984796af8644e6a77c93b526bc85d7718fe59c7b
[oota-llvm.git] / include / llvm / CodeGen / SlotIndexes.h
1 //===- llvm/CodeGen/SlotIndexes.h - Slot indexes representation -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements SlotIndex and related classes. The purpose of SlotIndex
11 // is to describe a position at which a register can become live, or cease to
12 // be live.
13 //
14 // SlotIndex is mostly a proxy for entries of the SlotIndexList, a class which
15 // is held is LiveIntervals and provides the real numbering. This allows
16 // LiveIntervals to perform largely transparent renumbering.
17 //===----------------------------------------------------------------------===//
18
19 #ifndef LLVM_CODEGEN_SLOTINDEXES_H
20 #define LLVM_CODEGEN_SLOTINDEXES_H
21
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/IntervalMap.h"
24 #include "llvm/ADT/PointerIntPair.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/ilist.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstrBundle.h"
30 #include "llvm/Support/Allocator.h"
31
32 namespace llvm {
33
34   /// This class represents an entry in the slot index list held in the
35   /// SlotIndexes pass. It should not be used directly. See the
36   /// SlotIndex & SlotIndexes classes for the public interface to this
37   /// information.
38   class IndexListEntry : public ilist_node<IndexListEntry> {
39     MachineInstr *mi;
40     unsigned index;
41
42   public:
43
44     IndexListEntry(MachineInstr *mi, unsigned index) : mi(mi), index(index) {}
45
46     MachineInstr* getInstr() const { return mi; }
47     void setInstr(MachineInstr *mi) {
48       this->mi = mi;
49     }
50
51     unsigned getIndex() const { return index; }
52     void setIndex(unsigned index) {
53       this->index = index;
54     }
55
56 #ifdef EXPENSIVE_CHECKS
57     // When EXPENSIVE_CHECKS is defined, "erased" index list entries will
58     // actually be moved to a "graveyard" list, and have their pointers
59     // poisoned, so that dangling SlotIndex access can be reliably detected.
60     void setPoison() {
61       intptr_t tmp = reinterpret_cast<intptr_t>(mi);
62       assert(((tmp & 0x1) == 0x0) && "Pointer already poisoned?");
63       tmp |= 0x1;
64       mi = reinterpret_cast<MachineInstr*>(tmp);
65     }
66
67     bool isPoisoned() const { return (reinterpret_cast<intptr_t>(mi) & 0x1) == 0x1; }
68 #endif // EXPENSIVE_CHECKS
69
70   };
71
72   template <>
73   struct ilist_traits<IndexListEntry> : public ilist_default_traits<IndexListEntry> {
74   private:
75     mutable ilist_half_node<IndexListEntry> Sentinel;
76   public:
77     IndexListEntry *createSentinel() const {
78       return static_cast<IndexListEntry*>(&Sentinel);
79     }
80     void destroySentinel(IndexListEntry *) const {}
81
82     IndexListEntry *provideInitialHead() const { return createSentinel(); }
83     IndexListEntry *ensureHead(IndexListEntry*) const { return createSentinel(); }
84     static void noteHead(IndexListEntry*, IndexListEntry*) {}
85     void deleteNode(IndexListEntry *N) {}
86
87   private:
88     void createNode(const IndexListEntry &);
89   };
90
91   /// SlotIndex - An opaque wrapper around machine indexes.
92   class SlotIndex {
93     friend class SlotIndexes;
94
95     enum Slot {
96       /// Basic block boundary.  Used for live ranges entering and leaving a
97       /// block without being live in the layout neighbor.  Also used as the
98       /// def slot of PHI-defs.
99       Slot_Block,
100
101       /// Early-clobber register use/def slot.  A live range defined at
102       /// Slot_EarlyCLobber interferes with normal live ranges killed at
103       /// Slot_Register.  Also used as the kill slot for live ranges tied to an
104       /// early-clobber def.
105       Slot_EarlyClobber,
106
107       /// Normal register use/def slot.  Normal instructions kill and define
108       /// register live ranges at this slot.
