9a85293f47c467f5a80119dd846bcc67ed71ec3f
[oota-llvm.git] / include / llvm / MC / MCAssembler.h
1 //===- MCAssembler.h - Object File Generation -------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #ifndef LLVM_MC_MCASSEMBLER_H
11 #define LLVM_MC_MCASSEMBLER_H
12
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/DenseSet.h"
15 #include "llvm/ADT/PointerIntPair.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/ilist.h"
19 #include "llvm/ADT/ilist_node.h"
20 #include "llvm/MC/MCDirectives.h"
21 #include "llvm/MC/MCFixup.h"
22 #include "llvm/MC/MCInst.h"
23 #include "llvm/MC/MCLinkerOptimizationHint.h"
24 #include "llvm/MC/MCSubtargetInfo.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/DataTypes.h"
27 #include <algorithm>
28 #include <vector> // FIXME: Shouldn't be needed.
29
30 namespace llvm {
31 class raw_ostream;
32 class MCAsmLayout;
33 class MCAssembler;
34 class MCContext;
35 class MCCodeEmitter;
36 class MCExpr;
37 class MCFragment;
38 class MCObjectWriter;
39 class MCSection;
40 class MCSectionData;
41 class MCSubtargetInfo;
42 class MCSymbol;
43 class MCSymbolData;
44 class MCValue;
45 class MCAsmBackend;
46
47 class MCFragment : public ilist_node<MCFragment> {
48   friend class MCAsmLayout;
49
50   MCFragment(const MCFragment&) = delete;
51   void operator=(const MCFragment&) = delete;
52
53 public:
54   enum FragmentType {
55     FT_Align,
56     FT_Data,
57     FT_CompactEncodedInst,
58     FT_Fill,
59     FT_Relaxable,
60     FT_Org,
61     FT_Dwarf,
62     FT_DwarfFrame,
63     FT_LEB
64   };
65
66 private:
67   FragmentType Kind;
68
69   /// Parent - The data for the section this fragment is in.
70   MCSectionData *Parent;
71
72   /// Atom - The atom this fragment is in, as represented by it's defining
73   /// symbol.
74   MCSymbolData *Atom;
75
76   /// @name Assembler Backend Data
77   /// @{
78   //
79   // FIXME: This could all be kept private to the assembler implementation.
80
81   /// Offset - The offset of this fragment in its section. This is ~0 until
82   /// initialized.
83   uint64_t Offset;
84
85   /// LayoutOrder - The layout order of this fragment.
86   unsigned LayoutOrder;
87
88   /// @}
89
90 protected:
91   MCFragment(FragmentType Kind, MCSectionData *Parent = nullptr);
92
93 public:
94   // Only for sentinel.
95   MCFragment();
96   virtual ~MCFragment();
97
98   FragmentType getKind() const { return Kind; }
99
100   MCSectionData *getParent() const { return Parent; }
101   void setParent(MCSectionData *Value) { Parent = Value; }
102
103   MCSymbolData *getAtom() const { return Atom; }
104   void setAtom(MCSymbolData *Value) { Atom = Value; }
105
106   unsigned getLayoutOrder() const { return LayoutOrder; }
107   void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
108
109   /// \brief Does this fragment have instructions emitted into it? By default
110   /// this is false, but specific fragment types may set it to true.
111   virtual bool hasInstructions() const { return false; }
112
113   /// \brief Should this fragment be placed at the end of an aligned bundle?
114   virtual bool alignToBundleEnd() const { return false; }
115   virtual void setAlignToBundleEnd(bool V) { }
116
117   /// \brief Get the padding size that must be inserted before this fragment.
118   /// Used for bundling. By default, no padding is inserted.
119   /// Note that padding size is restricted to 8 bits. This is an optimization
120   /// to reduce the amount of space used for each fragment. In practice, larger
121   /// padding should never be required.
122   virtual uint8_t getBundlePadding() const {
123     return 0;
124   }
125
126   /// \brief Set the padding size for this fragment. By default it's a no-op,
127   /// and only some fragments have a meaningful implementation.
128   virtual void setBundlePadding(uint8_t N) {
129   }
130
131   void dump();
132 };
133
134 /// Interface implemented by fragments that contain encoded instructions and/or
135 /// data.
136 ///
137 class MCEncodedFragment : public MCFragment {
138   virtual void anchor();
139
140   uint8_t BundlePadding;
141 public:
142   MCEncodedFragment(MCFragment::FragmentType FType, MCSectionData *SD = nullptr)
143     : MCFragment(FType, SD), BundlePadding(0)
144   {
145   }
146   virtual ~MCEncodedFragment();
147
148   virtual SmallVectorImpl<char> &getContents() = 0;
149   virtual const SmallVectorImpl<char> &getContents() const = 0;
150
151   uint8_t getBundlePadding() const override {
152     return BundlePadding;
153   }
154
155   void setBundlePadding(uint8_t N) override {
156     BundlePadding = N;
157   }
158
159   static bool classof(const MCFragment *F) {
160     MCFragment::FragmentType Kind = F->getKind();
161     switch (Kind) {
162       default:
163         return false;
164       case MCFragment::FT_Relaxable:
165       case MCFragment::FT_CompactEncodedInst:
166       case MCFragment::FT_Data:
167         return true;
168     }
169   }
170 };
171
172 /// Interface implemented by fragments that contain encoded instructions and/or
173 /// data and also have fixups registered.
