94e665fb6dddc31b127b78fbf7d7ac6d36316ed7
[oota-llvm.git] / include / llvm / Analysis / ScalarEvolutionExpressions.h
1 //===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the classes used to represent and build scalar expressions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
15 #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
16
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Support/ErrorHandling.h"
21
22 namespace llvm {
23   class ConstantInt;
24   class ConstantRange;
25   class DominatorTree;
26
27   enum SCEVTypes {
28     // These should be ordered in terms of increasing complexity to make the
29     // folders simpler.
30     scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr,
31     scUDivExpr, scAddRecExpr, scUMaxExpr, scSMaxExpr,
32     scUnknown, scCouldNotCompute
33   };
34
35   //===--------------------------------------------------------------------===//
36   /// SCEVConstant - This class represents a constant integer value.
37   ///
38   class SCEVConstant : public SCEV {
39     friend class ScalarEvolution;
40
41     ConstantInt *V;
42     SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) :
43       SCEV(ID, scConstant), V(v) {}
44   public:
45     ConstantInt *getValue() const { return V; }
46
47     Type *getType() const { return V->getType(); }
48
49     /// Methods for support type inquiry through isa, cast, and dyn_cast:
50     static inline bool classof(const SCEV *S) {
51       return S->getSCEVType() == scConstant;
52     }
53   };
54
55   //===--------------------------------------------------------------------===//
56   /// SCEVCastExpr - This is the base class for unary cast operator classes.
57   ///
58   class SCEVCastExpr : public SCEV {
59   protected:
60     const SCEV *Op;
61     Type *Ty;
62
63     SCEVCastExpr(const FoldingSetNodeIDRef ID,
64                  unsigned SCEVTy, const SCEV *op, Type *ty);
65
66   public:
67     const SCEV *getOperand() const { return Op; }
68     Type *getType() const { return Ty; }
69
70     /// Methods for support type inquiry through isa, cast, and dyn_cast:
71     static inline bool classof(const SCEV *S) {
72       return S->getSCEVType() == scTruncate ||
73              S->getSCEVType() == scZeroExtend ||
74              S->getSCEVType() == scSignExtend;
75     }
76   };
77
78   //===--------------------------------------------------------------------===//
79   /// SCEVTruncateExpr - This class represents a truncation of an integer value
80   /// to a smaller integer value.
81   ///
82   class SCEVTruncateExpr : public SCEVCastExpr {
83     friend class ScalarEvolution;
84
85     SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
86                      const SCEV *op, Type *ty);
87
88   public:
89     /// Methods for support type inquiry through isa, cast, and dyn_cast:
90     static inline bool classof(const SCEV *S) {
91       return S->getSCEVType() == scTruncate;
92     }
93   };
94
95   //===--------------------------------------------------------------------===//
96   /// SCEVZeroExtendExpr - This class represents a zero extension of a small
97   /// integer value to a larger integer value.
98   ///
99   class SCEVZeroExtendExpr : public SCEVCastExpr {
100     friend class ScalarEvolution;
101
102     SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
103                        const SCEV *op, Type *ty);
104
105   public:
106     /// Methods for support type inquiry through isa, cast, and dyn_cast:
107     static inline bool classof(const SCEV *S) {
108       return S->getSCEVType() == scZeroExtend;
109     }
110   };
111
112   //===--------------------------------------------------------------------===//
113   /// SCEVSignExtendExpr - This class represents a sign extension of a small
114   /// integer value to a larger integer value.
115   ///
116   class SCEVSignExtendExpr : public SCEVCastExpr {
117     friend class ScalarEvolution;
118
119     SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
120                        const SCEV *op, Type *ty);
121
122   public:
123     /// Methods for support type inquiry through isa, cast, and dyn_cast:
124     static inline bool classof(const SCEV *S) {
125       return S->getSCEVType() == scSignExtend;
126     }
127   };
128
129
130   //===--------------------------------------------------------------------===//
131   /// SCEVNAryExpr - This node is a base class providing common
132   /// functionality for n'ary operators.
133   ///
134   class SCEVNAryExpr : public SCEV {
135   protected:
136     // Since SCEVs are immutable, ScalarEvolution allocates operand
137     // arrays with its SCEVAllocator, so this class just needs a simple
138     // pointer rather than a more elaborate vector-like data structure.
139     // This also avoids the need for a non-trivial destructor.