109       Slot_Register,
110
111       /// Dead def kill point.  Kill slot for a live range that is defined by
112       /// the same instruction (Slot_Register or Slot_EarlyClobber), but isn't
113       /// used anywhere.
114       Slot_Dead,
115
116       Slot_Count
117     };
118
119     PointerIntPair<IndexListEntry*, 2, unsigned> lie;
120
121     SlotIndex(IndexListEntry *entry, unsigned slot)
122       : lie(entry, slot) {}
123
124     IndexListEntry* listEntry() const {
125       assert(isValid() && "Attempt to compare reserved index.");
126 #ifdef EXPENSIVE_CHECKS
127       assert(!lie.getPointer()->isPoisoned() &&
128              "Attempt to access deleted list-entry.");
129 #endif // EXPENSIVE_CHECKS
130       return lie.getPointer();
131     }
132
133     unsigned getIndex() const {
134       return listEntry()->getIndex() | getSlot();
135     }
136
137     /// Returns the slot for this SlotIndex.
138     Slot getSlot() const {
139       return static_cast<Slot>(lie.getInt());
140     }
141
142   public:
143     enum {
144       /// The default distance between instructions as returned by distance().
145       /// This may vary as instructions are inserted and removed.
146       InstrDist = 4 * Slot_Count
147     };
148
149     /// Construct an invalid index.
150     SlotIndex() : lie(0, 0) {}
151
152     // Construct a new slot index from the given one, and set the slot.
153     SlotIndex(const SlotIndex &li, Slot s) : lie(li.listEntry(), unsigned(s)) {
154       assert(lie.getPointer() != 0 &&
155              "Attempt to construct index with 0 pointer.");
156     }
157
158     /// Returns true if this is a valid index. Invalid indicies do
159     /// not point into an index table, and cannot be compared.
160     bool isValid() const {
161       return lie.getPointer();
162     }
163
164     /// Return true for a valid index.
165     LLVM_EXPLICIT operator bool() const { return isValid(); }
166
167     /// Print this index to the given raw_ostream.
168     void print(raw_ostream &os) const;
169
170     /// Dump this index to stderr.
171     void dump() const;
172
173     /// Compare two SlotIndex objects for equality.
174     bool operator==(SlotIndex other) const {
175       return lie == other.lie;
176     }
177     /// Compare two SlotIndex objects for inequality.
178     bool operator!=(SlotIndex other) const {
179       return lie != other.lie;
180     }
181
182     /// Compare two SlotIndex objects. Return true if the first index
183     /// is strictly lower than the second.
184     bool operator<(SlotIndex other) const {
185       return getIndex() < other.getIndex();
186     }
187     /// Compare two SlotIndex objects. Return true if the first index
188     /// is lower than, or equal to, the second.
189     bool operator<=(SlotIndex other) const {
190       return getIndex() <= other.getIndex();
191     }
192
193     /// Compare two SlotIndex objects. Return true if the first index
194     /// is greater than the second.
195     bool operator>(SlotIndex other) const {
196       return getIndex() > other.getIndex();
197     }
198
199     /// Compare two SlotIndex objects. Return true if the first index
200     /// is greater than, or equal to, the second.
201     bool operator>=(SlotIndex other) const {
202       return getIndex() >= other.getIndex();
203     }
204
205     /// isSameInstr - Return true if A and B refer to the same instruction.
206     static bool isSameInstr(SlotIndex A, SlotIndex B) {
207       return A.lie.getPointer() == B.lie.getPointer();
208     }
209
210     /// isEarlierInstr - Return true if A refers to an instruction earlier than
211     /// B. This is equivalent to A < B && !isSameInstr(A, B).
212     static bool isEarlierInstr(SlotIndex A, SlotIndex B) {
213       return A.listEntry()->getIndex() < B.listEntry()->getIndex();
214     }
215
216     /// Return the distance from this index to the given one.
