInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MCOperandInfo and MCInstrDesc classes, which
11 // are used to describe target instructions and their operands.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_MC_MCINSTRDESC_H
16 #define LLVM_MC_MCINSTRDESC_H
17
18 #include "llvm/Support/DataTypes.h"
19 #include <string>
20
21 namespace llvm {
22   class MCInst;
23   class MCRegisterInfo;
24   class MCSubtargetInfo;
25   class FeatureBitset;
26
27 //===----------------------------------------------------------------------===//
28 // Machine Operand Flags and Description
29 //===----------------------------------------------------------------------===//
30
31 namespace MCOI {
32 // Operand constraints
33 enum OperandConstraint {
34   TIED_TO = 0,  // Must be allocated the same register as.
35   EARLY_CLOBBER // Operand is an early clobber register operand
36 };
37
38 /// \brief These are flags set on operands, but should be considered
39 /// private, all access should go through the MCOperandInfo accessors.
40 /// See the accessors for a description of what these are.
41 enum OperandFlags { LookupPtrRegClass = 0, Predicate, OptionalDef };
42
43 /// \brief Operands are tagged with one of the values of this enum.
44 enum OperandType {
45   OPERAND_UNKNOWN = 0,
46   OPERAND_IMMEDIATE = 1,
47   OPERAND_REGISTER = 2,
48   OPERAND_MEMORY = 3,
49   OPERAND_PCREL = 4,
50   OPERAND_FIRST_TARGET = 5
51 };
52 }
53
54 /// \brief This holds information about one operand of a machine instruction,
55 /// indicating the register class for register operands, etc.
56 class MCOperandInfo {
57 public:
58   /// \brief This specifies the register class enumeration of the operand
59   /// if the operand is a register.  If isLookupPtrRegClass is set, then this is
60   /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
61   /// get a dynamic register class.
62   int16_t RegClass;
63
64   /// \brief These are flags from the MCOI::OperandFlags enum.
65   uint8_t Flags;
66
67   /// \brief Information about the type of the operand.
68   uint8_t OperandType;
69   /// \brief The lower 16 bits are used to specify which constraints are set.
70   /// The higher 16 bits are used to specify the value of constraints (4 bits
71   /// each).
72   uint32_t Constraints;
73
74   /// \brief Set if this operand is a pointer value and it requires a callback
75   /// to look up its register class.
76   bool isLookupPtrRegClass() const {
77     return Flags & (1 << MCOI::LookupPtrRegClass);
78   }
79
80   /// \brief Set if this is one of the operands that made up of the predicate
81   /// operand that controls an isPredicable() instruction.
82   bool isPredicate() const { return Flags & (1 << MCOI::Predicate); }
83
84   /// \brief Set if this operand is a optional def.
85   bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); }
86 };
87
88 //===----------------------------------------------------------------------===//
89 // Machine Instruction Flags and Description
90 //===----------------------------------------------------------------------===//
91
92 namespace MCID {
93 /// \brief These should be considered private to the implementation of the
94 /// MCInstrDesc class.  Clients should use the predicate methods on MCInstrDesc,
95 /// not use these directly.  These all correspond to bitfields in the
96 /// MCInstrDesc::Flags field.
97 enum Flag {
98   Variadic = 0,
99   HasOptionalDef,
100   Pseudo,
101   Return,
102   Call,
103   Barrier,
104   Terminator,
105   Branch,
106   IndirectBranch,
107   Compare,
108   MoveImm,
109   Bitcast,
110   Select,
111   DelaySlot,
112   FoldableAsLoad,
113   MayLoad,
114   MayStore,
115   Predicable,
116   NotDuplicable,
117   UnmodeledSideEffects,
118   Commutable,
119   ConvertibleTo3Addr,
120   UsesCustomInserter,
121   HasPostISelHook,
122   Rematerializable,
123   CheapAsAMove,
124   ExtraSrcRegAllocReq,
125   ExtraDefRegAllocReq,
126   RegSequence,
127   ExtractSubreg,
128   InsertSubreg,
129   Convergent
130 };
131 }
132
133 /// \brief Describe properties that are true of each instruction in the target
134 /// description file.  This captures information about side effects, register
135 /// use and many other things.  There is one instance of this struct for each
136 /// target instruction class, and the MachineInstr class points to this struct
137 /// directly to describe itself.
138 class MCInstrDesc {
139 public:
140   unsigned short Opcode;        // The opcode number
141   unsigned short NumOperands;   // Num of args (may be more if variable_ops)
142   unsigned char NumDefs;        // Num of args that are definitions
143   unsigned char Size;           // Number of bytes in encoding.