140     const SCEV *const *Operands;
141     size_t NumOperands;
142
143     SCEVNAryExpr(const FoldingSetNodeIDRef ID,
144                  enum SCEVTypes T, const SCEV *const *O, size_t N)
145       : SCEV(ID, T), Operands(O), NumOperands(N) {}
146
147   public:
148     size_t getNumOperands() const { return NumOperands; }
149     const SCEV *getOperand(unsigned i) const {
150       assert(i < NumOperands && "Operand index out of range!");
151       return Operands[i];
152     }
153
154     typedef const SCEV *const *op_iterator;
155     typedef iterator_range<op_iterator> op_range;
156     op_iterator op_begin() const { return Operands; }
157     op_iterator op_end() const { return Operands + NumOperands; }
158     op_range operands() const {
159       return make_range(op_begin(), op_end());
160     }
161
162     Type *getType() const { return getOperand(0)->getType(); }
163
164     NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const {
165       return (NoWrapFlags)(SubclassData & Mask);
166     }
167
168     /// Methods for support type inquiry through isa, cast, and dyn_cast:
169     static inline bool classof(const SCEV *S) {
170       return S->getSCEVType() == scAddExpr ||
171              S->getSCEVType() == scMulExpr ||
172              S->getSCEVType() == scSMaxExpr ||
173              S->getSCEVType() == scUMaxExpr ||
174              S->getSCEVType() == scAddRecExpr;
175     }
176   };
177
178   //===--------------------------------------------------------------------===//
179   /// SCEVCommutativeExpr - This node is the base class for n'ary commutative
180   /// operators.
181   ///
182   class SCEVCommutativeExpr : public SCEVNAryExpr {
183   protected:
184     SCEVCommutativeExpr(const FoldingSetNodeIDRef ID,
185                         enum SCEVTypes T, const SCEV *const *O, size_t N)
186       : SCEVNAryExpr(ID, T, O, N) {}
187
188   public:
189     /// Methods for support type inquiry through isa, cast, and dyn_cast:
190     static inline bool classof(const SCEV *S) {
191       return S->getSCEVType() == scAddExpr ||
192              S->getSCEVType() == scMulExpr ||
193              S->getSCEVType() == scSMaxExpr ||
194              S->getSCEVType() == scUMaxExpr;
195     }
196
197     /// Set flags for a non-recurrence without clearing previously set flags.
198     void setNoWrapFlags(NoWrapFlags Flags) {
199       SubclassData |= Flags;
200     }
201   };
202
203
204   //===--------------------------------------------------------------------===//
205   /// SCEVAddExpr - This node represents an addition of some number of SCEVs.
206   ///
207   class SCEVAddExpr : public SCEVCommutativeExpr {
208     friend class ScalarEvolution;
209
210     SCEVAddExpr(const FoldingSetNodeIDRef ID,
211                 const SCEV *const *O, size_t N)
212       : SCEVCommutativeExpr(ID, scAddExpr, O, N) {
213     }
214
215   public:
216     Type *getType() const {
217       // Use the type of the last operand, which is likely to be a pointer
218       // type, if there is one. This doesn't usually matter, but it can help
219       // reduce casts when the expressions are expanded.
220       return getOperand(getNumOperands() - 1)->getType();
221     }
222
223     /// Methods for support type inquiry through isa, cast, and dyn_cast:
224     static inline bool classof(const SCEV *S) {
225       return S->getSCEVType() == scAddExpr;
226     }
227   };
228
229   //===--------------------------------------------------------------------===//
230   /// SCEVMulExpr - This node represents multiplication of some number of SCEVs.
231   ///
232   class SCEVMulExpr : public SCEVCommutativeExpr {
233     friend class ScalarEvolution;
234
235     SCEVMulExpr(const FoldingSetNodeIDRef ID,
236                 const SCEV *const *O, size_t N)
237       : SCEVCommutativeExpr(ID, scMulExpr, O, N) {
238     }
239
240   public:
241     /// Methods for support type inquiry through isa, cast, and dyn_cast:
242     static inline bool classof(const SCEV *S) {
243       return S->getSCEVType() == scMulExpr;
244     }
245   };
246
247
248   //===--------------------------------------------------------------------===//
249   /// SCEVUDivExpr - This class represents a binary unsigned division operation.
