Generates conditional branch instead of fake ones for Select instruction in some...
[oota-llvm.git] / include / llvm / CodeGen / MachineScheduler.h
1 //==- MachineScheduler.h - MachineInstr Scheduling Pass ----------*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides an interface for customizing the standard MachineScheduler
11 // pass. Note that the entire pass may be replaced as follows:
12 //
13 // <Target>TargetMachine::createPassConfig(PassManagerBase &PM) {
14 //   PM.substitutePass(&MachineSchedulerID, &CustomSchedulerPassID);
15 //   ...}
16 //
17 // The MachineScheduler pass is only responsible for choosing the regions to be
18 // scheduled. Targets can override the DAG builder and scheduler without
19 // replacing the pass as follows:
20 //
21 // ScheduleDAGInstrs *<Target>PassConfig::
22 // createMachineScheduler(MachineSchedContext *C) {
23 //   return new CustomMachineScheduler(C);
24 // }
25 //
26 // The default scheduler, ScheduleDAGMILive, builds the DAG and drives list
27 // scheduling while updating the instruction stream, register pressure, and live
28 // intervals. Most targets don't need to override the DAG builder and list
29 // schedulier, but subtargets that require custom scheduling heuristics may
30 // plugin an alternate MachineSchedStrategy. The strategy is responsible for
31 // selecting the highest priority node from the list:
32 //
33 // ScheduleDAGInstrs *<Target>PassConfig::
34 // createMachineScheduler(MachineSchedContext *C) {
35 //   return new ScheduleDAGMI(C, CustomStrategy(C));
36 // }
37 //
38 // The DAG builder can also be customized in a sense by adding DAG mutations
39 // that will run after DAG building and before list scheduling. DAG mutations
40 // can adjust dependencies based on target-specific knowledge or add weak edges
41 // to aid heuristics:
42 //
43 // ScheduleDAGInstrs *<Target>PassConfig::
44 // createMachineScheduler(MachineSchedContext *C) {
45 //   ScheduleDAGMI *DAG = new ScheduleDAGMI(C, CustomStrategy(C));
46 //   DAG->addMutation(new CustomDependencies(DAG->TII, DAG->TRI));
47 //   return DAG;
48 // }
49 //
50 // A target that supports alternative schedulers can use the
51 // MachineSchedRegistry to allow command line selection. This can be done by
52 // implementing the following boilerplate:
53 //
54 // static ScheduleDAGInstrs *createCustomMachineSched(MachineSchedContext *C) {
55 //  return new CustomMachineScheduler(C);
56 // }
57 // static MachineSchedRegistry
58 // SchedCustomRegistry("custom", "Run my target's custom scheduler",
59 //                     createCustomMachineSched);
60 //
61 //
62 // Finally, subtargets that don't need to implement custom heuristics but would
63 // like to configure the GenericScheduler's policy for a given scheduler region,
64 // including scheduling direction and register pressure tracking policy, can do
65 // this:
66 //
67 // void <SubTarget>Subtarget::
68 // overrideSchedPolicy(MachineSchedPolicy &Policy,
69 //                     MachineInstr *begin,
70 //                     MachineInstr *end,
71 //                     unsigned NumRegionInstrs) const {
72 //   Policy.<Flag> = true;
73 // }
74 //
75 //===----------------------------------------------------------------------===//
76
77 #ifndef LLVM_CODEGEN_MACHINESCHEDULER_H
78 #define LLVM_CODEGEN_MACHINESCHEDULER_H
79
80 #include "llvm/Analysis/AliasAnalysis.h"
81 #include "llvm/CodeGen/MachinePassRegistry.h"
82 #include "llvm/CodeGen/RegisterPressure.h"
83 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
84 #include <memory>
85
86 namespace llvm {
87
88 extern cl::opt<bool> ForceTopDown;
89 extern cl::opt<bool> ForceBottomUp;
90
91 class LiveIntervals;
92 class MachineDominatorTree;
93 class MachineLoopInfo;
94 class RegisterClassInfo;
95 class ScheduleDAGInstrs;
96 class SchedDFSResult;
97 class ScheduleHazardRecognizer;
98
99 /// MachineSchedContext provides enough context from the MachineScheduler pass
100 /// for the target to instantiate a scheduler.
101 struct MachineSchedContext {
102   MachineFunction *MF;
103   const MachineLoopInfo *MLI;
104   const MachineDominatorTree *MDT;
105   const TargetPassConfig *PassConfig;
106   AliasAnalysis *AA;
107   LiveIntervals *LIS;
108
109   RegisterClassInfo *RegClassInfo;
110
111   MachineSchedContext();
112   virtual ~MachineSchedContext();
113 };
114
115 /// MachineSchedRegistry provides a selection of available machine instruction
116 /// schedulers.
