[ThinLTO] Metadata linking for imported functions
[oota-llvm.git] / include / llvm / IR / Metadata.h
1 //===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// @file
11 /// This file contains the declarations for metadata subclasses.
12 /// They represent the different flavors of metadata that live in LLVM.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_IR_METADATA_H
17 #define LLVM_IR_METADATA_H
18
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/ilist_node.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/MetadataTracking.h"
25 #include "llvm/IR/Value.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include <type_traits>
28
29 namespace llvm {
30
31 class LLVMContext;
32 class Module;
33 class ModuleSlotTracker;
34
35 enum LLVMConstants : uint32_t {
36   DEBUG_METADATA_VERSION = 3 // Current debug info version number.
37 };
38
39 /// \brief Root of the metadata hierarchy.
40 ///
41 /// This is a root class for typeless data in the IR.
42 class Metadata {
43   friend class ReplaceableMetadataImpl;
44
45   /// \brief RTTI.
46   const unsigned char SubclassID;
47
48 protected:
49   /// \brief Active type of storage.
50   enum StorageType { Uniqued, Distinct, Temporary };
51
52   /// \brief Storage flag for non-uniqued, otherwise unowned, metadata.
53   unsigned Storage : 2;
54   // TODO: expose remaining bits to subclasses.
55
56   unsigned short SubclassData16;
57   unsigned SubclassData32;
58
59 public:
60   enum MetadataKind {
61     MDTupleKind,
62     DILocationKind,
63     GenericDINodeKind,
64     DISubrangeKind,
65     DIEnumeratorKind,
66     DIBasicTypeKind,
67     DIDerivedTypeKind,
68     DICompositeTypeKind,
69     DISubroutineTypeKind,
70     DIFileKind,
71     DICompileUnitKind,
72     DISubprogramKind,
73     DILexicalBlockKind,
74     DILexicalBlockFileKind,
75     DINamespaceKind,
76     DIModuleKind,
77     DITemplateTypeParameterKind,
78     DITemplateValueParameterKind,
79     DIGlobalVariableKind,
80     DILocalVariableKind,
81     DIExpressionKind,
82     DIObjCPropertyKind,
83     DIImportedEntityKind,
84     ConstantAsMetadataKind,
85     LocalAsMetadataKind,
86     MDStringKind,
87     DIMacroKind,
88     DIMacroFileKind
89   };
90
91 protected:
92   Metadata(unsigned ID, StorageType Storage)
93       : SubclassID(ID), Storage(Storage), SubclassData16(0), SubclassData32(0) {
94   }
95   ~Metadata() = default;
96
97   /// \brief Default handling of a changed operand, which asserts.
98   ///
99   /// If subclasses pass themselves in as owners to a tracking node reference,
100   /// they must provide an implementation of this method.
101   void handleChangedOperand(void *, Metadata *) {
102     llvm_unreachable("Unimplemented in Metadata subclass");
103   }
104
105 public:
106   unsigned getMetadataID() const { return SubclassID; }
107
108   /// \brief User-friendly dump.
109   ///
110   /// If \c M is provided, metadata nodes will be numbered canonically;
111   /// otherwise, pointer addresses are substituted.
112   ///
113   /// Note: this uses an explicit overload instead of default arguments so that
114   /// the nullptr version is easy to call from a debugger.
115   ///
116   /// @{
117   void dump() const;
118   void dump(const Module *M) const;
119   /// @}
120
121   /// \brief Print.
122   ///
123   /// Prints definition of \c this.
124   ///
125   /// If \c M is provided, metadata nodes will be numbered canonically;
126   /// otherwise, pointer addresses are substituted.
127   /// @{
128   void print(raw_ostream &OS, const Module *M = nullptr,
129              bool IsForDebug = false) const;
130   void print(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M = nullptr,
131              bool IsForDebug = false) const;
132   /// @}
133
134   /// \brief Print as operand.
135   ///
136   /// Prints reference of \c this.
137   ///
138   /// If \c M is provided, metadata nodes will be numbered canonically;
139   /// otherwise, pointer addresses are substituted.
140   /// @{
141   void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const;
142   void printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
143                       const Module *M = nullptr) const;
144   /// @}
145 };
146
147 #define HANDLE_METADATA(CLASS) class CLASS;
148 #include "llvm/IR/Metadata.def"
149
150 // Provide specializations of isa so that we don't need definitions of
151 // subclasses to see if the metadata is a subclass.
152 #define HANDLE_METADATA_LEAF(CLASS)                                            \
153   template <> struct isa_impl<CLASS, Metadata> {                               \
154     static inline bool doit(const Metadata &MD) {                              \
155       return MD.getMetadataID() == Metadata::CLASS##Kind;                      \
156     }                                                                          \
157   };
158 #include "llvm/IR/Metadata.def"
159
160 inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
161   MD.print(OS);
162   return OS;
163 }
164
165 /// \brief Metadata wrapper in the Value hierarchy.
166 ///
167 /// A member of the \a Value hierarchy to represent a reference to metadata.
168 /// This allows, e.g., instrinsics to have metadata as operands.
169 ///
170 /// Notably, this is the only thing in either hierarchy that is allowed to
171 /// reference \a LocalAsMetadata.