174 ///
175 class MCEncodedFragmentWithFixups : public MCEncodedFragment {
176   void anchor() override;
177
178 public:
179   MCEncodedFragmentWithFixups(MCFragment::FragmentType FType,
180                               MCSectionData *SD = nullptr)
181     : MCEncodedFragment(FType, SD)
182   {
183   }
184
185   virtual ~MCEncodedFragmentWithFixups();
186
187   typedef SmallVectorImpl<MCFixup>::const_iterator const_fixup_iterator;
188   typedef SmallVectorImpl<MCFixup>::iterator fixup_iterator;
189
190   virtual SmallVectorImpl<MCFixup> &getFixups() = 0;
191   virtual const SmallVectorImpl<MCFixup> &getFixups() const = 0;
192
193   virtual fixup_iterator fixup_begin() = 0;
194   virtual const_fixup_iterator fixup_begin() const  = 0;
195   virtual fixup_iterator fixup_end() = 0;
196   virtual const_fixup_iterator fixup_end() const = 0;
197
198   static bool classof(const MCFragment *F) {
199     MCFragment::FragmentType Kind = F->getKind();
200     return Kind == MCFragment::FT_Relaxable || Kind == MCFragment::FT_Data;
201   }
202 };
203
204 /// Fragment for data and encoded instructions.
205 ///
206 class MCDataFragment : public MCEncodedFragmentWithFixups {
207   void anchor() override;
208
209   /// \brief Does this fragment contain encoded instructions anywhere in it?
210   bool HasInstructions;
211
212   /// \brief Should this fragment be aligned to the end of a bundle?
213   bool AlignToBundleEnd;
214
215   SmallVector<char, 32> Contents;
216
217   /// Fixups - The list of fixups in this fragment.
218   SmallVector<MCFixup, 4> Fixups;
219 public:
220   MCDataFragment(MCSectionData *SD = nullptr)
221     : MCEncodedFragmentWithFixups(FT_Data, SD),
222       HasInstructions(false), AlignToBundleEnd(false)
223   {
224   }
225
226   SmallVectorImpl<char> &getContents() override { return Contents; }
227   const SmallVectorImpl<char> &getContents() const override {
228     return Contents;
229   }
230
231   SmallVectorImpl<MCFixup> &getFixups() override {
232     return Fixups;
233   }
234
235   const SmallVectorImpl<MCFixup> &getFixups() const override {
236     return Fixups;
237   }
238
239   bool hasInstructions() const override { return HasInstructions; }
240   virtual void setHasInstructions(bool V) { HasInstructions = V; }
241
242   bool alignToBundleEnd() const override { return AlignToBundleEnd; }
243   void setAlignToBundleEnd(bool V) override { AlignToBundleEnd = V; }
244
245   fixup_iterator fixup_begin() override { return Fixups.begin(); }
246   const_fixup_iterator fixup_begin() const override { return Fixups.begin(); }
247
248   fixup_iterator fixup_end() override {return Fixups.end();}
249   const_fixup_iterator fixup_end() const override {return Fixups.end();}
250
251   static bool classof(const MCFragment *F) {
252     return F->getKind() == MCFragment::FT_Data;
253   }
254 };
255
256 /// This is a compact (memory-size-wise) fragment for holding an encoded
257 /// instruction (non-relaxable) that has no fixups registered. When applicable,
258 /// it can be used instead of MCDataFragment and lead to lower memory
259 /// consumption.
260 ///
261 class MCCompactEncodedInstFragment : public MCEncodedFragment {
262   void anchor() override;
263
264   /// \brief Should this fragment be aligned to the end of a bundle?
265   bool AlignToBundleEnd;
266
267   SmallVector<char, 4> Contents;
268 public:
269   MCCompactEncodedInstFragment(MCSectionData *SD = nullptr)
270     : MCEncodedFragment(FT_CompactEncodedInst, SD), AlignToBundleEnd(false)
271   {
272   }
273
274   bool hasInstructions() const override {
275     return true;
276   }
277
278   SmallVectorImpl<char> &getContents() override { return Contents; }
279   const SmallVectorImpl<char> &getContents() const override { return Contents; }
280
281   bool alignToBundleEnd() const override { return AlignToBundleEnd; }
282   void setAlignToBundleEnd(bool V) override { AlignToBundleEnd = V; }
283
284   static bool classof(const MCFragment *F) {
285     return F->getKind() == MCFragment::FT_CompactEncodedInst;
286   }
287 };
288
289 /// A relaxable fragment holds on to its MCInst, since it may need to be
290 /// relaxed during the assembler layout and relaxation stage.
291 ///
292 class MCRelaxableFragment : public MCEncodedFragmentWithFixups {
293   void anchor() override;
294
295   /// Inst - The instruction this is a fragment for.
296   MCInst Inst;
297
298   /// STI - The MCSubtargetInfo in effect when the instruction was encoded.
299   /// Keep a copy instead of a reference to make sure that updates to STI
300   /// in the assembler are not seen here.
301   const MCSubtargetInfo STI;
302
303   /// Contents - Binary data for the currently encoded instruction.
304   SmallVector<char, 8> Contents;
305
306   /// Fixups - The list of fixups in this fragment.