117 class MachineSchedRegistry : public MachinePassRegistryNode {
118 public:
119   typedef ScheduleDAGInstrs *(*ScheduleDAGCtor)(MachineSchedContext *);
120
121   // RegisterPassParser requires a (misnamed) FunctionPassCtor type.
122   typedef ScheduleDAGCtor FunctionPassCtor;
123
124   static MachinePassRegistry Registry;
125
126   MachineSchedRegistry(const char *N, const char *D, ScheduleDAGCtor C)
127     : MachinePassRegistryNode(N, D, (MachinePassCtor)C) {
128     Registry.Add(this);
129   }
130   ~MachineSchedRegistry() { Registry.Remove(this); }
131
132   // Accessors.
133   //
134   MachineSchedRegistry *getNext() const {
135     return (MachineSchedRegistry *)MachinePassRegistryNode::getNext();
136   }
137   static MachineSchedRegistry *getList() {
138     return (MachineSchedRegistry *)Registry.getList();
139   }
140   static void setListener(MachinePassRegistryListener *L) {
141     Registry.setListener(L);
142   }
143 };
144
145 class ScheduleDAGMI;
146
147 /// Define a generic scheduling policy for targets that don't provide their own
148 /// MachineSchedStrategy. This can be overriden for each scheduling region
149 /// before building the DAG.
150 struct MachineSchedPolicy {
151   // Allow the scheduler to disable register pressure tracking.
152   bool ShouldTrackPressure;
153
154   // Allow the scheduler to force top-down or bottom-up scheduling. If neither
155   // is true, the scheduler runs in both directions and converges.
156   bool OnlyTopDown;
157   bool OnlyBottomUp;
158
159   // Disable heuristic that tries to fetch nodes from long dependency chains
160   // first.
161   bool DisableLatencyHeuristic;
162
163   MachineSchedPolicy(): ShouldTrackPressure(false), OnlyTopDown(false),
164     OnlyBottomUp(false), DisableLatencyHeuristic(false) {}
165 };
166
167 /// MachineSchedStrategy - Interface to the scheduling algorithm used by
168 /// ScheduleDAGMI.
169 ///
170 /// Initialization sequence:
171 ///   initPolicy -> shouldTrackPressure -> initialize(DAG) -> registerRoots
172 class MachineSchedStrategy {
173   virtual void anchor();
174 public:
175   virtual ~MachineSchedStrategy() {}
176
177   /// Optionally override the per-region scheduling policy.
178   virtual void initPolicy(MachineBasicBlock::iterator Begin,
179                           MachineBasicBlock::iterator End,
180                           unsigned NumRegionInstrs) {}
181
182   virtual void dumpPolicy() {}
183
184   /// Check if pressure tracking is needed before building the DAG and
185   /// initializing this strategy. Called after initPolicy.
186   virtual bool shouldTrackPressure() const { return true; }
187
188   /// Initialize the strategy after building the DAG for a new region.
189   virtual void initialize(ScheduleDAGMI *DAG) = 0;
190
191   /// Notify this strategy that all roots have been released (including those
192   /// that depend on EntrySU or ExitSU).
193   virtual void registerRoots() {}
194
195   /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to
196   /// schedule the node at the top of the unscheduled region. Otherwise it will
197   /// be scheduled at the bottom.
198   virtual SUnit *pickNode(bool &IsTopNode) = 0;
199
200   /// \brief Scheduler callback to notify that a new subtree is scheduled.
201   virtual void scheduleTree(unsigned SubtreeID) {}
202
203   /// Notify MachineSchedStrategy that ScheduleDAGMI has scheduled an
204   /// instruction and updated scheduled/remaining flags in the DAG nodes.
205   virtual void schedNode(SUnit *SU, bool IsTopNode) = 0;
206
207   /// When all predecessor dependencies have been resolved, free this node for
208   /// top-down scheduling.
209   virtual void releaseTopNode(SUnit *SU) = 0;
210   /// When all successor dependencies have been resolved, free this node for
211   /// bottom-up scheduling.
212   virtual void releaseBottomNode(SUnit *SU) = 0;
213 };
214
215 /// Mutate the DAG as a postpass after normal DAG building.
