Recommit r231168: unique_ptrify LiveRange::segmentSet
[oota-llvm.git] / include / llvm / CodeGen / LiveInterval.h
1 //===-- llvm/CodeGen/LiveInterval.h - Interval representation ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveRange and LiveInterval classes.  Given some
11 // numbering of each the machine instructions an interval [i, j) is said to be a
12 // live range for register v if there is no instruction with number j' >= j
13 // such that v is live at j' and there is no instruction with number i' < i such
14 // that v is live at i'. In this implementation ranges can have holes,
15 // i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
16 // individual segment is represented as an instance of LiveRange::Segment,
17 // and the whole range is represented as an instance of LiveRange.
18 //
19 //===----------------------------------------------------------------------===//
20
21 #ifndef LLVM_CODEGEN_LIVEINTERVAL_H
22 #define LLVM_CODEGEN_LIVEINTERVAL_H
23
24 #include "llvm/ADT/IntEqClasses.h"
25 #include "llvm/CodeGen/SlotIndexes.h"
26 #include "llvm/Support/AlignOf.h"
27 #include "llvm/Support/Allocator.h"
28 #include <cassert>
29 #include <climits>
30 #include <set>
31
32 namespace llvm {
33   class CoalescerPair;
34   class LiveIntervals;
35   class MachineInstr;
36   class MachineRegisterInfo;
37   class TargetRegisterInfo;
38   class raw_ostream;
39   template <typename T, unsigned Small> class SmallPtrSet;
40
41   /// VNInfo - Value Number Information.
42   /// This class holds information about a machine level values, including
43   /// definition and use points.
44   ///
45   class VNInfo {
46   public:
47     typedef BumpPtrAllocator Allocator;
48
49     /// The ID number of this value.
50     unsigned id;
51
52     /// The index of the defining instruction.
53     SlotIndex def;
54
55     /// VNInfo constructor.
56     VNInfo(unsigned i, SlotIndex d)
57       : id(i), def(d)
58     { }
59
60     /// VNInfo construtor, copies values from orig, except for the value number.
61     VNInfo(unsigned i, const VNInfo &orig)
62       : id(i), def(orig.def)
63     { }
64
65     /// Copy from the parameter into this VNInfo.
66     void copyFrom(VNInfo &src) {
67       def = src.def;
68     }
69
70     /// Returns true if this value is defined by a PHI instruction (or was,
71     /// PHI instructions may have been eliminated).
72     /// PHI-defs begin at a block boundary, all other defs begin at register or
73     /// EC slots.
74     bool isPHIDef() const { return def.isBlock(); }
75
76     /// Returns true if this value is unused.
77     bool isUnused() const { return !def.isValid(); }
78
79     /// Mark this value as unused.
80     void markUnused() { def = SlotIndex(); }
81   };
82
83   /// Result of a LiveRange query. This class hides the implementation details
84   /// of live ranges, and it should be used as the primary interface for
85   /// examining live ranges around instructions.
86   class LiveQueryResult {
87     VNInfo *const EarlyVal;
88     VNInfo *const LateVal;
89     const SlotIndex EndPoint;
90     const bool Kill;
91
92   public:
93     LiveQueryResult(VNInfo *EarlyVal, VNInfo *LateVal, SlotIndex EndPoint,
94                     bool Kill)
95       : EarlyVal(EarlyVal), LateVal(LateVal), EndPoint(EndPoint), Kill(Kill)
96     {}
97
98     /// Return the value that is live-in to the instruction. This is the value
99     /// that will be read by the instruction's use operands. Return NULL if no
100     /// value is live-in.
101     VNInfo *valueIn() const {
102       return EarlyVal;
103     }
104
105     /// Return true if the live-in value is killed by this instruction. This
106     /// means that either the live range ends at the instruction, or it changes
107     /// value.
108     bool isKill() const {
109       return Kill;
110     }
111
112     /// Return true if this instruction has a dead def.
113     bool isDeadDef() const {
114       return EndPoint.isDead();
115     }
116
117     /// Return the value leaving the instruction, if any. This can be a
118     /// live-through value, or a live def. A dead def returns NULL.