250   ///
251   class SCEVUDivExpr : public SCEV {
252     friend class ScalarEvolution;
253
254     const SCEV *LHS;
255     const SCEV *RHS;
256     SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs)
257       : SCEV(ID, scUDivExpr), LHS(lhs), RHS(rhs) {}
258
259   public:
260     const SCEV *getLHS() const { return LHS; }
261     const SCEV *getRHS() const { return RHS; }
262
263     Type *getType() const {
264       // In most cases the types of LHS and RHS will be the same, but in some
265       // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
266       // depend on the type for correctness, but handling types carefully can
267       // avoid extra casts in the SCEVExpander. The LHS is more likely to be
268       // a pointer type than the RHS, so use the RHS' type here.
269       return getRHS()->getType();
270     }
271
272     /// Methods for support type inquiry through isa, cast, and dyn_cast:
273     static inline bool classof(const SCEV *S) {
274       return S->getSCEVType() == scUDivExpr;
275     }
276   };
277
278
279   //===--------------------------------------------------------------------===//
280   /// SCEVAddRecExpr - This node represents a polynomial recurrence on the trip
281   /// count of the specified loop.  This is the primary focus of the
282   /// ScalarEvolution framework; all the other SCEV subclasses are mostly just
283   /// supporting infrastructure to allow SCEVAddRecExpr expressions to be
284   /// created and analyzed.
285   ///
286   /// All operands of an AddRec are required to be loop invariant.
287   ///
288   class SCEVAddRecExpr : public SCEVNAryExpr {
289     friend class ScalarEvolution;
290
291     const Loop *L;
292
293     SCEVAddRecExpr(const FoldingSetNodeIDRef ID,
294                    const SCEV *const *O, size_t N, const Loop *l)
295       : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {}
296
297   public:
298     const SCEV *getStart() const { return Operands[0]; }
299     const Loop *getLoop() const { return L; }
300
301     /// getStepRecurrence - This method constructs and returns the recurrence
302     /// indicating how much this expression steps by.  If this is a polynomial
303     /// of degree N, it returns a chrec of degree N-1.
304     /// We cannot determine whether the step recurrence has self-wraparound.
305     const SCEV *getStepRecurrence(ScalarEvolution &SE) const {
306       if (isAffine()) return getOperand(1);
307       return SE.getAddRecExpr(SmallVector<const SCEV *, 3>(op_begin()+1,
308                                                            op_end()),
309                               getLoop(), FlagAnyWrap);
310     }
311
312     /// isAffine - Return true if this represents an expression
313     /// A + B*x where A and B are loop invariant values.
314     bool isAffine() const {
315       // We know that the start value is invariant.  This expression is thus
316       // affine iff the step is also invariant.
317       return getNumOperands() == 2;
318     }
319
320     /// isQuadratic - Return true if this represents an expression
321     /// A + B*x + C*x^2 where A, B and C are loop invariant values.
322     /// This corresponds to an addrec of the form {L,+,M,+,N}
323     bool isQuadratic() const {
324       return getNumOperands() == 3;
325     }
326
327     /// Set flags for a recurrence without clearing any previously set flags.
328     /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here
329     /// to make it easier to propagate flags.
330     void setNoWrapFlags(NoWrapFlags Flags) {
331       if (Flags & (FlagNUW | FlagNSW))
332         Flags = ScalarEvolution::setFlags(Flags, FlagNW);
333       SubclassData |= Flags;
334     }
335
336     /// evaluateAtIteration - Return the value of this chain of recurrences at
337     /// the specified iteration number.
338     const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const;
339
340     /// getNumIterationsInRange - Return the number of iterations of this loop
341     /// that produce values in the specified constant range.  Another way of
342     /// looking at this is that it returns the first iteration number where the
343     /// value is not in the condition, thus computing the exit count.  If the
344     /// iteration count can't be computed, an instance of SCEVCouldNotCompute is
345     /// returned.
346     const SCEV *getNumIterationsInRange(ConstantRange Range,
347                                        ScalarEvolution &SE) const;
348
349     /// getPostIncExpr - Return an expression representing the value of
350     /// this expression one iteration of the loop ahead.
351     const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const {
352       return cast<SCEVAddRecExpr>(SE.getAddExpr(this, getStepRecurrence(SE)));
353     }
354
355     /// Methods for support type inquiry through isa, cast, and dyn_cast:
356     static inline bool classof(const SCEV *S) {
357       return S->getSCEVType() == scAddRecExpr;
358     }
359
360     /// Collect parametric terms occurring in step expressions.