216 class ScheduleDAGMutation {
217   virtual void anchor();
218 public:
219   virtual ~ScheduleDAGMutation() {}
220
221   virtual void apply(ScheduleDAGMI *DAG) = 0;
222 };
223
224 /// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply
225 /// schedules machine instructions according to the given MachineSchedStrategy
226 /// without much extra book-keeping. This is the common functionality between
227 /// PreRA and PostRA MachineScheduler.
228 class ScheduleDAGMI : public ScheduleDAGInstrs {
229 protected:
230   AliasAnalysis *AA;
231   LiveIntervals *LIS;
232   std::unique_ptr<MachineSchedStrategy> SchedImpl;
233
234   /// Topo - A topological ordering for SUnits which permits fast IsReachable
235   /// and similar queries.
236   ScheduleDAGTopologicalSort Topo;
237
238   /// Ordered list of DAG postprocessing steps.
239   std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
240
241   /// The top of the unscheduled zone.
242   MachineBasicBlock::iterator CurrentTop;
243
244   /// The bottom of the unscheduled zone.
245   MachineBasicBlock::iterator CurrentBottom;
246
247   /// Record the next node in a scheduled cluster.
248   const SUnit *NextClusterPred;
249   const SUnit *NextClusterSucc;
250
251 #ifndef NDEBUG
252   /// The number of instructions scheduled so far. Used to cut off the
253   /// scheduler at the point determined by misched-cutoff.
254   unsigned NumInstrsScheduled;
255 #endif
256 public:
257   ScheduleDAGMI(MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S,
258                 bool RemoveKillFlags)
259       : ScheduleDAGInstrs(*C->MF, C->MLI, RemoveKillFlags), AA(C->AA),
260         LIS(C->LIS), SchedImpl(std::move(S)), Topo(SUnits, &ExitSU),
261         CurrentTop(), CurrentBottom(), NextClusterPred(nullptr),
262         NextClusterSucc(nullptr) {
263 #ifndef NDEBUG
264     NumInstrsScheduled = 0;
265 #endif
266   }
267
268   // Provide a vtable anchor
269   ~ScheduleDAGMI() override;
270
271   // Returns LiveIntervals instance for use in DAG mutators and such.
272   LiveIntervals *getLIS() const { return LIS; }
273
274   /// Return true if this DAG supports VReg liveness and RegPressure.
275   virtual bool hasVRegLiveness() const { return false; }
276
277   /// Add a postprocessing step to the DAG builder.
278   /// Mutations are applied in the order that they are added after normal DAG
279   /// building and before MachineSchedStrategy initialization.
280   ///
281   /// ScheduleDAGMI takes ownership of the Mutation object.
282   void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
283     Mutations.push_back(std::move(Mutation));
284   }
285
286   /// \brief True if an edge can be added from PredSU to SuccSU without creating
287   /// a cycle.
288   bool canAddEdge(SUnit *SuccSU, SUnit *PredSU);
289
290   /// \brief Add a DAG edge to the given SU with the given predecessor
291   /// dependence data.
292   ///
293   /// \returns true if the edge may be added without creating a cycle OR if an
294   /// equivalent edge already existed (false indicates failure).
295   bool addEdge(SUnit *SuccSU, const SDep &PredDep);
296
297   MachineBasicBlock::iterator top() const { return CurrentTop; }
298   MachineBasicBlock::iterator bottom() const { return CurrentBottom; }
299
300   /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
301   /// region. This covers all instructions in a block, while schedule() may only
302   /// cover a subset.
303   void enterRegion(MachineBasicBlock *bb,
304                    MachineBasicBlock::iterator begin,
305                    MachineBasicBlock::iterator end,
306                    unsigned regioninstrs) override;
307
308   /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
309   /// reorderable instructions.
310   void schedule() override;
311
312   /// Change the position of an instruction within the basic block and update
313   /// live ranges and region boundary iterators.
314   void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos);
315
316   const SUnit *getNextClusterPred() const { return NextClusterPred; }
317
318   const SUnit *getNextClusterSucc() const { return NextClusterSucc; }
319
320   void viewGraph(const Twine &Name, const Twine &Title) override;
321   void viewGraph() override;
322
323 protected:
324   // Top-Level entry points for the schedule() driver...
325
326   /// Apply each ScheduleDAGMutation step in order. This allows different
327   /// instances of ScheduleDAGMI to perform custom DAG postprocessing.
328   void postprocessDAG();
329
330   /// Release ExitSU predecessors and setup scheduler queues.
331   void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots);
332
333   /// Update scheduler DAG and queues after scheduling an instruction.
334   void updateQueues(SUnit *SU, bool IsTopNode);
335
336   /// Reinsert debug_values recorded in ScheduleDAGInstrs::DbgValues.