119     VNInfo *valueOut() const {
120       return isDeadDef() ? nullptr : LateVal;
121     }
122
123     /// Returns the value alive at the end of the instruction, if any. This can
124     /// be a live-through value, a live def or a dead def.
125     VNInfo *valueOutOrDead() const {
126       return LateVal;
127     }
128
129     /// Return the value defined by this instruction, if any. This includes
130     /// dead defs, it is the value created by the instruction's def operands.
131     VNInfo *valueDefined() const {
132       return EarlyVal == LateVal ? nullptr : LateVal;
133     }
134
135     /// Return the end point of the last live range segment to interact with
136     /// the instruction, if any.
137     ///
138     /// The end point is an invalid SlotIndex only if the live range doesn't
139     /// intersect the instruction at all.
140     ///
141     /// The end point may be at or past the end of the instruction's basic
142     /// block. That means the value was live out of the block.
143     SlotIndex endPoint() const {
144       return EndPoint;
145     }
146   };
147
148   /// This class represents the liveness of a register, stack slot, etc.
149   /// It manages an ordered list of Segment objects.
150   /// The Segments are organized in a static single assignment form: At places
151   /// where a new value is defined or different values reach a CFG join a new
152   /// segment with a new value number is used.
153   class LiveRange {
154   public:
155
156     /// This represents a simple continuous liveness interval for a value.
157     /// The start point is inclusive, the end point exclusive. These intervals
158     /// are rendered as [start,end).
159     struct Segment {
160       SlotIndex start;  // Start point of the interval (inclusive)
161       SlotIndex end;    // End point of the interval (exclusive)
162       VNInfo *valno;    // identifier for the value contained in this segment.
163
164       Segment() : valno(nullptr) {}
165
166       Segment(SlotIndex S, SlotIndex E, VNInfo *V)
167         : start(S), end(E), valno(V) {
168         assert(S < E && "Cannot create empty or backwards segment");
169       }
170
171       /// Return true if the index is covered by this segment.
172       bool contains(SlotIndex I) const {
173         return start <= I && I < end;
174       }
175
176       /// Return true if the given interval, [S, E), is covered by this segment.
177       bool containsInterval(SlotIndex S, SlotIndex E) const {
178         assert((S < E) && "Backwards interval?");
179         return (start <= S && S < end) && (start < E && E <= end);
180       }
181
182       bool operator<(const Segment &Other) const {
183         return std::tie(start, end) < std::tie(Other.start, Other.end);
184       }
185       bool operator==(const Segment &Other) const {
186         return start == Other.start && end == Other.end;
187       }
188
189       void dump() const;
190     };
191
192     typedef SmallVector<Segment,4> Segments;
193     typedef SmallVector<VNInfo*,4> VNInfoList;
194
195     Segments segments;   // the liveness segments
196     VNInfoList valnos;   // value#'s
197
198     // The segment set is used temporarily to accelerate initial computation
199     // of live ranges of physical registers in computeRegUnitRange.
200     // After that the set is flushed to the segment vector and deleted.
201     typedef std::set<Segment> SegmentSet;
202     std::unique_ptr<SegmentSet> segmentSet;
203
204     typedef Segments::iterator iterator;
205     iterator begin() { return segments.begin(); }
206     iterator end()   { return segments.end(); }
207
208     typedef Segments::const_iterator const_iterator;
209     const_iterator begin() const { return segments.begin(); }
210     const_iterator end() const  { return segments.end(); }
211
212     typedef VNInfoList::iterator vni_iterator;
213     vni_iterator vni_begin() { return valnos.begin(); }
214     vni_iterator vni_end()   { return valnos.end(); }
215
216     typedef VNInfoList::const_iterator const_vni_iterator;
217     const_vni_iterator vni_begin() const { return valnos.begin(); }
218     const_vni_iterator vni_end() const   { return valnos.end(); }
219
220     /// Constructs a new LiveRange object.