217     int distance(SlotIndex other) const {
218       return other.getIndex() - getIndex();
219     }
220
221     /// Return the scaled distance from this index to the given one, where all
222     /// slots on the same instruction have zero distance.
223     int getInstrDistance(SlotIndex other) const {
224       return (other.listEntry()->getIndex() - listEntry()->getIndex())
225         / Slot_Count;
226     }
227
228     /// isBlock - Returns true if this is a block boundary slot.
229     bool isBlock() const { return getSlot() == Slot_Block; }
230
231     /// isEarlyClobber - Returns true if this is an early-clobber slot.
232     bool isEarlyClobber() const { return getSlot() == Slot_EarlyClobber; }
233
234     /// isRegister - Returns true if this is a normal register use/def slot.
235     /// Note that early-clobber slots may also be used for uses and defs.
236     bool isRegister() const { return getSlot() == Slot_Register; }
237
238     /// isDead - Returns true if this is a dead def kill slot.
239     bool isDead() const { return getSlot() == Slot_Dead; }
240
241     /// Returns the base index for associated with this index. The base index
242     /// is the one associated with the Slot_Block slot for the instruction
243     /// pointed to by this index.
244     SlotIndex getBaseIndex() const {
245       return SlotIndex(listEntry(), Slot_Block);
246     }
247
248     /// Returns the boundary index for associated with this index. The boundary
249     /// index is the one associated with the Slot_Block slot for the instruction
250     /// pointed to by this index.
251     SlotIndex getBoundaryIndex() const {
252       return SlotIndex(listEntry(), Slot_Dead);
253     }
254
255     /// Returns the register use/def slot in the current instruction for a
256     /// normal or early-clobber def.
257     SlotIndex getRegSlot(bool EC = false) const {
258       return SlotIndex(listEntry(), EC ? Slot_EarlyClobber : Slot_Register);
259     }
260
261     /// Returns the dead def kill slot for the current instruction.
262     SlotIndex getDeadSlot() const {
263       return SlotIndex(listEntry(), Slot_Dead);
264     }
265
266     /// Returns the next slot in the index list. This could be either the
267     /// next slot for the instruction pointed to by this index or, if this
268     /// index is a STORE, the first slot for the next instruction.
269     /// WARNING: This method is considerably more expensive than the methods
270     /// that return specific slots (getUseIndex(), etc). If you can - please
271     /// use one of those methods.
272     SlotIndex getNextSlot() const {
273       Slot s = getSlot();
274       if (s == Slot_Dead) {
275         return SlotIndex(listEntry()->getNextNode(), Slot_Block);
276       }
277       return SlotIndex(listEntry(), s + 1);
278     }
279
280     /// Returns the next index. This is the index corresponding to the this
281     /// index's slot, but for the next instruction.
282     SlotIndex getNextIndex() const {
283       return SlotIndex(listEntry()->getNextNode(), getSlot());
284     }
285
286     /// Returns the previous slot in the index list. This could be either the
287     /// previous slot for the instruction pointed to by this index or, if this
288     /// index is a Slot_Block, the last slot for the previous instruction.
289     /// WARNING: This method is considerably more expensive than the methods
290     /// that return specific slots (getUseIndex(), etc). If you can - please
291     /// use one of those methods.
292     SlotIndex getPrevSlot() const {
293       Slot s = getSlot();
294       if (s == Slot_Block) {
295         return SlotIndex(listEntry()->getPrevNode(), Slot_Dead);
296       }
297       return SlotIndex(listEntry(), s - 1);
298     }
299
300     /// Returns the previous index. This is the index corresponding to this
301     /// index's slot, but for the previous instruction.