361     void collectParametricTerms(ScalarEvolution &SE,
362                                 SmallVectorImpl<const SCEV *> &Terms) const;
363
364     /// Return in Subscripts the access functions for each dimension in Sizes.
365     void computeAccessFunctions(ScalarEvolution &SE,
366                                 SmallVectorImpl<const SCEV *> &Subscripts,
367                                 SmallVectorImpl<const SCEV *> &Sizes) const;
368
369     /// Split this SCEVAddRecExpr into two vectors of SCEVs representing the
370     /// subscripts and sizes of an array access.
371     ///
372     /// The delinearization is a 3 step process: the first two steps compute the
373     /// sizes of each subscript and the third step computes the access functions
374     /// for the delinearized array:
375     ///
376     /// 1. Find the terms in the step functions
377     /// 2. Compute the array size
378     /// 3. Compute the access function: divide the SCEV by the array size
379     ///    starting with the innermost dimensions found in step 2. The Quotient
380     ///    is the SCEV to be divided in the next step of the recursion. The
381     ///    Remainder is the subscript of the innermost dimension. Loop over all
382     ///    array dimensions computed in step 2.
383     ///
384     /// To compute a uniform array size for several memory accesses to the same
385     /// object, one can collect in step 1 all the step terms for all the memory
386     /// accesses, and compute in step 2 a unique array shape. This guarantees
387     /// that the array shape will be the same across all memory accesses.
388     ///
389     /// FIXME: We could derive the result of steps 1 and 2 from a description of
390     /// the array shape given in metadata.
391     ///
392     /// Example:
393     ///
394     /// A[][n][m]
395     ///
396     /// for i
397     ///   for j
398     ///     for k
399     ///       A[j+k][2i][5i] =
400     ///
401     /// The initial SCEV:
402     ///
403     /// A[{{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k]
404     ///
405     /// 1. Find the different terms in the step functions:
406     /// -> [2*m, 5, n*m, n*m]
407     ///
408     /// 2. Compute the array size: sort and unique them
409     /// -> [n*m, 2*m, 5]
410     /// find the GCD of all the terms = 1
411     /// divide by the GCD and erase constant terms
412     /// -> [n*m, 2*m]
413     /// GCD = m
414     /// divide by GCD -> [n, 2]
415     /// remove constant terms
416     /// -> [n]
417     /// size of the array is A[unknown][n][m]
418     ///
419     /// 3. Compute the access function
420     /// a. Divide {{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k by the innermost size m
421     /// Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k
422     /// Remainder: {{{0,+,5}_i, +, 0}_j, +, 0}_k
423     /// The remainder is the subscript of the innermost array dimension: [5i].
424     ///
425     /// b. Divide Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k by next outer size n
426     /// Quotient: {{{0,+,0}_i, +, 1}_j, +, 1}_k
427     /// Remainder: {{{0,+,2}_i, +, 0}_j, +, 0}_k
428     /// The Remainder is the subscript of the next array dimension: [2i].
429     ///
430     /// The subscript of the outermost dimension is the Quotient: [j+k].
431     ///
432     /// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i].
433     void delinearize(ScalarEvolution &SE,
434                      SmallVectorImpl<const SCEV *> &Subscripts,
435                      SmallVectorImpl<const SCEV *> &Sizes,
436                      const SCEV *ElementSize) const;
437   };
438
439   //===--------------------------------------------------------------------===//
440   /// SCEVSMaxExpr - This class represents a signed maximum selection.
441   ///
442   class SCEVSMaxExpr : public SCEVCommutativeExpr {
443     friend class ScalarEvolution;
444
445     SCEVSMaxExpr(const FoldingSetNodeIDRef ID,
446                  const SCEV *const *O, size_t N)
447       : SCEVCommutativeExpr(ID, scSMaxExpr, O, N) {
448       // Max never overflows.
449       setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
450     }
451
452   public:
453     /// Methods for support type inquiry through isa, cast, and dyn_cast:
454     static inline bool classof(const SCEV *S) {
455       return S->getSCEVType() == scSMaxExpr;
456     }
457   };
458
459
460   //===--------------------------------------------------------------------===//
461   /// SCEVUMaxExpr - This class represents an unsigned maximum selection.
