b6f0ae54cfa0d087e2b8d24057184db561a0bdc2
[oota-llvm.git] / include / llvm / Analysis / ScalarEvolutionExpressions.h
1 //===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the classes used to represent and build scalar expressions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_EXPRESSIONS_H
15 #define LLVM_ANALYSIS_SCALAREVOLUTION_EXPRESSIONS_H
16
17 #include "llvm/Analysis/ScalarEvolution.h"
18 #include "llvm/Support/ErrorHandling.h"
19
20 namespace llvm {
21   class ConstantInt;
22   class ConstantRange;
23   class DominatorTree;
24
25   enum SCEVTypes {
26     // These should be ordered in terms of increasing complexity to make the
27     // folders simpler.
28     scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr,
29     scUDivExpr, scAddRecExpr, scUMaxExpr, scSMaxExpr,
30     scUnknown, scCouldNotCompute
31   };
32
33   //===--------------------------------------------------------------------===//
34   /// SCEVConstant - This class represents a constant integer value.
35   ///
36   class SCEVConstant : public SCEV {
37     friend class ScalarEvolution;
38
39     ConstantInt *V;
40     SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) :
41       SCEV(ID, scConstant), V(v) {}
42   public:
43     ConstantInt *getValue() const { return V; }
44
45     Type *getType() const { return V->getType(); }
46
47     /// Methods for support type inquiry through isa, cast, and dyn_cast:
48     static inline bool classof(const SCEVConstant *S) { return true; }
49     static inline bool classof(const SCEV *S) {
50       return S->getSCEVType() == scConstant;
51     }
52   };
53
54   //===--------------------------------------------------------------------===//
55   /// SCEVCastExpr - This is the base class for unary cast operator classes.
56   ///
57   class SCEVCastExpr : public SCEV {
58   protected:
59     const SCEV *Op;
60     Type *Ty;
61
62     SCEVCastExpr(const FoldingSetNodeIDRef ID,
63                  unsigned SCEVTy, const SCEV *op, Type *ty);
64
65   public:
66     const SCEV *getOperand() const { return Op; }
67     Type *getType() const { return Ty; }
68
69     /// Methods for support type inquiry through isa, cast, and dyn_cast:
70     static inline bool classof(const SCEVCastExpr *S) { return true; }
71     static inline bool classof(const SCEV *S) {
72       return S->getSCEVType() == scTruncate ||
73              S->getSCEVType() == scZeroExtend ||
74              S->getSCEVType() == scSignExtend;
75     }
76   };
77
78   //===--------------------------------------------------------------------===//
79   /// SCEVTruncateExpr - This class represents a truncation of an integer value
80   /// to a smaller integer value.
81   ///
82   class SCEVTruncateExpr : public SCEVCastExpr {
83     friend class ScalarEvolution;
84
85     SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
86                      const SCEV *op, Type *ty);
87
88   public:
89     /// Methods for support type inquiry through isa, cast, and dyn_cast:
90     static inline bool classof(const SCEVTruncateExpr *S) { return true; }
91     static inline bool classof(const SCEV *S) {
92       return S->getSCEVType() == scTruncate;
93     }
94   };
95
96   //===--------------------------------------------------------------------===//
97   /// SCEVZeroExtendExpr - This class represents a zero extension of a small
98   /// integer value to a larger integer value.
99   ///
100   class SCEVZeroExtendExpr : public SCEVCastExpr {
101     friend class ScalarEvolution;
102
103     SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
104                        const SCEV *op, Type *ty);
105
106   public:
107     /// Methods for support type inquiry through isa, cast, and dyn_cast:
108     static inline bool classof(const SCEVZeroExtendExpr *S) { return true; }
109     static inline bool classof(const SCEV *S) {
110       return S->getSCEVType() == scZeroExtend;
111     }
112   };
113
114   //===--------------------------------------------------------------------===//
115   /// SCEVSignExtendExpr - This class represents a sign extension of a small
116   /// integer value to a larger integer value.