307   SmallVector<MCFixup, 1> Fixups;
308
309 public:
310   MCRelaxableFragment(const MCInst &Inst, const MCSubtargetInfo &STI,
311                       MCSectionData *SD = nullptr)
312       : MCEncodedFragmentWithFixups(FT_Relaxable, SD), Inst(Inst), STI(STI) {}
313
314   SmallVectorImpl<char> &getContents() override { return Contents; }
315   const SmallVectorImpl<char> &getContents() const override { return Contents; }
316
317   const MCInst &getInst() const { return Inst; }
318   void setInst(const MCInst& Value) { Inst = Value; }
319
320   const MCSubtargetInfo &getSubtargetInfo() { return STI; }
321
322   SmallVectorImpl<MCFixup> &getFixups() override {
323     return Fixups;
324   }
325
326   const SmallVectorImpl<MCFixup> &getFixups() const override {
327     return Fixups;
328   }
329
330   bool hasInstructions() const override { return true; }
331
332   fixup_iterator fixup_begin() override { return Fixups.begin(); }
333   const_fixup_iterator fixup_begin() const override { return Fixups.begin(); }
334
335   fixup_iterator fixup_end() override {return Fixups.end();}
336   const_fixup_iterator fixup_end() const override {return Fixups.end();}
337
338   static bool classof(const MCFragment *F) {
339     return F->getKind() == MCFragment::FT_Relaxable;
340   }
341 };
342
343 class MCAlignFragment : public MCFragment {
344   virtual void anchor();
345
346   /// Alignment - The alignment to ensure, in bytes.
347   unsigned Alignment;
348
349   /// Value - Value to use for filling padding bytes.
350   int64_t Value;
351
352   /// ValueSize - The size of the integer (in bytes) of \p Value.
353   unsigned ValueSize;
354
355   /// MaxBytesToEmit - The maximum number of bytes to emit; if the alignment
356   /// cannot be satisfied in this width then this fragment is ignored.
357   unsigned MaxBytesToEmit;
358
359   /// EmitNops - Flag to indicate that (optimal) NOPs should be emitted instead
360   /// of using the provided value. The exact interpretation of this flag is
361   /// target dependent.
362   bool EmitNops : 1;
363
364 public:
365   MCAlignFragment(unsigned Alignment, int64_t Value, unsigned ValueSize,
366                   unsigned MaxBytesToEmit, MCSectionData *SD = nullptr)
367       : MCFragment(FT_Align, SD), Alignment(Alignment), Value(Value),
368         ValueSize(ValueSize), MaxBytesToEmit(MaxBytesToEmit), EmitNops(false) {}
369
370   /// @name Accessors
371   /// @{
372
373   unsigned getAlignment() const { return Alignment; }
374
375   int64_t getValue() const { return Value; }
376
377   unsigned getValueSize() const { return ValueSize; }
378
379   unsigned getMaxBytesToEmit() const { return MaxBytesToEmit; }
380
381   bool hasEmitNops() const { return EmitNops; }
382   void setEmitNops(bool Value) { EmitNops = Value; }
383
384   /// @}
385
386   static bool classof(const MCFragment *F) {
387     return F->getKind() == MCFragment::FT_Align;
388   }
389 };
390
391 class MCFillFragment : public MCFragment {
392   virtual void anchor();
393
394   /// Value - Value to use for filling bytes.
395   int64_t Value;
396
397   /// ValueSize - The size (in bytes) of \p Value to use when filling, or 0 if
398   /// this is a virtual fill fragment.
399   unsigned ValueSize;
400
401   /// Size - The number of bytes to insert.
402   uint64_t Size;
403
404 public:
405   MCFillFragment(int64_t Value, unsigned ValueSize, uint64_t Size,
406                  MCSectionData *SD = nullptr)
407       : MCFragment(FT_Fill, SD), Value(Value), ValueSize(ValueSize),
408         Size(Size) {
409     assert((!ValueSize || (Size % ValueSize) == 0) &&
410            "Fill size must be a multiple of the value size!");
411   }
412
413   /// @name Accessors
414   /// @{
415
416   int64_t getValue() const { return Value; }
417
418   unsigned getValueSize() const { return ValueSize; }
419
420   uint64_t getSize() const { return Size; }
421
422   /// @}
423
424   static bool classof(const MCFragment *F) {
425     return F->getKind() == MCFragment::FT_Fill;
426   }
427 };
428
429 class MCOrgFragment : public MCFragment {
430   virtual void anchor();
431
432   /// Offset - The offset this fragment should start at.
433   const MCExpr *Offset;
434
435   /// Value - Value to use for filling bytes.
436   int8_t Value;
437
438 public:
439   MCOrgFragment(const MCExpr &Offset, int8_t Value, MCSectionData *SD = nullptr)
440       : MCFragment(FT_Org, SD), Offset(&Offset), Value(Value) {}
441
442   /// @name Accessors
443   /// @{
444
445   const MCExpr &getOffset() const { return *Offset; }
446
447   uint8_t getValue() const { return Value; }
448
449   /// @}
450
451   static bool classof(const MCFragment *F) {
452     return F->getKind() == MCFragment::FT_Org;
453   }
454 };
455
456 class MCLEBFragment : public MCFragment {
457   virtual void anchor();
458
459   /// Value - The value this fragment should contain.
460   const MCExpr *Value;
461
462   /// IsSigned - True if this is a sleb128, false if uleb128.
463   bool IsSigned;
464
465   SmallString<8> Contents;
466 public:
467   MCLEBFragment(const MCExpr &Value_, bool IsSigned_,
468                 MCSectionData *SD = nullptr)
469     : MCFragment(FT_LEB, SD),
470       Value(&Value_), IsSigned(IsSigned_) { Contents.push_back(0); }
471
472   /// @name Accessors
473   /// @{
474
475   const MCExpr &getValue() const { return *Value; }
476
477   bool isSigned() const { return IsSigned; }
478
479   SmallString<8> &getContents() { return Contents; }
480   const SmallString<8> &getContents() const { return Contents; }
481
482   /// @}
483
484   static bool classof(const MCFragment *F) {
485     return F->getKind() == MCFragment::FT_LEB;
486   }
487 };
488
489 class MCDwarfLineAddrFragment : public MCFragment {
490   virtual void anchor();
491
492   /// LineDelta - the value of the difference between the two line numbers
493   /// between two .loc dwarf directives.