221     LiveRange(bool UseSegmentSet = false)
222         : segmentSet(UseSegmentSet ? llvm::make_unique<SegmentSet>()
223                                    : nullptr) {}
224
225     /// Constructs a new LiveRange object by copying segments and valnos from
226     /// another LiveRange.
227     LiveRange(const LiveRange &Other, BumpPtrAllocator &Allocator) {
228       assert(Other.segmentSet == nullptr &&
229              "Copying of LiveRanges with active SegmentSets is not supported");
230
231       // Duplicate valnos.
232       for (const VNInfo *VNI : Other.valnos) {
233         createValueCopy(VNI, Allocator);
234       }
235       // Now we can copy segments and remap their valnos.
236       for (const Segment &S : Other.segments) {
237         segments.push_back(Segment(S.start, S.end, valnos[S.valno->id]));
238       }
239     }
240
241     /// advanceTo - Advance the specified iterator to point to the Segment
242     /// containing the specified position, or end() if the position is past the
243     /// end of the range.  If no Segment contains this position, but the
244     /// position is in a hole, this method returns an iterator pointing to the
245     /// Segment immediately after the hole.
246     iterator advanceTo(iterator I, SlotIndex Pos) {
247       assert(I != end());
248       if (Pos >= endIndex())
249         return end();
250       while (I->end <= Pos) ++I;
251       return I;
252     }
253
254     const_iterator advanceTo(const_iterator I, SlotIndex Pos) const {
255       assert(I != end());
256       if (Pos >= endIndex())
257         return end();
258       while (I->end <= Pos) ++I;
259       return I;
260     }
261
262     /// find - Return an iterator pointing to the first segment that ends after
263     /// Pos, or end(). This is the same as advanceTo(begin(), Pos), but faster
264     /// when searching large ranges.
265     ///
266     /// If Pos is contained in a Segment, that segment is returned.
267     /// If Pos is in a hole, the following Segment is returned.
268     /// If Pos is beyond endIndex, end() is returned.
269     iterator find(SlotIndex Pos);
270
271     const_iterator find(SlotIndex Pos) const {
272       return const_cast<LiveRange*>(this)->find(Pos);
273     }
274
275     void clear() {
276       valnos.clear();
277       segments.clear();
278     }
279
280     size_t size() const {
281       return segments.size();
282     }
283
284     bool hasAtLeastOneValue() const { return !valnos.empty(); }
285
286     bool containsOneValue() const { return valnos.size() == 1; }
287
288     unsigned getNumValNums() const { return (unsigned)valnos.size(); }
289
290     /// getValNumInfo - Returns pointer to the specified val#.
291     ///
292     inline VNInfo *getValNumInfo(unsigned ValNo) {
293       return valnos[ValNo];
294     }
295     inline const VNInfo *getValNumInfo(unsigned ValNo) const {
296       return valnos[ValNo];
297     }
298
299     /// containsValue - Returns true if VNI belongs to this range.
300     bool containsValue(const VNInfo *VNI) const {
301       return VNI && VNI->id < getNumValNums() && VNI == getValNumInfo(VNI->id);
302     }
303
304     /// getNextValue - Create a new value number and return it.  MIIdx specifies
305     /// the instruction that defines the value number.
306     VNInfo *getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator) {
307       VNInfo *VNI =
308         new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), def);
309       valnos.push_back(VNI);
310       return VNI;
311     }
312
313     /// createDeadDef - Make sure the range has a value defined at Def.
314     /// If one already exists, return it. Otherwise allocate a new value and
315     /// add liveness for a dead def.
316     VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator);
317
318     /// Create a copy of the given value. The new value will be identical except
319     /// for the Value number.
320     VNInfo *createValueCopy(const VNInfo *orig,
321                             VNInfo::Allocator &VNInfoAllocator) {
322       VNInfo *VNI =
323         new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), *orig);
324       valnos.push_back(VNI);
325       return VNI;
326     }
327
328     /// RenumberValues - Renumber all values in order of appearance and remove
329     /// unused values.