144   unsigned short SchedClass;    // enum identifying instr sched class
145   uint64_t Flags;               // Flags identifying machine instr class
146   uint64_t TSFlags;             // Target Specific Flag values
147   const uint16_t *ImplicitUses; // Registers implicitly read by this instr
148   const uint16_t *ImplicitDefs; // Registers implicitly defined by this instr
149   const MCOperandInfo *OpInfo;  // 'NumOperands' entries about operands
150   // Subtarget feature that this is deprecated on, if any
151   // -1 implies this is not deprecated by any single feature. It may still be 
152   // deprecated due to a "complex" reason, below.
153   int64_t DeprecatedFeature;
154
155   // A complex method to determine is a certain is deprecated or not, and return
156   // the reason for deprecation.
157   bool (*ComplexDeprecationInfo)(MCInst &, const MCSubtargetInfo &,
158                                  std::string &);
159
160   /// \brief Returns the value of the specific constraint if
161   /// it is set. Returns -1 if it is not set.
162   int getOperandConstraint(unsigned OpNum,
163                            MCOI::OperandConstraint Constraint) const {
164     if (OpNum < NumOperands &&
165         (OpInfo[OpNum].Constraints & (1 << Constraint))) {
166       unsigned Pos = 16 + Constraint * 4;
167       return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
168     }
169     return -1;
170   }
171
172   /// \brief Returns true if a certain instruction is deprecated and if so
173   /// returns the reason in \p Info.
174   bool getDeprecatedInfo(MCInst &MI, const MCSubtargetInfo &STI,
175                          std::string &Info) const;
176
177   /// \brief Return the opcode number for this descriptor.
178   unsigned getOpcode() const { return Opcode; }
179
180   /// \brief Return the number of declared MachineOperands for this
181   /// MachineInstruction.  Note that variadic (isVariadic() returns true)
182   /// instructions may have additional operands at the end of the list, and note
183   /// that the machine instruction may include implicit register def/uses as
184   /// well.
185   unsigned getNumOperands() const { return NumOperands; }
186
187   /// \brief Return the number of MachineOperands that are register
188   /// definitions.  Register definitions always occur at the start of the
189   /// machine operand list.  This is the number of "outs" in the .td file,
190   /// and does not include implicit defs.
191   unsigned getNumDefs() const { return NumDefs; }
192
193   /// \brief Return flags of this instruction.
194   unsigned getFlags() const { return Flags; }
195
196   /// \brief Return true if this instruction can have a variable number of
197   /// operands.  In this case, the variable operands will be after the normal
198   /// operands but before the implicit definitions and uses (if any are
199   /// present).
200   bool isVariadic() const { return Flags & (1 << MCID::Variadic); }
201
202   /// \brief Set if this instruction has an optional definition, e.g.
203   /// ARM instructions which can set condition code if 's' bit is set.
204   bool hasOptionalDef() const { return Flags & (1 << MCID::HasOptionalDef); }
205
206   /// \brief Return true if this is a pseudo instruction that doesn't
207   /// correspond to a real machine instruction.
208   bool isPseudo() const { return Flags & (1 << MCID::Pseudo); }
209
210   /// \brief Return true if the instruction is a return.
211   bool isReturn() const { return Flags & (1 << MCID::Return); }
212
213   /// \brief  Return true if the instruction is a call.
214   bool isCall() const { return Flags & (1 << MCID::Call); }
215
216   /// \brief Returns true if the specified instruction stops control flow
217   /// from executing the instruction immediately following it.  Examples include
218   /// unconditional branches and return instructions.
219   bool isBarrier() const { return Flags & (1 << MCID::Barrier); }
220
221   /// \brief Returns true if this instruction part of the terminator for
222   /// a basic block.  Typically this is things like return and branch
223   /// instructions.
224   ///
225   /// Various passes use this to insert code into the bottom of a basic block,
226   /// but before control flow occurs.
227   bool isTerminator() const { return Flags & (1 << MCID::Terminator); }
228
229   /// \brief Returns true if this is a conditional, unconditional, or
230   /// indirect branch.  Predicates below can be used to discriminate between
231   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
232   /// get more information.
233   bool isBranch() const { return Flags & (1 << MCID::Branch); }
234
235   /// \brief Return true if this is an indirect branch, such as a
236   /// branch through a register.
237   bool isIndirectBranch() const { return Flags & (1 << MCID::IndirectBranch); }
238
239   /// \brief Return true if this is a branch which may fall
240   /// through to the next instruction or may transfer control flow to some other
241   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
242   /// information about this branch.