302     SlotIndex getPrevIndex() const {
303       return SlotIndex(listEntry()->getPrevNode(), getSlot());
304     }
305
306   };
307
308   template <> struct isPodLike<SlotIndex> { static const bool value = true; };
309
310   inline raw_ostream& operator<<(raw_ostream &os, SlotIndex li) {
311     li.print(os);
312     return os;
313   }
314
315   typedef std::pair<SlotIndex, MachineBasicBlock*> IdxMBBPair;
316
317   inline bool operator<(SlotIndex V, const IdxMBBPair &IM) {
318     return V < IM.first;
319   }
320
321   inline bool operator<(const IdxMBBPair &IM, SlotIndex V) {
322     return IM.first < V;
323   }
324
325   struct Idx2MBBCompare {
326     bool operator()(const IdxMBBPair &LHS, const IdxMBBPair &RHS) const {
327       return LHS.first < RHS.first;
328     }
329   };
330
331   /// SlotIndexes pass.
332   ///
333   /// This pass assigns indexes to each instruction.
334   class SlotIndexes : public MachineFunctionPass {
335   private:
336
337     typedef ilist<IndexListEntry> IndexList;
338     IndexList indexList;
339
340 #ifdef EXPENSIVE_CHECKS
341     IndexList graveyardList;
342 #endif // EXPENSIVE_CHECKS
343
344     MachineFunction *mf;
345
346     typedef DenseMap<const MachineInstr*, SlotIndex> Mi2IndexMap;
347     Mi2IndexMap mi2iMap;
348
349     /// MBBRanges - Map MBB number to (start, stop) indexes.
350     SmallVector<std::pair<SlotIndex, SlotIndex>, 8> MBBRanges;
351
352     /// Idx2MBBMap - Sorted list of pairs of index of first instruction
353     /// and MBB id.
354     SmallVector<IdxMBBPair, 8> idx2MBBMap;
355
356     // IndexListEntry allocator.
357     BumpPtrAllocator ileAllocator;
358
359     IndexListEntry* createEntry(MachineInstr *mi, unsigned index) {
360       IndexListEntry *entry =
361         static_cast<IndexListEntry*>(
362           ileAllocator.Allocate(sizeof(IndexListEntry),
363           alignOf<IndexListEntry>()));
364
365       new (entry) IndexListEntry(mi, index);
366
367       return entry;
368     }
369
370     /// Renumber locally after inserting curItr.
371     void renumberIndexes(IndexList::iterator curItr);
372
373   public:
374     static char ID;
375
376     SlotIndexes() : MachineFunctionPass(ID) {
377       initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
378     }
379
380     virtual void getAnalysisUsage(AnalysisUsage &au) const;
381     virtual void releaseMemory();
382
383     virtual bool runOnMachineFunction(MachineFunction &fn);
384
385     /// Dump the indexes.
386     void dump() const;
387
388     /// Renumber the index list, providing space for new instructions.
389     void renumberIndexes();
390
391     /// Repair indexes after adding and removing instructions.
392     void repairIndexesInRange(MachineBasicBlock *MBB,
393                               MachineBasicBlock::iterator Begin,
394                               MachineBasicBlock::iterator End);
395
396     /// Returns the zero index for this analysis.
397     SlotIndex getZeroIndex() {
398       assert(indexList.front().getIndex() == 0 && "First index is not 0?");
399       return SlotIndex(&indexList.front(), 0);
400     }
401
402     /// Returns the base index of the last slot in this analysis.
403     SlotIndex getLastIndex() {
404       return SlotIndex(&indexList.back(), 0);
405     }
406
407     /// Returns true if the given machine instr is mapped to an index,
408     /// otherwise returns false.
409     bool hasIndex(const MachineInstr *instr) const {
410       return mi2iMap.count(instr);
411     }
412
413     /// Returns the base index for the given instruction.
414     SlotIndex getInstructionIndex(const MachineInstr *MI) const {
415       // Instructions inside a bundle have the same number as the bundle itself.
416       Mi2IndexMap::const_iterator itr = mi2iMap.find(getBundleStart(MI));
417       assert(itr != mi2iMap.end() && "Instruction not found in maps.");
418       return itr->second;
419     }
420
421     /// Returns the instruction for the given index, or null if the given
422     /// index has no instruction associated with it.
423     MachineInstr* getInstructionFromIndex(SlotIndex index) const {
424       return index.isValid() ? index.listEntry()->getInstr() : 0;
425     }
426
427     /// Returns the next non-null index, if one exists.