330     void RenumberValues();
331
332     /// MergeValueNumberInto - This method is called when two value numbers
333     /// are found to be equivalent.  This eliminates V1, replacing all
334     /// segments with the V1 value number with the V2 value number.  This can
335     /// cause merging of V1/V2 values numbers and compaction of the value space.
336     VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2);
337
338     /// Merge all of the live segments of a specific val# in RHS into this live
339     /// range as the specified value number. The segments in RHS are allowed
340     /// to overlap with segments in the current range, it will replace the
341     /// value numbers of the overlaped live segments with the specified value
342     /// number.
343     void MergeSegmentsInAsValue(const LiveRange &RHS, VNInfo *LHSValNo);
344
345     /// MergeValueInAsValue - Merge all of the segments of a specific val#
346     /// in RHS into this live range as the specified value number.
347     /// The segments in RHS are allowed to overlap with segments in the
348     /// current range, but only if the overlapping segments have the
349     /// specified value number.
350     void MergeValueInAsValue(const LiveRange &RHS,
351                              const VNInfo *RHSValNo, VNInfo *LHSValNo);
352
353     bool empty() const { return segments.empty(); }
354
355     /// beginIndex - Return the lowest numbered slot covered.
356     SlotIndex beginIndex() const {
357       assert(!empty() && "Call to beginIndex() on empty range.");
358       return segments.front().start;
359     }
360
361     /// endNumber - return the maximum point of the range of the whole,
362     /// exclusive.
363     SlotIndex endIndex() const {
364       assert(!empty() && "Call to endIndex() on empty range.");
365       return segments.back().end;
366     }
367
368     bool expiredAt(SlotIndex index) const {
369       return index >= endIndex();
370     }
371
372     bool liveAt(SlotIndex index) const {
373       const_iterator r = find(index);
374       return r != end() && r->start <= index;
375     }
376
377     /// Return the segment that contains the specified index, or null if there
378     /// is none.
379     const Segment *getSegmentContaining(SlotIndex Idx) const {
380       const_iterator I = FindSegmentContaining(Idx);
381       return I == end() ? nullptr : &*I;
382     }
383
384     /// Return the live segment that contains the specified index, or null if
385     /// there is none.
386     Segment *getSegmentContaining(SlotIndex Idx) {
387       iterator I = FindSegmentContaining(Idx);
388       return I == end() ? nullptr : &*I;
389     }
390
391     /// getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
392     VNInfo *getVNInfoAt(SlotIndex Idx) const {
393       const_iterator I = FindSegmentContaining(Idx);
394       return I == end() ? nullptr : I->valno;
395     }
396
397     /// getVNInfoBefore - Return the VNInfo that is live up to but not
398     /// necessarilly including Idx, or NULL. Use this to find the reaching def
399     /// used by an instruction at this SlotIndex position.
400     VNInfo *getVNInfoBefore(SlotIndex Idx) const {
401       const_iterator I = FindSegmentContaining(Idx.getPrevSlot());
402       return I == end() ? nullptr : I->valno;
403     }
404
405     /// Return an iterator to the segment that contains the specified index, or
406     /// end() if there is none.
407     iterator FindSegmentContaining(SlotIndex Idx) {
408       iterator I = find(Idx);
409       return I != end() && I->start <= Idx ? I : end();
410     }
411
412     const_iterator FindSegmentContaining(SlotIndex Idx) const {
413       const_iterator I = find(Idx);
414       return I != end() && I->start <= Idx ? I : end();
415     }
416
417     /// overlaps - Return true if the intersection of the two live ranges is
418     /// not empty.
419     bool overlaps(const LiveRange &other) const {
420       if (other.empty())
421         return false;
422       return overlapsFrom(other, other.begin());
423     }
424
425     /// overlaps - Return true if the two ranges have overlapping segments
426     /// that are not coalescable according to CP.
427     ///
428     /// Overlapping segments where one range is defined by a coalescable
429     /// copy are allowed.
