Mark unimplemented copy constructors and copy assignment operators as LLVM_DELETED_FU...
[oota-llvm.git] / include / llvm / CodeGen / MachineInstr.h
1 //===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the declaration of the MachineInstr class, which is the
11 // basic representation for all target dependent machine instructions used by
12 // the back end.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
17 #define LLVM_CODEGEN_MACHINEINSTR_H
18
19 #include "llvm/CodeGen/MachineOperand.h"
20 #include "llvm/MC/MCInstrDesc.h"
21 #include "llvm/Target/TargetOpcodes.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/ilist.h"
24 #include "llvm/ADT/ilist_node.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/DenseMapInfo.h"
28 #include "llvm/InlineAsm.h"
29 #include "llvm/Support/DebugLoc.h"
30 #include <vector>
31
32 namespace llvm {
33
34 template <typename T> class SmallVectorImpl;
35 class AliasAnalysis;
36 class TargetInstrInfo;
37 class TargetRegisterClass;
38 class TargetRegisterInfo;
39 class MachineFunction;
40 class MachineMemOperand;
41
42 //===----------------------------------------------------------------------===//
43 /// MachineInstr - Representation of each machine instruction.
44 ///
45 class MachineInstr : public ilist_node<MachineInstr> {
46 public:
47   typedef MachineMemOperand **mmo_iterator;
48
49   /// Flags to specify different kinds of comments to output in
50   /// assembly code.  These flags carry semantic information not
51   /// otherwise easily derivable from the IR text.
52   ///
53   enum CommentFlag {
54     ReloadReuse = 0x1
55   };
56
57   enum MIFlag {
58     NoFlags      = 0,
59     FrameSetup   = 1 << 0,              // Instruction is used as a part of
60                                         // function frame setup code.
61     InsideBundle = 1 << 1               // Instruction is inside a bundle (not
62                                         // the first MI in a bundle)
63   };
64 private:
65   const MCInstrDesc *MCID;              // Instruction descriptor.
66
67   uint8_t Flags;                        // Various bits of additional
68                                         // information about machine
69                                         // instruction.
70
71   uint8_t AsmPrinterFlags;              // Various bits of information used by
72                                         // the AsmPrinter to emit helpful
73                                         // comments.  This is *not* semantic
74                                         // information.  Do not use this for
75                                         // anything other than to convey comment
76                                         // information to AsmPrinter.
77
78   uint16_t NumMemRefs;                  // information on memory references
79   mmo_iterator MemRefs;
80
81   std::vector<MachineOperand> Operands; // the operands
82   MachineBasicBlock *Parent;            // Pointer to the owning basic block.
83   DebugLoc debugLoc;                    // Source line information.
84
85   MachineInstr(const MachineInstr&) LLVM_DELETED_FUNCTION;
86   void operator=(const MachineInstr&) LLVM_DELETED_FUNCTION;
87
88   // Intrusive list support
89   friend struct ilist_traits<MachineInstr>;
90   friend struct ilist_traits<MachineBasicBlock>;
91   void setParent(MachineBasicBlock *P) { Parent = P; }
92
93   /// MachineInstr ctor - This constructor creates a copy of the given
94   /// MachineInstr in the given MachineFunction.
95   MachineInstr(MachineFunction &, const MachineInstr &);
96
97   /// MachineInstr ctor - This constructor creates a dummy MachineInstr with
98   /// MCID NULL and no operands.
99   MachineInstr();
100
101   // The next two constructors have DebugLoc and non-DebugLoc versions;
102   // over time, the non-DebugLoc versions should be phased out and eventually
103   // removed.
104
105   /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
106   /// implicit operands.  It reserves space for the number of operands specified
107   /// by the MCInstrDesc.  The version with a DebugLoc should be preferred.
108   explicit MachineInstr(const MCInstrDesc &MCID, bool NoImp = false);
109
110   /// MachineInstr ctor - Work exactly the same as the ctor above, except that
111   /// the MachineInstr is created and added to the end of the specified basic
112   /// block.  The version with a DebugLoc should be preferred.
113   MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &MCID);
114
115   /// MachineInstr ctor - This constructor create a MachineInstr and add the
116   /// implicit operands.  It reserves space for number of operands specified by
117   /// MCInstrDesc.  An explicit DebugLoc is supplied.
118   explicit MachineInstr(const MCInstrDesc &MCID, const DebugLoc dl,
119                         bool NoImp = false);
120
121   /// MachineInstr ctor - Work exactly the same as the ctor above, except that
122   /// the MachineInstr is created and added to the end of the specified basic
123   /// block.
124   MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
125                const MCInstrDesc &MCID);
126
127   ~MachineInstr();
128
129   // MachineInstrs are pool-allocated and owned by MachineFunction.
130   friend class MachineFunction;
131
132 public:
133   const MachineBasicBlock* getParent() const { return Parent; }
134   MachineBasicBlock* getParent() { return Parent; }
135
136   /// getAsmPrinterFlags - Return the asm printer flags bitvector.