117   ///
118   class SCEVSignExtendExpr : public SCEVCastExpr {
119     friend class ScalarEvolution;
120
121     SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
122                        const SCEV *op, Type *ty);
123
124   public:
125     /// Methods for support type inquiry through isa, cast, and dyn_cast:
126     static inline bool classof(const SCEVSignExtendExpr *S) { return true; }
127     static inline bool classof(const SCEV *S) {
128       return S->getSCEVType() == scSignExtend;
129     }
130   };
131
132
133   //===--------------------------------------------------------------------===//
134   /// SCEVNAryExpr - This node is a base class providing common
135   /// functionality for n'ary operators.
136   ///
137   class SCEVNAryExpr : public SCEV {
138   protected:
139     // Since SCEVs are immutable, ScalarEvolution allocates operand
140     // arrays with its SCEVAllocator, so this class just needs a simple
141     // pointer rather than a more elaborate vector-like data structure.
142     // This also avoids the need for a non-trivial destructor.
143     const SCEV *const *Operands;
144     size_t NumOperands;
145
146     SCEVNAryExpr(const FoldingSetNodeIDRef ID,
147                  enum SCEVTypes T, const SCEV *const *O, size_t N)
148       : SCEV(ID, T), Operands(O), NumOperands(N) {}
149
150   public:
151     size_t getNumOperands() const { return NumOperands; }
152     const SCEV *getOperand(unsigned i) const {
153       assert(i < NumOperands && "Operand index out of range!");
154       return Operands[i];
155     }
156
157     typedef const SCEV *const *op_iterator;
158     op_iterator op_begin() const { return Operands; }
159     op_iterator op_end() const { return Operands + NumOperands; }
160
161     Type *getType() const { return getOperand(0)->getType(); }
162
163     NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const {
164       return (NoWrapFlags)(SubclassData & Mask);
165     }
166
167     /// Methods for support type inquiry through isa, cast, and dyn_cast:
168     static inline bool classof(const SCEVNAryExpr *S) { return true; }
169     static inline bool classof(const SCEV *S) {
170       return S->getSCEVType() == scAddExpr ||
171              S->getSCEVType() == scMulExpr ||
172              S->getSCEVType() == scSMaxExpr ||
173              S->getSCEVType() == scUMaxExpr ||
174              S->getSCEVType() == scAddRecExpr;
175     }
176   };
177
178   //===--------------------------------------------------------------------===//
179   /// SCEVCommutativeExpr - This node is the base class for n'ary commutative
180   /// operators.
181   ///
182   class SCEVCommutativeExpr : public SCEVNAryExpr {
183   protected:
184     SCEVCommutativeExpr(const FoldingSetNodeIDRef ID,
185                         enum SCEVTypes T, const SCEV *const *O, size_t N)
186       : SCEVNAryExpr(ID, T, O, N) {}
187
188   public:
189     /// Methods for support type inquiry through isa, cast, and dyn_cast:
190     static inline bool classof(const SCEVCommutativeExpr *S) { return true; }
191     static inline bool classof(const SCEV *S) {
192       return S->getSCEVType() == scAddExpr ||
193              S->getSCEVType() == scMulExpr ||
194              S->getSCEVType() == scSMaxExpr ||
195              S->getSCEVType() == scUMaxExpr;
196     }
197
198     /// Set flags for a non-recurrence without clearing previously set flags.
199     void setNoWrapFlags(NoWrapFlags Flags) {
200       SubclassData |= Flags;
201     }
202   };
203
204
205   //===--------------------------------------------------------------------===//
206   /// SCEVAddExpr - This node represents an addition of some number of SCEVs.
207   ///
208   class SCEVAddExpr : public SCEVCommutativeExpr {
209     friend class ScalarEvolution;
210
211     SCEVAddExpr(const FoldingSetNodeIDRef ID,
212                 const SCEV *const *O, size_t N)
213       : SCEVCommutativeExpr(ID, scAddExpr, O, N) {
214     }
215
216   public:
217     Type *getType() const {
218       // Use the type of the last operand, which is likely to be a pointer
219       // type, if there is one. This doesn't usually matter, but it can help
220       // reduce casts when the expressions are expanded.