430     bool overlaps(const LiveRange &Other, const CoalescerPair &CP,
431                   const SlotIndexes&) const;
432
433     /// overlaps - Return true if the live range overlaps an interval specified
434     /// by [Start, End).
435     bool overlaps(SlotIndex Start, SlotIndex End) const;
436
437     /// overlapsFrom - Return true if the intersection of the two live ranges
438     /// is not empty.  The specified iterator is a hint that we can begin
439     /// scanning the Other range starting at I.
440     bool overlapsFrom(const LiveRange &Other, const_iterator I) const;
441
442     /// Returns true if all segments of the @p Other live range are completely
443     /// covered by this live range.
444     /// Adjacent live ranges do not affect the covering:the liverange
445     /// [1,5](5,10] covers (3,7].
446     bool covers(const LiveRange &Other) const;
447
448     /// Add the specified Segment to this range, merging segments as
449     /// appropriate.  This returns an iterator to the inserted segment (which
450     /// may have grown since it was inserted).
451     iterator addSegment(Segment S);
452
453     /// If this range is live before @p Use in the basic block that starts at
454     /// @p StartIdx, extend it to be live up to @p Use, and return the value. If
455     /// there is no segment before @p Use, return nullptr.
456     VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use);
457
458     /// join - Join two live ranges (this, and other) together.  This applies
459     /// mappings to the value numbers in the LHS/RHS ranges as specified.  If
460     /// the ranges are not joinable, this aborts.
461     void join(LiveRange &Other,
462               const int *ValNoAssignments,
463               const int *RHSValNoAssignments,
464               SmallVectorImpl<VNInfo *> &NewVNInfo);
465
466     /// True iff this segment is a single segment that lies between the
467     /// specified boundaries, exclusively. Vregs live across a backedge are not
468     /// considered local. The boundaries are expected to lie within an extended
469     /// basic block, so vregs that are not live out should contain no holes.
470     bool isLocal(SlotIndex Start, SlotIndex End) const {
471       return beginIndex() > Start.getBaseIndex() &&
472         endIndex() < End.getBoundaryIndex();
473     }
474
475     /// Remove the specified segment from this range.  Note that the segment
476     /// must be a single Segment in its entirety.
477     void removeSegment(SlotIndex Start, SlotIndex End,
478                        bool RemoveDeadValNo = false);
479
480     void removeSegment(Segment S, bool RemoveDeadValNo = false) {
481       removeSegment(S.start, S.end, RemoveDeadValNo);
482     }
483
484     /// Remove segment pointed to by iterator @p I from this range.  This does
485     /// not remove dead value numbers.
486     iterator removeSegment(iterator I) {
487       return segments.erase(I);
488     }
489
490     /// Query Liveness at Idx.
491     /// The sub-instruction slot of Idx doesn't matter, only the instruction
492     /// it refers to is considered.
493     LiveQueryResult Query(SlotIndex Idx) const {
494       // Find the segment that enters the instruction.
495       const_iterator I = find(Idx.getBaseIndex());
496       const_iterator E = end();
497       if (I == E)
498         return LiveQueryResult(nullptr, nullptr, SlotIndex(), false);
499
500       // Is this an instruction live-in segment?
501       // If Idx is the start index of a basic block, include live-in segments
502       // that start at Idx.getBaseIndex().
503       VNInfo *EarlyVal = nullptr;
504       VNInfo *LateVal  = nullptr;
505       SlotIndex EndPoint;
506       bool Kill = false;
507       if (I->start <= Idx.getBaseIndex()) {
508         EarlyVal = I->valno;
509         EndPoint = I->end;
510         // Move to the potentially live-out segment.
511         if (SlotIndex::isSameInstr(Idx, I->end)) {
512           Kill = true;
513           if (++I == E)
514             return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
515         }
516         // Special case: A PHIDef value can have its def in the middle of a
517         // segment if the value happens to be live out of the layout
518         // predecessor.
519         // Such a value is not live-in.
520         if (EarlyVal->def == Idx.getBaseIndex())
521           EarlyVal = nullptr;
522       }
523       // I now points to the segment that may be live-through, or defined by
524       // this instr. Ignore segments starting after the current instr.