137   ///
138   uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
139
140   /// clearAsmPrinterFlags - clear the AsmPrinter bitvector
141   ///
142   void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
143
144   /// getAsmPrinterFlag - Return whether an AsmPrinter flag is set.
145   ///
146   bool getAsmPrinterFlag(CommentFlag Flag) const {
147     return AsmPrinterFlags & Flag;
148   }
149
150   /// setAsmPrinterFlag - Set a flag for the AsmPrinter.
151   ///
152   void setAsmPrinterFlag(CommentFlag Flag) {
153     AsmPrinterFlags |= (uint8_t)Flag;
154   }
155
156   /// clearAsmPrinterFlag - clear specific AsmPrinter flags
157   ///
158   void clearAsmPrinterFlag(CommentFlag Flag) {
159     AsmPrinterFlags &= ~Flag;
160   }
161
162   /// getFlags - Return the MI flags bitvector.
163   uint8_t getFlags() const {
164     return Flags;
165   }
166
167   /// getFlag - Return whether an MI flag is set.
168   bool getFlag(MIFlag Flag) const {
169     return Flags & Flag;
170   }
171
172   /// setFlag - Set a MI flag.
173   void setFlag(MIFlag Flag) {
174     Flags |= (uint8_t)Flag;
175   }
176
177   void setFlags(unsigned flags) {
178     Flags = flags;
179   }
180
181   /// clearFlag - Clear a MI flag.
182   void clearFlag(MIFlag Flag) {
183     Flags &= ~((uint8_t)Flag);
184   }
185
186   /// isInsideBundle - Return true if MI is in a bundle (but not the first MI
187   /// in a bundle).
188   ///
189   /// A bundle looks like this before it's finalized:
190   ///   ----------------
191   ///   |      MI      |
192   ///   ----------------
193   ///          |
194   ///   ----------------
195   ///   |      MI    * |
196   ///   ----------------
197   ///          |
198   ///   ----------------
199   ///   |      MI    * |
200   ///   ----------------
201   /// In this case, the first MI starts a bundle but is not inside a bundle, the
202   /// next 2 MIs are considered "inside" the bundle.
203   ///
204   /// After a bundle is finalized, it looks like this:
205   ///   ----------------
206   ///   |    Bundle    |
207   ///   ----------------
208   ///          |
209   ///   ----------------
210   ///   |      MI    * |
211   ///   ----------------
212   ///          |
213   ///   ----------------
214   ///   |      MI    * |
215   ///   ----------------
216   ///          |
217   ///   ----------------
218   ///   |      MI    * |
219   ///   ----------------
220   /// The first instruction has the special opcode "BUNDLE". It's not "inside"
221   /// a bundle, but the next three MIs are.
222   bool isInsideBundle() const {
223     return getFlag(InsideBundle);
224   }
225
226   /// setIsInsideBundle - Set InsideBundle bit.
227   ///
228   void setIsInsideBundle(bool Val = true) {
229     if (Val)
230       setFlag(InsideBundle);
231     else
232       clearFlag(InsideBundle);
233   }
234
235   /// isBundled - Return true if this instruction part of a bundle. This is true
236   /// if either itself or its following instruction is marked "InsideBundle".
237   bool isBundled() const;
238
239   /// getDebugLoc - Returns the debug location id of this MachineInstr.
240   ///
241   DebugLoc getDebugLoc() const { return debugLoc; }
242
243   /// emitError - Emit an error referring to the source location of this
244   /// instruction. This should only be used for inline assembly that is somehow
245   /// impossible to compile. Other errors should have been handled much
246   /// earlier.
247   ///
248   /// If this method returns, the caller should try to recover from the error.
249   ///
250   void emitError(StringRef Msg) const;
251
252   /// getDesc - Returns the target instruction descriptor of this
253   /// MachineInstr.
254   const MCInstrDesc &getDesc() const { return *MCID; }
255
256   /// getOpcode - Returns the opcode of this MachineInstr.
257   ///
258   int getOpcode() const { return MCID->Opcode; }
259
260   /// Access to explicit operands of the instruction.
261   ///
262   unsigned getNumOperands() const { return (unsigned)Operands.size(); }
263
264   const MachineOperand& getOperand(unsigned i) const {
265     assert(i < getNumOperands() && "getOperand() out of range!");
266     return Operands[i];
267   }
268   MachineOperand& getOperand(unsigned i) {
269     assert(i < getNumOperands() && "getOperand() out of range!");
270     return Operands[i];
271   }
272
273   /// getNumExplicitOperands - Returns the number of non-implicit operands.
274   ///
275   unsigned getNumExplicitOperands() const;
276
277   /// iterator/begin/end - Iterate over all operands of a machine instruction.