337   void placeDebugValues();
338
339   /// \brief dump the scheduled Sequence.
340   void dumpSchedule() const;
341
342   // Lesser helpers...
343   bool checkSchedLimit();
344
345   void findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
346                              SmallVectorImpl<SUnit*> &BotRoots);
347
348   void releaseSucc(SUnit *SU, SDep *SuccEdge);
349   void releaseSuccessors(SUnit *SU);
350   void releasePred(SUnit *SU, SDep *PredEdge);
351   void releasePredecessors(SUnit *SU);
352 };
353
354 /// ScheduleDAGMILive is an implementation of ScheduleDAGInstrs that schedules
355 /// machine instructions while updating LiveIntervals and tracking regpressure.
356 class ScheduleDAGMILive : public ScheduleDAGMI {
357 protected:
358   RegisterClassInfo *RegClassInfo;
359
360   /// Information about DAG subtrees. If DFSResult is NULL, then SchedulerTrees
361   /// will be empty.
362   SchedDFSResult *DFSResult;
363   BitVector ScheduledTrees;
364
365   MachineBasicBlock::iterator LiveRegionEnd;
366
367   // Map each SU to its summary of pressure changes. This array is updated for
368   // liveness during bottom-up scheduling. Top-down scheduling may proceed but
369   // has no affect on the pressure diffs.
370   PressureDiffs SUPressureDiffs;
371
372   /// Register pressure in this region computed by initRegPressure.
373   bool ShouldTrackPressure;
374   IntervalPressure RegPressure;
375   RegPressureTracker RPTracker;
376
377   /// List of pressure sets that exceed the target's pressure limit before
378   /// scheduling, listed in increasing set ID order. Each pressure set is paired
379   /// with its max pressure in the currently scheduled regions.
380   std::vector<PressureChange> RegionCriticalPSets;
381
382   /// The top of the unscheduled zone.
383   IntervalPressure TopPressure;
384   RegPressureTracker TopRPTracker;
385
386   /// The bottom of the unscheduled zone.
387   IntervalPressure BotPressure;
388   RegPressureTracker BotRPTracker;
389
390 public:
391   ScheduleDAGMILive(MachineSchedContext *C,
392                     std::unique_ptr<MachineSchedStrategy> S)
393       : ScheduleDAGMI(C, std::move(S), /*RemoveKillFlags=*/false),
394         RegClassInfo(C->RegClassInfo), DFSResult(nullptr),
395         ShouldTrackPressure(false), RPTracker(RegPressure),
396         TopRPTracker(TopPressure), BotRPTracker(BotPressure) {}
397
398   ~ScheduleDAGMILive() override;
399
400   /// Return true if this DAG supports VReg liveness and RegPressure.
401   bool hasVRegLiveness() const override { return true; }
402
403   /// \brief Return true if register pressure tracking is enabled.
404   bool isTrackingPressure() const { return ShouldTrackPressure; }
405
406   /// Get current register pressure for the top scheduled instructions.
407   const IntervalPressure &getTopPressure() const { return TopPressure; }
408   const RegPressureTracker &getTopRPTracker() const { return TopRPTracker; }
409
410   /// Get current register pressure for the bottom scheduled instructions.
411   const IntervalPressure &getBotPressure() const { return BotPressure; }
412   const RegPressureTracker &getBotRPTracker() const { return BotRPTracker; }
413
414   /// Get register pressure for the entire scheduling region before scheduling.
415   const IntervalPressure &getRegPressure() const { return RegPressure; }
416
417   const std::vector<PressureChange> &getRegionCriticalPSets() const {
418     return RegionCriticalPSets;
419   }
420
421   PressureDiff &getPressureDiff(const SUnit *SU) {
422     return SUPressureDiffs[SU->NodeNum];
423   }
424
425   /// Compute a DFSResult after DAG building is complete, and before any
426   /// queue comparisons.
427   void computeDFSResult();
428
429   /// Return a non-null DFS result if the scheduling strategy initialized it.
430   const SchedDFSResult *getDFSResult() const { return DFSResult; }
431
432   BitVector &getScheduledTrees() { return ScheduledTrees; }
433
434   /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
435   /// region. This covers all instructions in a block, while schedule() may only
436   /// cover a subset.
437   void enterRegion(MachineBasicBlock *bb,
438                    MachineBasicBlock::iterator begin,
439                    MachineBasicBlock::iterator end,
440                    unsigned regioninstrs) override;
441
442   /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
443   /// reorderable instructions.