525       if (!SlotIndex::isEarlierInstr(Idx, I->start)) {
526         LateVal = I->valno;
527         EndPoint = I->end;
528       }
529       return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
530     }
531
532     /// removeValNo - Remove all the segments defined by the specified value#.
533     /// Also remove the value# from value# list.
534     void removeValNo(VNInfo *ValNo);
535
536     /// Returns true if the live range is zero length, i.e. no live segments
537     /// span instructions. It doesn't pay to spill such a range.
538     bool isZeroLength(SlotIndexes *Indexes) const {
539       for (const Segment &S : segments)
540         if (Indexes->getNextNonNullIndex(S.start).getBaseIndex() <
541             S.end.getBaseIndex())
542           return false;
543       return true;
544     }
545
546     bool operator<(const LiveRange& other) const {
547       const SlotIndex &thisIndex = beginIndex();
548       const SlotIndex &otherIndex = other.beginIndex();
549       return thisIndex < otherIndex;
550     }
551
552     /// Flush segment set into the regular segment vector.
553     /// The method is to be called after the live range
554     /// has been created, if use of the segment set was
555     /// activated in the constructor of the live range.
556     void flushSegmentSet();
557
558     void print(raw_ostream &OS) const;
559     void dump() const;
560
561     /// \brief Walk the range and assert if any invariants fail to hold.
562     ///
563     /// Note that this is a no-op when asserts are disabled.
564 #ifdef NDEBUG
565     void verify() const {}
566 #else
567     void verify() const;
568 #endif
569
570   protected:
571     /// Append a segment to the list of segments.
572     void append(const LiveRange::Segment S);
573
574   private:
575     friend class LiveRangeUpdater;
576     void addSegmentToSet(Segment S);
577     void markValNoForDeletion(VNInfo *V);
578
579   };
580
581   inline raw_ostream &operator<<(raw_ostream &OS, const LiveRange &LR) {
582     LR.print(OS);
583     return OS;
584   }
585
586   /// LiveInterval - This class represents the liveness of a register,
587   /// or stack slot.
588   class LiveInterval : public LiveRange {
589   public:
590     typedef LiveRange super;
591
592     /// A live range for subregisters. The LaneMask specifies which parts of the
593     /// super register are covered by the interval.
594     /// (@sa TargetRegisterInfo::getSubRegIndexLaneMask()).
595     class SubRange : public LiveRange {
596     public:
597       SubRange *Next;
598       unsigned LaneMask;
599
600       /// Constructs a new SubRange object.
601       SubRange(unsigned LaneMask)
602         : Next(nullptr), LaneMask(LaneMask) {
603       }
604
605       /// Constructs a new SubRange object by copying liveness from @p Other.
606       SubRange(unsigned LaneMask, const LiveRange &Other,
607                BumpPtrAllocator &Allocator)
608         : LiveRange(Other, Allocator), Next(nullptr), LaneMask(LaneMask) {
609       }
610     };
611
612   private:
613     SubRange *SubRanges; ///< Single linked list of subregister live ranges.
614
615   public:
616     const unsigned reg;  // the register or stack slot of this interval.