278   typedef std::vector<MachineOperand>::iterator mop_iterator;
279   typedef std::vector<MachineOperand>::const_iterator const_mop_iterator;
280
281   mop_iterator operands_begin() { return Operands.begin(); }
282   mop_iterator operands_end() { return Operands.end(); }
283
284   const_mop_iterator operands_begin() const { return Operands.begin(); }
285   const_mop_iterator operands_end() const { return Operands.end(); }
286
287   /// Access to memory operands of the instruction
288   mmo_iterator memoperands_begin() const { return MemRefs; }
289   mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
290   bool memoperands_empty() const { return NumMemRefs == 0; }
291
292   /// hasOneMemOperand - Return true if this instruction has exactly one
293   /// MachineMemOperand.
294   bool hasOneMemOperand() const {
295     return NumMemRefs == 1;
296   }
297
298   /// API for querying MachineInstr properties. They are the same as MCInstrDesc
299   /// queries but they are bundle aware.
300
301   enum QueryType {
302     IgnoreBundle,    // Ignore bundles
303     AnyInBundle,     // Return true if any instruction in bundle has property
304     AllInBundle      // Return true if all instructions in bundle have property
305   };
306
307   /// hasProperty - Return true if the instruction (or in the case of a bundle,
308   /// the instructions inside the bundle) has the specified property.
309   /// The first argument is the property being queried.
310   /// The second argument indicates whether the query should look inside
311   /// instruction bundles.
312   bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
313     // Inline the fast path.
314     if (Type == IgnoreBundle || !isBundle())
315       return getDesc().getFlags() & (1 << MCFlag);
316
317     // If we have a bundle, take the slow path.
318     return hasPropertyInBundle(1 << MCFlag, Type);
319   }
320
321   /// isVariadic - Return true if this instruction can have a variable number of
322   /// operands.  In this case, the variable operands will be after the normal
323   /// operands but before the implicit definitions and uses (if any are
324   /// present).
325   bool isVariadic(QueryType Type = IgnoreBundle) const {
326     return hasProperty(MCID::Variadic, Type);
327   }
328
329   /// hasOptionalDef - Set if this instruction has an optional definition, e.g.
330   /// ARM instructions which can set condition code if 's' bit is set.
331   bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
332     return hasProperty(MCID::HasOptionalDef, Type);
333   }
334
335   /// isPseudo - Return true if this is a pseudo instruction that doesn't
336   /// correspond to a real machine instruction.
337   ///
338   bool isPseudo(QueryType Type = IgnoreBundle) const {
339     return hasProperty(MCID::Pseudo, Type);
340   }
341
342   bool isReturn(QueryType Type = AnyInBundle) const {
343     return hasProperty(MCID::Return, Type);
344   }
345
346   bool isCall(QueryType Type = AnyInBundle) const {
347     return hasProperty(MCID::Call, Type);
348   }
349
350   /// isBarrier - Returns true if the specified instruction stops control flow
351   /// from executing the instruction immediately following it.  Examples include
352   /// unconditional branches and return instructions.
353   bool isBarrier(QueryType Type = AnyInBundle) const {
354     return hasProperty(MCID::Barrier, Type);
355   }
356
357   /// isTerminator - Returns true if this instruction part of the terminator for
358   /// a basic block.  Typically this is things like return and branch
359   /// instructions.
360   ///
361   /// Various passes use this to insert code into the bottom of a basic block,
362   /// but before control flow occurs.
363   bool isTerminator(QueryType Type = AnyInBundle) const {
364     return hasProperty(MCID::Terminator, Type);
365   }
366
367   /// isBranch - Returns true if this is a conditional, unconditional, or
368   /// indirect branch.  Predicates below can be used to discriminate between
369   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
370   /// get more information.
371   bool isBranch(QueryType Type = AnyInBundle) const {
372     return hasProperty(MCID::Branch, Type);
373   }
374
375   /// isIndirectBranch - Return true if this is an indirect branch, such as a
376   /// branch through a register.
377   bool isIndirectBranch(QueryType Type = AnyInBundle) const {
378     return hasProperty(MCID::IndirectBranch, Type);
379   }
380
381   /// isConditionalBranch - Return true if this is a branch which may fall
382   /// through to the next instruction or may transfer control flow to some other
383   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
384   /// information about this branch.
385   bool isConditionalBranch(QueryType Type = AnyInBundle) const {
386     return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
387   }
388
389   /// isUnconditionalBranch - Return true if this is a branch which always
390   /// transfers control flow to some other block.  The
391   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
392   /// about this branch.
393   bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
394     return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
395   }
396
397   // isPredicable - Return true if this instruction has a predicate operand that
398   // controls execution.  It may be set to 'always', or may be set to other
399   /// values.   There are various methods in TargetInstrInfo that can be used to
400   /// control and modify the predicate in this instruction.
401   bool isPredicable(QueryType Type = AllInBundle) const {
402     // If it's a bundle than all bundled instructions must be predicable for this
403     // to return true.
404     return hasProperty(MCID::Predicable, Type);
405   }
406
407   /// isCompare - Return true if this instruction is a comparison.
408   bool isCompare(QueryType Type = IgnoreBundle) const {
409     return hasProperty(MCID::Compare, Type);
410   }
411
412   /// isMoveImmediate - Return true if this instruction is a move immediate
413   /// (including conditional moves) instruction.
