DataLayout is mandatory, update the API to reflect it with references.
[oota-llvm.git] / include / llvm / IR / Value.h
1 //===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the Value class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_IR_VALUE_H
15 #define LLVM_IR_VALUE_H
16
17 #include "llvm-c/Core.h"
18 #include "llvm/ADT/iterator_range.h"
19 #include "llvm/IR/Use.h"
20 #include "llvm/Support/CBindingWrapping.h"
21 #include "llvm/Support/Casting.h"
22 #include "llvm/Support/Compiler.h"
23
24 namespace llvm {
25
26 class APInt;
27 class Argument;
28 class AssemblyAnnotationWriter;
29 class BasicBlock;
30 class Constant;
31 class DataLayout;
32 class Function;
33 class GlobalAlias;
34 class GlobalObject;
35 class GlobalValue;
36 class GlobalVariable;
37 class InlineAsm;
38 class Instruction;
39 class LLVMContext;
40 class Module;
41 class StringRef;
42 class Twine;
43 class Type;
44 class ValueHandleBase;
45 class ValueSymbolTable;
46 class raw_ostream;
47
48 template<typename ValueTy> class StringMapEntry;
49 typedef StringMapEntry<Value*> ValueName;
50
51 //===----------------------------------------------------------------------===//
52 //                                 Value Class
53 //===----------------------------------------------------------------------===//
54
55 /// \brief LLVM Value Representation
56 ///
57 /// This is a very important LLVM class. It is the base class of all values
58 /// computed by a program that may be used as operands to other values. Value is
59 /// the super class of other important classes such as Instruction and Function.
60 /// All Values have a Type. Type is not a subclass of Value. Some values can
61 /// have a name and they belong to some Module.  Setting the name on the Value
62 /// automatically updates the module's symbol table.
63 ///
64 /// Every value has a "use list" that keeps track of which other Values are
65 /// using this Value.  A Value can also have an arbitrary number of ValueHandle
66 /// objects that watch it and listen to RAUW and Destroy events.  See
67 /// llvm/IR/ValueHandle.h for details.
68 class Value {
69   Type *VTy;
70   Use *UseList;
71
72   friend class ValueAsMetadata; // Allow access to NameAndIsUsedByMD.
73   friend class ValueHandleBase;
74   PointerIntPair<ValueName *, 1> NameAndIsUsedByMD;
75
76   const unsigned char SubclassID;   // Subclass identifier (for isa/dyn_cast)
77   unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
78 protected:
79   /// \brief Hold subclass data that can be dropped.
80   ///
81   /// This member is similar to SubclassData, however it is for holding
82   /// information which may be used to aid optimization, but which may be
83   /// cleared to zero without affecting conservative interpretation.
84   unsigned char SubclassOptionalData : 7;
85
86 private:
87   /// \brief Hold arbitrary subclass data.
88   ///
89   /// This member is defined by this class, but is not used for anything.
90   /// Subclasses can use it to hold whatever state they find useful.  This
91   /// field is initialized to zero by the ctor.
92   unsigned short SubclassData;
93
94 protected:
95   /// \brief The number of operands in the subclass.
96   ///
97   /// This member is defined by this class, but not used for anything.
98   /// Subclasses can use it to store their number of operands, if they have
99   /// any.
100   ///
101   /// This is stored here to save space in User on 64-bit hosts.  Since most
102   /// instances of Value have operands, 32-bit hosts aren't significantly
103   /// affected.
104   unsigned NumOperands;
105
106 private:
107   template <typename UseT> // UseT == 'Use' or 'const Use'
108   class use_iterator_impl
109       : public std::iterator<std::forward_iterator_tag, UseT *> {
110     UseT *U;
111     explicit use_iterator_impl(UseT *u) : U(u) {}
112     friend class Value;
113
114   public:
115     use_iterator_impl() : U() {}
116
117     bool operator==(const use_iterator_impl &x) const { return U == x.U; }
118     bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }
119
120     use_iterator_impl &operator++() { // Preincrement
121       assert(U && "Cannot increment end iterator!");
122       U = U->getNext();
123       return *this;
124     }
125     use_iterator_impl operator++(int) { // Postincrement
126       auto tmp = *this;
127       ++*this;
128       return tmp;
129     }
130
131     UseT &operator*() const {
132       assert(U && "Cannot dereference end iterator!");
133       return *U;
134     }
135
136     UseT *operator->() const { return &operator*(); }
137
138     operator use_iterator_impl<const UseT>() const {
139       return use_iterator_impl<const UseT>(U);
140     }
141   };
142
143   template <typename UserTy> // UserTy == 'User' or 'const User'
144   class user_iterator_impl
145       : public std::iterator<std::forward_iterator_tag, UserTy *> {
146     use_iterator_impl<Use> UI;
147     explicit user_iterator_impl(Use *U) : UI(U) {}
148     friend class Value;
149
150   public:
151     user_iterator_impl() {}
152
153     bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
154     bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }
155
156     /// \brief Returns true if this iterator is equal to user_end() on the value.