172 class MetadataAsValue : public Value {
173   friend class ReplaceableMetadataImpl;
174   friend class LLVMContextImpl;
175
176   Metadata *MD;
177
178   MetadataAsValue(Type *Ty, Metadata *MD);
179   ~MetadataAsValue() override;
180
181   /// \brief Drop use of metadata (during teardown).
182   void dropUse() { MD = nullptr; }
183
184 public:
185   static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
186   static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
187   Metadata *getMetadata() const { return MD; }
188
189   static bool classof(const Value *V) {
190     return V->getValueID() == MetadataAsValueVal;
191   }
192
193 private:
194   void handleChangedMetadata(Metadata *MD);
195   void track();
196   void untrack();
197 };
198
199 /// \brief Shared implementation of use-lists for replaceable metadata.
200 ///
201 /// Most metadata cannot be RAUW'ed.  This is a shared implementation of
202 /// use-lists and associated API for the two that support it (\a ValueAsMetadata
203 /// and \a TempMDNode).
204 class ReplaceableMetadataImpl {
205   friend class MetadataTracking;
206
207 public:
208   typedef MetadataTracking::OwnerTy OwnerTy;
209
210 private:
211   LLVMContext &Context;
212   uint64_t NextIndex;
213   SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap;
214
215 public:
216   ReplaceableMetadataImpl(LLVMContext &Context)
217       : Context(Context), NextIndex(0) {}
218   ~ReplaceableMetadataImpl() {
219     assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
220   }
221
222   LLVMContext &getContext() const { return Context; }
223
224   /// \brief Replace all uses of this with MD.
225   ///
226   /// Replace all uses of this with \c MD, which is allowed to be null.
227   void replaceAllUsesWith(Metadata *MD);
228
229   /// \brief Resolve all uses of this.
230   ///
231   /// Resolve all uses of this, turning off RAUW permanently.  If \c
232   /// ResolveUsers, call \a MDNode::resolve() on any users whose last operand
233   /// is resolved.
234   void resolveAllUses(bool ResolveUsers = true);
235
236 private:
237   void addRef(void *Ref, OwnerTy Owner);
238   void dropRef(void *Ref);
239   void moveRef(void *Ref, void *New, const Metadata &MD);
240
241   static ReplaceableMetadataImpl *get(Metadata &MD);
242 };
243
244 /// \brief Value wrapper in the Metadata hierarchy.
245 ///
246 /// This is a custom value handle that allows other metadata to refer to
247 /// classes in the Value hierarchy.
248 ///
249 /// Because of full uniquing support, each value is only wrapped by a single \a
250 /// ValueAsMetadata object, so the lookup maps are far more efficient than
251 /// those using ValueHandleBase.
252 class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
253   friend class ReplaceableMetadataImpl;
254   friend class LLVMContextImpl;
255
256   Value *V;
257
258   /// \brief Drop users without RAUW (during teardown).
259   void dropUsers() {
260     ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
261   }
262
263 protected:
264   ValueAsMetadata(unsigned ID, Value *V)
265       : Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) {
266     assert(V && "Expected valid value");
267   }
268   ~ValueAsMetadata() = default;
269
270 public:
271   static ValueAsMetadata *get(Value *V);
272   static ConstantAsMetadata *getConstant(Value *C) {
273     return cast<ConstantAsMetadata>(get(C));
274   }
275   static LocalAsMetadata *getLocal(Value *Local) {
276     return cast<LocalAsMetadata>(get(Local));
277   }
278
279   static ValueAsMetadata *getIfExists(Value *V);
280   static ConstantAsMetadata *getConstantIfExists(Value *C) {
281     return cast_or_null<ConstantAsMetadata>(getIfExists(C));
282   }
283   static LocalAsMetadata *getLocalIfExists(Value *Local) {
284     return cast_or_null<LocalAsMetadata>(getIfExists(Local));
285   }
286
287   Value *getValue() const { return V; }
288   Type *getType() const { return V->getType(); }
289   LLVMContext &getContext() const { return V->getContext(); }
290
291   static void handleDeletion(Value *V);
292   static void handleRAUW(Value *From, Value *To);
293
294 protected:
295   /// \brief Handle collisions after \a Value::replaceAllUsesWith().
296   ///
297   /// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
298   /// \a Value gets RAUW'ed and the target already exists, this is used to
299   /// merge the two metadata nodes.