414   bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
415     return hasProperty(MCID::MoveImm, Type);
416   }
417
418   /// isBitcast - Return true if this instruction is a bitcast instruction.
419   ///
420   bool isBitcast(QueryType Type = IgnoreBundle) const {
421     return hasProperty(MCID::Bitcast, Type);
422   }
423
424   /// isSelect - Return true if this instruction is a select instruction.
425   ///
426   bool isSelect(QueryType Type = IgnoreBundle) const {
427     return hasProperty(MCID::Select, Type);
428   }
429
430   /// isNotDuplicable - Return true if this instruction cannot be safely
431   /// duplicated.  For example, if the instruction has a unique labels attached
432   /// to it, duplicating it would cause multiple definition errors.
433   bool isNotDuplicable(QueryType Type = AnyInBundle) const {
434     return hasProperty(MCID::NotDuplicable, Type);
435   }
436
437   /// hasDelaySlot - Returns true if the specified instruction has a delay slot
438   /// which must be filled by the code generator.
439   bool hasDelaySlot(QueryType Type = AnyInBundle) const {
440     return hasProperty(MCID::DelaySlot, Type);
441   }
442
443   /// canFoldAsLoad - Return true for instructions that can be folded as
444   /// memory operands in other instructions. The most common use for this
445   /// is instructions that are simple loads from memory that don't modify
446   /// the loaded value in any way, but it can also be used for instructions
447   /// that can be expressed as constant-pool loads, such as V_SETALLONES
448   /// on x86, to allow them to be folded when it is beneficial.
449   /// This should only be set on instructions that return a value in their
450   /// only virtual register definition.
451   bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
452     return hasProperty(MCID::FoldableAsLoad, Type);
453   }
454
455   //===--------------------------------------------------------------------===//
456   // Side Effect Analysis
457   //===--------------------------------------------------------------------===//
458
459   /// mayLoad - Return true if this instruction could possibly read memory.
460   /// Instructions with this flag set are not necessarily simple load
461   /// instructions, they may load a value and modify it, for example.
462   bool mayLoad(QueryType Type = AnyInBundle) const {
463     return hasProperty(MCID::MayLoad, Type);
464   }
465
466
467   /// mayStore - Return true if this instruction could possibly modify memory.
468   /// Instructions with this flag set are not necessarily simple store
469   /// instructions, they may store a modified value based on their operands, or
470   /// may not actually modify anything, for example.
471   bool mayStore(QueryType Type = AnyInBundle) const {
472     return hasProperty(MCID::MayStore, Type);
473   }
474
475   //===--------------------------------------------------------------------===//
476   // Flags that indicate whether an instruction can be modified by a method.
477   //===--------------------------------------------------------------------===//
478
479   /// isCommutable - Return true if this may be a 2- or 3-address
480   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
481   /// result if Y and Z are exchanged.  If this flag is set, then the
482   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
483   /// instruction.
484   ///
485   /// Note that this flag may be set on instructions that are only commutable
486   /// sometimes.  In these cases, the call to commuteInstruction will fail.
487   /// Also note that some instructions require non-trivial modification to
488   /// commute them.
489   bool isCommutable(QueryType Type = IgnoreBundle) const {
490     return hasProperty(MCID::Commutable, Type);
491   }
492
493   /// isConvertibleTo3Addr - Return true if this is a 2-address instruction
494   /// which can be changed into a 3-address instruction if needed.  Doing this
495   /// transformation can be profitable in the register allocator, because it
496   /// means that the instruction can use a 2-address form if possible, but
497   /// degrade into a less efficient form if the source and dest register cannot
498   /// be assigned to the same register.  For example, this allows the x86
499   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
500   /// is the same speed as the shift but has bigger code size.
501   ///
502   /// If this returns true, then the target must implement the
503   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
504   /// is allowed to fail if the transformation isn't valid for this specific
505   /// instruction (e.g. shl reg, 4 on x86).
506   ///
507   bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
508     return hasProperty(MCID::ConvertibleTo3Addr, Type);
509   }
510
511   /// usesCustomInsertionHook - Return true if this instruction requires
512   /// custom insertion support when the DAG scheduler is inserting it into a
513   /// machine basic block.  If this is true for the instruction, it basically
514   /// means that it is a pseudo instruction used at SelectionDAG time that is
515   /// expanded out into magic code by the target when MachineInstrs are formed.
516   ///
517   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
518   /// is used to insert this into the MachineBasicBlock.
519   bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
520     return hasProperty(MCID::UsesCustomInserter, Type);
521   }
522
523   /// hasPostISelHook - Return true if this instruction requires *adjustment*
524   /// after instruction selection by calling a target hook. For example, this
525   /// can be used to fill in ARM 's' optional operand depending on whether
526   /// the conditional flag register is used.
527   bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
528     return hasProperty(MCID::HasPostISelHook, Type);
529   }
530
531   /// isRematerializable - Returns true if this instruction is a candidate for
532   /// remat.  This flag is deprecated, please don't use it anymore.  If this
533   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
534   /// verify the instruction is really rematable.
