Analysis: unique_ptr-ify DependenceAnalysis::depends
[oota-llvm.git] / include / llvm / Analysis / DependenceAnalysis.h
1 //===-- llvm/Analysis/DependenceAnalysis.h -------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
11 // accesses. Currently, it is an implementation of the approach described in
12 //
13 //            Practical Dependence Testing
14 //            Goff, Kennedy, Tseng
15 //            PLDI 1991
16 //
17 // There's a single entry point that analyzes the dependence between a pair
18 // of memory references in a function, returning either NULL, for no dependence,
19 // or a more-or-less detailed description of the dependence between them.
20 //
21 // This pass exists to support the DependenceGraph pass. There are two separate
22 // passes because there's a useful separation of concerns. A dependence exists
23 // if two conditions are met:
24 //
25 //    1) Two instructions reference the same memory location, and
26 //    2) There is a flow of control leading from one instruction to the other.
27 //
28 // DependenceAnalysis attacks the first condition; DependenceGraph will attack
29 // the second (it's not yet ready).
30 //
31 // Please note that this is work in progress and the interface is subject to
32 // change.
33 //
34 // Plausible changes:
35 //    Return a set of more precise dependences instead of just one dependence
36 //    summarizing all.
37 //
38 //===----------------------------------------------------------------------===//
39
40 #ifndef LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
41 #define LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
42
43 #include "llvm/ADT/SmallBitVector.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/Pass.h"
46
47 namespace llvm {
48   class AliasAnalysis;
49   class Loop;
50   class LoopInfo;
51   class ScalarEvolution;
52   class SCEV;
53   class SCEVConstant;
54   class raw_ostream;
55
56   /// Dependence - This class represents a dependence between two memory
57   /// memory references in a function. It contains minimal information and
58   /// is used in the very common situation where the compiler is unable to
59   /// determine anything beyond the existence of a dependence; that is, it
60   /// represents a confused dependence (see also FullDependence). In most
61   /// cases (for output, flow, and anti dependences), the dependence implies
62   /// an ordering, where the source must precede the destination; in contrast,
63   /// input dependences are unordered.
64   ///
65   /// When a dependence graph is built, each Dependence will be a member of
66   /// the set of predecessor edges for its destination instruction and a set
67   /// if successor edges for its source instruction. These sets are represented
68   /// as singly-linked lists, with the "next" fields stored in the dependence
69   /// itelf.
70   class Dependence {
71   public:
72     Dependence(Instruction *Source,
73                Instruction *Destination) :
74       Src(Source),
75       Dst(Destination),
76       NextPredecessor(nullptr),
77       NextSuccessor(nullptr) {}
78     virtual ~Dependence() {}
79
80     /// Dependence::DVEntry - Each level in the distance/direction vector
81     /// has a direction (or perhaps a union of several directions), and
82     /// perhaps a distance.
83     struct DVEntry {
84       enum { NONE = 0,
85              LT = 1,
86              EQ = 2,
87              LE = 3,
88              GT = 4,
89              NE = 5,
90              GE = 6,
91              ALL = 7 };
92       unsigned char Direction : 3; // Init to ALL, then refine.
93       bool Scalar    : 1; // Init to true.
94       bool PeelFirst : 1; // Peeling the first iteration will break dependence.
95       bool PeelLast  : 1; // Peeling the last iteration will break the dependence.
96       bool Splitable : 1; // Splitting the loop will break dependence.
97       const SCEV *Distance; // NULL implies no distance available.
98       DVEntry() : Direction(ALL), Scalar(true), PeelFirst(false),
99                   PeelLast(false), Splitable(false), Distance(nullptr) { }
100     };
101
102     /// getSrc - Returns the source instruction for this dependence.
103     ///
104     Instruction *getSrc() const { return Src; }
105
106     /// getDst - Returns the destination instruction for this dependence.
107     ///
108     Instruction *getDst() const { return Dst; }
109
110     /// isInput - Returns true if this is an input dependence.
111     ///
112     bool isInput() const;
113
114     /// isOutput - Returns true if this is an output dependence.