444   void schedule() override;
445
446   /// Compute the cyclic critical path through the DAG.
447   unsigned computeCyclicCriticalPath();
448
449 protected:
450   // Top-Level entry points for the schedule() driver...
451
452   /// Call ScheduleDAGInstrs::buildSchedGraph with register pressure tracking
453   /// enabled. This sets up three trackers. RPTracker will cover the entire DAG
454   /// region, TopTracker and BottomTracker will be initialized to the top and
455   /// bottom of the DAG region without covereing any unscheduled instruction.
456   void buildDAGWithRegPressure();
457
458   /// Move an instruction and update register pressure.
459   void scheduleMI(SUnit *SU, bool IsTopNode);
460
461   // Lesser helpers...
462
463   void initRegPressure();
464
465   void updatePressureDiffs(ArrayRef<unsigned> LiveUses);
466
467   void updateScheduledPressure(const SUnit *SU,
468                                const std::vector<unsigned> &NewMaxPressure);
469 };
470
471 //===----------------------------------------------------------------------===//
472 ///
473 /// Helpers for implementing custom MachineSchedStrategy classes. These take
474 /// care of the book-keeping associated with list scheduling heuristics.
475 ///
476 //===----------------------------------------------------------------------===//
477
478 /// ReadyQueue encapsulates vector of "ready" SUnits with basic convenience
479 /// methods for pushing and removing nodes. ReadyQueue's are uniquely identified
480 /// by an ID. SUnit::NodeQueueId is a mask of the ReadyQueues the SUnit is in.
481 ///
482 /// This is a convenience class that may be used by implementations of
483 /// MachineSchedStrategy.
484 class ReadyQueue {
485   unsigned ID;
486   std::string Name;
487   std::vector<SUnit*> Queue;
488
489 public:
490   ReadyQueue(unsigned id, const Twine &name): ID(id), Name(name.str()) {}
491
492   unsigned getID() const { return ID; }
493
494   StringRef getName() const { return Name; }
495
496   // SU is in this queue if it's NodeQueueID is a superset of this ID.
497   bool isInQueue(SUnit *SU) const { return (SU->NodeQueueId & ID); }
498
499   bool empty() const { return Queue.empty(); }
500
501   void clear() { Queue.clear(); }
502
503   unsigned size() const { return Queue.size(); }
504
505   typedef std::vector<SUnit*>::iterator iterator;
506
507   iterator begin() { return Queue.begin(); }
508
509   iterator end() { return Queue.end(); }
510
511   ArrayRef<SUnit*> elements() { return Queue; }
512
513   iterator find(SUnit *SU) {
514     return std::find(Queue.begin(), Queue.end(), SU);
515   }
516
517   void push(SUnit *SU) {
518     Queue.push_back(SU);
519     SU->NodeQueueId |= ID;
520   }
521
522   iterator remove(iterator I) {
523     (*I)->NodeQueueId &= ~ID;
524     *I = Queue.back();
525     unsigned idx = I - Queue.begin();
526     Queue.pop_back();
527     return Queue.begin() + idx;
528   }
529
530   void dump();
531 };
532
533 /// Summarize the unscheduled region.
534 struct SchedRemainder {
535   // Critical path through the DAG in expected latency.
536   unsigned CriticalPath;
537   unsigned CyclicCritPath;
538
539   // Scaled count of micro-ops left to schedule.
540   unsigned RemIssueCount;
541
542   bool IsAcyclicLatencyLimited;
543
544   // Unscheduled resources
545   SmallVector<unsigned, 16> RemainingCounts;
546
547   void reset() {
548     CriticalPath = 0;
549     CyclicCritPath = 0;
550     RemIssueCount = 0;
551     IsAcyclicLatencyLimited = false;
552     RemainingCounts.clear();
553   }
554
555   SchedRemainder() { reset(); }
556
557   void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
558 };
559
560 /// Each Scheduling boundary is associated with ready queues. It tracks the
561 /// current cycle in the direction of movement, and maintains the state
562 /// of "hazards" and other interlocks at the current cycle.
563 class SchedBoundary {
564 public:
565   /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
566   enum {
567     TopQID = 1,
568     BotQID = 2,
569     LogMaxQID = 2
570   };
571
572   ScheduleDAGMI *DAG;
573   const TargetSchedModel *SchedModel;
574   SchedRemainder *Rem;
575
576   ReadyQueue Available;
577   ReadyQueue Pending;
578
579   ScheduleHazardRecognizer *HazardRec;
580
581 private:
582   /// True if the pending Q should be checked/updated before scheduling another
583   /// instruction.