494   int64_t LineDelta;
495
496   /// AddrDelta - The expression for the difference of the two symbols that
497   /// make up the address delta between two .loc dwarf directives.
498   const MCExpr *AddrDelta;
499
500   SmallString<8> Contents;
501
502 public:
503   MCDwarfLineAddrFragment(int64_t LineDelta, const MCExpr &AddrDelta,
504                           MCSectionData *SD = nullptr)
505       : MCFragment(FT_Dwarf, SD), LineDelta(LineDelta), AddrDelta(&AddrDelta) {
506     Contents.push_back(0);
507   }
508
509   /// @name Accessors
510   /// @{
511
512   int64_t getLineDelta() const { return LineDelta; }
513
514   const MCExpr &getAddrDelta() const { return *AddrDelta; }
515
516   SmallString<8> &getContents() { return Contents; }
517   const SmallString<8> &getContents() const { return Contents; }
518
519   /// @}
520
521   static bool classof(const MCFragment *F) {
522     return F->getKind() == MCFragment::FT_Dwarf;
523   }
524 };
525
526 class MCDwarfCallFrameFragment : public MCFragment {
527   virtual void anchor();
528
529   /// AddrDelta - The expression for the difference of the two symbols that
530   /// make up the address delta between two .cfi_* dwarf directives.
531   const MCExpr *AddrDelta;
532
533   SmallString<8> Contents;
534
535 public:
536   MCDwarfCallFrameFragment(const MCExpr &AddrDelta, MCSectionData *SD = nullptr)
537       : MCFragment(FT_DwarfFrame, SD), AddrDelta(&AddrDelta) {
538     Contents.push_back(0);
539   }
540
541   /// @name Accessors
542   /// @{
543
544   const MCExpr &getAddrDelta() const { return *AddrDelta; }
545
546   SmallString<8> &getContents() { return Contents; }
547   const SmallString<8> &getContents() const { return Contents; }
548
549   /// @}
550
551   static bool classof(const MCFragment *F) {
552     return F->getKind() == MCFragment::FT_DwarfFrame;
553   }
554 };
555
556 // FIXME: Should this be a separate class, or just merged into MCSection? Since
557 // we anticipate the fast path being through an MCAssembler, the only reason to
558 // keep it out is for API abstraction.
559 class MCSectionData : public ilist_node<MCSectionData> {
560   friend class MCAsmLayout;
561
562   MCSectionData(const MCSectionData&) = delete;
563   void operator=(const MCSectionData&) = delete;
564
565 public:
566   typedef iplist<MCFragment> FragmentListType;
567
568   typedef FragmentListType::const_iterator const_iterator;
569   typedef FragmentListType::iterator iterator;
570
571   typedef FragmentListType::const_reverse_iterator const_reverse_iterator;
572   typedef FragmentListType::reverse_iterator reverse_iterator;
573
574   /// \brief Express the state of bundle locked groups while emitting code.
575   enum BundleLockStateType {
576     NotBundleLocked,
577     BundleLocked,
578     BundleLockedAlignToEnd
579   };
580 private:
581   FragmentListType Fragments;
582   const MCSection *Section;
583
584   /// Ordinal - The section index in the assemblers section list.
585   unsigned Ordinal;
586
587   /// LayoutOrder - The index of this section in the layout order.
588   unsigned LayoutOrder;
589
590   /// Alignment - The maximum alignment seen in this section.
591   unsigned Alignment;
592
593   /// \brief Keeping track of bundle-locked state.
594   BundleLockStateType BundleLockState;
595
596   /// \brief Current nesting depth of bundle_lock directives.
597   unsigned BundleLockNestingDepth;
598
599   /// \brief We've seen a bundle_lock directive but not its first instruction
600   /// yet.
601   bool BundleGroupBeforeFirstInst;
602
603   /// @name Assembler Backend Data
604   /// @{
605   //
606   // FIXME: This could all be kept private to the assembler implementation.
607
608   /// HasInstructions - Whether this section has had instructions emitted into
609   /// it.
610   unsigned HasInstructions : 1;
611
612   /// Mapping from subsection number to insertion point for subsection numbers
613   /// below that number.
614   SmallVector<std::pair<unsigned, MCFragment *>, 1> SubsectionFragmentMap;
615
616   /// @}
617
618 public:
619   // Only for use as sentinel.
620   MCSectionData();
621   MCSectionData(const MCSection &Section, MCAssembler *A = nullptr);
622
623   const MCSection &getSection() const { return *Section; }
624
625   unsigned getAlignment() const { return Alignment; }
626   void setAlignment(unsigned Value) { Alignment = Value; }
627
628   bool hasInstructions() const { return HasInstructions; }
629   void setHasInstructions(bool Value) { HasInstructions = Value; }
630
631   unsigned getOrdinal() const { return Ordinal; }
632   void setOrdinal(unsigned Value) { Ordinal = Value; }
633
634   unsigned getLayoutOrder() const { return LayoutOrder; }
635   void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
636
637   /// @name Fragment Access
638   /// @{
639
640   const FragmentListType &getFragmentList() const { return Fragments; }
641   FragmentListType &getFragmentList() { return Fragments; }
642
643   iterator begin() { return Fragments.begin(); }
644   const_iterator begin() const { return Fragments.begin(); }
645
646   iterator end() { return Fragments.end(); }
647   const_iterator end() const { return Fragments.end(); }
648
649   reverse_iterator rbegin() { return Fragments.rbegin(); }
650   const_reverse_iterator rbegin() const { return Fragments.rbegin(); }
651
652   reverse_iterator rend() { return Fragments.rend(); }
653   const_reverse_iterator rend() const { return Fragments.rend(); }
654
655   size_t size() const { return Fragments.size(); }
656
657   bool empty() const { return Fragments.empty(); }
658
659   iterator getSubsectionInsertionPoint(unsigned Subsection);
660
661   bool isBundleLocked() const {
662     return BundleLockState != NotBundleLocked;
663   }
664
665   BundleLockStateType getBundleLockState() const {
666     return BundleLockState;
667   }
668
669   void setBundleLockState(BundleLockStateType NewState);
670
671   bool isBundleGroupBeforeFirstInst() const {
672     return BundleGroupBeforeFirstInst;
673   }
674
675   void setBundleGroupBeforeFirstInst(bool IsFirst) {
676     BundleGroupBeforeFirstInst = IsFirst;
677   }
678
679   void dump();
680
681   /// @}
682 };
683
684 // FIXME: Same concerns as with SectionData.