157     bool atEnd() const { return *this == user_iterator_impl(); }
158
159     user_iterator_impl &operator++() { // Preincrement
160       ++UI;
161       return *this;
162     }
163     user_iterator_impl operator++(int) { // Postincrement
164       auto tmp = *this;
165       ++*this;
166       return tmp;
167     }
168
169     // Retrieve a pointer to the current User.
170     UserTy *operator*() const {
171       return UI->getUser();
172     }
173
174     UserTy *operator->() const { return operator*(); }
175
176     operator user_iterator_impl<const UserTy>() const {
177       return user_iterator_impl<const UserTy>(*UI);
178     }
179
180     Use &getUse() const { return *UI; }
181   };
182
183   void operator=(const Value &) = delete;
184   Value(const Value &) = delete;
185
186 protected:
187   Value(Type *Ty, unsigned scid);
188 public:
189   virtual ~Value();
190
191   /// \brief Support for debugging, callable in GDB: V->dump()
192   void dump() const;
193
194   /// \brief Implement operator<< on Value.
195   void print(raw_ostream &O) const;
196
197   /// \brief Print the name of this Value out to the specified raw_ostream.
198   ///
199   /// This is useful when you just want to print 'int %reg126', not the
200   /// instruction that generated it. If you specify a Module for context, then
201   /// even constanst get pretty-printed; for example, the type of a null
202   /// pointer is printed symbolically.
203   void printAsOperand(raw_ostream &O, bool PrintType = true,
204                       const Module *M = nullptr) const;
205
206   /// \brief All values are typed, get the type of this value.
207   Type *getType() const { return VTy; }
208
209   /// \brief All values hold a context through their type.
210   LLVMContext &getContext() const;
211
212   // \brief All values can potentially be named.
213   bool hasName() const { return getValueName() != nullptr; }
214   ValueName *getValueName() const { return NameAndIsUsedByMD.getPointer(); }
215   void setValueName(ValueName *VN) { NameAndIsUsedByMD.setPointer(VN); }
216
217 private:
218   void destroyValueName();
219
220 public:
221   /// \brief Return a constant reference to the value's name.
222   ///
223   /// This is cheap and guaranteed to return the same reference as long as the
224   /// value is not modified.
225   StringRef getName() const;
226
227   /// \brief Change the name of the value.
228   ///
229   /// Choose a new unique name if the provided name is taken.
230   ///
231   /// \param Name The new name; or "" if the value's name should be removed.
232   void setName(const Twine &Name);
233
234
235   /// \brief Transfer the name from V to this value.
236   ///
237   /// After taking V's name, sets V's name to empty.
238   ///
239   /// \note It is an error to call V->takeName(V).
240   void takeName(Value *V);
241
242   /// \brief Change all uses of this to point to a new Value.
243   ///
244   /// Go through the uses list for this definition and make each use point to
245   /// "V" instead of "this".  After this completes, 'this's use list is
246   /// guaranteed to be empty.
247   void replaceAllUsesWith(Value *V);
248
249   /// replaceUsesOutsideBlock - Go through the uses list for this definition and
250   /// make each use point to "V" instead of "this" when the use is outside the
251   /// block. 'This's use list is expected to have at least one element.
252   /// Unlike replaceAllUsesWith this function does not support basic block
253   /// values or constant users.
254   void replaceUsesOutsideBlock(Value *V, BasicBlock *BB);
255
256   //----------------------------------------------------------------------
257   // Methods for handling the chain of uses of this Value.