462   ///
463   class SCEVUMaxExpr : public SCEVCommutativeExpr {
464     friend class ScalarEvolution;
465
466     SCEVUMaxExpr(const FoldingSetNodeIDRef ID,
467                  const SCEV *const *O, size_t N)
468       : SCEVCommutativeExpr(ID, scUMaxExpr, O, N) {
469       // Max never overflows.
470       setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
471     }
472
473   public:
474     /// Methods for support type inquiry through isa, cast, and dyn_cast:
475     static inline bool classof(const SCEV *S) {
476       return S->getSCEVType() == scUMaxExpr;
477     }
478   };
479
480   //===--------------------------------------------------------------------===//
481   /// SCEVUnknown - This means that we are dealing with an entirely unknown SCEV
482   /// value, and only represent it as its LLVM Value.  This is the "bottom"
483   /// value for the analysis.
484   ///
485   class SCEVUnknown : public SCEV, private CallbackVH {
486     friend class ScalarEvolution;
487
488     // Implement CallbackVH.
489     void deleted() override;
490     void allUsesReplacedWith(Value *New) override;
491
492     /// SE - The parent ScalarEvolution value. This is used to update
493     /// the parent's maps when the value associated with a SCEVUnknown
494     /// is deleted or RAUW'd.
495     ScalarEvolution *SE;
496
497     /// Next - The next pointer in the linked list of all
498     /// SCEVUnknown instances owned by a ScalarEvolution.
499     SCEVUnknown *Next;
500
501     SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V,
502                 ScalarEvolution *se, SCEVUnknown *next) :
503       SCEV(ID, scUnknown), CallbackVH(V), SE(se), Next(next) {}
504
505   public:
506     Value *getValue() const { return getValPtr(); }
507
508     /// isSizeOf, isAlignOf, isOffsetOf - Test whether this is a special
509     /// constant representing a type size, alignment, or field offset in
510     /// a target-independent manner, and hasn't happened to have been
511     /// folded with other operations into something unrecognizable. This
512     /// is mainly only useful for pretty-printing and other situations
513     /// where it isn't absolutely required for these to succeed.
514     bool isSizeOf(Type *&AllocTy) const;
515     bool isAlignOf(Type *&AllocTy) const;
516     bool isOffsetOf(Type *&STy, Constant *&FieldNo) const;
517
518     Type *getType() const { return getValPtr()->getType(); }
519
520     /// Methods for support type inquiry through isa, cast, and dyn_cast:
521     static inline bool classof(const SCEV *S) {
522       return S->getSCEVType() == scUnknown;
523     }
524   };
525
526   /// SCEVVisitor - This class defines a simple visitor class that may be used
527   /// for various SCEV analysis purposes.
528   template<typename SC, typename RetVal=void>
529   struct SCEVVisitor {
530     RetVal visit(const SCEV *S) {
531       switch (S->getSCEVType()) {
532       case scConstant:
533         return ((SC*)this)->visitConstant((const SCEVConstant*)S);
534       case scTruncate:
535         return ((SC*)this)->visitTruncateExpr((const SCEVTruncateExpr*)S);
536       case scZeroExtend:
537         return ((SC*)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr*)S);
538       case scSignExtend:
539         return ((SC*)this)->visitSignExtendExpr((const SCEVSignExtendExpr*)S);
540       case scAddExpr:
541         return ((SC*)this)->visitAddExpr((const SCEVAddExpr*)S);
542       case scMulExpr:
543         return ((SC*)this)->visitMulExpr((const SCEVMulExpr*)S);
544       case scUDivExpr:
545         return ((SC*)this)->visitUDivExpr((const SCEVUDivExpr*)S);
546       case scAddRecExpr:
547         return ((SC*)this)->visitAddRecExpr((const SCEVAddRecExpr*)S);
548       case scSMaxExpr:
549         return ((SC*)this)->visitSMaxExpr((const SCEVSMaxExpr*)S);
550       case scUMaxExpr:
551         return ((SC*)this)->visitUMaxExpr((const SCEVUMaxExpr*)S);
552       case scUnknown:
553         return ((SC*)this)->visitUnknown((const SCEVUnknown*)S);
554       case scCouldNotCompute:
555         return ((SC*)this)->visitCouldNotCompute((const SCEVCouldNotCompute*)S);
556       default:
557         llvm_unreachable("Unknown SCEV type!");
558       }
559     }
560
561     RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) {
562       llvm_unreachable("Invalid use of SCEVCouldNotCompute!");
563     }
564   };
565
566   /// Visit all nodes in the expression tree using worklist traversal.