221       return getOperand(getNumOperands() - 1)->getType();
222     }
223
224     /// Methods for support type inquiry through isa, cast, and dyn_cast:
225     static inline bool classof(const SCEVAddExpr *S) { return true; }
226     static inline bool classof(const SCEV *S) {
227       return S->getSCEVType() == scAddExpr;
228     }
229   };
230
231   //===--------------------------------------------------------------------===//
232   /// SCEVMulExpr - This node represents multiplication of some number of SCEVs.
233   ///
234   class SCEVMulExpr : public SCEVCommutativeExpr {
235     friend class ScalarEvolution;
236
237     SCEVMulExpr(const FoldingSetNodeIDRef ID,
238                 const SCEV *const *O, size_t N)
239       : SCEVCommutativeExpr(ID, scMulExpr, O, N) {
240     }
241
242   public:
243     /// Methods for support type inquiry through isa, cast, and dyn_cast:
244     static inline bool classof(const SCEVMulExpr *S) { return true; }
245     static inline bool classof(const SCEV *S) {
246       return S->getSCEVType() == scMulExpr;
247     }
248   };
249
250
251   //===--------------------------------------------------------------------===//
252   /// SCEVUDivExpr - This class represents a binary unsigned division operation.
253   ///
254   class SCEVUDivExpr : public SCEV {
255     friend class ScalarEvolution;
256
257     const SCEV *LHS;
258     const SCEV *RHS;
259     SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs)
260       : SCEV(ID, scUDivExpr), LHS(lhs), RHS(rhs) {}
261
262   public:
263     const SCEV *getLHS() const { return LHS; }
264     const SCEV *getRHS() const { return RHS; }
265
266     Type *getType() const {
267       // In most cases the types of LHS and RHS will be the same, but in some
268       // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
269       // depend on the type for correctness, but handling types carefully can
270       // avoid extra casts in the SCEVExpander. The LHS is more likely to be
271       // a pointer type than the RHS, so use the RHS' type here.
272       return getRHS()->getType();
273     }
274
275     /// Methods for support type inquiry through isa, cast, and dyn_cast:
276     static inline bool classof(const SCEVUDivExpr *S) { return true; }
277     static inline bool classof(const SCEV *S) {
278       return S->getSCEVType() == scUDivExpr;
279     }
280   };
281
282
283   //===--------------------------------------------------------------------===//
284   /// SCEVAddRecExpr - This node represents a polynomial recurrence on the trip
285   /// count of the specified loop.  This is the primary focus of the
286   /// ScalarEvolution framework; all the other SCEV subclasses are mostly just
287   /// supporting infrastructure to allow SCEVAddRecExpr expressions to be
288   /// created and analyzed.
289   ///
290   /// All operands of an AddRec are required to be loop invariant.
291   ///
292   class SCEVAddRecExpr : public SCEVNAryExpr {
293     friend class ScalarEvolution;
294
295     const Loop *L;
296
297     SCEVAddRecExpr(const FoldingSetNodeIDRef ID,
298                    const SCEV *const *O, size_t N, const Loop *l)
299       : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {}
300
301   public:
302     const SCEV *getStart() const { return Operands[0]; }
303     const Loop *getLoop() const { return L; }
304
305     /// getStepRecurrence - This method constructs and returns the recurrence
306     /// indicating how much this expression steps by.  If this is a polynomial
307     /// of degree N, it returns a chrec of degree N-1.
308     /// We cannot determine whether the step recurrence has self-wraparound.
309     const SCEV *getStepRecurrence(ScalarEvolution &SE) const {
310       if (isAffine()) return getOperand(1);
311       return SE.getAddRecExpr(SmallVector<const SCEV *, 3>(op_begin()+1,
312                                                            op_end()),
313                               getLoop(), FlagAnyWrap);
314     }
315
316     /// isAffine - Return true if this is an affine AddRec (i.e., it represents
317     /// an expressions A+B*x where A and B are loop invariant values.