428     /// Otherwise returns getLastIndex().
429     SlotIndex getNextNonNullIndex(SlotIndex Index) {
430       IndexList::iterator I = Index.listEntry();
431       IndexList::iterator E = indexList.end();
432       while (++I != E)
433         if (I->getInstr())
434           return SlotIndex(I, Index.getSlot());
435       // We reached the end of the function.
436       return getLastIndex();
437     }
438
439     /// getIndexBefore - Returns the index of the last indexed instruction
440     /// before MI, or the start index of its basic block.
441     /// MI is not required to have an index.
442     SlotIndex getIndexBefore(const MachineInstr *MI) const {
443       const MachineBasicBlock *MBB = MI->getParent();
444       assert(MBB && "MI must be inserted inna basic block");
445       MachineBasicBlock::const_iterator I = MI, B = MBB->begin();
446       for (;;) {
447         if (I == B)
448           return getMBBStartIdx(MBB);
449         --I;
450         Mi2IndexMap::const_iterator MapItr = mi2iMap.find(I);
451         if (MapItr != mi2iMap.end())
452           return MapItr->second;
453       }
454     }
455
456     /// getIndexAfter - Returns the index of the first indexed instruction
457     /// after MI, or the end index of its basic block.
458     /// MI is not required to have an index.
459     SlotIndex getIndexAfter(const MachineInstr *MI) const {
460       const MachineBasicBlock *MBB = MI->getParent();
461       assert(MBB && "MI must be inserted inna basic block");
462       MachineBasicBlock::const_iterator I = MI, E = MBB->end();
463       for (;;) {
464         ++I;
465         if (I == E)
466           return getMBBEndIdx(MBB);
467         Mi2IndexMap::const_iterator MapItr = mi2iMap.find(I);
468         if (MapItr != mi2iMap.end())
469           return MapItr->second;
470       }
471     }
472
473     /// Return the (start,end) range of the given basic block number.
474     const std::pair<SlotIndex, SlotIndex> &
475     getMBBRange(unsigned Num) const {
476       return MBBRanges[Num];
477     }
478
479     /// Return the (start,end) range of the given basic block.
480     const std::pair<SlotIndex, SlotIndex> &
481     getMBBRange(const MachineBasicBlock *MBB) const {
482       return getMBBRange(MBB->getNumber());
483     }
484
485     /// Returns the first index in the given basic block number.
486     SlotIndex getMBBStartIdx(unsigned Num) const {
487       return getMBBRange(Num).first;
488     }
489
490     /// Returns the first index in the given basic block.
491     SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
492       return getMBBRange(mbb).first;
493     }
494
495     /// Returns the last index in the given basic block number.
496     SlotIndex getMBBEndIdx(unsigned Num) const {
497       return getMBBRange(Num).second;
498     }
499
500     /// Returns the last index in the given basic block.
501     SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
502       return getMBBRange(mbb).second;
503     }
504
505     /// Returns the basic block which the given index falls in.
506     MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
507       if (MachineInstr *MI = getInstructionFromIndex(index))
508         return MI->getParent();
509       SmallVectorImpl<IdxMBBPair>::const_iterator I =
510         std::lower_bound(idx2MBBMap.begin(), idx2MBBMap.end(), index);
511       // Take the pair containing the index
512       SmallVectorImpl<IdxMBBPair>::const_iterator J =
513         ((I != idx2MBBMap.end() && I->first > index) ||
514          (I == idx2MBBMap.end() && idx2MBBMap.size()>0)) ? (I-1): I;
515
516       assert(J != idx2MBBMap.end() && J->first <= index &&
517              index < getMBBEndIdx(J->second) &&
518              "index does not correspond to an MBB");
519       return J->second;
520     }
521
522     bool findLiveInMBBs(SlotIndex start, SlotIndex end,
523                         SmallVectorImpl<MachineBasicBlock*> &mbbs) const {
524       SmallVectorImpl<IdxMBBPair>::const_iterator itr =
525         std::lower_bound(idx2MBBMap.begin(), idx2MBBMap.end(), start);
526       bool resVal = false;
527
528       while (itr != idx2MBBMap.end()) {
529         if (itr->first >= end)
530           break;
531         mbbs.push_back(itr->second);
532         resVal = true;
533         ++itr;
534       }
535       return resVal;
536     }
537
538     /// Returns the MBB covering the given range, or null if the range covers
539     /// more than one basic block.