300   void replaceAllUsesWith(Metadata *MD) {
301     ReplaceableMetadataImpl::replaceAllUsesWith(MD);
302   }
303
304 public:
305   static bool classof(const Metadata *MD) {
306     return MD->getMetadataID() == LocalAsMetadataKind ||
307            MD->getMetadataID() == ConstantAsMetadataKind;
308   }
309 };
310
311 class ConstantAsMetadata : public ValueAsMetadata {
312   friend class ValueAsMetadata;
313
314   ConstantAsMetadata(Constant *C)
315       : ValueAsMetadata(ConstantAsMetadataKind, C) {}
316
317 public:
318   static ConstantAsMetadata *get(Constant *C) {
319     return ValueAsMetadata::getConstant(C);
320   }
321   static ConstantAsMetadata *getIfExists(Constant *C) {
322     return ValueAsMetadata::getConstantIfExists(C);
323   }
324
325   Constant *getValue() const {
326     return cast<Constant>(ValueAsMetadata::getValue());
327   }
328
329   static bool classof(const Metadata *MD) {
330     return MD->getMetadataID() == ConstantAsMetadataKind;
331   }
332 };
333
334 class LocalAsMetadata : public ValueAsMetadata {
335   friend class ValueAsMetadata;
336
337   LocalAsMetadata(Value *Local)
338       : ValueAsMetadata(LocalAsMetadataKind, Local) {
339     assert(!isa<Constant>(Local) && "Expected local value");
340   }
341
342 public:
343   static LocalAsMetadata *get(Value *Local) {
344     return ValueAsMetadata::getLocal(Local);
345   }
346   static LocalAsMetadata *getIfExists(Value *Local) {
347     return ValueAsMetadata::getLocalIfExists(Local);
348   }
349
350   static bool classof(const Metadata *MD) {
351     return MD->getMetadataID() == LocalAsMetadataKind;
352   }
353 };
354
355 /// \brief Transitional API for extracting constants from Metadata.
356 ///
357 /// This namespace contains transitional functions for metadata that points to
358 /// \a Constants.
359 ///
360 /// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
361 /// operands could refer to any \a Value.  There's was a lot of code like this:
362 ///
363 /// \code
364 ///     MDNode *N = ...;
365 ///     auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
366 /// \endcode
367 ///
368 /// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
369 /// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
370 /// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
371 /// cast in the \a Value hierarchy.  Besides creating boiler-plate, this
372 /// requires subtle control flow changes.
373 ///
374 /// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
375 /// so that metadata can refer to numbers without traversing a bridge to the \a
376 /// Value hierarchy.  In this final state, the code above would look like this:
377 ///
378 /// \code
379 ///     MDNode *N = ...;
380 ///     auto *MI = dyn_cast<MDInt>(N->getOperand(2));
381 /// \endcode
382 ///
383 /// The API in this namespace supports the transition.  \a MDInt doesn't exist
384 /// yet, and even once it does, changing each metadata schema to use it is its
385 /// own mini-project.  In the meantime this API prevents us from introducing
386 /// complex and bug-prone control flow that will disappear in the end.  In
387 /// particular, the above code looks like this:
388 ///
389 /// \code
390 ///     MDNode *N = ...;
391 ///     auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
392 /// \endcode
393 ///
394 /// The full set of provided functions includes:
395 ///
396 ///   mdconst::hasa                <=> isa
397 ///   mdconst::extract             <=> cast
398 ///   mdconst::extract_or_null     <=> cast_or_null
399 ///   mdconst::dyn_extract         <=> dyn_cast
400 ///   mdconst::dyn_extract_or_null <=> dyn_cast_or_null
401 ///
402 /// The target of the cast must be a subclass of \a Constant.
403 namespace mdconst {
404
405 namespace detail {
406 template <class T> T &make();
407 template <class T, class Result> struct HasDereference {
408   typedef char Yes[1];
409   typedef char No[2];
410   template <size_t N> struct SFINAE {};
411
412   template <class U, class V>
413   static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
414   template <class U, class V> static No &hasDereference(...);
415
416   static const bool value =
417       sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
418 };
419 template <class V, class M> struct IsValidPointer {
420   static const bool value = std::is_base_of<Constant, V>::value &&
421                             HasDereference<M, const Metadata &>::value;
422 };
423 template <class V, class M> struct IsValidReference {
424   static const bool value = std::is_base_of<Constant, V>::value &&
425                             std::is_convertible<M, const Metadata &>::value;
426 };
427 } // end namespace detail
428
429 /// \brief Check whether Metadata has a Value.
430 ///
431 /// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
432 /// type \c X.
433 template <class X, class Y>
434 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, bool>::type
435 hasa(Y &&MD) {
436   assert(MD && "Null pointer sent into hasa");
437   if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
438     return isa<X>(V->getValue());
439   return false;
440 }
441 template <class X, class Y>
442 inline
443     typename std::enable_if<detail::IsValidReference<X, Y &>::value, bool>::type
444     hasa(Y &MD) {
445   return hasa(&MD);
446 }
447
448 /// \brief Extract a Value from Metadata.
449 ///
450 /// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
451 template <class X, class Y>
452 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
453 extract(Y &&MD) {
454   return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
455 }
456 template <class X, class Y>
457 inline
458     typename std::enable_if<detail::IsValidReference<X, Y &>::value, X *>::type
459     extract(Y &MD) {
460   return extract(&MD);
461 }
462
463 /// \brief Extract a Value from Metadata, allowing null.
464 ///
465 /// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
466 /// from \c MD, allowing \c MD to be null.
467 template <class X, class Y>
468 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
469 extract_or_null(Y &&MD) {
470   if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
471     return cast<X>(V->getValue());
472   return nullptr;
473 }
474
475 /// \brief Extract a Value from Metadata, if any.
476 ///
477 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
478 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
479 /// Value it does contain is of the wrong subclass.
480 template <class X, class Y>
481 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
482 dyn_extract(Y &&MD) {
483   if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
484     return dyn_cast<X>(V->getValue());
485   return nullptr;
486 }
487
488 /// \brief Extract a Value from Metadata, if any, allowing null.