535   bool isRematerializable(QueryType Type = AllInBundle) const {
536     // It's only possible to re-mat a bundle if all bundled instructions are
537     // re-materializable.
538     return hasProperty(MCID::Rematerializable, Type);
539   }
540
541   /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
542   /// less) than a move instruction. This is useful during certain types of
543   /// optimizations (e.g., remat during two-address conversion or machine licm)
544   /// where we would like to remat or hoist the instruction, but not if it costs
545   /// more than moving the instruction into the appropriate register. Note, we
546   /// are not marking copies from and to the same register class with this flag.
547   bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
548     // Only returns true for a bundle if all bundled instructions are cheap.
549     // FIXME: This probably requires a target hook.
550     return hasProperty(MCID::CheapAsAMove, Type);
551   }
552
553   /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
554   /// have special register allocation requirements that are not captured by the
555   /// operand register classes. e.g. ARM::STRD's two source registers must be an
556   /// even / odd pair, ARM::STM registers have to be in ascending order.
557   /// Post-register allocation passes should not attempt to change allocations
558   /// for sources of instructions with this flag.
559   bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
560     return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
561   }
562
563   /// hasExtraDefRegAllocReq - Returns true if this instruction def operands
564   /// have special register allocation requirements that are not captured by the
565   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
566   /// even / odd pair, ARM::LDM registers have to be in ascending order.
567   /// Post-register allocation passes should not attempt to change allocations
568   /// for definitions of instructions with this flag.
569   bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
570     return hasProperty(MCID::ExtraDefRegAllocReq, Type);
571   }
572
573
574   enum MICheckType {
575     CheckDefs,      // Check all operands for equality
576     CheckKillDead,  // Check all operands including kill / dead markers
577     IgnoreDefs,     // Ignore all definitions
578     IgnoreVRegDefs  // Ignore virtual register definitions
579   };
580
581   /// isIdenticalTo - Return true if this instruction is identical to (same
582   /// opcode and same operands as) the specified instruction.
583   bool isIdenticalTo(const MachineInstr *Other,
584                      MICheckType Check = CheckDefs) const;
585
586   /// removeFromParent - This method unlinks 'this' from the containing basic
587   /// block, and returns it, but does not delete it.
588   MachineInstr *removeFromParent();
589
590   /// eraseFromParent - This method unlinks 'this' from the containing basic
591   /// block and deletes it.
592   void eraseFromParent();
593
594   /// isLabel - Returns true if the MachineInstr represents a label.
595   ///
596   bool isLabel() const {
597     return getOpcode() == TargetOpcode::PROLOG_LABEL ||
598            getOpcode() == TargetOpcode::EH_LABEL ||
599            getOpcode() == TargetOpcode::GC_LABEL;
600   }
601
602   bool isPrologLabel() const {
603     return getOpcode() == TargetOpcode::PROLOG_LABEL;
604   }
605   bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
606   bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
607   bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
608
609   bool isPHI() const { return getOpcode() == TargetOpcode::PHI; }
610   bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
611   bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
612   bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
613   bool isStackAligningInlineAsm() const;
614   InlineAsm::AsmDialect getInlineAsmDialect() const;
615   bool isInsertSubreg() const {
616     return getOpcode() == TargetOpcode::INSERT_SUBREG;
617   }
618   bool isSubregToReg() const {
619     return getOpcode() == TargetOpcode::SUBREG_TO_REG;
620   }
621   bool isRegSequence() const {
622     return getOpcode() == TargetOpcode::REG_SEQUENCE;
623   }
624   bool isBundle() const {
625     return getOpcode() == TargetOpcode::BUNDLE;
626   }
627   bool isCopy() const {
628     return getOpcode() == TargetOpcode::COPY;
629   }
630   bool isFullCopy() const {
631     return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
632   }
633
634   /// isCopyLike - Return true if the instruction behaves like a copy.
635   /// This does not include native copy instructions.
636   bool isCopyLike() const {
637     return isCopy() || isSubregToReg();
638   }
639
640   /// isIdentityCopy - Return true is the instruction is an identity copy.
641   bool isIdentityCopy() const {
642     return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
643       getOperand(0).getSubReg() == getOperand(1).getSubReg();
644   }
645
646   /// isTransient - Return true if this is a transient instruction that is
647   /// either very likely to be eliminated during register allocation (such as
648   /// copy-like instructions), or if this instruction doesn't have an
649   /// execution-time cost.
650   bool isTransient() const {
651     switch(getOpcode()) {
652     default: return false;
653     // Copy-like instructions are usually eliminated during register allocation.
654     case TargetOpcode::PHI:
655     case TargetOpcode::COPY:
656     case TargetOpcode::INSERT_SUBREG:
657     case TargetOpcode::SUBREG_TO_REG:
658     case TargetOpcode::REG_SEQUENCE:
659     // Pseudo-instructions that don't produce any real output.