685 class MCSymbolData : public ilist_node<MCSymbolData> {
686   const MCSymbol *Symbol;
687
688   /// Fragment - The fragment this symbol's value is relative to, if any. Also
689   /// stores if this symbol is visible outside this translation unit (bit 0) or
690   /// if it is private extern (bit 1).
691   PointerIntPair<MCFragment *, 2> Fragment;
692
693   union {
694     /// Offset - The offset to apply to the fragment address to form this
695     /// symbol's value.
696     uint64_t Offset;
697
698     /// CommonSize - The size of the symbol, if it is 'common'.
699     uint64_t CommonSize;
700   };
701
702   /// SymbolSize - An expression describing how to calculate the size of
703   /// a symbol. If a symbol has no size this field will be NULL.
704   const MCExpr *SymbolSize;
705
706   /// CommonAlign - The alignment of the symbol, if it is 'common', or -1.
707   //
708   // FIXME: Pack this in with other fields?
709   unsigned CommonAlign;
710
711   /// Flags - The Flags field is used by object file implementations to store
712   /// additional per symbol information which is not easily classified.
713   uint32_t Flags;
714
715   /// Index - Index field, for use by the object file implementation.
716   uint64_t Index;
717
718 public:
719   // Only for use as sentinel.
720   MCSymbolData();
721   MCSymbolData(const MCSymbol &Symbol, MCFragment *Fragment, uint64_t Offset,
722                MCAssembler *A = nullptr);
723
724   /// @name Accessors
725   /// @{
726
727   const MCSymbol &getSymbol() const { return *Symbol; }
728
729   MCFragment *getFragment() const { return Fragment.getPointer(); }
730   void setFragment(MCFragment *Value) { Fragment.setPointer(Value); }
731
732   uint64_t getOffset() const {
733     assert(!isCommon());
734     return Offset;
735   }
736   void setOffset(uint64_t Value) {
737     assert(!isCommon());
738     Offset = Value;
739   }
740
741   /// @}
742   /// @name Symbol Attributes
743   /// @{
744
745   bool isExternal() const { return Fragment.getInt() & 1; }
746   void setExternal(bool Value) {
747     Fragment.setInt((Fragment.getInt() & ~1) | unsigned(Value));
748   }
749
750   bool isPrivateExtern() const { return Fragment.getInt() & 2; }
751   void setPrivateExtern(bool Value) {
752     Fragment.setInt((Fragment.getInt() & ~2) | (unsigned(Value) << 1));
753   }
754
755   /// isCommon - Is this a 'common' symbol.
756   bool isCommon() const { return CommonAlign != -1U; }
757
758   /// setCommon - Mark this symbol as being 'common'.
759   ///
760   /// \param Size - The size of the symbol.
761   /// \param Align - The alignment of the symbol.
762   void setCommon(uint64_t Size, unsigned Align) {
763     assert(getOffset() == 0);
764     CommonSize = Size;
765     CommonAlign = Align;
766   }
767
768   /// getCommonSize - Return the size of a 'common' symbol.
769   uint64_t getCommonSize() const {
770     assert(isCommon() && "Not a 'common' symbol!");
771     return CommonSize;
772   }
773
774   void setSize(const MCExpr *SS) {
775     SymbolSize = SS;
776   }
777
778   const MCExpr *getSize() const {
779     return SymbolSize;
780   }
781
782
783   /// getCommonAlignment - Return the alignment of a 'common' symbol.
784   unsigned getCommonAlignment() const {
785     assert(isCommon() && "Not a 'common' symbol!");
786     return CommonAlign;
787   }
788
789   /// getFlags - Get the (implementation defined) symbol flags.
790   uint32_t getFlags() const { return Flags; }
791
792   /// setFlags - Set the (implementation defined) symbol flags.
793   void setFlags(uint32_t Value) { Flags = Value; }
794
795   /// modifyFlags - Modify the flags via a mask
796   void modifyFlags(uint32_t Value, uint32_t Mask) {
797     Flags = (Flags & ~Mask) | Value;
798   }
799
800   /// getIndex - Get the (implementation defined) index.
801   uint64_t getIndex() const { return Index; }
802
803   /// setIndex - Set the (implementation defined) index.
804   void setIndex(uint64_t Value) { Index = Value; }
805
806   /// @}
807
808   void dump() const;
809 };
810
811 // FIXME: This really doesn't belong here. See comments below.
812 struct IndirectSymbolData {
813   MCSymbol *Symbol;
814   MCSectionData *SectionData;
815 };
816
817 // FIXME: Ditto this. Purely so the Streamer and the ObjectWriter can talk
818 // to one another.