318     bool isAffine() const {
319       // We know that the start value is invariant.  This expression is thus
320       // affine iff the step is also invariant.
321       return getNumOperands() == 2;
322     }
323
324     /// isQuadratic - Return true if this is an quadratic AddRec (i.e., it
325     /// represents an expressions A+B*x+C*x^2 where A, B and C are loop
326     /// invariant values.  This corresponds to an addrec of the form {L,+,M,+,N}
327     bool isQuadratic() const {
328       return getNumOperands() == 3;
329     }
330
331     /// Set flags for a recurrence without clearing any previously set flags.
332     /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here
333     /// to make it easier to propagate flags.
334     void setNoWrapFlags(NoWrapFlags Flags) {
335       if (Flags & (FlagNUW | FlagNSW))
336         Flags = ScalarEvolution::setFlags(Flags, FlagNW);
337       SubclassData |= Flags;
338     }
339
340     /// evaluateAtIteration - Return the value of this chain of recurrences at
341     /// the specified iteration number.
342     const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const;
343
344     /// getNumIterationsInRange - Return the number of iterations of this loop
345     /// that produce values in the specified constant range.  Another way of
346     /// looking at this is that it returns the first iteration number where the
347     /// value is not in the condition, thus computing the exit count.  If the
348     /// iteration count can't be computed, an instance of SCEVCouldNotCompute is
349     /// returned.
350     const SCEV *getNumIterationsInRange(ConstantRange Range,
351                                        ScalarEvolution &SE) const;
352
353     /// getPostIncExpr - Return an expression representing the value of
354     /// this expression one iteration of the loop ahead.
355     const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const {
356       return cast<SCEVAddRecExpr>(SE.getAddExpr(this, getStepRecurrence(SE)));
357     }
358
359     /// Methods for support type inquiry through isa, cast, and dyn_cast:
360     static inline bool classof(const SCEVAddRecExpr *S) { return true; }
361     static inline bool classof(const SCEV *S) {
362       return S->getSCEVType() == scAddRecExpr;
363     }
364   };
365
366
367   //===--------------------------------------------------------------------===//
368   /// SCEVSMaxExpr - This class represents a signed maximum selection.
369   ///
370   class SCEVSMaxExpr : public SCEVCommutativeExpr {
371     friend class ScalarEvolution;
372
373     SCEVSMaxExpr(const FoldingSetNodeIDRef ID,
374                  const SCEV *const *O, size_t N)
375       : SCEVCommutativeExpr(ID, scSMaxExpr, O, N) {
376       // Max never overflows.
377       setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
378     }
379
380   public:
381     /// Methods for support type inquiry through isa, cast, and dyn_cast:
382     static inline bool classof(const SCEVSMaxExpr *S) { return true; }
383     static inline bool classof(const SCEV *S) {
384       return S->getSCEVType() == scSMaxExpr;
385     }
386   };
387
388
389   //===--------------------------------------------------------------------===//
390   /// SCEVUMaxExpr - This class represents an unsigned maximum selection.
391   ///
392   class SCEVUMaxExpr : public SCEVCommutativeExpr {
393     friend class ScalarEvolution;
394
395     SCEVUMaxExpr(const FoldingSetNodeIDRef ID,
396                  const SCEV *const *O, size_t N)
397       : SCEVCommutativeExpr(ID, scUMaxExpr, O, N) {
398       // Max never overflows.
399       setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
400     }
401
402   public:
403     /// Methods for support type inquiry through isa, cast, and dyn_cast:
404     static inline bool classof(const SCEVUMaxExpr *S) { return true; }
405     static inline bool classof(const SCEV *S) {
406       return S->getSCEVType() == scUMaxExpr;
407     }
408   };
409
410   //===--------------------------------------------------------------------===//
411   /// SCEVUnknown - This means that we are dealing with an entirely unknown SCEV
412   /// value, and only represent it as its LLVM Value.  This is the "bottom"
413   /// value for the analysis.
