Removing LLVM_DELETED_FUNCTION, as MSVC 2012 was the last reason for requiring the...
[oota-llvm.git] / include / llvm / IR / DerivedTypes.h
1 //===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the declarations of classes that represent "derived
11 // types".  These are things like "arrays of x" or "structure of x, y, z" or
12 // "function returning x taking (y,z) as parameters", etc...
13 //
14 // The implementations of these classes live in the Type.cpp file.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #ifndef LLVM_IR_DERIVEDTYPES_H
19 #define LLVM_IR_DERIVEDTYPES_H
20
21 #include "llvm/IR/Type.h"
22 #include "llvm/Support/Compiler.h"
23 #include "llvm/Support/DataTypes.h"
24
25 namespace llvm {
26
27 class Value;
28 class APInt;
29 class LLVMContext;
30 template<typename T> class ArrayRef;
31 class StringRef;
32
33 /// Class to represent integer types. Note that this class is also used to
34 /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
35 /// Int64Ty.
36 /// @brief Integer representation type
37 class IntegerType : public Type {
38   friend class LLVMContextImpl;
39   
40 protected:
41   explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
42     setSubclassData(NumBits);
43   }
44 public:
45   /// This enum is just used to hold constants we need for IntegerType.
46   enum {
47     MIN_INT_BITS = 1,        ///< Minimum number of bits that can be specified
48     MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified
49       ///< Note that bit width is stored in the Type classes SubclassData field
50       ///< which has 23 bits. This yields a maximum bit width of 8,388,607 bits.
51   };
52
53   /// This static method is the primary way of constructing an IntegerType.
54   /// If an IntegerType with the same NumBits value was previously instantiated,
55   /// that instance will be returned. Otherwise a new one will be created. Only
56   /// one instance with a given NumBits value is ever created.
57   /// @brief Get or create an IntegerType instance.
58   static IntegerType *get(LLVMContext &C, unsigned NumBits);
59
60   /// @brief Get the number of bits in this IntegerType
61   unsigned getBitWidth() const { return getSubclassData(); }
62
63   /// getBitMask - Return a bitmask with ones set for all of the bits
64   /// that can be set by an unsigned version of this type.  This is 0xFF for
65   /// i8, 0xFFFF for i16, etc.
66   uint64_t getBitMask() const {
67     return ~uint64_t(0UL) >> (64-getBitWidth());
68   }
69
70   /// getSignBit - Return a uint64_t with just the most significant bit set (the
71   /// sign bit, if the value is treated as a signed number).
72   uint64_t getSignBit() const {
73     return 1ULL << (getBitWidth()-1);
74   }
75
76   /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
77   /// @returns a bit mask with ones set for all the bits of this type.
78   /// @brief Get a bit mask for this type.
79   APInt getMask() const;
80
81   /// This method determines if the width of this IntegerType is a power-of-2
82   /// in terms of 8 bit bytes.
83   /// @returns true if this is a power-of-2 byte width.
84   /// @brief Is this a power-of-2 byte-width IntegerType ?
85   bool isPowerOf2ByteWidth() const;
86
87   /// Methods for support type inquiry through isa, cast, and dyn_cast.
88   static inline bool classof(const Type *T) {
89     return T->getTypeID() == IntegerTyID;
90   }
91 };
92
93
94 /// FunctionType - Class to represent function types
95 ///
96 class FunctionType : public Type {
97   FunctionType(const FunctionType &) = delete;
98   const FunctionType &operator=(const FunctionType &) = delete;
99   FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
100
101 public:
102   /// FunctionType::get - This static method is the primary way of constructing
103   /// a FunctionType.
104   ///
105   static FunctionType *get(Type *Result,
106                            ArrayRef<Type*> Params, bool isVarArg);
107
108   /// FunctionType::get - Create a FunctionType taking no parameters.
109   ///
110   static FunctionType *get(Type *Result, bool isVarArg);
111   
112   /// isValidReturnType - Return true if the specified type is valid as a return
113   /// type.
114   static bool isValidReturnType(Type *RetTy);
115
116   /// isValidArgumentType - Return true if the specified type is valid as an
117   /// argument type.
118   static bool isValidArgumentType(Type *ArgTy);
119
120   bool isVarArg() const { return getSubclassData()!=0; }
121   Type *getReturnType() const { return ContainedTys[0]; }
122
123   typedef Type::subtype_iterator param_iterator;
124   param_iterator param_begin() const { return ContainedTys + 1; }
125   param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
126   ArrayRef<Type *> params() const {
127     return makeArrayRef(param_begin(), param_end());
128   }
129
130   /// Parameter type accessors.