819 struct DataRegionData {
820   // This enum should be kept in sync w/ the mach-o definition in
821   // llvm/Object/MachOFormat.h.
822   enum KindTy { Data = 1, JumpTable8, JumpTable16, JumpTable32 } Kind;
823   MCSymbol *Start;
824   MCSymbol *End;
825 };
826
827 class MCAssembler {
828   friend class MCAsmLayout;
829
830 public:
831   typedef iplist<MCSectionData> SectionDataListType;
832   typedef iplist<MCSymbolData> SymbolDataListType;
833
834   typedef SectionDataListType::const_iterator const_iterator;
835   typedef SectionDataListType::iterator iterator;
836
837   typedef SymbolDataListType::const_iterator const_symbol_iterator;
838   typedef SymbolDataListType::iterator symbol_iterator;
839
840   typedef iterator_range<symbol_iterator> symbol_range;
841   typedef iterator_range<const_symbol_iterator> const_symbol_range;
842
843   typedef std::vector<std::string> FileNameVectorType;
844   typedef FileNameVectorType::const_iterator const_file_name_iterator;
845
846   typedef std::vector<IndirectSymbolData>::const_iterator
847     const_indirect_symbol_iterator;
848   typedef std::vector<IndirectSymbolData>::iterator indirect_symbol_iterator;
849
850   typedef std::vector<DataRegionData>::const_iterator
851     const_data_region_iterator;
852   typedef std::vector<DataRegionData>::iterator data_region_iterator;
853
854   /// MachO specific deployment target version info.
855   // A Major version of 0 indicates that no version information was supplied
856   // and so the corresponding load command should not be emitted.
857   typedef struct {
858     MCVersionMinType Kind;
859     unsigned Major;
860     unsigned Minor;
861     unsigned Update;
862   } VersionMinInfoType;
863 private:
864   MCAssembler(const MCAssembler&) = delete;
865   void operator=(const MCAssembler&) = delete;
866
867   MCContext &Context;
868
869   MCAsmBackend &Backend;
870
871   MCCodeEmitter &Emitter;
872
873   MCObjectWriter &Writer;
874
875   raw_ostream &OS;
876
877   iplist<MCSectionData> Sections;
878
879   iplist<MCSymbolData> Symbols;
880
881   DenseSet<const MCSymbol *> LocalsUsedInReloc;
882
883   /// The map of sections to their associated assembler backend data.
884   //
885   // FIXME: Avoid this indirection?
886   DenseMap<const MCSection*, MCSectionData*> SectionMap;
887
888   /// The map of symbols to their associated assembler backend data.
889   //
890   // FIXME: Avoid this indirection?
891   DenseMap<const MCSymbol*, MCSymbolData*> SymbolMap;
892
893   std::vector<IndirectSymbolData> IndirectSymbols;
894
895   std::vector<DataRegionData> DataRegions;
896
897   /// The list of linker options to propagate into the object file.
898   std::vector<std::vector<std::string> > LinkerOptions;
899
900   /// List of declared file names
901   FileNameVectorType FileNames;
902
903   /// The set of function symbols for which a .thumb_func directive has
904   /// been seen.
905   //
906   // FIXME: We really would like this in target specific code rather than
907   // here. Maybe when the relocation stuff moves to target specific,
908   // this can go with it? The streamer would need some target specific
909   // refactoring too.
910   mutable SmallPtrSet<const MCSymbol*, 64> ThumbFuncs;
911
912   /// \brief The bundle alignment size currently set in the assembler.
913   ///
914   /// By default it's 0, which means bundling is disabled.
915   unsigned BundleAlignSize;
916
917   unsigned RelaxAll : 1;
918   unsigned SubsectionsViaSymbols : 1;
919
920   /// ELF specific e_header flags
921   // It would be good if there were an MCELFAssembler class to hold this.
922   // ELF header flags are used both by the integrated and standalone assemblers.
923   // Access to the flags is necessary in cases where assembler directives affect
924   // which flags to be set.
925   unsigned ELFHeaderEFlags;
926
927   /// Used to communicate Linker Optimization Hint information between
928   /// the Streamer and the .o writer
929   MCLOHContainer LOHContainer;
930
931   VersionMinInfoType VersionMinInfo;
932 private:
933   /// Evaluate a fixup to a relocatable expression and the value which should be
934   /// placed into the fixup.
935   ///
936   /// \param Layout The layout to use for evaluation.
937   /// \param Fixup The fixup to evaluate.
938   /// \param DF The fragment the fixup is inside.
939   /// \param Target [out] On return, the relocatable expression the fixup
940   /// evaluates to.
941   /// \param Value [out] On return, the value of the fixup as currently laid
942   /// out.
943   /// \return Whether the fixup value was fully resolved. This is true if the
944   /// \p Value result is fixed, otherwise the value may change due to
945   /// relocation.
946   bool evaluateFixup(const MCAsmLayout &Layout,
947                      const MCFixup &Fixup, const MCFragment *DF,
948                      MCValue &Target, uint64_t &Value) const;
949
950   /// Check whether a fixup can be satisfied, or whether it needs to be relaxed
951   /// (increased in size, in order to hold its value correctly).
952   bool fixupNeedsRelaxation(const MCFixup &Fixup, const MCRelaxableFragment *DF,
953                             const MCAsmLayout &Layout) const;
954
955   /// Check whether the given fragment needs relaxation.
956   bool fragmentNeedsRelaxation(const MCRelaxableFragment *IF,
957                                const MCAsmLayout &Layout) const;
958
959   /// \brief Perform one layout iteration and return true if any offsets
960   /// were adjusted.