584   bool CheckPending;
585
586   // For heuristics, keep a list of the nodes that immediately depend on the
587   // most recently scheduled node.
588   SmallPtrSet<const SUnit*, 8> NextSUs;
589
590   /// Number of cycles it takes to issue the instructions scheduled in this
591   /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls.
592   /// See getStalls().
593   unsigned CurrCycle;
594
595   /// Micro-ops issued in the current cycle
596   unsigned CurrMOps;
597
598   /// MinReadyCycle - Cycle of the soonest available instruction.
599   unsigned MinReadyCycle;
600
601   // The expected latency of the critical path in this scheduled zone.
602   unsigned ExpectedLatency;
603
604   // The latency of dependence chains leading into this zone.
605   // For each node scheduled bottom-up: DLat = max DLat, N.Depth.
606   // For each cycle scheduled: DLat -= 1.
607   unsigned DependentLatency;
608
609   /// Count the scheduled (issued) micro-ops that can be retired by
610   /// time=CurrCycle assuming the first scheduled instr is retired at time=0.
611   unsigned RetiredMOps;
612
613   // Count scheduled resources that have been executed. Resources are
614   // considered executed if they become ready in the time that it takes to
615   // saturate any resource including the one in question. Counts are scaled
616   // for direct comparison with other resources. Counts can be compared with
617   // MOps * getMicroOpFactor and Latency * getLatencyFactor.
618   SmallVector<unsigned, 16> ExecutedResCounts;
619
620   /// Cache the max count for a single resource.
621   unsigned MaxExecutedResCount;
622
623   // Cache the critical resources ID in this scheduled zone.
624   unsigned ZoneCritResIdx;
625
626   // Is the scheduled region resource limited vs. latency limited.
627   bool IsResourceLimited;
628
629   // Record the highest cycle at which each resource has been reserved by a
630   // scheduled instruction.
631   SmallVector<unsigned, 16> ReservedCycles;
632
633 #ifndef NDEBUG
634   // Remember the greatest possible stall as an upper bound on the number of
635   // times we should retry the pending queue because of a hazard.
636   unsigned MaxObservedStall;
637 #endif
638
639 public:
640   /// Pending queues extend the ready queues with the same ID and the
641   /// PendingFlag set.
642   SchedBoundary(unsigned ID, const Twine &Name):
643     DAG(nullptr), SchedModel(nullptr), Rem(nullptr), Available(ID, Name+".A"),
644     Pending(ID << LogMaxQID, Name+".P"),
645     HazardRec(nullptr) {
646     reset();
647   }
648
649   ~SchedBoundary();
650
651   void reset();
652
653   void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
654             SchedRemainder *rem);
655
656   bool isTop() const {
657     return Available.getID() == TopQID;
658   }
659
660   /// Number of cycles to issue the instructions scheduled in this zone.
661   unsigned getCurrCycle() const { return CurrCycle; }
662
663   /// Micro-ops issued in the current cycle
664   unsigned getCurrMOps() const { return CurrMOps; }
665
666   /// Return true if the given SU is used by the most recently scheduled
667   /// instruction.
668   bool isNextSU(const SUnit *SU) const { return NextSUs.count(SU); }
669
670   // The latency of dependence chains leading into this zone.
671   unsigned getDependentLatency() const { return DependentLatency; }
672
673   /// Get the number of latency cycles "covered" by the scheduled
674   /// instructions. This is the larger of the critical path within the zone
675   /// and the number of cycles required to issue the instructions.
676   unsigned getScheduledLatency() const {
677     return std::max(ExpectedLatency, CurrCycle);
678   }
679
680   unsigned getUnscheduledLatency(SUnit *SU) const {
681     return isTop() ? SU->getHeight() : SU->getDepth();
682   }
683
684   unsigned getResourceCount(unsigned ResIdx) const {
685     return ExecutedResCounts[ResIdx];
686   }
687
688   /// Get the scaled count of scheduled micro-ops and resources, including
689   /// executed resources.
690   unsigned getCriticalCount() const {
691     if (!ZoneCritResIdx)
692       return RetiredMOps * SchedModel->getMicroOpFactor();
693     return getResourceCount(ZoneCritResIdx);
694   }
695
696   /// Get a scaled count for the minimum execution time of the scheduled
697   /// micro-ops that are ready to execute by getExecutedCount. Notice the
698   /// feedback loop.