115     ///
116     bool isOutput() const;
117
118     /// isFlow - Returns true if this is a flow (aka true) dependence.
119     ///
120     bool isFlow() const;
121
122     /// isAnti - Returns true if this is an anti dependence.
123     ///
124     bool isAnti() const;
125
126     /// isOrdered - Returns true if dependence is Output, Flow, or Anti
127     ///
128     bool isOrdered() const { return isOutput() || isFlow() || isAnti(); }
129
130     /// isUnordered - Returns true if dependence is Input
131     ///
132     bool isUnordered() const { return isInput(); }
133
134     /// isLoopIndependent - Returns true if this is a loop-independent
135     /// dependence.
136     virtual bool isLoopIndependent() const { return true; }
137
138     /// isConfused - Returns true if this dependence is confused
139     /// (the compiler understands nothing and makes worst-case
140     /// assumptions).
141     virtual bool isConfused() const { return true; }
142
143     /// isConsistent - Returns true if this dependence is consistent
144     /// (occurs every time the source and destination are executed).
145     virtual bool isConsistent() const { return false; }
146
147     /// getLevels - Returns the number of common loops surrounding the
148     /// source and destination of the dependence.
149     virtual unsigned getLevels() const { return 0; }
150
151     /// getDirection - Returns the direction associated with a particular
152     /// level.
153     virtual unsigned getDirection(unsigned Level) const { return DVEntry::ALL; }
154
155     /// getDistance - Returns the distance (or NULL) associated with a
156     /// particular level.
157     virtual const SCEV *getDistance(unsigned Level) const { return nullptr; }
158
159     /// isPeelFirst - Returns true if peeling the first iteration from
160     /// this loop will break this dependence.
161     virtual bool isPeelFirst(unsigned Level) const { return false; }
162
163     /// isPeelLast - Returns true if peeling the last iteration from
164     /// this loop will break this dependence.
165     virtual bool isPeelLast(unsigned Level) const { return false; }
166
167     /// isSplitable - Returns true if splitting this loop will break
168     /// the dependence.
169     virtual bool isSplitable(unsigned Level) const { return false; }
170
171     /// isScalar - Returns true if a particular level is scalar; that is,
172     /// if no subscript in the source or destination mention the induction
173     /// variable associated with the loop at this level.
174     virtual bool isScalar(unsigned Level) const;
175
176     /// getNextPredecessor - Returns the value of the NextPredecessor
177     /// field.
178     const Dependence *getNextPredecessor() const {
179       return NextPredecessor;
180     }
181     
182     /// getNextSuccessor - Returns the value of the NextSuccessor
183     /// field.
184     const Dependence *getNextSuccessor() const {
185       return NextSuccessor;
186     }
187     
188     /// setNextPredecessor - Sets the value of the NextPredecessor
189     /// field.
190     void setNextPredecessor(const Dependence *pred) {
191       NextPredecessor = pred;
192     }
193     
194     /// setNextSuccessor - Sets the value of the NextSuccessor
195     /// field.
196     void setNextSuccessor(const Dependence *succ) {
197       NextSuccessor = succ;
198     }
199     
200     /// dump - For debugging purposes, dumps a dependence to OS.
201     ///
202     void dump(raw_ostream &OS) const;
203   private:
204     Instruction *Src, *Dst;
205     const Dependence *NextPredecessor, *NextSuccessor;
206     friend class DependenceAnalysis;
207   };
208
209
210   /// FullDependence - This class represents a dependence between two memory
211   /// references in a function. It contains detailed information about the
212   /// dependence (direction vectors, etc.) and is used when the compiler is
213   /// able to accurately analyze the interaction of the references; that is,
214   /// it is not a confused dependence (see Dependence). In most cases
215   /// (for output, flow, and anti dependences), the dependence implies an
216   /// ordering, where the source must precede the destination; in contrast,
217   /// input dependences are unordered.