961   bool layoutOnce(MCAsmLayout &Layout);
962
963   /// \brief Perform one layout iteration of the given section and return true
964   /// if any offsets were adjusted.
965   bool layoutSectionOnce(MCAsmLayout &Layout, MCSectionData &SD);
966
967   bool relaxInstruction(MCAsmLayout &Layout, MCRelaxableFragment &IF);
968
969   bool relaxLEB(MCAsmLayout &Layout, MCLEBFragment &IF);
970
971   bool relaxDwarfLineAddr(MCAsmLayout &Layout, MCDwarfLineAddrFragment &DF);
972   bool relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
973                                    MCDwarfCallFrameFragment &DF);
974
975   /// finishLayout - Finalize a layout, including fragment lowering.
976   void finishLayout(MCAsmLayout &Layout);
977
978   std::pair<uint64_t, bool> handleFixup(const MCAsmLayout &Layout,
979                                         MCFragment &F, const MCFixup &Fixup);
980
981 public:
982   void addLocalUsedInReloc(const MCSymbol &Sym);
983   bool isLocalUsedInReloc(const MCSymbol &Sym) const;
984
985   /// Compute the effective fragment size assuming it is laid out at the given
986   /// \p SectionAddress and \p FragmentOffset.
987   uint64_t computeFragmentSize(const MCAsmLayout &Layout,
988                                const MCFragment &F) const;
989
990   /// Find the symbol which defines the atom containing the given symbol, or
991   /// null if there is no such symbol.
992   const MCSymbolData *getAtom(const MCSymbolData *Symbol) const;
993
994   /// Check whether a particular symbol is visible to the linker and is required
995   /// in the symbol table, or whether it can be discarded by the assembler. This
996   /// also effects whether the assembler treats the label as potentially
997   /// defining a separate atom.
998   bool isSymbolLinkerVisible(const MCSymbol &SD) const;
999
1000   /// Emit the section contents using the given object writer.
1001   void writeSectionData(const MCSectionData *Section,
1002                         const MCAsmLayout &Layout) const;
1003
1004   /// Check whether a given symbol has been flagged with .thumb_func.
1005   bool isThumbFunc(const MCSymbol *Func) const;
1006
1007   /// Flag a function symbol as the target of a .thumb_func directive.
1008   void setIsThumbFunc(const MCSymbol *Func) { ThumbFuncs.insert(Func); }
1009
1010   /// ELF e_header flags
1011   unsigned getELFHeaderEFlags() const {return ELFHeaderEFlags;}
1012   void setELFHeaderEFlags(unsigned Flags) { ELFHeaderEFlags = Flags;}
1013
1014   /// MachO deployment target version information.
1015   const VersionMinInfoType &getVersionMinInfo() const { return VersionMinInfo; }
1016   void setVersionMinInfo(MCVersionMinType Kind, unsigned Major, unsigned Minor,
1017                          unsigned Update) {
1018     VersionMinInfo.Kind = Kind;
1019     VersionMinInfo.Major = Major;
1020     VersionMinInfo.Minor = Minor;
1021     VersionMinInfo.Update = Update;
1022   }
1023
1024 public:
1025   /// Construct a new assembler instance.
1026   ///
1027   /// \param OS The stream to output to.
1028   //
1029   // FIXME: How are we going to parameterize this? Two obvious options are stay
1030   // concrete and require clients to pass in a target like object. The other
1031   // option is to make this abstract, and have targets provide concrete
1032   // implementations as we do with AsmParser.
1033   MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
1034               MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
1035               raw_ostream &OS);
1036   ~MCAssembler();
1037
1038   /// Reuse an assembler instance
1039   ///
1040   void reset();
1041
1042   MCContext &getContext() const { return Context; }
1043
1044   MCAsmBackend &getBackend() const { return Backend; }
1045
1046   MCCodeEmitter &getEmitter() const { return Emitter; }
1047
1048   MCObjectWriter &getWriter() const { return Writer; }
1049
1050   /// Finish - Do final processing and write the object to the output stream.
1051   /// \p Writer is used for custom object writer (as the MCJIT does),
1052   /// if not specified it is automatically created from backend.
1053   void Finish();
1054
1055   // FIXME: This does not belong here.
1056   bool getSubsectionsViaSymbols() const {
1057     return SubsectionsViaSymbols;
1058   }
1059   void setSubsectionsViaSymbols(bool Value) {
1060     SubsectionsViaSymbols = Value;
1061   }
1062
1063   bool getRelaxAll() const { return RelaxAll; }
1064   void setRelaxAll(bool Value) { RelaxAll = Value; }
1065
1066   bool isBundlingEnabled() const {
1067     return BundleAlignSize != 0;
1068   }
1069
1070   unsigned getBundleAlignSize() const {
1071     return BundleAlignSize;
1072   }
1073
1074   void setBundleAlignSize(unsigned Size) {
1075     assert((Size == 0 || !(Size & (Size - 1))) && 
1076            "Expect a power-of-two bundle align size");
1077     BundleAlignSize = Size;
1078   }
1079
1080   /// @name Section List Access
1081   /// @{
1082
1083   const SectionDataListType &getSectionList() const { return Sections; }
1084   SectionDataListType &getSectionList() { return Sections; }
1085
1086   iterator begin() { return Sections.begin(); }
1087   const_iterator begin() const { return Sections.begin(); }
1088
1089   iterator end() { return Sections.end(); }
1090   const_iterator end() const { return Sections.end(); }
1091
1092   size_t size() const { return Sections.size(); }
1093
1094   /// @}
1095   /// @name Symbol List Access
1096   /// @{
1097
1098   const SymbolDataListType &getSymbolList() const { return Symbols; }
1099   SymbolDataListType &getSymbolList() { return Symbols; }
1100
1101   symbol_iterator symbol_begin() { return Symbols.begin(); }
1102   const_symbol_iterator symbol_begin() const { return Symbols.begin(); }
1103
1104   symbol_iterator symbol_end() { return Symbols.end(); }
1105   const_symbol_iterator symbol_end() const { return Symbols.end(); }
1106
1107   symbol_range symbols() { return make_range(symbol_begin(), symbol_end()); }
1108   const_symbol_range symbols() const { return make_range(symbol_begin(), symbol_end()); }
1109
1110   size_t symbol_size() const { return Symbols.size(); }
1111
1112   /// @}
1113   /// @name Indirect Symbol List Access
1114   /// @{
1115
1116   // FIXME: This is a total hack, this should not be here. Once things are
1117   // factored so that the streamer has direct access to the .o writer, it can
1118   // disappear.