699   unsigned getExecutedCount() const {
700     return std::max(CurrCycle * SchedModel->getLatencyFactor(),
701                     MaxExecutedResCount);
702   }
703
704   unsigned getZoneCritResIdx() const { return ZoneCritResIdx; }
705
706   // Is the scheduled region resource limited vs. latency limited.
707   bool isResourceLimited() const { return IsResourceLimited; }
708
709   /// Get the difference between the given SUnit's ready time and the current
710   /// cycle.
711   unsigned getLatencyStallCycles(SUnit *SU);
712
713   unsigned getNextResourceCycle(unsigned PIdx, unsigned Cycles);
714
715   bool checkHazard(SUnit *SU);
716
717   unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs);
718
719   unsigned getOtherResourceCount(unsigned &OtherCritIdx);
720
721   void releaseNode(SUnit *SU, unsigned ReadyCycle);
722
723   void releaseTopNode(SUnit *SU);
724
725   void releaseBottomNode(SUnit *SU);
726
727   void bumpCycle(unsigned NextCycle);
728
729   void incExecutedResources(unsigned PIdx, unsigned Count);
730
731   unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle);
732
733   void bumpNode(SUnit *SU);
734
735   void releasePending();
736
737   void removeReady(SUnit *SU);
738
739   /// Call this before applying any other heuristics to the Available queue.
740   /// Updates the Available/Pending Q's if necessary and returns the single
741   /// available instruction, or NULL if there are multiple candidates.
742   SUnit *pickOnlyChoice();
743
744 #ifndef NDEBUG
745   void dumpScheduledState();
746 #endif
747 };
748
749 /// Base class for GenericScheduler. This class maintains information about
750 /// scheduling candidates based on TargetSchedModel making it easy to implement
751 /// heuristics for either preRA or postRA scheduling.
752 class GenericSchedulerBase : public MachineSchedStrategy {
753 public:
754   /// Represent the type of SchedCandidate found within a single queue.
755   /// pickNodeBidirectional depends on these listed by decreasing priority.
756   enum CandReason {
757     NoCand, PhysRegCopy, RegExcess, RegCritical, Stall, Cluster, Weak, RegMax,
758     ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
759     TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder};
760
761 #ifndef NDEBUG
762   static const char *getReasonStr(GenericSchedulerBase::CandReason Reason);
763 #endif
764
765   /// Policy for scheduling the next instruction in the candidate's zone.
766   struct CandPolicy {
767     bool ReduceLatency;
768     unsigned ReduceResIdx;
769     unsigned DemandResIdx;
770
771     CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {}
772   };
773
774   /// Status of an instruction's critical resource consumption.
775   struct SchedResourceDelta {
776     // Count critical resources in the scheduled region required by SU.
777     unsigned CritResources;
778
779     // Count critical resources from another region consumed by SU.
780     unsigned DemandedResources;
781
782     SchedResourceDelta(): CritResources(0), DemandedResources(0) {}
783
784     bool operator==(const SchedResourceDelta &RHS) const {
785       return CritResources == RHS.CritResources
786         && DemandedResources == RHS.DemandedResources;
787     }
788     bool operator!=(const SchedResourceDelta &RHS) const {
789       return !operator==(RHS);
790     }
791   };
792
793   /// Store the state used by GenericScheduler heuristics, required for the
794   /// lifetime of one invocation of pickNode().
795   struct SchedCandidate {
796     CandPolicy Policy;
797
798     // The best SUnit candidate.
799     SUnit *SU;
800
801     // The reason for this candidate.
802     CandReason Reason;
803
804     // Set of reasons that apply to multiple candidates.
805     uint32_t RepeatReasonSet;
806
807     // Register pressure values for the best candidate.
808     RegPressureDelta RPDelta;
809
810     // Critical resource consumption of the best candidate.
811     SchedResourceDelta ResDelta;
812
813     SchedCandidate(const CandPolicy &policy)
814       : Policy(policy), SU(nullptr), Reason(NoCand), RepeatReasonSet(0) {}
815
816     bool isValid() const { return SU; }
817
818     // Copy the status of another candidate without changing policy.