660     case TargetOpcode::IMPLICIT_DEF:
661     case TargetOpcode::KILL:
662     case TargetOpcode::PROLOG_LABEL:
663     case TargetOpcode::EH_LABEL:
664     case TargetOpcode::GC_LABEL:
665     case TargetOpcode::DBG_VALUE:
666       return true;
667     }
668   }
669
670   /// getBundleSize - Return the number of instructions inside the MI bundle.
671   unsigned getBundleSize() const;
672
673   /// readsRegister - Return true if the MachineInstr reads the specified
674   /// register. If TargetRegisterInfo is passed, then it also checks if there
675   /// is a read of a super-register.
676   /// This does not count partial redefines of virtual registers as reads:
677   ///   %reg1024:6 = OP.
678   bool readsRegister(unsigned Reg, const TargetRegisterInfo *TRI = NULL) const {
679     return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
680   }
681
682   /// readsVirtualRegister - Return true if the MachineInstr reads the specified
683   /// virtual register. Take into account that a partial define is a
684   /// read-modify-write operation.
685   bool readsVirtualRegister(unsigned Reg) const {
686     return readsWritesVirtualRegister(Reg).first;
687   }
688
689   /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
690   /// indicating if this instruction reads or writes Reg. This also considers
691   /// partial defines.
692   /// If Ops is not null, all operand indices for Reg are added.
693   std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
694                                       SmallVectorImpl<unsigned> *Ops = 0) const;
695
696   /// killsRegister - Return true if the MachineInstr kills the specified
697   /// register. If TargetRegisterInfo is passed, then it also checks if there is
698   /// a kill of a super-register.
699   bool killsRegister(unsigned Reg, const TargetRegisterInfo *TRI = NULL) const {
700     return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
701   }
702
703   /// definesRegister - Return true if the MachineInstr fully defines the
704   /// specified register. If TargetRegisterInfo is passed, then it also checks
705   /// if there is a def of a super-register.
706   /// NOTE: It's ignoring subreg indices on virtual registers.
707   bool definesRegister(unsigned Reg, const TargetRegisterInfo *TRI=NULL) const {
708     return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
709   }
710
711   /// modifiesRegister - Return true if the MachineInstr modifies (fully define
712   /// or partially define) the specified register.
713   /// NOTE: It's ignoring subreg indices on virtual registers.
714   bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
715     return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
716   }
717
718   /// registerDefIsDead - Returns true if the register is dead in this machine
719   /// instruction. If TargetRegisterInfo is passed, then it also checks
720   /// if there is a dead def of a super-register.
721   bool registerDefIsDead(unsigned Reg,
722                          const TargetRegisterInfo *TRI = NULL) const {
723     return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
724   }
725
726   /// findRegisterUseOperandIdx() - Returns the operand index that is a use of
727   /// the specific register or -1 if it is not found. It further tightens
728   /// the search criteria to a use that kills the register if isKill is true.
729   int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
730                                 const TargetRegisterInfo *TRI = NULL) const;
731
732   /// findRegisterUseOperand - Wrapper for findRegisterUseOperandIdx, it returns
733   /// a pointer to the MachineOperand rather than an index.
734   MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
735                                          const TargetRegisterInfo *TRI = NULL) {
736     int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
737     return (Idx == -1) ? NULL : &getOperand(Idx);
738   }
739
740   /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
741   /// the specified register or -1 if it is not found. If isDead is true, defs
742   /// that are not dead are skipped. If Overlap is true, then it also looks for
743   /// defs that merely overlap the specified register. If TargetRegisterInfo is
744   /// non-null, then it also checks if there is a def of a super-register.
745   /// This may also return a register mask operand when Overlap is true.
746   int findRegisterDefOperandIdx(unsigned Reg,
747                                 bool isDead = false, bool Overlap = false,
748                                 const TargetRegisterInfo *TRI = NULL) const;
749
750   /// findRegisterDefOperand - Wrapper for findRegisterDefOperandIdx, it returns
751   /// a pointer to the MachineOperand rather than an index.
752   MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
753                                          const TargetRegisterInfo *TRI = NULL) {
754     int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
755     return (Idx == -1) ? NULL : &getOperand(Idx);
756   }
757
758   /// findFirstPredOperandIdx() - Find the index of the first operand in the
759   /// operand list that is used to represent the predicate. It returns -1 if
760   /// none is found.
761   int findFirstPredOperandIdx() const;
762
763   /// findInlineAsmFlagIdx() - Find the index of the flag word operand that
764   /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
765   /// getOperand(OpIdx) does not belong to an inline asm operand group.
766   ///
767   /// If GroupNo is not NULL, it will receive the number of the operand group
768   /// containing OpIdx.
769   ///
770   /// The flag operand is an immediate that can be decoded with methods like
771   /// InlineAsm::hasRegClassConstraint().
772   ///
773   int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = 0) const;
774
775   /// getRegClassConstraint - Compute the static register class constraint for
776   /// operand OpIdx.  For normal instructions, this is derived from the
777   /// MCInstrDesc.  For inline assembly it is derived from the flag words.