414   ///
415   class SCEVUnknown : public SCEV, private CallbackVH {
416     friend class ScalarEvolution;
417
418     // Implement CallbackVH.
419     virtual void deleted();
420     virtual void allUsesReplacedWith(Value *New);
421
422     /// SE - The parent ScalarEvolution value. This is used to update
423     /// the parent's maps when the value associated with a SCEVUnknown
424     /// is deleted or RAUW'd.
425     ScalarEvolution *SE;
426
427     /// Next - The next pointer in the linked list of all
428     /// SCEVUnknown instances owned by a ScalarEvolution.
429     SCEVUnknown *Next;
430
431     SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V,
432                 ScalarEvolution *se, SCEVUnknown *next) :
433       SCEV(ID, scUnknown), CallbackVH(V), SE(se), Next(next) {}
434
435   public:
436     Value *getValue() const { return getValPtr(); }
437
438     /// isSizeOf, isAlignOf, isOffsetOf - Test whether this is a special
439     /// constant representing a type size, alignment, or field offset in
440     /// a target-independent manner, and hasn't happened to have been
441     /// folded with other operations into something unrecognizable. This
442     /// is mainly only useful for pretty-printing and other situations
443     /// where it isn't absolutely required for these to succeed.
444     bool isSizeOf(Type *&AllocTy) const;
445     bool isAlignOf(Type *&AllocTy) const;
446     bool isOffsetOf(Type *&STy, Constant *&FieldNo) const;
447
448     Type *getType() const { return getValPtr()->getType(); }
449
450     /// Methods for support type inquiry through isa, cast, and dyn_cast:
451     static inline bool classof(const SCEVUnknown *S) { return true; }
452     static inline bool classof(const SCEV *S) {
453       return S->getSCEVType() == scUnknown;
454     }
455   };
456
457   /// SCEVVisitor - This class defines a simple visitor class that may be used
458   /// for various SCEV analysis purposes.
459   template<typename SC, typename RetVal=void>
460   struct SCEVVisitor {
461     RetVal visit(const SCEV *S) {
462       switch (S->getSCEVType()) {
463       case scConstant:
464         return ((SC*)this)->visitConstant((const SCEVConstant*)S);
465       case scTruncate:
466         return ((SC*)this)->visitTruncateExpr((const SCEVTruncateExpr*)S);
467       case scZeroExtend:
468         return ((SC*)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr*)S);
469       case scSignExtend:
470         return ((SC*)this)->visitSignExtendExpr((const SCEVSignExtendExpr*)S);
471       case scAddExpr:
472         return ((SC*)this)->visitAddExpr((const SCEVAddExpr*)S);
473       case scMulExpr:
474         return ((SC*)this)->visitMulExpr((const SCEVMulExpr*)S);
475       case scUDivExpr:
476         return ((SC*)this)->visitUDivExpr((const SCEVUDivExpr*)S);
477       case scAddRecExpr:
478         return ((SC*)this)->visitAddRecExpr((const SCEVAddRecExpr*)S);
479       case scSMaxExpr:
480         return ((SC*)this)->visitSMaxExpr((const SCEVSMaxExpr*)S);
481       case scUMaxExpr:
482         return ((SC*)this)->visitUMaxExpr((const SCEVUMaxExpr*)S);
483       case scUnknown:
484         return ((SC*)this)->visitUnknown((const SCEVUnknown*)S);
485       case scCouldNotCompute:
486         return ((SC*)this)->visitCouldNotCompute((const SCEVCouldNotCompute*)S);
487       default:
488         llvm_unreachable("Unknown SCEV type!");
489       }
490     }
491
492     RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) {
493       llvm_unreachable("Invalid use of SCEVCouldNotCompute!");
494       return RetVal();
495     }
496   };
497 }
498
499 #endif