567   ///
568   /// Visitor implements:
569   ///   // return true to follow this node.
570   ///   bool follow(const SCEV *S);
571   ///   // return true to terminate the search.
572   ///   bool isDone();
573   template<typename SV>
574   class SCEVTraversal {
575     SV &Visitor;
576     SmallVector<const SCEV *, 8> Worklist;
577     SmallPtrSet<const SCEV *, 8> Visited;
578
579     void push(const SCEV *S) {
580       if (Visited.insert(S).second && Visitor.follow(S))
581         Worklist.push_back(S);
582     }
583   public:
584     SCEVTraversal(SV& V): Visitor(V) {}
585
586     void visitAll(const SCEV *Root) {
587       push(Root);
588       while (!Worklist.empty() && !Visitor.isDone()) {
589         const SCEV *S = Worklist.pop_back_val();
590
591         switch (S->getSCEVType()) {
592         case scConstant:
593         case scUnknown:
594           break;
595         case scTruncate:
596         case scZeroExtend:
597         case scSignExtend:
598           push(cast<SCEVCastExpr>(S)->getOperand());
599           break;
600         case scAddExpr:
601         case scMulExpr:
602         case scSMaxExpr:
603         case scUMaxExpr:
604         case scAddRecExpr: {
605           const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
606           for (SCEVNAryExpr::op_iterator I = NAry->op_begin(),
607                  E = NAry->op_end(); I != E; ++I) {
608             push(*I);
609           }
610           break;
611         }
612         case scUDivExpr: {
613           const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
614           push(UDiv->getLHS());
615           push(UDiv->getRHS());
616           break;
617         }
618         case scCouldNotCompute:
619           llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
620         default:
621           llvm_unreachable("Unknown SCEV kind!");
622         }
623       }
624     }
625   };
626
627   /// Use SCEVTraversal to visit all nodes in the given expression tree.
628   template<typename SV>
629   void visitAll(const SCEV *Root, SV& Visitor) {
630     SCEVTraversal<SV> T(Visitor);
631     T.visitAll(Root);
632   }
633
634   typedef DenseMap<const Value*, Value*> ValueToValueMap;
635
636   /// The SCEVParameterRewriter takes a scalar evolution expression and updates
637   /// the SCEVUnknown components following the Map (Value -> Value).
638   struct SCEVParameterRewriter
639     : public SCEVVisitor<SCEVParameterRewriter, const SCEV*> {
640   public:
641     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
642                                ValueToValueMap &Map,
643                                bool InterpretConsts = false) {
644       SCEVParameterRewriter Rewriter(SE, Map, InterpretConsts);
645       return Rewriter.visit(Scev);
646     }
647
648     SCEVParameterRewriter(ScalarEvolution &S, ValueToValueMap &M, bool C)
649       : SE(S), Map(M), InterpretConsts(C) {}
650
651     const SCEV *visitConstant(const SCEVConstant *Constant) {
652       return Constant;
653     }
654
655     const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
656       const SCEV *Operand = visit(Expr->getOperand());
657       return SE.getTruncateExpr(Operand, Expr->getType());
658     }
659
660     const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
661       const SCEV *Operand = visit(Expr->getOperand());
662       return SE.getZeroExtendExpr(Operand, Expr->getType());
663     }
664
665     const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
666       const SCEV *Operand = visit(Expr->getOperand());
667       return SE.getSignExtendExpr(Operand, Expr->getType());
668     }
669
670     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
671       SmallVector<const SCEV *, 2> Operands;
672       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
673         Operands.push_back(visit(Expr->getOperand(i)));
674       return SE.getAddExpr(Operands);
675     }
676
677     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
678       SmallVector<const SCEV *, 2> Operands;
679       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
680         Operands.push_back(visit(Expr->getOperand(i)));
681       return SE.getMulExpr(Operands);
682     }
683
684     const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
685       return SE.getUDivExpr(visit(Expr->getLHS()), visit(Expr->getRHS()));
686     }
687
688     const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
689       SmallVector<const SCEV *, 2> Operands;
690       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
691         Operands.push_back(visit(Expr->getOperand(i)));
692       return SE.getAddRecExpr(Operands, Expr->getLoop(),
693                               Expr->getNoWrapFlags());
694     }
695
696     const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
697       SmallVector<const SCEV *, 2> Operands;