258   //
259   bool               use_empty() const { return UseList == nullptr; }
260
261   typedef use_iterator_impl<Use>       use_iterator;
262   typedef use_iterator_impl<const Use> const_use_iterator;
263   use_iterator       use_begin()       { return use_iterator(UseList); }
264   const_use_iterator use_begin() const { return const_use_iterator(UseList); }
265   use_iterator       use_end()         { return use_iterator();   }
266   const_use_iterator use_end()   const { return const_use_iterator();   }
267   iterator_range<use_iterator> uses() {
268     return iterator_range<use_iterator>(use_begin(), use_end());
269   }
270   iterator_range<const_use_iterator> uses() const {
271     return iterator_range<const_use_iterator>(use_begin(), use_end());
272   }
273
274   bool               user_empty() const { return UseList == nullptr; }
275
276   typedef user_iterator_impl<User>       user_iterator;
277   typedef user_iterator_impl<const User> const_user_iterator;
278   user_iterator       user_begin()       { return user_iterator(UseList); }
279   const_user_iterator user_begin() const { return const_user_iterator(UseList); }
280   user_iterator       user_end()         { return user_iterator();   }
281   const_user_iterator user_end()   const { return const_user_iterator();   }
282   User               *user_back()        { return *user_begin(); }
283   const User         *user_back()  const { return *user_begin(); }
284   iterator_range<user_iterator> users() {
285     return iterator_range<user_iterator>(user_begin(), user_end());
286   }
287   iterator_range<const_user_iterator> users() const {
288     return iterator_range<const_user_iterator>(user_begin(), user_end());
289   }
290
291   /// \brief Return true if there is exactly one user of this value.
292   ///
293   /// This is specialized because it is a common request and does not require
294   /// traversing the whole use list.
295   bool hasOneUse() const {
296     const_use_iterator I = use_begin(), E = use_end();
297     if (I == E) return false;
298     return ++I == E;
299   }
300
301   /// \brief Return true if this Value has exactly N users.
302   bool hasNUses(unsigned N) const;
303
304   /// \brief Return true if this value has N users or more.
305   ///
306   /// This is logically equivalent to getNumUses() >= N.
307   bool hasNUsesOrMore(unsigned N) const;
308
309   /// \brief Check if this value is used in the specified basic block.
310   bool isUsedInBasicBlock(const BasicBlock *BB) const;
311
312   /// \brief This method computes the number of uses of this Value.
313   ///
314   /// This is a linear time operation.  Use hasOneUse, hasNUses, or
315   /// hasNUsesOrMore to check for specific values.
316   unsigned getNumUses() const;
317
318   /// \brief This method should only be used by the Use class.
319   void addUse(Use &U) { U.addToList(&UseList); }
320
321   /// \brief Concrete subclass of this.
322   ///
323   /// An enumeration for keeping track of the concrete subclass of Value that
324   /// is actually instantiated. Values of this enumeration are kept in the
325   /// Value classes SubclassID field. They are used for concrete type
326   /// identification.
327   enum ValueTy {
328     ArgumentVal,              // This is an instance of Argument
329     BasicBlockVal,            // This is an instance of BasicBlock
330     FunctionVal,              // This is an instance of Function
331     GlobalAliasVal,           // This is an instance of GlobalAlias
332     GlobalVariableVal,        // This is an instance of GlobalVariable
333     UndefValueVal,            // This is an instance of UndefValue
334     BlockAddressVal,          // This is an instance of BlockAddress
335     ConstantExprVal,          // This is an instance of ConstantExpr
336     ConstantAggregateZeroVal, // This is an instance of ConstantAggregateZero
337     ConstantDataArrayVal,     // This is an instance of ConstantDataArray
338     ConstantDataVectorVal,    // This is an instance of ConstantDataVector
339     ConstantIntVal,           // This is an instance of ConstantInt
340     ConstantFPVal,            // This is an instance of ConstantFP
341     ConstantArrayVal,         // This is an instance of ConstantArray
342     ConstantStructVal,        // This is an instance of ConstantStruct
343     ConstantVectorVal,        // This is an instance of ConstantVector
344     ConstantPointerNullVal,   // This is an instance of ConstantPointerNull
345     MetadataAsValueVal,       // This is an instance of MetadataAsValue
346     InlineAsmVal,             // This is an instance of InlineAsm
347     InstructionVal,           // This is an instance of Instruction
348     // Enum values starting at InstructionVal are used for Instructions;
349     // don't add new values here!