1119   std::vector<IndirectSymbolData> &getIndirectSymbols() {
1120     return IndirectSymbols;
1121   }
1122
1123   indirect_symbol_iterator indirect_symbol_begin() {
1124     return IndirectSymbols.begin();
1125   }
1126   const_indirect_symbol_iterator indirect_symbol_begin() const {
1127     return IndirectSymbols.begin();
1128   }
1129
1130   indirect_symbol_iterator indirect_symbol_end() {
1131     return IndirectSymbols.end();
1132   }
1133   const_indirect_symbol_iterator indirect_symbol_end() const {
1134     return IndirectSymbols.end();
1135   }
1136
1137   size_t indirect_symbol_size() const { return IndirectSymbols.size(); }
1138
1139   /// @}
1140   /// @name Linker Option List Access
1141   /// @{
1142
1143   std::vector<std::vector<std::string> > &getLinkerOptions() {
1144     return LinkerOptions;
1145   }
1146
1147   /// @}
1148   /// @name Data Region List Access
1149   /// @{
1150
1151   // FIXME: This is a total hack, this should not be here. Once things are
1152   // factored so that the streamer has direct access to the .o writer, it can
1153   // disappear.
1154   std::vector<DataRegionData> &getDataRegions() {
1155     return DataRegions;
1156   }
1157
1158   data_region_iterator data_region_begin() {
1159     return DataRegions.begin();
1160   }
1161   const_data_region_iterator data_region_begin() const {
1162     return DataRegions.begin();
1163   }
1164
1165   data_region_iterator data_region_end() {
1166     return DataRegions.end();
1167   }
1168   const_data_region_iterator data_region_end() const {
1169     return DataRegions.end();
1170   }
1171
1172   size_t data_region_size() const { return DataRegions.size(); }
1173
1174   /// @}
1175   /// @name Data Region List Access
1176   /// @{
1177
1178   // FIXME: This is a total hack, this should not be here. Once things are
1179   // factored so that the streamer has direct access to the .o writer, it can
1180   // disappear.
1181   MCLOHContainer & getLOHContainer() {
1182     return LOHContainer;
1183   }
1184   const MCLOHContainer & getLOHContainer() const {
1185     return const_cast<MCAssembler *>(this)->getLOHContainer();
1186   }
1187   /// @}
1188   /// @name Backend Data Access
1189   /// @{
1190
1191   MCSectionData &getSectionData(const MCSection &Section) const {
1192     MCSectionData *Entry = SectionMap.lookup(&Section);
1193     assert(Entry && "Missing section data!");
1194     return *Entry;
1195   }
1196
1197   MCSectionData &getOrCreateSectionData(const MCSection &Section,
1198                                         bool *Created = nullptr) {
1199     MCSectionData *&Entry = SectionMap[&Section];
1200
1201     if (Created) *Created = !Entry;
1202     if (!Entry)
1203       Entry = new MCSectionData(Section, this);
1204
1205     return *Entry;
1206   }
1207
1208   bool hasSymbolData(const MCSymbol &Symbol) const {
1209     return SymbolMap.lookup(&Symbol) != nullptr;
1210   }
1211
1212   MCSymbolData &getSymbolData(const MCSymbol &Symbol) {
1213     return const_cast<MCSymbolData &>(
1214         static_cast<const MCAssembler &>(*this).getSymbolData(Symbol));
1215   }
1216
1217   const MCSymbolData &getSymbolData(const MCSymbol &Symbol) const {
1218     MCSymbolData *Entry = SymbolMap.lookup(&Symbol);
1219     assert(Entry && "Missing symbol data!");
1220     return *Entry;
1221   }
1222
1223   MCSymbolData &getOrCreateSymbolData(const MCSymbol &Symbol,
1224                                       bool *Created = nullptr) {
1225     MCSymbolData *&Entry = SymbolMap[&Symbol];
1226
1227     if (Created) *Created = !Entry;
1228     if (!Entry)
1229       Entry = new MCSymbolData(Symbol, nullptr, 0, this);
1230
1231     return *Entry;
1232   }
1233
1234   const_file_name_iterator file_names_begin() const {
1235     return FileNames.begin();
1236   }
1237
1238   const_file_name_iterator file_names_end() const {
1239     return FileNames.end();
1240   }
1241
1242   void addFileName(StringRef FileName) {
1243     if (std::find(file_names_begin(), file_names_end(), FileName) ==
1244         file_names_end())
1245       FileNames.push_back(FileName);
1246   }
1247
1248   /// @}
1249
1250   void dump();
1251 };
1252
1253 } // end namespace llvm
1254
1255 #endif