489 ///
490 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
491 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
492 /// Value it does contain is of the wrong subclass, allowing \c MD to be null.
493 template <class X, class Y>
494 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
495 dyn_extract_or_null(Y &&MD) {
496   if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
497     return dyn_cast<X>(V->getValue());
498   return nullptr;
499 }
500
501 } // end namespace mdconst
502
503 //===----------------------------------------------------------------------===//
504 /// \brief A single uniqued string.
505 ///
506 /// These are used to efficiently contain a byte sequence for metadata.
507 /// MDString is always unnamed.
508 class MDString : public Metadata {
509   friend class StringMapEntry<MDString>;
510
511   MDString(const MDString &) = delete;
512   MDString &operator=(MDString &&) = delete;
513   MDString &operator=(const MDString &) = delete;
514
515   StringMapEntry<MDString> *Entry;
516   MDString() : Metadata(MDStringKind, Uniqued), Entry(nullptr) {}
517   MDString(MDString &&) : Metadata(MDStringKind, Uniqued) {}
518
519 public:
520   static MDString *get(LLVMContext &Context, StringRef Str);
521   static MDString *get(LLVMContext &Context, const char *Str) {
522     return get(Context, Str ? StringRef(Str) : StringRef());
523   }
524
525   StringRef getString() const;
526
527   unsigned getLength() const { return (unsigned)getString().size(); }
528
529   typedef StringRef::iterator iterator;
530
531   /// \brief Pointer to the first byte of the string.
532   iterator begin() const { return getString().begin(); }
533
534   /// \brief Pointer to one byte past the end of the string.
535   iterator end() const { return getString().end(); }
536
537   const unsigned char *bytes_begin() const { return getString().bytes_begin(); }
538   const unsigned char *bytes_end() const { return getString().bytes_end(); }
539
540   /// \brief Methods for support type inquiry through isa, cast, and dyn_cast.
541   static bool classof(const Metadata *MD) {
542     return MD->getMetadataID() == MDStringKind;
543   }
544 };
545
546 /// \brief A collection of metadata nodes that might be associated with a
547 /// memory access used by the alias-analysis infrastructure.
548 struct AAMDNodes {
549   explicit AAMDNodes(MDNode *T = nullptr, MDNode *S = nullptr,
550                      MDNode *N = nullptr)
551       : TBAA(T), Scope(S), NoAlias(N) {}
552
553   bool operator==(const AAMDNodes &A) const {
554     return TBAA == A.TBAA && Scope == A.Scope && NoAlias == A.NoAlias;
555   }
556
557   bool operator!=(const AAMDNodes &A) const { return !(*this == A); }
558
559   explicit operator bool() const { return TBAA || Scope || NoAlias; }
560
561   /// \brief The tag for type-based alias analysis.
562   MDNode *TBAA;
563
564   /// \brief The tag for alias scope specification (used with noalias).
565   MDNode *Scope;
566
567   /// \brief The tag specifying the noalias scope.
568   MDNode *NoAlias;
569 };
570
571 // Specialize DenseMapInfo for AAMDNodes.
572 template<>
573 struct DenseMapInfo<AAMDNodes> {
574   static inline AAMDNodes getEmptyKey() {
575     return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(),
576                      nullptr, nullptr);
577   }
578   static inline AAMDNodes getTombstoneKey() {
579     return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(),
580                      nullptr, nullptr);
581   }
582   static unsigned getHashValue(const AAMDNodes &Val) {
583     return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^
584            DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^
585            DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias);
586   }
587   static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
588     return LHS == RHS;
589   }
590 };
591
592 /// \brief Tracking metadata reference owned by Metadata.
593 ///
594 /// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
595 /// of \a Metadata, which has the option of registering itself for callbacks to
596 /// re-unique itself.
597 ///
598 /// In particular, this is used by \a MDNode.
599 class MDOperand {
600   MDOperand(MDOperand &&) = delete;
601   MDOperand(const MDOperand &) = delete;
602   MDOperand &operator=(MDOperand &&) = delete;
603   MDOperand &operator=(const MDOperand &) = delete;
604
605   Metadata *MD;
606
607 public:
608   MDOperand() : MD(nullptr) {}
609   ~MDOperand() { untrack(); }
610
611   Metadata *get() const { return MD; }
612   operator Metadata *() const { return get(); }
613   Metadata *operator->() const { return get(); }
614   Metadata &operator*() const { return *get(); }
615
616   void reset() {
617     untrack();
618     MD = nullptr;
619   }
620   void reset(Metadata *MD, Metadata *Owner) {
621     untrack();
622     this->MD = MD;
623     track(Owner);
624   }
625
626 private:
627   void track(Metadata *Owner) {
628     if (MD) {
629       if (Owner)
630         MetadataTracking::track(this, *MD, *Owner);
631       else
632         MetadataTracking::track(MD);
633     }
634   }
635   void untrack() {
636     assert(static_cast<void *>(this) == &MD && "Expected same address");
637     if (MD)
638       MetadataTracking::untrack(MD);
639   }
640 };
641
642 template <> struct simplify_type<MDOperand> {
643   typedef Metadata *SimpleType;
644   static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
645 };
646
647 template <> struct simplify_type<const MDOperand> {
648   typedef Metadata *SimpleType;
649   static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
650 };
651
652 /// \brief Pointer to the context, with optional RAUW support.