218   class FullDependence : public Dependence {
219   public:
220     FullDependence(Instruction *Src,
221                    Instruction *Dst,
222                    bool LoopIndependent,
223                    unsigned Levels);
224     ~FullDependence() {
225       delete[] DV;
226     }
227
228     /// isLoopIndependent - Returns true if this is a loop-independent
229     /// dependence.
230     bool isLoopIndependent() const override { return LoopIndependent; }
231
232     /// isConfused - Returns true if this dependence is confused
233     /// (the compiler understands nothing and makes worst-case
234     /// assumptions).
235     bool isConfused() const override { return false; }
236
237     /// isConsistent - Returns true if this dependence is consistent
238     /// (occurs every time the source and destination are executed).
239     bool isConsistent() const override { return Consistent; }
240
241     /// getLevels - Returns the number of common loops surrounding the
242     /// source and destination of the dependence.
243     unsigned getLevels() const override { return Levels; }
244
245     /// getDirection - Returns the direction associated with a particular
246     /// level.
247     unsigned getDirection(unsigned Level) const override;
248
249     /// getDistance - Returns the distance (or NULL) associated with a
250     /// particular level.
251     const SCEV *getDistance(unsigned Level) const override;
252
253     /// isPeelFirst - Returns true if peeling the first iteration from
254     /// this loop will break this dependence.
255     bool isPeelFirst(unsigned Level) const override;
256
257     /// isPeelLast - Returns true if peeling the last iteration from
258     /// this loop will break this dependence.
259     bool isPeelLast(unsigned Level) const override;
260
261     /// isSplitable - Returns true if splitting the loop will break
262     /// the dependence.
263     bool isSplitable(unsigned Level) const override;
264
265     /// isScalar - Returns true if a particular level is scalar; that is,
266     /// if no subscript in the source or destination mention the induction
267     /// variable associated with the loop at this level.
268     bool isScalar(unsigned Level) const override;
269   private:
270     unsigned short Levels;
271     bool LoopIndependent;
272     bool Consistent; // Init to true, then refine.
273     DVEntry *DV;
274     friend class DependenceAnalysis;
275   };
276
277
278   /// DependenceAnalysis - This class is the main dependence-analysis driver.
279   ///
280   class DependenceAnalysis : public FunctionPass {
281     void operator=(const DependenceAnalysis &) LLVM_DELETED_FUNCTION;
282     DependenceAnalysis(const DependenceAnalysis &) LLVM_DELETED_FUNCTION;
283   public:
284     /// depends - Tests for a dependence between the Src and Dst instructions.
285     /// Returns NULL if no dependence; otherwise, returns a Dependence (or a
286     /// FullDependence) with as much information as can be gleaned.
287     /// The flag PossiblyLoopIndependent should be set by the caller
288     /// if it appears that control flow can reach from Src to Dst
289     /// without traversing a loop back edge.
290     std::unique_ptr<Dependence> depends(Instruction *Src,
291                                         Instruction *Dst,
292                                         bool PossiblyLoopIndependent);
293
294     /// getSplitIteration - Give a dependence that's splittable at some
295     /// particular level, return the iteration that should be used to split
296     /// the loop.
297     ///
298     /// Generally, the dependence analyzer will be used to build
299     /// a dependence graph for a function (basically a map from instructions
300     /// to dependences). Looking for cycles in the graph shows us loops
301     /// that cannot be trivially vectorized/parallelized.
302     ///
303     /// We can try to improve the situation by examining all the dependences
304     /// that make up the cycle, looking for ones we can break.
305     /// Sometimes, peeling the first or last iteration of a loop will break
306     /// dependences, and there are flags for those possibilities.
307     /// Sometimes, splitting a loop at some other iteration will do the trick,
308     /// and we've got a flag for that case. Rather than waste the space to
309     /// record the exact iteration (since we rarely know), we provide
310     /// a method that calculates the iteration. It's a drag that it must work
311     /// from scratch, but wonderful in that it's possible.
312     ///
313     /// Here's an example:
314     ///
315     ///    for (i = 0; i < 10; i++)
316     ///        A[i] = ...