131   Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
132
133   /// getNumParams - Return the number of fixed parameters this function type
134   /// requires.  This does not consider varargs.
135   ///
136   unsigned getNumParams() const { return NumContainedTys - 1; }
137
138   /// Methods for support type inquiry through isa, cast, and dyn_cast.
139   static inline bool classof(const Type *T) {
140     return T->getTypeID() == FunctionTyID;
141   }
142 };
143
144
145 /// CompositeType - Common super class of ArrayType, StructType, PointerType
146 /// and VectorType.
147 class CompositeType : public Type {
148 protected:
149   explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) { }
150 public:
151
152   /// getTypeAtIndex - Given an index value into the type, return the type of
153   /// the element.
154   ///
155   Type *getTypeAtIndex(const Value *V);
156   Type *getTypeAtIndex(unsigned Idx);
157   bool indexValid(const Value *V) const;
158   bool indexValid(unsigned Idx) const;
159
160   /// Methods for support type inquiry through isa, cast, and dyn_cast.
161   static inline bool classof(const Type *T) {
162     return T->getTypeID() == ArrayTyID ||
163            T->getTypeID() == StructTyID ||
164            T->getTypeID() == PointerTyID ||
165            T->getTypeID() == VectorTyID;
166   }
167 };
168
169
170 /// StructType - Class to represent struct types.  There are two different kinds
171 /// of struct types: Literal structs and Identified structs.
172 ///
173 /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
174 /// always have a body when created.  You can get one of these by using one of
175 /// the StructType::get() forms.
176 ///  
177 /// Identified structs (e.g. %foo or %42) may optionally have a name and are not
178 /// uniqued.  The names for identified structs are managed at the LLVMContext
179 /// level, so there can only be a single identified struct with a given name in
180 /// a particular LLVMContext.  Identified structs may also optionally be opaque
181 /// (have no body specified).  You get one of these by using one of the
182 /// StructType::create() forms.
183 ///
184 /// Independent of what kind of struct you have, the body of a struct type are
185 /// laid out in memory consequtively with the elements directly one after the
186 /// other (if the struct is packed) or (if not packed) with padding between the
187 /// elements as defined by DataLayout (which is required to match what the code
188 /// generator for a target expects).
189 ///
190 class StructType : public CompositeType {
191   StructType(const StructType &) = delete;
192   const StructType &operator=(const StructType &) = delete;
193   StructType(LLVMContext &C)
194     : CompositeType(C, StructTyID), SymbolTableEntry(nullptr) {}
195   enum {
196     /// This is the contents of the SubClassData field.
197     SCDB_HasBody = 1,
198     SCDB_Packed = 2,
199     SCDB_IsLiteral = 4,
200     SCDB_IsSized = 8
201   };
202
203   /// SymbolTableEntry - For a named struct that actually has a name, this is a
204   /// pointer to the symbol table entry (maintained by LLVMContext) for the
205   /// struct.  This is null if the type is an literal struct or if it is
206   /// a identified type that has an empty name.
207   /// 
208   void *SymbolTableEntry;
209 public:
210
211   /// StructType::create - This creates an identified struct.
212   static StructType *create(LLVMContext &Context, StringRef Name);
213   static StructType *create(LLVMContext &Context);
214   
215   static StructType *create(ArrayRef<Type*> Elements,
216                             StringRef Name,
217                             bool isPacked = false);
218   static StructType *create(ArrayRef<Type*> Elements);
219   static StructType *create(LLVMContext &Context,
220                             ArrayRef<Type*> Elements,
221                             StringRef Name,
222                             bool isPacked = false);
223   static StructType *create(LLVMContext &Context, ArrayRef<Type*> Elements);
224   static StructType *create(StringRef Name, Type *elt1, ...) LLVM_END_WITH_NULL;
225
226   /// StructType::get - This static method is the primary way to create a
227   /// literal StructType.
228   static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
229                          bool isPacked = false);
230
231   /// StructType::get - Create an empty structure type.
232   ///
233   static StructType *get(LLVMContext &Context, bool isPacked = false);
234   
235   /// StructType::get - This static method is a convenience method for creating
236   /// structure types by specifying the elements as arguments.  Note that this
237   /// method always returns a non-packed struct, and requires at least one
238   /// element type.