350
351     // Markers:
352     ConstantFirstVal = FunctionVal,
353     ConstantLastVal  = ConstantPointerNullVal
354   };
355
356   /// \brief Return an ID for the concrete type of this object.
357   ///
358   /// This is used to implement the classof checks.  This should not be used
359   /// for any other purpose, as the values may change as LLVM evolves.  Also,
360   /// note that for instructions, the Instruction's opcode is added to
361   /// InstructionVal. So this means three things:
362   /// # there is no value with code InstructionVal (no opcode==0).
363   /// # there are more possible values for the value type than in ValueTy enum.
364   /// # the InstructionVal enumerator must be the highest valued enumerator in
365   ///   the ValueTy enum.
366   unsigned getValueID() const {
367     return SubclassID;
368   }
369
370   /// \brief Return the raw optional flags value contained in this value.
371   ///
372   /// This should only be used when testing two Values for equivalence.
373   unsigned getRawSubclassOptionalData() const {
374     return SubclassOptionalData;
375   }
376
377   /// \brief Clear the optional flags contained in this value.
378   void clearSubclassOptionalData() {
379     SubclassOptionalData = 0;
380   }
381
382   /// \brief Check the optional flags for equality.
383   bool hasSameSubclassOptionalData(const Value *V) const {
384     return SubclassOptionalData == V->SubclassOptionalData;
385   }
386
387   /// \brief Clear any optional flags not set in the given Value.
388   void intersectOptionalDataWith(const Value *V) {
389     SubclassOptionalData &= V->SubclassOptionalData;
390   }
391
392   /// \brief Return true if there is a value handle associated with this value.
393   bool hasValueHandle() const { return HasValueHandle; }
394
395   /// \brief Return true if there is metadata referencing this value.
396   bool isUsedByMetadata() const { return NameAndIsUsedByMD.getInt(); }
397
398   /// \brief Strip off pointer casts, all-zero GEPs, and aliases.
399   ///
400   /// Returns the original uncasted value.  If this is called on a non-pointer
401   /// value, it returns 'this'.
402   Value *stripPointerCasts();
403   const Value *stripPointerCasts() const {
404     return const_cast<Value*>(this)->stripPointerCasts();
405   }
406
407   /// \brief Strip off pointer casts and all-zero GEPs.
408   ///
409   /// Returns the original uncasted value.  If this is called on a non-pointer
410   /// value, it returns 'this'.
411   Value *stripPointerCastsNoFollowAliases();
412   const Value *stripPointerCastsNoFollowAliases() const {
413     return const_cast<Value*>(this)->stripPointerCastsNoFollowAliases();
414   }
415
416   /// \brief Strip off pointer casts and all-constant inbounds GEPs.
417   ///
418   /// Returns the original pointer value.  If this is called on a non-pointer
419   /// value, it returns 'this'.
420   Value *stripInBoundsConstantOffsets();
421   const Value *stripInBoundsConstantOffsets() const {
422     return const_cast<Value*>(this)->stripInBoundsConstantOffsets();
423   }
424
425   /// \brief Accumulate offsets from \a stripInBoundsConstantOffsets().
426   ///
427   /// Stores the resulting constant offset stripped into the APInt provided.
428   /// The provided APInt will be extended or truncated as needed to be the
429   /// correct bitwidth for an offset of this pointer type.
430   ///
431   /// If this is called on a non-pointer value, it returns 'this'.
432   Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
433                                                    APInt &Offset);
434   const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
435                                                          APInt &Offset) const {
436     return const_cast<Value *>(this)
437         ->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
438   }
439
440   /// \brief Strip off pointer casts and inbounds GEPs.
441   ///
442   /// Returns the original pointer value.  If this is called on a non-pointer
443   /// value, it returns 'this'.
444   Value *stripInBoundsOffsets();
445   const Value *stripInBoundsOffsets() const {
446     return const_cast<Value*>(this)->stripInBoundsOffsets();
447   }
448
449   /// \brief Check if this is always a dereferenceable pointer.
450   ///
451   /// Test if this value is always a pointer to allocated and suitably aligned
452   /// memory for a simple load or store.
453   bool isDereferenceablePointer(const DataLayout &DL) const;
454
455   /// \brief Translate PHI node to its predecessor from the given basic block.