653 ///
654 /// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer
655 /// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext).
656 class ContextAndReplaceableUses {
657   PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr;
658
659   ContextAndReplaceableUses() = delete;
660   ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete;
661   ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete;
662   ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete;
663   ContextAndReplaceableUses &
664   operator=(const ContextAndReplaceableUses &) = delete;
665
666 public:
667   ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {}
668   ContextAndReplaceableUses(
669       std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses)
670       : Ptr(ReplaceableUses.release()) {
671     assert(getReplaceableUses() && "Expected non-null replaceable uses");
672   }
673   ~ContextAndReplaceableUses() { delete getReplaceableUses(); }
674
675   operator LLVMContext &() { return getContext(); }
676
677   /// \brief Whether this contains RAUW support.
678   bool hasReplaceableUses() const {
679     return Ptr.is<ReplaceableMetadataImpl *>();
680   }
681   LLVMContext &getContext() const {
682     if (hasReplaceableUses())
683       return getReplaceableUses()->getContext();
684     return *Ptr.get<LLVMContext *>();
685   }
686   ReplaceableMetadataImpl *getReplaceableUses() const {
687     if (hasReplaceableUses())
688       return Ptr.get<ReplaceableMetadataImpl *>();
689     return nullptr;
690   }
691
692   /// \brief Assign RAUW support to this.
693   ///
694   /// Make this replaceable, taking ownership of \c ReplaceableUses (which must
695   /// not be null).
696   void
697   makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) {
698     assert(ReplaceableUses && "Expected non-null replaceable uses");
699     assert(&ReplaceableUses->getContext() == &getContext() &&
700            "Expected same context");
701     delete getReplaceableUses();
702     Ptr = ReplaceableUses.release();
703   }
704
705   /// \brief Drop RAUW support.
706   ///
707   /// Cede ownership of RAUW support, returning it.
708   std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() {
709     assert(hasReplaceableUses() && "Expected to own replaceable uses");
710     std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses(
711         getReplaceableUses());
712     Ptr = &ReplaceableUses->getContext();
713     return ReplaceableUses;
714   }
715 };
716
717 struct TempMDNodeDeleter {
718   inline void operator()(MDNode *Node) const;
719 };
720
721 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
722   typedef std::unique_ptr<CLASS, TempMDNodeDeleter> Temp##CLASS;
723 #define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS)
724 #include "llvm/IR/Metadata.def"
725
726 /// \brief Metadata node.
727 ///
728 /// Metadata nodes can be uniqued, like constants, or distinct.  Temporary
729 /// metadata nodes (with full support for RAUW) can be used to delay uniquing
730 /// until forward references are known.  The basic metadata node is an \a
731 /// MDTuple.
732 ///
733 /// There is limited support for RAUW at construction time.  At construction
734 /// time, if any operand is a temporary node (or an unresolved uniqued node,
735 /// which indicates a transitive temporary operand), the node itself will be
736 /// unresolved.  As soon as all operands become resolved, it will drop RAUW
737 /// support permanently.
738 ///
739 /// If an unresolved node is part of a cycle, \a resolveCycles() needs
740 /// to be called on some member of the cycle once all temporary nodes have been
741 /// replaced.
742 class MDNode : public Metadata {
743   friend class ReplaceableMetadataImpl;
744   friend class LLVMContextImpl;
745
746   MDNode(const MDNode &) = delete;
747   void operator=(const MDNode &) = delete;
748   void *operator new(size_t) = delete;
749
750   unsigned NumOperands;
751   unsigned NumUnresolved;
752
753 protected:
754   ContextAndReplaceableUses Context;
755
756   void *operator new(size_t Size, unsigned NumOps);
757   void operator delete(void *Mem);
758
759   /// \brief Required by std, but never called.
760   void operator delete(void *, unsigned) {
761     llvm_unreachable("Constructor throws?");
762   }
763
764   /// \brief Required by std, but never called.
765   void operator delete(void *, unsigned, bool) {
766     llvm_unreachable("Constructor throws?");
767   }
768
769   MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
770          ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = None);
771   ~MDNode() = default;
772
773   void dropAllReferences();
774
775   MDOperand *mutable_begin() { return mutable_end() - NumOperands; }
776   MDOperand *mutable_end() { return reinterpret_cast<MDOperand *>(this); }
777
778   typedef iterator_range<MDOperand *> mutable_op_range;
779   mutable_op_range mutable_operands() {
780     return mutable_op_range(mutable_begin(), mutable_end());
781   }
782
783 public:
784   static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs);
785   static inline MDTuple *getIfExists(LLVMContext &Context,
786                                      ArrayRef<Metadata *> MDs);
787   static inline MDTuple *getDistinct(LLVMContext &Context,
788                                      ArrayRef<Metadata *> MDs);
789   static inline TempMDTuple getTemporary(LLVMContext &Context,
790                                          ArrayRef<Metadata *> MDs);
791
792   /// \brief Create a (temporary) clone of this.