540     MachineBasicBlock* getMBBCoveringRange(SlotIndex start, SlotIndex end) const {
541
542       assert(start < end && "Backwards ranges not allowed.");
543
544       SmallVectorImpl<IdxMBBPair>::const_iterator itr =
545         std::lower_bound(idx2MBBMap.begin(), idx2MBBMap.end(), start);
546
547       if (itr == idx2MBBMap.end()) {
548         itr = prior(itr);
549         return itr->second;
550       }
551
552       // Check that we don't cross the boundary into this block.
553       if (itr->first < end)
554         return 0;
555
556       itr = prior(itr);
557
558       if (itr->first <= start)
559         return itr->second;
560
561       return 0;
562     }
563
564     /// Insert the given machine instruction into the mapping. Returns the
565     /// assigned index.
566     /// If Late is set and there are null indexes between mi's neighboring
567     /// instructions, create the new index after the null indexes instead of
568     /// before them.
569     SlotIndex insertMachineInstrInMaps(MachineInstr *mi, bool Late = false) {
570       assert(!mi->isInsideBundle() &&
571              "Instructions inside bundles should use bundle start's slot.");
572       assert(mi2iMap.find(mi) == mi2iMap.end() && "Instr already indexed.");
573       // Numbering DBG_VALUE instructions could cause code generation to be
574       // affected by debug information.
575       assert(!mi->isDebugValue() && "Cannot number DBG_VALUE instructions.");
576
577       assert(mi->getParent() != 0 && "Instr must be added to function.");
578
579       // Get the entries where mi should be inserted.
580       IndexList::iterator prevItr, nextItr;
581       if (Late) {
582         // Insert mi's index immediately before the following instruction.
583         nextItr = getIndexAfter(mi).listEntry();
584         prevItr = prior(nextItr);
585       } else {
586         // Insert mi's index immediately after the preceding instruction.
587         prevItr = getIndexBefore(mi).listEntry();
588         nextItr = llvm::next(prevItr);
589       }
590
591       // Get a number for the new instr, or 0 if there's no room currently.
592       // In the latter case we'll force a renumber later.
593       unsigned dist = ((nextItr->getIndex() - prevItr->getIndex())/2) & ~3u;
594       unsigned newNumber = prevItr->getIndex() + dist;
595
596       // Insert a new list entry for mi.
597       IndexList::iterator newItr =
598         indexList.insert(nextItr, createEntry(mi, newNumber));
599
600       // Renumber locally if we need to.
601       if (dist == 0)
602         renumberIndexes(newItr);
603
604       SlotIndex newIndex(&*newItr, SlotIndex::Slot_Block);
605       mi2iMap.insert(std::make_pair(mi, newIndex));
606       return newIndex;
607     }
608
609     /// Remove the given machine instruction from the mapping.
610     void removeMachineInstrFromMaps(MachineInstr *mi) {
611       // remove index -> MachineInstr and
612       // MachineInstr -> index mappings
613       Mi2IndexMap::iterator mi2iItr = mi2iMap.find(mi);
614       if (mi2iItr != mi2iMap.end()) {
615         IndexListEntry *miEntry(mi2iItr->second.listEntry());
616         assert(miEntry->getInstr() == mi && "Instruction indexes broken.");
617         // FIXME: Eventually we want to actually delete these indexes.
618         miEntry->setInstr(0);
619         mi2iMap.erase(mi2iItr);
620       }
621     }
622
623     /// ReplaceMachineInstrInMaps - Replacing a machine instr with a new one in
624     /// maps used by register allocator.