617     float weight;        // weight of this interval
618
619     LiveInterval(unsigned Reg, float Weight)
620       : SubRanges(nullptr), reg(Reg), weight(Weight) {}
621
622     ~LiveInterval() {
623       clearSubRanges();
624     }
625
626     template<typename T>
627     class SingleLinkedListIterator {
628       T *P;
629     public:
630       SingleLinkedListIterator<T>(T *P) : P(P) {}
631       SingleLinkedListIterator<T> &operator++() {
632         P = P->Next;
633         return *this;
634       }
635       SingleLinkedListIterator<T> &operator++(int) {
636         SingleLinkedListIterator res = *this;
637         ++*this;
638         return res;
639       }
640       bool operator!=(const SingleLinkedListIterator<T> &Other) {
641         return P != Other.operator->();
642       }
643       bool operator==(const SingleLinkedListIterator<T> &Other) {
644         return P == Other.operator->();
645       }
646       T &operator*() const {
647         return *P;
648       }
649       T *operator->() const {
650         return P;
651       }
652     };
653
654     typedef SingleLinkedListIterator<SubRange> subrange_iterator;
655     subrange_iterator subrange_begin() {
656       return subrange_iterator(SubRanges);
657     }
658     subrange_iterator subrange_end() {
659       return subrange_iterator(nullptr);
660     }
661
662     typedef SingleLinkedListIterator<const SubRange> const_subrange_iterator;
663     const_subrange_iterator subrange_begin() const {
664       return const_subrange_iterator(SubRanges);
665     }
666     const_subrange_iterator subrange_end() const {
667       return const_subrange_iterator(nullptr);
668     }
669
670     iterator_range<subrange_iterator> subranges() {
671       return make_range(subrange_begin(), subrange_end());
672     }
673
674     iterator_range<const_subrange_iterator> subranges() const {
675       return make_range(subrange_begin(), subrange_end());
676     }
677
678     /// Creates a new empty subregister live range. The range is added at the
679     /// beginning of the subrange list; subrange iterators stay valid.
680     SubRange *createSubRange(BumpPtrAllocator &Allocator, unsigned LaneMask) {
681       SubRange *Range = new (Allocator) SubRange(LaneMask);
682       appendSubRange(Range);
683       return Range;
684     }
685
686     /// Like createSubRange() but the new range is filled with a copy of the
687     /// liveness information in @p CopyFrom.
688     SubRange *createSubRangeFrom(BumpPtrAllocator &Allocator, unsigned LaneMask,
689                                  const LiveRange &CopyFrom) {
690       SubRange *Range = new (Allocator) SubRange(LaneMask, CopyFrom, Allocator);
691       appendSubRange(Range);
692       return Range;
693     }
694
695     /// Returns true if subregister liveness information is available.
696     bool hasSubRanges() const {
697       return SubRanges != nullptr;
698     }
699
700     /// Removes all subregister liveness information.
701     void clearSubRanges();
702
703     /// Removes all subranges without any segments (subranges without segments
704     /// are not considered valid and should only exist temporarily).
705     void removeEmptySubRanges();
706
707     /// Construct main live range by merging the SubRanges of @p LI.
708     void constructMainRangeFromSubranges(const SlotIndexes &Indexes,
709                                          VNInfo::Allocator &VNIAllocator);
710
711     /// getSize - Returns the sum of sizes of all the LiveRange's.
712     ///
713     unsigned getSize() const;
714
715     /// isSpillable - Can this interval be spilled?
716     bool isSpillable() const {
717       return weight != llvm::huge_valf;
718     }
719
720     /// markNotSpillable - Mark interval as not spillable
721     void markNotSpillable() {
722       weight = llvm::huge_valf;
723     }
724
725     bool operator<(const LiveInterval& other) const {
726       const SlotIndex &thisIndex = beginIndex();
727       const SlotIndex &otherIndex = other.beginIndex();
728       return std::tie(thisIndex, reg) < std::tie(otherIndex, other.reg);
729     }
730
731     void print(raw_ostream &OS) const;
732     void dump() const;
733
734     /// \brief Walks the interval and assert if any invariants fail to hold.
735     ///
736     /// Note that this is a no-op when asserts are disabled.
737 #ifdef NDEBUG
738     void verify(const MachineRegisterInfo *MRI = nullptr) const {}
739 #else
740     void verify(const MachineRegisterInfo *MRI = nullptr) const;
741 #endif
742
743   private:
744     /// Appends @p Range to SubRanges list.
745     void appendSubRange(SubRange *Range) {
746       Range->Next = SubRanges;
747       SubRanges = Range;
748     }
749
750     /// Free memory held by SubRange.