793   TempMDNode clone() const;
794
795   /// \brief Deallocate a node created by getTemporary.
796   ///
797   /// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining
798   /// references will be reset.
799   static void deleteTemporary(MDNode *N);
800
801   LLVMContext &getContext() const { return Context.getContext(); }
802
803   /// \brief Replace a specific operand.
804   void replaceOperandWith(unsigned I, Metadata *New);
805
806   /// \brief Check if node is fully resolved.
807   ///
808   /// If \a isTemporary(), this always returns \c false; if \a isDistinct(),
809   /// this always returns \c true.
810   ///
811   /// If \a isUniqued(), returns \c true if this has already dropped RAUW
812   /// support (because all operands are resolved).
813   ///
814   /// As forward declarations are resolved, their containers should get
815   /// resolved automatically.  However, if this (or one of its operands) is
816   /// involved in a cycle, \a resolveCycles() needs to be called explicitly.
817   bool isResolved() const { return !Context.hasReplaceableUses(); }
818
819   bool isUniqued() const { return Storage == Uniqued; }
820   bool isDistinct() const { return Storage == Distinct; }
821   bool isTemporary() const { return Storage == Temporary; }
822
823   /// \brief RAUW a temporary.
824   ///
825   /// \pre \a isTemporary() must be \c true.
826   void replaceAllUsesWith(Metadata *MD) {
827     assert(isTemporary() && "Expected temporary node");
828     assert(!isResolved() && "Expected RAUW support");
829     Context.getReplaceableUses()->replaceAllUsesWith(MD);
830   }
831
832   /// \brief Resolve cycles.
833   ///
834   /// Once all forward declarations have been resolved, force cycles to be
835   /// resolved. If \p MDMaterialized is true, then any temporary metadata
836   /// is ignored, otherwise it asserts when encountering temporary metadata.
837   ///
838   /// \pre No operands (or operands' operands, etc.) have \a isTemporary().
839   void resolveCycles(bool MDMaterialized = true);
840
841   /// \brief Replace a temporary node with a permanent one.
842   ///
843   /// Try to create a uniqued version of \c N -- in place, if possible -- and
844   /// return it.  If \c N cannot be uniqued, return a distinct node instead.
845   template <class T>
846   static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
847   replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
848     return cast<T>(N.release()->replaceWithPermanentImpl());
849   }
850
851   /// \brief Replace a temporary node with a uniqued one.
852   ///
853   /// Create a uniqued version of \c N -- in place, if possible -- and return
854   /// it.  Takes ownership of the temporary node.
855   ///
856   /// \pre N does not self-reference.
857   template <class T>
858   static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
859   replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
860     return cast<T>(N.release()->replaceWithUniquedImpl());
861   }
862
863   /// \brief Replace a temporary node with a distinct one.
864   ///
865   /// Create a distinct version of \c N -- in place, if possible -- and return
866   /// it.  Takes ownership of the temporary node.
867   template <class T>
868   static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
869   replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
870     return cast<T>(N.release()->replaceWithDistinctImpl());
871   }
872
873 private:
874   MDNode *replaceWithPermanentImpl();
875   MDNode *replaceWithUniquedImpl();
876   MDNode *replaceWithDistinctImpl();
877
878 protected:
879   /// \brief Set an operand.
880   ///
881   /// Sets the operand directly, without worrying about uniquing.
882   void setOperand(unsigned I, Metadata *New);
883
884   void storeDistinctInContext();
885   template <class T, class StoreT>
886   static T *storeImpl(T *N, StorageType Storage, StoreT &Store);
887   template <class T> static T *storeImpl(T *N, StorageType Storage);
888
889 private:
890   void handleChangedOperand(void *Ref, Metadata *New);
891
892   void resolve();
893   void resolveAfterOperandChange(Metadata *Old, Metadata *New);
894   void decrementUnresolvedOperandCount();
895   unsigned countUnresolvedOperands();
896
897   /// \brief Mutate this to be "uniqued".
898   ///
899   /// Mutate this so that \a isUniqued().
900   /// \pre \a isTemporary().
901   /// \pre already added to uniquing set.
902   void makeUniqued();
903
904   /// \brief Mutate this to be "distinct".
905   ///
906   /// Mutate this so that \a isDistinct().
907   /// \pre \a isTemporary().
908   void makeDistinct();
909
910   void deleteAsSubclass();
911   MDNode *uniquify();
912   void eraseFromStore();
913
914   template <class NodeTy> struct HasCachedHash;
915   template <class NodeTy>
916   static void dispatchRecalculateHash(NodeTy *N, std::true_type) {
917     N->recalculateHash();
918   }
919   template <class NodeTy>
920   static void dispatchRecalculateHash(NodeTy *, std::false_type) {}
921   template <class NodeTy>
922   static void dispatchResetHash(NodeTy *N, std::true_type) {
923     N->setHash(0);
924   }
925   template <class NodeTy>
926   static void dispatchResetHash(NodeTy *, std::false_type) {}
927
928 public:
929   typedef const MDOperand *op_iterator;
930   typedef iterator_range<op_iterator> op_range;
931
932   op_iterator op_begin() const {
933     return const_cast<MDNode *>(this)->mutable_begin();
934   }
935   op_iterator op_end() const {
936     return const_cast<MDNode *>(this)->mutable_end();
937   }
938   op_range operands() const { return op_range(op_begin(), op_end()); }
939
940   const MDOperand &getOperand(unsigned I) const {
941     assert(I < NumOperands && "Out of range");
942     return op_begin()[I];
943   }
944
945   /// \brief Return number of MDNode operands.