778   ///
779   /// Returns NULL if the static register classs constraint cannot be
780   /// determined.
781   ///
782   const TargetRegisterClass*
783   getRegClassConstraint(unsigned OpIdx,
784                         const TargetInstrInfo *TII,
785                         const TargetRegisterInfo *TRI) const;
786
787   /// tieOperands - Add a tie between the register operands at DefIdx and
788   /// UseIdx. The tie will cause the register allocator to ensure that the two
789   /// operands are assigned the same physical register.
790   ///
791   /// Tied operands are managed automatically for explicit operands in the
792   /// MCInstrDesc. This method is for exceptional cases like inline asm.
793   void tieOperands(unsigned DefIdx, unsigned UseIdx);
794
795   /// findTiedOperandIdx - Given the index of a tied register operand, find the
796   /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
797   /// index of the tied operand which must exist.
798   unsigned findTiedOperandIdx(unsigned OpIdx) const;
799
800   /// isRegTiedToUseOperand - Given the index of a register def operand,
801   /// check if the register def is tied to a source operand, due to either
802   /// two-address elimination or inline assembly constraints. Returns the
803   /// first tied use operand index by reference if UseOpIdx is not null.
804   bool isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx = 0) const {
805     const MachineOperand &MO = getOperand(DefOpIdx);
806     if (!MO.isReg() || !MO.isDef() || !MO.isTied())
807       return false;
808     if (UseOpIdx)
809       *UseOpIdx = findTiedOperandIdx(DefOpIdx);
810     return true;
811   }
812
813   /// isRegTiedToDefOperand - Return true if the use operand of the specified
814   /// index is tied to an def operand. It also returns the def operand index by
815   /// reference if DefOpIdx is not null.
816   bool isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx = 0) const {
817     const MachineOperand &MO = getOperand(UseOpIdx);
818     if (!MO.isReg() || !MO.isUse() || !MO.isTied())
819       return false;
820     if (DefOpIdx)
821       *DefOpIdx = findTiedOperandIdx(UseOpIdx);
822     return true;
823   }
824
825   /// clearKillInfo - Clears kill flags on all operands.
826   ///
827   void clearKillInfo();
828
829   /// copyKillDeadInfo - Copies kill / dead operand properties from MI.
830   ///
831   void copyKillDeadInfo(const MachineInstr *MI);
832
833   /// copyPredicates - Copies predicate operand(s) from MI.
834   void copyPredicates(const MachineInstr *MI);
835
836   /// substituteRegister - Replace all occurrences of FromReg with ToReg:SubIdx,
837   /// properly composing subreg indices where necessary.
838   void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
839                           const TargetRegisterInfo &RegInfo);
840
841   /// addRegisterKilled - We have determined MI kills a register. Look for the
842   /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
843   /// add a implicit operand if it's not found. Returns true if the operand
844   /// exists / is added.
845   bool addRegisterKilled(unsigned IncomingReg,
846                          const TargetRegisterInfo *RegInfo,
847                          bool AddIfNotFound = false);
848
849   /// clearRegisterKills - Clear all kill flags affecting Reg.  If RegInfo is
850   /// provided, this includes super-register kills.
851   void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
852
853   /// addRegisterDead - We have determined MI defined a register without a use.
854   /// Look for the operand that defines it and mark it as IsDead. If
855   /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
856   /// true if the operand exists / is added.
857   bool addRegisterDead(unsigned IncomingReg, const TargetRegisterInfo *RegInfo,
858                        bool AddIfNotFound = false);
859
860   /// addRegisterDefined - We have determined MI defines a register. Make sure
861   /// there is an operand defining Reg.
862   void addRegisterDefined(unsigned IncomingReg,
863                           const TargetRegisterInfo *RegInfo = 0);
864
865   /// setPhysRegsDeadExcept - Mark every physreg used by this instruction as
866   /// dead except those in the UsedRegs list.
867   ///
868   /// On instructions with register mask operands, also add implicit-def
869   /// operands for all registers in UsedRegs.
870   void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
871                              const TargetRegisterInfo &TRI);
872
873   /// isSafeToMove - Return true if it is safe to move this instruction. If
874   /// SawStore is set to true, it means that there is a store (or call) between
875   /// the instruction's location and its intended destination.
876   bool isSafeToMove(const TargetInstrInfo *TII, AliasAnalysis *AA,
877                     bool &SawStore) const;
878
879   /// isSafeToReMat - Return true if it's safe to rematerialize the specified
880   /// instruction which defined the specified register instead of copying it.
881   bool isSafeToReMat(const TargetInstrInfo *TII, AliasAnalysis *AA,
882                      unsigned DstReg) const;
883
884   /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
885   /// or volatile memory reference, or if the information describing the memory
886   /// reference is not available. Return false if it is known to have no
887   /// ordered or volatile memory references.