456   ///
457   /// If this value is a PHI node with CurBB as its parent, return the value in
458   /// the PHI node corresponding to PredBB.  If not, return ourself.  This is
459   /// useful if you want to know the value something has in a predecessor
460   /// block.
461   Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB);
462
463   const Value *DoPHITranslation(const BasicBlock *CurBB,
464                                 const BasicBlock *PredBB) const{
465     return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB);
466   }
467
468   /// \brief The maximum alignment for instructions.
469   ///
470   /// This is the greatest alignment value supported by load, store, and alloca
471   /// instructions, and global values.
472   static const unsigned MaxAlignmentExponent = 29;
473   static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
474
475   /// \brief Mutate the type of this Value to be of the specified type.
476   ///
477   /// Note that this is an extremely dangerous operation which can create
478   /// completely invalid IR very easily.  It is strongly recommended that you
479   /// recreate IR objects with the right types instead of mutating them in
480   /// place.
481   void mutateType(Type *Ty) {
482     VTy = Ty;
483   }
484
485   /// \brief Sort the use-list.
486   ///
487   /// Sorts the Value's use-list by Cmp using a stable mergesort.  Cmp is
488   /// expected to compare two \a Use references.
489   template <class Compare> void sortUseList(Compare Cmp);
490
491   /// \brief Reverse the use-list.
492   void reverseUseList();
493
494 private:
495   /// \brief Merge two lists together.
496   ///
497   /// Merges \c L and \c R using \c Cmp.  To enable stable sorts, always pushes
498   /// "equal" items from L before items from R.
499   ///
500   /// \return the first element in the list.
501   ///
502   /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
503   template <class Compare>
504   static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) {
505     Use *Merged;
506     mergeUseListsImpl(L, R, &Merged, Cmp);
507     return Merged;
508   }
509
510   /// \brief Tail-recursive helper for \a mergeUseLists().
511   ///
512   /// \param[out] Next the first element in the list.
513   template <class Compare>
514   static void mergeUseListsImpl(Use *L, Use *R, Use **Next, Compare Cmp);
515
516 protected:
517   unsigned short getSubclassDataFromValue() const { return SubclassData; }
518   void setValueSubclassData(unsigned short D) { SubclassData = D; }
519 };
520
521 inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
522   V.print(OS);
523   return OS;
524 }
525
526 void Use::set(Value *V) {
527   if (Val) removeFromList();
528   Val = V;
529   if (V) V->addUse(*this);
530 }
531
532 template <class Compare> void Value::sortUseList(Compare Cmp) {
533   if (!UseList || !UseList->Next)
534     // No need to sort 0 or 1 uses.
535     return;
536
537   // Note: this function completely ignores Prev pointers until the end when
538   // they're fixed en masse.
539
540   // Create a binomial vector of sorted lists, visiting uses one at a time and
541   // merging lists as necessary.
542   const unsigned MaxSlots = 32;
543   Use *Slots[MaxSlots];
544
545   // Collect the first use, turning it into a single-item list.
546   Use *Next = UseList->Next;
547   UseList->Next = nullptr;
548   unsigned NumSlots = 1;
549   Slots[0] = UseList;
550
551   // Collect all but the last use.
552   while (Next->Next) {
553     Use *Current = Next;
554     Next = Current->Next;
555
556     // Turn Current into a single-item list.
557     Current->Next = nullptr;
558
559     // Save Current in the first available slot, merging on collisions.
560     unsigned I;
561     for (I = 0; I < NumSlots; ++I) {
562       if (!Slots[I])
563         break;
564
565       // Merge two lists, doubling the size of Current and emptying slot I.
566       //
567       // Since the uses in Slots[I] originally preceded those in Current, send
568       // Slots[I] in as the left parameter to maintain a stable sort.
569       Current = mergeUseLists(Slots[I], Current, Cmp);
570       Slots[I] = nullptr;
571     }
572     // Check if this is a new slot.
573     if (I == NumSlots) {
574       ++NumSlots;
575       assert(NumSlots <= MaxSlots && "Use list bigger than 2^32");
576     }
577
578     // Found an open slot.
579     Slots[I] = Current;
580   }
581
582   // Merge all the lists together.