946   unsigned getNumOperands() const { return NumOperands; }
947
948   /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
949   static bool classof(const Metadata *MD) {
950     switch (MD->getMetadataID()) {
951     default:
952       return false;
953 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
954   case CLASS##Kind:                                                            \
955     return true;
956 #include "llvm/IR/Metadata.def"
957     }
958   }
959
960   /// \brief Check whether MDNode is a vtable access.
961   bool isTBAAVtableAccess() const;
962
963   /// \brief Methods for metadata merging.
964   static MDNode *concatenate(MDNode *A, MDNode *B);
965   static MDNode *intersect(MDNode *A, MDNode *B);
966   static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
967   static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
968   static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
969   static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B);
970   static MDNode *getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B);
971
972 };
973
974 /// \brief Tuple of metadata.
975 ///
976 /// This is the simple \a MDNode arbitrary tuple.  Nodes are uniqued by
977 /// default based on their operands.
978 class MDTuple : public MDNode {
979   friend class LLVMContextImpl;
980   friend class MDNode;
981
982   MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash,
983           ArrayRef<Metadata *> Vals)
984       : MDNode(C, MDTupleKind, Storage, Vals) {
985     setHash(Hash);
986   }
987   ~MDTuple() { dropAllReferences(); }
988
989   void setHash(unsigned Hash) { SubclassData32 = Hash; }
990   void recalculateHash();
991
992   static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
993                           StorageType Storage, bool ShouldCreate = true);
994
995   TempMDTuple cloneImpl() const {
996     return getTemporary(getContext(),
997                         SmallVector<Metadata *, 4>(op_begin(), op_end()));
998   }
999
1000 public:
1001   /// \brief Get the hash, if any.
1002   unsigned getHash() const { return SubclassData32; }
1003
1004   static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1005     return getImpl(Context, MDs, Uniqued);
1006   }
1007   static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1008     return getImpl(Context, MDs, Uniqued, /* ShouldCreate */ false);
1009   }
1010
1011   /// \brief Return a distinct node.
1012   ///
1013   /// Return a distinct node -- i.e., a node that is not uniqued.
1014   static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1015     return getImpl(Context, MDs, Distinct);
1016   }
1017
1018   /// \brief Return a temporary node.
1019   ///
1020   /// For use in constructing cyclic MDNode structures. A temporary MDNode is
1021   /// not uniqued, may be RAUW'd, and must be manually deleted with
1022   /// deleteTemporary.
1023   static TempMDTuple getTemporary(LLVMContext &Context,
1024                                   ArrayRef<Metadata *> MDs) {
1025     return TempMDTuple(getImpl(Context, MDs, Temporary));
1026   }
1027
1028   /// \brief Return a (temporary) clone of this.
1029   TempMDTuple clone() const { return cloneImpl(); }
1030
1031   static bool classof(const Metadata *MD) {
1032     return MD->getMetadataID() == MDTupleKind;
1033   }
1034 };
1035
1036 MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1037   return MDTuple::get(Context, MDs);
1038 }
1039 MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1040   return MDTuple::getIfExists(Context, MDs);
1041 }
1042 MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1043   return MDTuple::getDistinct(Context, MDs);
1044 }
1045 TempMDTuple MDNode::getTemporary(LLVMContext &Context,
1046                                  ArrayRef<Metadata *> MDs) {
1047   return MDTuple::getTemporary(Context, MDs);
1048 }
1049
1050 void TempMDNodeDeleter::operator()(MDNode *Node) const {
1051   MDNode::deleteTemporary(Node);
1052 }
1053
1054 /// \brief Typed iterator through MDNode operands.
1055 ///
1056 /// An iterator that transforms an \a MDNode::iterator into an iterator over a
1057 /// particular Metadata subclass.
1058 template <class T>
1059 class TypedMDOperandIterator
1060     : std::iterator<std::input_iterator_tag, T *, std::ptrdiff_t, void, T *> {
1061   MDNode::op_iterator I = nullptr;
1062
1063 public:
1064   TypedMDOperandIterator() = default;
1065   explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {}
1066   T *operator*() const { return cast_or_null<T>(*I); }
1067   TypedMDOperandIterator &operator++() {
1068     ++I;
1069     return *this;
1070   }
1071   TypedMDOperandIterator operator++(int) {
1072     TypedMDOperandIterator Temp(*this);
1073     ++I;
1074     return Temp;
1075   }
1076   bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; }
1077   bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; }
1078 };
1079
1080 /// \brief Typed, array-like tuple of metadata.
1081 ///
1082 /// This is a wrapper for \a MDTuple that makes it act like an array holding a
1083 /// particular type of metadata.