239   static StructType *get(Type *elt1, ...) LLVM_END_WITH_NULL;
240
241   bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
242   
243   /// isLiteral - Return true if this type is uniqued by structural
244   /// equivalence, false if it is a struct definition.
245   bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
246   
247   /// isOpaque - Return true if this is a type with an identity that has no body
248   /// specified yet.  These prints as 'opaque' in .ll files.
249   bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
250
251   /// isSized - Return true if this is a sized type.
252   bool isSized(SmallPtrSetImpl<const Type*> *Visited = nullptr) const;
253   
254   /// hasName - Return true if this is a named struct that has a non-empty name.
255   bool hasName() const { return SymbolTableEntry != nullptr; }
256   
257   /// getName - Return the name for this struct type if it has an identity.
258   /// This may return an empty string for an unnamed struct type.  Do not call
259   /// this on an literal type.
260   StringRef getName() const;
261   
262   /// setName - Change the name of this type to the specified name, or to a name
263   /// with a suffix if there is a collision.  Do not call this on an literal
264   /// type.
265   void setName(StringRef Name);
266
267   /// setBody - Specify a body for an opaque identified type.
268   void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
269   void setBody(Type *elt1, ...) LLVM_END_WITH_NULL;
270   
271   /// isValidElementType - Return true if the specified type is valid as a
272   /// element type.
273   static bool isValidElementType(Type *ElemTy);
274   
275
276   // Iterator access to the elements.
277   typedef Type::subtype_iterator element_iterator;
278   element_iterator element_begin() const { return ContainedTys; }
279   element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
280   ArrayRef<Type *> const elements() const {
281     return makeArrayRef(element_begin(), element_end());
282   }
283
284   /// isLayoutIdentical - Return true if this is layout identical to the
285   /// specified struct.
286   bool isLayoutIdentical(StructType *Other) const;  
287   
288   /// Random access to the elements
289   unsigned getNumElements() const { return NumContainedTys; }
290   Type *getElementType(unsigned N) const {
291     assert(N < NumContainedTys && "Element number out of range!");
292     return ContainedTys[N];
293   }
294
295   /// Methods for support type inquiry through isa, cast, and dyn_cast.
296   static inline bool classof(const Type *T) {
297     return T->getTypeID() == StructTyID;
298   }
299 };
300
301 /// SequentialType - This is the superclass of the array, pointer and vector
302 /// type classes.  All of these represent "arrays" in memory.  The array type
303 /// represents a specifically sized array, pointer types are unsized/unknown
304 /// size arrays, vector types represent specifically sized arrays that
305 /// allow for use of SIMD instructions.  SequentialType holds the common
306 /// features of all, which stem from the fact that all three lay their
307 /// components out in memory identically.
308 ///
309 class SequentialType : public CompositeType {
310   Type *ContainedType;               ///< Storage for the single contained type.
311   SequentialType(const SequentialType &) = delete;
312   const SequentialType &operator=(const SequentialType &) = delete;
313
314 protected:
315   SequentialType(TypeID TID, Type *ElType)
316     : CompositeType(ElType->getContext(), TID), ContainedType(ElType) {
317     ContainedTys = &ContainedType;
318     NumContainedTys = 1;
319   }
320
321 public:
322   Type *getElementType() const { return ContainedTys[0]; }
323
324   /// Methods for support type inquiry through isa, cast, and dyn_cast.
325   static inline bool classof(const Type *T) {
326     return T->getTypeID() == ArrayTyID ||
327            T->getTypeID() == PointerTyID ||
328            T->getTypeID() == VectorTyID;
329   }
330 };
331
332
333 /// ArrayType - Class to represent array types.
334 ///
335 class ArrayType : public SequentialType {
336   uint64_t NumElements;
337
338   ArrayType(const ArrayType &) = delete;
339   const ArrayType &operator=(const ArrayType &) = delete;
340   ArrayType(Type *ElType, uint64_t NumEl);
341 public:
342   /// ArrayType::get - This static method is the primary way to construct an
343   /// ArrayType
344   ///
345   static ArrayType *get(Type *ElementType, uint64_t NumElements);
346
347   /// isValidElementType - Return true if the specified type is valid as a
348   /// element type.
349   static bool isValidElementType(Type *ElemTy);
350
351   uint64_t getNumElements() const { return NumElements; }
352
353   /// Methods for support type inquiry through isa, cast, and dyn_cast.
354   static inline bool classof(const Type *T) {
355     return T->getTypeID() == ArrayTyID;
356   }
357 };
358
359 /// VectorType - Class to represent vector types.