625     void replaceMachineInstrInMaps(MachineInstr *mi, MachineInstr *newMI) {
626       Mi2IndexMap::iterator mi2iItr = mi2iMap.find(mi);
627       if (mi2iItr == mi2iMap.end())
628         return;
629       SlotIndex replaceBaseIndex = mi2iItr->second;
630       IndexListEntry *miEntry(replaceBaseIndex.listEntry());
631       assert(miEntry->getInstr() == mi &&
632              "Mismatched instruction in index tables.");
633       miEntry->setInstr(newMI);
634       mi2iMap.erase(mi2iItr);
635       mi2iMap.insert(std::make_pair(newMI, replaceBaseIndex));
636     }
637
638     /// Add the given MachineBasicBlock into the maps.
639     void insertMBBInMaps(MachineBasicBlock *mbb) {
640       MachineFunction::iterator nextMBB =
641         llvm::next(MachineFunction::iterator(mbb));
642
643       IndexListEntry *startEntry = 0;
644       IndexListEntry *endEntry = 0;
645       IndexList::iterator newItr;
646       if (nextMBB == mbb->getParent()->end()) {
647         startEntry = &indexList.back();
648         endEntry = createEntry(0, 0);
649         newItr = indexList.insertAfter(startEntry, endEntry);
650       } else {
651         startEntry = createEntry(0, 0);
652         endEntry = getMBBStartIdx(nextMBB).listEntry();
653         newItr = indexList.insert(endEntry, startEntry);
654       }
655
656       SlotIndex startIdx(startEntry, SlotIndex::Slot_Block);
657       SlotIndex endIdx(endEntry, SlotIndex::Slot_Block);
658
659       MachineFunction::iterator prevMBB(mbb);
660       assert(prevMBB != mbb->getParent()->end() &&
661              "Can't insert a new block at the beginning of a function.");
662       --prevMBB;
663       MBBRanges[prevMBB->getNumber()].second = startIdx;
664
665       assert(unsigned(mbb->getNumber()) == MBBRanges.size() &&
666              "Blocks must be added in order");
667       MBBRanges.push_back(std::make_pair(startIdx, endIdx));
668       idx2MBBMap.push_back(IdxMBBPair(startIdx, mbb));
669
670       renumberIndexes(newItr);
671       std::sort(idx2MBBMap.begin(), idx2MBBMap.end(), Idx2MBBCompare());
672     }
673
674     /// \brief Free the resources that were required to maintain a SlotIndex.
675     ///
676     /// Once an index is no longer needed (for instance because the instruction
677     /// at that index has been moved), the resources required to maintain the
678     /// index can be relinquished to reduce memory use and improve renumbering
679     /// performance. Any remaining SlotIndex objects that point to the same
680     /// index are left 'dangling' (much the same as a dangling pointer to a
681     /// freed object) and should not be accessed, except to destruct them.
682     ///
683     /// Like dangling pointers, access to dangling SlotIndexes can cause
684     /// painful-to-track-down bugs, especially if the memory for the index
685     /// previously pointed to has been re-used. To detect dangling SlotIndex
686     /// bugs, build with EXPENSIVE_CHECKS=1. This will cause "erased" indexes to
687     /// be retained in a graveyard instead of being freed. Operations on indexes
688     /// in the graveyard will trigger an assertion.
689     void eraseIndex(SlotIndex index) {
690       IndexListEntry *entry = index.listEntry();
691 #ifdef EXPENSIVE_CHECKS
692       indexList.remove(entry);
693       graveyardList.push_back(entry);
694       entry->setPoison();
695 #else
696       indexList.erase(entry);
697 #endif
698     }
699
700   };
701
702
703   // Specialize IntervalMapInfo for half-open slot index intervals.
704   template <>
705   struct IntervalMapInfo<SlotIndex> : IntervalMapHalfOpenInfo<SlotIndex> {
706   };
707
708 }
709
710 #endif // LLVM_CODEGEN_SLOTINDEXES_H