317     ///        ... = A[11 - i]
318     ///
319     /// There's a loop-carried flow dependence from the store to the load,
320     /// found by the weak-crossing SIV test. The dependence will have a flag,
321     /// indicating that the dependence can be broken by splitting the loop.
322     /// Calling getSplitIteration will return 5.
323     /// Splitting the loop breaks the dependence, like so:
324     ///
325     ///    for (i = 0; i <= 5; i++)
326     ///        A[i] = ...
327     ///        ... = A[11 - i]
328     ///    for (i = 6; i < 10; i++)
329     ///        A[i] = ...
330     ///        ... = A[11 - i]
331     ///
332     /// breaks the dependence and allows us to vectorize/parallelize
333     /// both loops.
334     const SCEV *getSplitIteration(const Dependence &Dep, unsigned Level);
335
336   private:
337     AliasAnalysis *AA;
338     ScalarEvolution *SE;
339     LoopInfo *LI;
340     Function *F;
341
342     /// Subscript - This private struct represents a pair of subscripts from
343     /// a pair of potentially multi-dimensional array references. We use a
344     /// vector of them to guide subscript partitioning.
345     struct Subscript {
346       const SCEV *Src;
347       const SCEV *Dst;
348       enum ClassificationKind { ZIV, SIV, RDIV, MIV, NonLinear } Classification;
349       SmallBitVector Loops;
350       SmallBitVector GroupLoops;
351       SmallBitVector Group;
352     };
353
354     struct CoefficientInfo {
355       const SCEV *Coeff;
356       const SCEV *PosPart;
357       const SCEV *NegPart;
358       const SCEV *Iterations;
359     };
360
361     struct BoundInfo {
362       const SCEV *Iterations;
363       const SCEV *Upper[8];
364       const SCEV *Lower[8];
365       unsigned char Direction;
366       unsigned char DirSet;
367     };
368
369     /// Constraint - This private class represents a constraint, as defined
370     /// in the paper
371     ///
372     ///           Practical Dependence Testing
373     ///           Goff, Kennedy, Tseng
374     ///           PLDI 1991
375     ///
376     /// There are 5 kinds of constraint, in a hierarchy.
377     ///   1) Any - indicates no constraint, any dependence is possible.
378     ///   2) Line - A line ax + by = c, where a, b, and c are parameters,
379     ///             representing the dependence equation.
380     ///   3) Distance - The value d of the dependence distance;
381     ///   4) Point - A point <x, y> representing the dependence from
382     ///              iteration x to iteration y.
383     ///   5) Empty - No dependence is possible.
384     class Constraint {
385     private:
386       enum ConstraintKind { Empty, Point, Distance, Line, Any } Kind;
387       ScalarEvolution *SE;
388       const SCEV *A;
389       const SCEV *B;
390       const SCEV *C;
391       const Loop *AssociatedLoop;
392     public:
393       /// isEmpty - Return true if the constraint is of kind Empty.
394       bool isEmpty() const { return Kind == Empty; }
395
396       /// isPoint - Return true if the constraint is of kind Point.
397       bool isPoint() const { return Kind == Point; }
398
399       /// isDistance - Return true if the constraint is of kind Distance.
400       bool isDistance() const { return Kind == Distance; }
401
402       /// isLine - Return true if the constraint is of kind Line.
403       /// Since Distance's can also be represented as Lines, we also return
404       /// true if the constraint is of kind Distance.
405       bool isLine() const { return Kind == Line || Kind == Distance; }
406
407       /// isAny - Return true if the constraint is of kind Any;
408       bool isAny() const { return Kind == Any; }
409
410       /// getX - If constraint is a point <X, Y>, returns X.
411       /// Otherwise assert.
412       const SCEV *getX() const;
413
414       /// getY - If constraint is a point <X, Y>, returns Y.
415       /// Otherwise assert.
416       const SCEV *getY() const;
417
418       /// getA - If constraint is a line AX + BY = C, returns A.
419       /// Otherwise assert.
420       const SCEV *getA() const;
421
422       /// getB - If constraint is a line AX + BY = C, returns B.
423       /// Otherwise assert.