583   assert(Next && "Expected one more Use");
584   assert(!Next->Next && "Expected only one Use");
585   UseList = Next;
586   for (unsigned I = 0; I < NumSlots; ++I)
587     if (Slots[I])
588       // Since the uses in Slots[I] originally preceded those in UseList, send
589       // Slots[I] in as the left parameter to maintain a stable sort.
590       UseList = mergeUseLists(Slots[I], UseList, Cmp);
591
592   // Fix the Prev pointers.
593   for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) {
594     I->setPrev(Prev);
595     Prev = &I->Next;
596   }
597 }
598
599 template <class Compare>
600 void Value::mergeUseListsImpl(Use *L, Use *R, Use **Next, Compare Cmp) {
601   if (!L) {
602     *Next = R;
603     return;
604   }
605   if (!R) {
606     *Next = L;
607     return;
608   }
609   if (Cmp(*R, *L)) {
610     *Next = R;
611     mergeUseListsImpl(L, R->Next, &R->Next, Cmp);
612     return;
613   }
614   *Next = L;
615   mergeUseListsImpl(L->Next, R, &L->Next, Cmp);
616 }
617
618 // isa - Provide some specializations of isa so that we don't have to include
619 // the subtype header files to test to see if the value is a subclass...
620 //
621 template <> struct isa_impl<Constant, Value> {
622   static inline bool doit(const Value &Val) {
623     return Val.getValueID() >= Value::ConstantFirstVal &&
624       Val.getValueID() <= Value::ConstantLastVal;
625   }
626 };
627
628 template <> struct isa_impl<Argument, Value> {
629   static inline bool doit (const Value &Val) {
630     return Val.getValueID() == Value::ArgumentVal;
631   }
632 };
633
634 template <> struct isa_impl<InlineAsm, Value> {
635   static inline bool doit(const Value &Val) {
636     return Val.getValueID() == Value::InlineAsmVal;
637   }
638 };
639
640 template <> struct isa_impl<Instruction, Value> {
641   static inline bool doit(const Value &Val) {
642     return Val.getValueID() >= Value::InstructionVal;
643   }
644 };
645
646 template <> struct isa_impl<BasicBlock, Value> {
647   static inline bool doit(const Value &Val) {
648     return Val.getValueID() == Value::BasicBlockVal;
649   }
650 };
651
652 template <> struct isa_impl<Function, Value> {
653   static inline bool doit(const Value &Val) {
654     return Val.getValueID() == Value::FunctionVal;
655   }
656 };
657
658 template <> struct isa_impl<GlobalVariable, Value> {
659   static inline bool doit(const Value &Val) {
660     return Val.getValueID() == Value::GlobalVariableVal;
661   }
662 };
663
664 template <> struct isa_impl<GlobalAlias, Value> {
665   static inline bool doit(const Value &Val) {
666     return Val.getValueID() == Value::GlobalAliasVal;
667   }
668 };
669
670 template <> struct isa_impl<GlobalValue, Value> {
671   static inline bool doit(const Value &Val) {
672     return isa<GlobalObject>(Val) || isa<GlobalAlias>(Val);
673   }
674 };
675
676 template <> struct isa_impl<GlobalObject, Value> {
677   static inline bool doit(const Value &Val) {
678     return isa<GlobalVariable>(Val) || isa<Function>(Val);
679   }
680 };
681
682 // Value* is only 4-byte aligned.
683 template<>
684 class PointerLikeTypeTraits<Value*> {
685   typedef Value* PT;
686 public:
687   static inline void *getAsVoidPointer(PT P) { return P; }
688   static inline PT getFromVoidPointer(void *P) {
689     return static_cast<PT>(P);
690   }
691   enum { NumLowBitsAvailable = 2 };
692 };
693
694 // Create wrappers for C Binding types (see CBindingWrapping.h).
695 DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)
696
697 /* Specialized opaque value conversions.
698  */
699 inline Value **unwrap(LLVMValueRef *Vals) {
700   return reinterpret_cast<Value**>(Vals);
701 }
702
703 template<typename T>
704 inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
705 #ifdef DEBUG
706   for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
707     cast<T>(*I);
708 #endif
709   (void)Length;
710   return reinterpret_cast<T**>(Vals);
711 }
712
713 inline LLVMValueRef *wrap(const Value **Vals) {
714   return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
715 }
716
717 } // End llvm namespace
718
719 #endif