360 ///
361 class VectorType : public SequentialType {
362   unsigned NumElements;
363
364   VectorType(const VectorType &) = delete;
365   const VectorType &operator=(const VectorType &) = delete;
366   VectorType(Type *ElType, unsigned NumEl);
367 public:
368   /// VectorType::get - This static method is the primary way to construct an
369   /// VectorType.
370   ///
371   static VectorType *get(Type *ElementType, unsigned NumElements);
372
373   /// VectorType::getInteger - This static method gets a VectorType with the
374   /// same number of elements as the input type, and the element type is an
375   /// integer type of the same width as the input element type.
376   ///
377   static VectorType *getInteger(VectorType *VTy) {
378     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
379     assert(EltBits && "Element size must be of a non-zero size");
380     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
381     return VectorType::get(EltTy, VTy->getNumElements());
382   }
383
384   /// VectorType::getExtendedElementVectorType - This static method is like
385   /// getInteger except that the element types are twice as wide as the
386   /// elements in the input type.
387   ///
388   static VectorType *getExtendedElementVectorType(VectorType *VTy) {
389     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
390     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2);
391     return VectorType::get(EltTy, VTy->getNumElements());
392   }
393
394   /// VectorType::getTruncatedElementVectorType - This static method is like
395   /// getInteger except that the element types are half as wide as the
396   /// elements in the input type.
397   ///
398   static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
399     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
400     assert((EltBits & 1) == 0 &&
401            "Cannot truncate vector element with odd bit-width");
402     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
403     return VectorType::get(EltTy, VTy->getNumElements());
404   }
405
406   /// VectorType::getHalfElementsVectorType - This static method returns
407   /// a VectorType with half as many elements as the input type and the
408   /// same element type.
409   ///
410   static VectorType *getHalfElementsVectorType(VectorType *VTy) {
411     unsigned NumElts = VTy->getNumElements();
412     assert ((NumElts & 1) == 0 &&
413             "Cannot halve vector with odd number of elements.");
414     return VectorType::get(VTy->getElementType(), NumElts/2);
415   }
416
417   /// VectorType::getDoubleElementsVectorType - This static method returns
418   /// a VectorType with twice  as many elements as the input type and the
419   /// same element type.
420   ///
421   static VectorType *getDoubleElementsVectorType(VectorType *VTy) {
422     unsigned NumElts = VTy->getNumElements();
423     return VectorType::get(VTy->getElementType(), NumElts*2);
424   }
425
426   /// isValidElementType - Return true if the specified type is valid as a
427   /// element type.
428   static bool isValidElementType(Type *ElemTy);
429
430   /// @brief Return the number of elements in the Vector type.
431   unsigned getNumElements() const { return NumElements; }
432
433   /// @brief Return the number of bits in the Vector type.
434   /// Returns zero when the vector is a vector of pointers.
435   unsigned getBitWidth() const {
436     return NumElements * getElementType()->getPrimitiveSizeInBits();
437   }
438
439   /// Methods for support type inquiry through isa, cast, and dyn_cast.
440   static inline bool classof(const Type *T) {
441     return T->getTypeID() == VectorTyID;
442   }
443 };
444
445
446 /// PointerType - Class to represent pointers.
447 ///
448 class PointerType : public SequentialType {
449   PointerType(const PointerType &) = delete;
450   const PointerType &operator=(const PointerType &) = delete;
451   explicit PointerType(Type *ElType, unsigned AddrSpace);
452 public:
453   /// PointerType::get - This constructs a pointer to an object of the specified
454   /// type in a numbered address space.
455   static PointerType *get(Type *ElementType, unsigned AddressSpace);
456
457   /// PointerType::getUnqual - This constructs a pointer to an object of the
458   /// specified type in the generic address space (address space zero).
459   static PointerType *getUnqual(Type *ElementType) {
460     return PointerType::get(ElementType, 0);
461   }
462
463   /// isValidElementType - Return true if the specified type is valid as a
464   /// element type.
465   static bool isValidElementType(Type *ElemTy);
466
467   /// @brief Return the address space of the Pointer type.
468   inline unsigned getAddressSpace() const { return getSubclassData(); }
469
470   /// Implement support type inquiry through isa, cast, and dyn_cast.
471   static inline bool classof(const Type *T) {
472     return T->getTypeID() == PointerTyID;
473   }
474 };
475
476 } // End llvm namespace
477
478 #endif