819     void setBest(SchedCandidate &Best) {
820       assert(Best.Reason != NoCand && "uninitialized Sched candidate");
821       SU = Best.SU;
822       Reason = Best.Reason;
823       RPDelta = Best.RPDelta;
824       ResDelta = Best.ResDelta;
825     }
826
827     bool isRepeat(CandReason R) { return RepeatReasonSet & (1 << R); }
828     void setRepeat(CandReason R) { RepeatReasonSet |= (1 << R); }
829
830     void initResourceDelta(const ScheduleDAGMI *DAG,
831                            const TargetSchedModel *SchedModel);
832   };
833
834 protected:
835   const MachineSchedContext *Context;
836   const TargetSchedModel *SchedModel;
837   const TargetRegisterInfo *TRI;
838
839   SchedRemainder Rem;
840 protected:
841   GenericSchedulerBase(const MachineSchedContext *C):
842     Context(C), SchedModel(nullptr), TRI(nullptr) {}
843
844   void setPolicy(CandPolicy &Policy, bool IsPostRA, SchedBoundary &CurrZone,
845                  SchedBoundary *OtherZone);
846
847 #ifndef NDEBUG
848   void traceCandidate(const SchedCandidate &Cand);
849 #endif
850 };
851
852 /// GenericScheduler shrinks the unscheduled zone using heuristics to balance
853 /// the schedule.
854 class GenericScheduler : public GenericSchedulerBase {
855   ScheduleDAGMILive *DAG;
856
857   // State of the top and bottom scheduled instruction boundaries.
858   SchedBoundary Top;
859   SchedBoundary Bot;
860
861   MachineSchedPolicy RegionPolicy;
862 public:
863   GenericScheduler(const MachineSchedContext *C):
864     GenericSchedulerBase(C), DAG(nullptr), Top(SchedBoundary::TopQID, "TopQ"),
865     Bot(SchedBoundary::BotQID, "BotQ") {}
866
867   void initPolicy(MachineBasicBlock::iterator Begin,
868                   MachineBasicBlock::iterator End,
869                   unsigned NumRegionInstrs) override;
870
871   void dumpPolicy() override;
872
873   bool shouldTrackPressure() const override {
874     return RegionPolicy.ShouldTrackPressure;
875   }
876
877   void initialize(ScheduleDAGMI *dag) override;
878
879   SUnit *pickNode(bool &IsTopNode) override;
880
881   void schedNode(SUnit *SU, bool IsTopNode) override;
882
883   void releaseTopNode(SUnit *SU) override {
884     Top.releaseTopNode(SU);
885   }
886
887   void releaseBottomNode(SUnit *SU) override {
888     Bot.releaseBottomNode(SU);
889   }
890
891   void registerRoots() override;
892
893 protected:
894   void checkAcyclicLatency();
895
896   void tryCandidate(SchedCandidate &Cand,
897                     SchedCandidate &TryCand,
898                     SchedBoundary &Zone,
899                     const RegPressureTracker &RPTracker,
900                     RegPressureTracker &TempTracker);
901
902   SUnit *pickNodeBidirectional(bool &IsTopNode);
903
904   void pickNodeFromQueue(SchedBoundary &Zone,
905                          const RegPressureTracker &RPTracker,
906                          SchedCandidate &Candidate);
907
908   void reschedulePhysRegCopies(SUnit *SU, bool isTop);
909 };
910
911 /// PostGenericScheduler - Interface to the scheduling algorithm used by
912 /// ScheduleDAGMI.
913 ///
914 /// Callbacks from ScheduleDAGMI:
915 ///   initPolicy -> initialize(DAG) -> registerRoots -> pickNode ...
916 class PostGenericScheduler : public GenericSchedulerBase {
917   ScheduleDAGMI *DAG;
918   SchedBoundary Top;
919   SmallVector<SUnit*, 8> BotRoots;
920 public:
921   PostGenericScheduler(const MachineSchedContext *C):
922     GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ") {}
923
924   ~PostGenericScheduler() override {}
925
926   void initPolicy(MachineBasicBlock::iterator Begin,
927                   MachineBasicBlock::iterator End,
928                   unsigned NumRegionInstrs) override {
929     /* no configurable policy */
930   }
931
932   /// PostRA scheduling does not track pressure.
933   bool shouldTrackPressure() const override { return false; }
934
935   void initialize(ScheduleDAGMI *Dag) override;
936
937   void registerRoots() override;
938
939   SUnit *pickNode(bool &IsTopNode) override;
940
941   void scheduleTree(unsigned SubtreeID) override {
942     llvm_unreachable("PostRA scheduler does not support subtree analysis.");
943   }
944
945   void schedNode(SUnit *SU, bool IsTopNode) override;
946
947   void releaseTopNode(SUnit *SU) override {
948     Top.releaseTopNode(SU);
949   }
950
951   // Only called for roots.
952   void releaseBottomNode(SUnit *SU) override {
953     BotRoots.push_back(SU);
954   }
955
956 protected:
957   void tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand);
958
959   void pickNodeFromQueue(SchedCandidate &Cand);
960 };
961
962 } // namespace llvm
963
964 #endif