698       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
699         Operands.push_back(visit(Expr->getOperand(i)));
700       return SE.getSMaxExpr(Operands);
701     }
702
703     const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
704       SmallVector<const SCEV *, 2> Operands;
705       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
706         Operands.push_back(visit(Expr->getOperand(i)));
707       return SE.getUMaxExpr(Operands);
708     }
709
710     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
711       Value *V = Expr->getValue();
712       if (Map.count(V)) {
713         Value *NV = Map[V];
714         if (InterpretConsts && isa<ConstantInt>(NV))
715           return SE.getConstant(cast<ConstantInt>(NV));
716         return SE.getUnknown(NV);
717       }
718       return Expr;
719     }
720
721     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
722       return Expr;
723     }
724
725   private:
726     ScalarEvolution &SE;
727     ValueToValueMap &Map;
728     bool InterpretConsts;
729   };
730
731   typedef DenseMap<const Loop*, const SCEV*> LoopToScevMapT;
732
733   /// The SCEVApplyRewriter takes a scalar evolution expression and applies
734   /// the Map (Loop -> SCEV) to all AddRecExprs.
735   struct SCEVApplyRewriter
736     : public SCEVVisitor<SCEVApplyRewriter, const SCEV*> {
737   public:
738     static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map,
739                                ScalarEvolution &SE) {
740       SCEVApplyRewriter Rewriter(SE, Map);
741       return Rewriter.visit(Scev);
742     }
743
744     SCEVApplyRewriter(ScalarEvolution &S, LoopToScevMapT &M)
745       : SE(S), Map(M) {}
746
747     const SCEV *visitConstant(const SCEVConstant *Constant) {
748       return Constant;
749     }
750
751     const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
752       const SCEV *Operand = visit(Expr->getOperand());
753       return SE.getTruncateExpr(Operand, Expr->getType());
754     }
755
756     const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
757       const SCEV *Operand = visit(Expr->getOperand());
758       return SE.getZeroExtendExpr(Operand, Expr->getType());
759     }
760
761     const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
762       const SCEV *Operand = visit(Expr->getOperand());
763       return SE.getSignExtendExpr(Operand, Expr->getType());
764     }
765
766     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
767       SmallVector<const SCEV *, 2> Operands;
768       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
769         Operands.push_back(visit(Expr->getOperand(i)));
770       return SE.getAddExpr(Operands);
771     }
772
773     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
774       SmallVector<const SCEV *, 2> Operands;
775       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
776         Operands.push_back(visit(Expr->getOperand(i)));
777       return SE.getMulExpr(Operands);
778     }
779
780     const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
781       return SE.getUDivExpr(visit(Expr->getLHS()), visit(Expr->getRHS()));
782     }
783
784     const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
785       SmallVector<const SCEV *, 2> Operands;
786       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
787         Operands.push_back(visit(Expr->getOperand(i)));
788
789       const Loop *L = Expr->getLoop();
790       const SCEV *Res = SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags());
791
792       if (0 == Map.count(L))
793         return Res;
794
795       const SCEVAddRecExpr *Rec = (const SCEVAddRecExpr *) Res;
796       return Rec->evaluateAtIteration(Map[L], SE);
797     }
798
799     const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
800       SmallVector<const SCEV *, 2> Operands;
801       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
802         Operands.push_back(visit(Expr->getOperand(i)));
803       return SE.getSMaxExpr(Operands);
804     }
805
806     const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
807       SmallVector<const SCEV *, 2> Operands;
808       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
809         Operands.push_back(visit(Expr->getOperand(i)));
810       return SE.getUMaxExpr(Operands);
811     }
812
813     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
814       return Expr;
815     }
816
817     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
818       return Expr;
819     }
820
821   private:
822     ScalarEvolution &SE;
823     LoopToScevMapT &Map;
824   };
825
826 /// Applies the Map (Loop -> SCEV) to the given Scev.
827 static inline const SCEV *apply(const SCEV *Scev, LoopToScevMapT &Map,
828                                 ScalarEvolution &SE) {
829   return SCEVApplyRewriter::rewrite(Scev, Map, SE);
830 }
831
832 }
833
834 #endif