751     void freeSubRange(SubRange *S);
752   };
753
754   inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) {
755     LI.print(OS);
756     return OS;
757   }
758
759   raw_ostream &operator<<(raw_ostream &OS, const LiveRange::Segment &S);
760
761   inline bool operator<(SlotIndex V, const LiveRange::Segment &S) {
762     return V < S.start;
763   }
764
765   inline bool operator<(const LiveRange::Segment &S, SlotIndex V) {
766     return S.start < V;
767   }
768
769   /// Helper class for performant LiveRange bulk updates.
770   ///
771   /// Calling LiveRange::addSegment() repeatedly can be expensive on large
772   /// live ranges because segments after the insertion point may need to be
773   /// shifted. The LiveRangeUpdater class can defer the shifting when adding
774   /// many segments in order.
775   ///
776   /// The LiveRange will be in an invalid state until flush() is called.
777   class LiveRangeUpdater {
778     LiveRange *LR;
779     SlotIndex LastStart;
780     LiveRange::iterator WriteI;
781     LiveRange::iterator ReadI;
782     SmallVector<LiveRange::Segment, 16> Spills;
783     void mergeSpills();
784
785   public:
786     /// Create a LiveRangeUpdater for adding segments to LR.
787     /// LR will temporarily be in an invalid state until flush() is called.
788     LiveRangeUpdater(LiveRange *lr = nullptr) : LR(lr) {}
789
790     ~LiveRangeUpdater() { flush(); }
791
792     /// Add a segment to LR and coalesce when possible, just like
793     /// LR.addSegment(). Segments should be added in increasing start order for
794     /// best performance.
795     void add(LiveRange::Segment);
796
797     void add(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
798       add(LiveRange::Segment(Start, End, VNI));
799     }
800
801     /// Return true if the LR is currently in an invalid state, and flush()
802     /// needs to be called.
803     bool isDirty() const { return LastStart.isValid(); }
804
805     /// Flush the updater state to LR so it is valid and contains all added
806     /// segments.
807     void flush();
808
809     /// Select a different destination live range.
810     void setDest(LiveRange *lr) {
811       if (LR != lr && isDirty())
812         flush();
813       LR = lr;
814     }
815
816     /// Get the current destination live range.
817     LiveRange *getDest() const { return LR; }
818
819     void dump() const;
820     void print(raw_ostream&) const;
821   };
822
823   inline raw_ostream &operator<<(raw_ostream &OS, const LiveRangeUpdater &X) {
824     X.print(OS);
825     return OS;
826   }
827
828   /// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a
829   /// LiveInterval into equivalence clases of connected components. A
830   /// LiveInterval that has multiple connected components can be broken into
831   /// multiple LiveIntervals.
832   ///
833   /// Given a LiveInterval that may have multiple connected components, run:
834   ///
835   ///   unsigned numComps = ConEQ.Classify(LI);
836   ///   if (numComps > 1) {
837   ///     // allocate numComps-1 new LiveIntervals into LIS[1..]
838   ///     ConEQ.Distribute(LIS);
839   /// }
840
841   class ConnectedVNInfoEqClasses {
842     LiveIntervals &LIS;
843     IntEqClasses EqClass;
844
845     // Note that values a and b are connected.
846     void Connect(unsigned a, unsigned b);
847
848     unsigned Renumber();
849
850   public:
851     explicit ConnectedVNInfoEqClasses(LiveIntervals &lis) : LIS(lis) {}
852
853     /// Classify - Classify the values in LI into connected components.
854     /// Return the number of connected components.
855     unsigned Classify(const LiveInterval *LI);
856
857     /// getEqClass - Classify creates equivalence classes numbered 0..N. Return
858     /// the equivalence class assigned the VNI.
859     unsigned getEqClass(const VNInfo *VNI) const { return EqClass[VNI->id]; }
860
861     /// Distribute - Distribute values in LIV[0] into a separate LiveInterval
862     /// for each connected component. LIV must have a LiveInterval for each
863     /// connected component. The LiveIntervals in Liv[1..] must be empty.
864     /// Instructions using LIV[0] are rewritten.
865     void Distribute(LiveInterval *LIV[], MachineRegisterInfo &MRI);
866
867   };
868
869 }
870 #endif