888   bool hasOrderedMemoryRef() const;
889
890   /// isInvariantLoad - Return true if this instruction is loading from a
891   /// location whose value is invariant across the function.  For example,
892   /// loading a value from the constant pool or from the argument area of
893   /// a function if it does not change.  This should only return true of *all*
894   /// loads the instruction does are invariant (if it does multiple loads).
895   bool isInvariantLoad(AliasAnalysis *AA) const;
896
897   /// isConstantValuePHI - If the specified instruction is a PHI that always
898   /// merges together the same virtual register, return the register, otherwise
899   /// return 0.
900   unsigned isConstantValuePHI() const;
901
902   /// hasUnmodeledSideEffects - Return true if this instruction has side
903   /// effects that are not modeled by mayLoad / mayStore, etc.
904   /// For all instructions, the property is encoded in MCInstrDesc::Flags
905   /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
906   /// INLINEASM instruction, in which case the side effect property is encoded
907   /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
908   ///
909   bool hasUnmodeledSideEffects() const;
910
911   /// allDefsAreDead - Return true if all the defs of this instruction are dead.
912   ///
913   bool allDefsAreDead() const;
914
915   /// copyImplicitOps - Copy implicit register operands from specified
916   /// instruction to this instruction.
917   void copyImplicitOps(const MachineInstr *MI);
918
919   //
920   // Debugging support
921   //
922   void print(raw_ostream &OS, const TargetMachine *TM = 0) const;
923   void dump() const;
924
925   //===--------------------------------------------------------------------===//
926   // Accessors used to build up machine instructions.
927
928   /// addOperand - Add the specified operand to the instruction.  If it is an
929   /// implicit operand, it is added to the end of the operand list.  If it is
930   /// an explicit operand it is added at the end of the explicit operand list
931   /// (before the first implicit operand).
932   void addOperand(const MachineOperand &Op);
933
934   /// setDesc - Replace the instruction descriptor (thus opcode) of
935   /// the current instruction with a new one.
936   ///
937   void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
938
939   /// setDebugLoc - Replace current source information with new such.
940   /// Avoid using this, the constructor argument is preferable.
941   ///
942   void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
943
944   /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
945   /// fewer operand than it started with.
946   ///
947   void RemoveOperand(unsigned i);
948
949   /// addMemOperand - Add a MachineMemOperand to the machine instruction.
950   /// This function should be used only occasionally. The setMemRefs function
951   /// is the primary method for setting up a MachineInstr's MemRefs list.
952   void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
953
954   /// setMemRefs - Assign this MachineInstr's memory reference descriptor
955   /// list. This does not transfer ownership.
956   void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
957     MemRefs = NewMemRefs;
958     NumMemRefs = NewMemRefsEnd - NewMemRefs;
959   }
960
961 private:
962   /// getRegInfo - If this instruction is embedded into a MachineFunction,
963   /// return the MachineRegisterInfo object for the current function, otherwise
964   /// return null.
965   MachineRegisterInfo *getRegInfo();
966
967   /// untieRegOperand - Break any tie involving OpIdx.
968   void untieRegOperand(unsigned OpIdx) {
969     MachineOperand &MO = getOperand(OpIdx);
970     if (MO.isReg() && MO.isTied()) {
971       getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
972       MO.TiedTo = 0;
973     }
974   }
975
976   /// addImplicitDefUseOperands - Add all implicit def and use operands to
977   /// this instruction.
978   void addImplicitDefUseOperands();
979
980   /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
981   /// this instruction from their respective use lists.  This requires that the
982   /// operands already be on their use lists.
983   void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
984
985   /// AddRegOperandsToUseLists - Add all of the register operands in
986   /// this instruction from their respective use lists.  This requires that the
987   /// operands not be on their use lists yet.
988   void AddRegOperandsToUseLists(MachineRegisterInfo&);
989
990   /// hasPropertyInBundle - Slow path for hasProperty when we're dealing with a
991   /// bundle.
992   bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
993 };
994
995 /// MachineInstrExpressionTrait - Special DenseMapInfo traits to compare
996 /// MachineInstr* by *value* of the instruction rather than by pointer value.
997 /// The hashing and equality testing functions ignore definitions so this is
998 /// useful for CSE, etc.
999 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
1000   static inline MachineInstr *getEmptyKey() {
1001     return 0;
1002   }
1003
1004   static inline MachineInstr *getTombstoneKey() {
1005     return reinterpret_cast<MachineInstr*>(-1);
1006   }
1007
1008   static unsigned getHashValue(const MachineInstr* const &MI);
1009
1010   static bool isEqual(const MachineInstr* const &LHS,
1011                       const MachineInstr* const &RHS) {
1012     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
1013         LHS == getEmptyKey() || LHS == getTombstoneKey())
1014       return LHS == RHS;
1015     return LHS->isIdenticalTo(RHS, MachineInstr::IgnoreVRegDefs);
1016   }
1017 };
1018
1019 //===----------------------------------------------------------------------===//
1020 // Debugging Support
1021
1022 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
1023   MI.print(OS);
1024   return OS;
1025 }
1026
1027 } // End llvm namespace
1028
1029 #endif