243   bool isConditionalBranch() const {
244     return isBranch() & !isBarrier() & !isIndirectBranch();
245   }
246
247   /// \brief Return true if this is a branch which always
248   /// transfers control flow to some other block.  The
249   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
250   /// about this branch.
251   bool isUnconditionalBranch() const {
252     return isBranch() & isBarrier() & !isIndirectBranch();
253   }
254
255   /// \brief Return true if this is a branch or an instruction which directly
256   /// writes to the program counter. Considered 'may' affect rather than
257   /// 'does' affect as things like predication are not taken into account.
258   bool mayAffectControlFlow(const MCInst &MI, const MCRegisterInfo &RI) const;
259
260   /// \brief Return true if this instruction has a predicate operand
261   /// that controls execution. It may be set to 'always', or may be set to other
262   /// values. There are various methods in TargetInstrInfo that can be used to
263   /// control and modify the predicate in this instruction.
264   bool isPredicable() const { return Flags & (1 << MCID::Predicable); }
265
266   /// \brief Return true if this instruction is a comparison.
267   bool isCompare() const { return Flags & (1 << MCID::Compare); }
268
269   /// \brief Return true if this instruction is a move immediate
270   /// (including conditional moves) instruction.
271   bool isMoveImmediate() const { return Flags & (1 << MCID::MoveImm); }
272
273   /// \brief Return true if this instruction is a bitcast instruction.
274   bool isBitcast() const { return Flags & (1 << MCID::Bitcast); }
275
276   /// \brief Return true if this is a select instruction.
277   bool isSelect() const { return Flags & (1 << MCID::Select); }
278
279   /// \brief Return true if this instruction cannot be safely
280   /// duplicated.  For example, if the instruction has a unique labels attached
281   /// to it, duplicating it would cause multiple definition errors.
282   bool isNotDuplicable() const { return Flags & (1 << MCID::NotDuplicable); }
283
284   /// \brief Returns true if the specified instruction has a delay slot which
285   /// must be filled by the code generator.
286   bool hasDelaySlot() const { return Flags & (1 << MCID::DelaySlot); }
287
288   /// \brief Return true for instructions that can be folded as memory operands
289   /// in other instructions. The most common use for this is instructions that
290   /// are simple loads from memory that don't modify the loaded value in any
291   /// way, but it can also be used for instructions that can be expressed as
292   /// constant-pool loads, such as V_SETALLONES on x86, to allow them to be
293   /// folded when it is beneficial.  This should only be set on instructions
294   /// that return a value in their only virtual register definition.
295   bool canFoldAsLoad() const { return Flags & (1 << MCID::FoldableAsLoad); }
296
297   /// \brief Return true if this instruction behaves
298   /// the same way as the generic REG_SEQUENCE instructions.
299   /// E.g., on ARM,
300   /// dX VMOVDRR rY, rZ
301   /// is equivalent to
302   /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
303   ///
304   /// Note that for the optimizers to be able to take advantage of
305   /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
306   /// override accordingly.
307   bool isRegSequenceLike() const { return Flags & (1 << MCID::RegSequence); }
308
309   /// \brief Return true if this instruction behaves
310   /// the same way as the generic EXTRACT_SUBREG instructions.
311   /// E.g., on ARM,
312   /// rX, rY VMOVRRD dZ
313   /// is equivalent to two EXTRACT_SUBREG:
314   /// rX = EXTRACT_SUBREG dZ, ssub_0
315   /// rY = EXTRACT_SUBREG dZ, ssub_1
316   ///
317   /// Note that for the optimizers to be able to take advantage of
318   /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
319   /// override accordingly.
320   bool isExtractSubregLike() const {
321     return Flags & (1 << MCID::ExtractSubreg);
322   }
323
324   /// \brief Return true if this instruction behaves
325   /// the same way as the generic INSERT_SUBREG instructions.
326   /// E.g., on ARM,
327   /// dX = VSETLNi32 dY, rZ, Imm
328   /// is equivalent to a INSERT_SUBREG:
329   /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
330   ///
331   /// Note that for the optimizers to be able to take advantage of
332   /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
333   /// override accordingly.
334   bool isInsertSubregLike() const { return Flags & (1 << MCID::InsertSubreg); }
335
336
337   /// \brief Return true if this instruction is convergent.
338   ///
339   /// Convergent instructions may not be made control-dependent on any
340   /// additional values.
341   bool isConvergent() const { return Flags & (1 << MCID::Convergent); }
342
343   //===--------------------------------------------------------------------===//
344   // Side Effect Analysis
345   //===--------------------------------------------------------------------===//
346
347   /// \brief Return true if this instruction could possibly read memory.