1084 template <class T> class MDTupleTypedArrayWrapper {
1085   const MDTuple *N = nullptr;
1086
1087 public:
1088   MDTupleTypedArrayWrapper() = default;
1089   MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {}
1090
1091   template <class U>
1092   MDTupleTypedArrayWrapper(
1093       const MDTupleTypedArrayWrapper<U> &Other,
1094       typename std::enable_if<std::is_convertible<U *, T *>::value>::type * =
1095           nullptr)
1096       : N(Other.get()) {}
1097
1098   template <class U>
1099   explicit MDTupleTypedArrayWrapper(
1100       const MDTupleTypedArrayWrapper<U> &Other,
1101       typename std::enable_if<!std::is_convertible<U *, T *>::value>::type * =
1102           nullptr)
1103       : N(Other.get()) {}
1104
1105   explicit operator bool() const { return get(); }
1106   explicit operator MDTuple *() const { return get(); }
1107
1108   MDTuple *get() const { return const_cast<MDTuple *>(N); }
1109   MDTuple *operator->() const { return get(); }
1110   MDTuple &operator*() const { return *get(); }
1111
1112   // FIXME: Fix callers and remove condition on N.
1113   unsigned size() const { return N ? N->getNumOperands() : 0u; }
1114   T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); }
1115
1116   // FIXME: Fix callers and remove condition on N.
1117   typedef TypedMDOperandIterator<T> iterator;
1118   iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); }
1119   iterator end() const { return N ? iterator(N->op_end()) : iterator(); }
1120 };
1121
1122 #define HANDLE_METADATA(CLASS)                                                 \
1123   typedef MDTupleTypedArrayWrapper<CLASS> CLASS##Array;
1124 #include "llvm/IR/Metadata.def"
1125
1126 //===----------------------------------------------------------------------===//
1127 /// \brief A tuple of MDNodes.
1128 ///
1129 /// Despite its name, a NamedMDNode isn't itself an MDNode. NamedMDNodes belong
1130 /// to modules, have names, and contain lists of MDNodes.
1131 ///
1132 /// TODO: Inherit from Metadata.
1133 class NamedMDNode : public ilist_node<NamedMDNode> {
1134   friend struct ilist_traits<NamedMDNode>;
1135   friend class LLVMContextImpl;
1136   friend class Module;
1137   NamedMDNode(const NamedMDNode &) = delete;
1138
1139   std::string Name;
1140   Module *Parent;
1141   void *Operands; // SmallVector<TrackingMDRef, 4>
1142
1143   void setParent(Module *M) { Parent = M; }
1144
1145   explicit NamedMDNode(const Twine &N);
1146
1147   template<class T1, class T2>
1148   class op_iterator_impl :
1149       public std::iterator<std::bidirectional_iterator_tag, T2> {
1150     const NamedMDNode *Node;
1151     unsigned Idx;
1152     op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) { }
1153
1154     friend class NamedMDNode;
1155
1156   public:
1157     op_iterator_impl() : Node(nullptr), Idx(0) { }
1158
1159     bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
1160     bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }
1161     op_iterator_impl &operator++() {
1162       ++Idx;
1163       return *this;
1164     }
1165     op_iterator_impl operator++(int) {
1166       op_iterator_impl tmp(*this);
1167       operator++();
1168       return tmp;
1169     }
1170     op_iterator_impl &operator--() {
1171       --Idx;
1172       return *this;
1173     }
1174     op_iterator_impl operator--(int) {
1175       op_iterator_impl tmp(*this);
1176       operator--();
1177       return tmp;
1178     }
1179
1180     T1 operator*() const { return Node->getOperand(Idx); }
1181   };
1182
1183 public:
1184   /// \brief Drop all references and remove the node from parent module.
1185   void eraseFromParent();
1186
1187   /// \brief Remove all uses and clear node vector.
1188   void dropAllReferences();
1189
1190   ~NamedMDNode();
1191
1192   /// \brief Get the module that holds this named metadata collection.
1193   inline Module *getParent() { return Parent; }
1194   inline const Module *getParent() const { return Parent; }
1195
1196   MDNode *getOperand(unsigned i) const;
1197   unsigned getNumOperands() const;
1198   void addOperand(MDNode *M);
1199   void setOperand(unsigned I, MDNode *New);
1200   StringRef getName() const;
1201   void print(raw_ostream &ROS, bool IsForDebug = false) const;
1202   void dump() const;
1203
1204   // ---------------------------------------------------------------------------
1205   // Operand Iterator interface...
1206   //
1207   typedef op_iterator_impl<MDNode *, MDNode> op_iterator;
1208   op_iterator op_begin() { return op_iterator(this, 0); }
1209   op_iterator op_end()   { return op_iterator(this, getNumOperands()); }
1210
1211   typedef op_iterator_impl<const MDNode *, MDNode> const_op_iterator;
1212   const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
1213   const_op_iterator op_end()   const { return const_op_iterator(this, getNumOperands()); }
1214
1215   inline iterator_range<op_iterator>  operands() {
1216     return make_range(op_begin(), op_end());
1217   }
1218   inline iterator_range<const_op_iterator> operands() const {
1219     return make_range(op_begin(), op_end());
1220   }
1221 };
1222
1223 } // end llvm namespace
1224
1225 #endif // LLVM_IR_METADATA_H