348   /// Instructions with this flag set are not necessarily simple load
349   /// instructions, they may load a value and modify it, for example.
350   bool mayLoad() const { return Flags & (1 << MCID::MayLoad); }
351
352   /// \brief Return true if this instruction could possibly modify memory.
353   /// Instructions with this flag set are not necessarily simple store
354   /// instructions, they may store a modified value based on their operands, or
355   /// may not actually modify anything, for example.
356   bool mayStore() const { return Flags & (1 << MCID::MayStore); }
357
358   /// \brief Return true if this instruction has side
359   /// effects that are not modeled by other flags.  This does not return true
360   /// for instructions whose effects are captured by:
361   ///
362   ///  1. Their operand list and implicit definition/use list.  Register use/def
363   ///     info is explicit for instructions.
364   ///  2. Memory accesses.  Use mayLoad/mayStore.
365   ///  3. Calling, branching, returning: use isCall/isReturn/isBranch.
366   ///
367   /// Examples of side effects would be modifying 'invisible' machine state like
368   /// a control register, flushing a cache, modifying a register invisible to
369   /// LLVM, etc.
370   bool hasUnmodeledSideEffects() const {
371     return Flags & (1 << MCID::UnmodeledSideEffects);
372   }
373
374   //===--------------------------------------------------------------------===//
375   // Flags that indicate whether an instruction can be modified by a method.
376   //===--------------------------------------------------------------------===//
377
378   /// \brief Return true if this may be a 2- or 3-address instruction (of the
379   /// form "X = op Y, Z, ..."), which produces the same result if Y and Z are
380   /// exchanged.  If this flag is set, then the
381   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
382   /// instruction.
383   ///
384   /// Note that this flag may be set on instructions that are only commutable
385   /// sometimes.  In these cases, the call to commuteInstruction will fail.
386   /// Also note that some instructions require non-trivial modification to
387   /// commute them.
388   bool isCommutable() const { return Flags & (1 << MCID::Commutable); }
389
390   /// \brief Return true if this is a 2-address instruction which can be changed
391   /// into a 3-address instruction if needed.  Doing this transformation can be
392   /// profitable in the register allocator, because it means that the
393   /// instruction can use a 2-address form if possible, but degrade into a less
394   /// efficient form if the source and dest register cannot be assigned to the
395   /// same register.  For example, this allows the x86 backend to turn a "shl
396   /// reg, 3" instruction into an LEA instruction, which is the same speed as
397   /// the shift but has bigger code size.
398   ///
399   /// If this returns true, then the target must implement the
400   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
401   /// is allowed to fail if the transformation isn't valid for this specific
402   /// instruction (e.g. shl reg, 4 on x86).
403   ///
404   bool isConvertibleTo3Addr() const {
405     return Flags & (1 << MCID::ConvertibleTo3Addr);
406   }
407
408   /// \brief Return true if this instruction requires custom insertion support
409   /// when the DAG scheduler is inserting it into a machine basic block.  If
410   /// this is true for the instruction, it basically means that it is a pseudo
411   /// instruction used at SelectionDAG time that is expanded out into magic code
412   /// by the target when MachineInstrs are formed.
413   ///
414   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
415   /// is used to insert this into the MachineBasicBlock.
416   bool usesCustomInsertionHook() const {
417     return Flags & (1 << MCID::UsesCustomInserter);
418   }
419
420   /// \brief Return true if this instruction requires *adjustment* after
421   /// instruction selection by calling a target hook. For example, this can be
422   /// used to fill in ARM 's' optional operand depending on whether the
423   /// conditional flag register is used.
424   bool hasPostISelHook() const { return Flags & (1 << MCID::HasPostISelHook); }
425
426   /// \brief Returns true if this instruction is a candidate for remat. This
427   /// flag is only used in TargetInstrInfo method isTriviallyRematerializable.
428   ///
429   /// If this flag is set, the isReallyTriviallyReMaterializable()
430   /// or isReallyTriviallyReMaterializableGeneric methods are called to verify
431   /// the instruction is really rematable.
432   bool isRematerializable() const {
433     return Flags & (1 << MCID::Rematerializable);
434   }
435
436   /// \brief Returns true if this instruction has the same cost (or less) than a
437   /// move instruction. This is useful during certain types of optimizations
438   /// (e.g., remat during two-address conversion or machine licm) where we would
439   /// like to remat or hoist the instruction, but not if it costs more than
440   /// moving the instruction into the appropriate register. Note, we are not
441   /// marking copies from and to the same register class with this flag.
442   ///
443   /// This method could be called by interface TargetInstrInfo::isAsCheapAsAMove
444   /// for different subtargets.
445   bool isAsCheapAsAMove() const { return Flags & (1 << MCID::CheapAsAMove); }
446
447   /// \brief Returns true if this instruction source operands have special
448   /// register allocation requirements that are not captured by the operand
449   /// register classes. e.g. ARM::STRD's two source registers must be an even /
450   /// odd pair, ARM::STM registers have to be in ascending order.  Post-register
451   /// allocation passes should not attempt to change allocations for sources of
452   /// instructions with this flag.
453   bool hasExtraSrcRegAllocReq() const {
454     return Flags & (1 << MCID::ExtraSrcRegAllocReq);
455   }
456
457   /// \brief Returns true if this instruction def operands have special register
458   /// allocation requirements that are not captured by the operand register
459   /// classes. e.g. ARM::LDRD's two def registers must be an even / odd pair,
460   /// ARM::LDM registers have to be in ascending order.  Post-register
461   /// allocation passes should not attempt to change allocations for definitions
462   /// of instructions with this flag.
463   bool hasExtraDefRegAllocReq() const {
464     return Flags & (1 << MCID::ExtraDefRegAllocReq);
465   }
466
467   /// \brief Return a list of registers that are potentially read by any
468   /// instance of this machine instruction.  For example, on X86, the "adc"
469   /// instruction adds two register operands and adds the carry bit in from the
470   /// flags register.  In this case, the instruction is marked as implicitly
471   /// reading the flags.  Likewise, the variable shift instruction on X86 is
472   /// marked as implicitly reading the 'CL' register, which it always does.
473   ///
474   /// This method returns null if the instruction has no implicit uses.
475   const uint16_t *getImplicitUses() const { return ImplicitUses; }
476
477   /// \brief Return the number of implicit uses this instruction has.
478   unsigned getNumImplicitUses() const {
479     if (!ImplicitUses)
480       return 0;
481     unsigned i = 0;
482     for (; ImplicitUses[i]; ++i) /*empty*/
483       ;
484     return i;
485   }
486
487   /// \brief Return a list of registers that are potentially written by any
488   /// instance of this machine instruction.  For example, on X86, many
489   /// instructions implicitly set the flags register.  In this case, they are
490   /// marked as setting the FLAGS.  Likewise, many instructions always deposit
491   /// their result in a physical register.  For example, the X86 divide
492   /// instruction always deposits the quotient and remainder in the EAX/EDX
493   /// registers.  For that instruction, this will return a list containing the
494   /// EAX/EDX/EFLAGS registers.
495   ///
496   /// This method returns null if the instruction has no implicit defs.
497   const uint16_t *getImplicitDefs() const { return ImplicitDefs; }
498
499   /// \brief Return the number of implicit defs this instruct has.
500   unsigned getNumImplicitDefs() const {
501     if (!ImplicitDefs)
502       return 0;
503     unsigned i = 0;
504     for (; ImplicitDefs[i]; ++i) /*empty*/
505       ;
506     return i;
507   }
508
509   /// \brief Return true if this instruction implicitly
510   /// uses the specified physical register.
511   bool hasImplicitUseOfPhysReg(unsigned Reg) const {
512     if (const uint16_t *ImpUses = ImplicitUses)
513       for (; *ImpUses; ++ImpUses)
514         if (*ImpUses == Reg)
515           return true;
516     return false;
517   }
518
519   /// \brief Return true if this instruction implicitly
520   /// defines the specified physical register.
521   bool hasImplicitDefOfPhysReg(unsigned Reg,
522                                const MCRegisterInfo *MRI = nullptr) const;
523
524   /// \brief Return the scheduling class for this instruction.  The
525   /// scheduling class is an index into the InstrItineraryData table.  This
526   /// returns zero if there is no known scheduling information for the
527   /// instruction.
528   unsigned getSchedClass() const { return SchedClass; }
529
530   /// \brief Return the number of bytes in the encoding of this instruction,
531   /// or zero if the encoding size cannot be known from the opcode.
532   unsigned getSize() const { return Size; }
533
534   /// \brief Find the index of the first operand in the
535   /// operand list that is used to represent the predicate. It returns -1 if
536   /// none is found.
537   int findFirstPredOperandIdx() const {
538     if (isPredicable()) {
539       for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
540         if (OpInfo[i].isPredicate())
541           return i;
542     }
543     return -1;
544   }
545
546 private:
547
548   /// \brief Return true if this instruction defines the specified physical
549   /// register, either explicitly or implicitly.
550   bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg,
551                        const MCRegisterInfo &RI) const;
552 };
553
554 } // end namespace llvm
555
556 #endif