424       const SCEV *getB() const;
425
426       /// getC - If constraint is a line AX + BY = C, returns C.
427       /// Otherwise assert.
428       const SCEV *getC() const;
429
430       /// getD - If constraint is a distance, returns D.
431       /// Otherwise assert.
432       const SCEV *getD() const;
433
434       /// getAssociatedLoop - Returns the loop associated with this constraint.
435       const Loop *getAssociatedLoop() const;
436
437       /// setPoint - Change a constraint to Point.
438       void setPoint(const SCEV *X, const SCEV *Y, const Loop *CurrentLoop);
439
440       /// setLine - Change a constraint to Line.
441       void setLine(const SCEV *A, const SCEV *B,
442                    const SCEV *C, const Loop *CurrentLoop);
443
444       /// setDistance - Change a constraint to Distance.
445       void setDistance(const SCEV *D, const Loop *CurrentLoop);
446
447       /// setEmpty - Change a constraint to Empty.
448       void setEmpty();
449
450       /// setAny - Change a constraint to Any.
451       void setAny(ScalarEvolution *SE);
452
453       /// dump - For debugging purposes. Dumps the constraint
454       /// out to OS.
455       void dump(raw_ostream &OS) const;
456     };
457
458
459     /// establishNestingLevels - Examines the loop nesting of the Src and Dst
460     /// instructions and establishes their shared loops. Sets the variables
461     /// CommonLevels, SrcLevels, and MaxLevels.
462     /// The source and destination instructions needn't be contained in the same
463     /// loop. The routine establishNestingLevels finds the level of most deeply
464     /// nested loop that contains them both, CommonLevels. An instruction that's
465     /// not contained in a loop is at level = 0. MaxLevels is equal to the level
466     /// of the source plus the level of the destination, minus CommonLevels.
467     /// This lets us allocate vectors MaxLevels in length, with room for every
468     /// distinct loop referenced in both the source and destination subscripts.
469     /// The variable SrcLevels is the nesting depth of the source instruction.
470     /// It's used to help calculate distinct loops referenced by the destination.
471     /// Here's the map from loops to levels:
472     ///            0 - unused
473     ///            1 - outermost common loop
474     ///          ... - other common loops
475     /// CommonLevels - innermost common loop
476     ///          ... - loops containing Src but not Dst
477     ///    SrcLevels - innermost loop containing Src but not Dst
478     ///          ... - loops containing Dst but not Src
479     ///    MaxLevels - innermost loop containing Dst but not Src
480     /// Consider the follow code fragment:
481     ///    for (a = ...) {
482     ///      for (b = ...) {
483     ///        for (c = ...) {
484     ///          for (d = ...) {
485     ///            A[] = ...;
486     ///          }
487     ///        }
488     ///        for (e = ...) {
489     ///          for (f = ...) {
490     ///            for (g = ...) {
491     ///              ... = A[];
492     ///            }
493     ///          }
494     ///        }
495     ///      }
496     ///    }
497     /// If we're looking at the possibility of a dependence between the store
498     /// to A (the Src) and the load from A (the Dst), we'll note that they
499     /// have 2 loops in common, so CommonLevels will equal 2 and the direction
500     /// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
501     /// A map from loop names to level indices would look like
502     ///     a - 1
503     ///     b - 2 = CommonLevels
504     ///     c - 3
505     ///     d - 4 = SrcLevels
506     ///     e - 5
507     ///     f - 6
508     ///     g - 7 = MaxLevels
509     void establishNestingLevels(const Instruction *Src,
510                                 const Instruction *Dst);
511
512     unsigned CommonLevels, SrcLevels, MaxLevels;
513
514     /// mapSrcLoop - Given one of the loops containing the source, return
515     /// its level index in our numbering scheme.
516     unsigned mapSrcLoop(const Loop *SrcLoop) const;
517
518     /// mapDstLoop - Given one of the loops containing the destination,
519     /// return its level index in our numbering scheme.
520     unsigned mapDstLoop(const Loop *DstLoop) const;
521
522     /// isLoopInvariant - Returns true if Expression is loop invariant
523     /// in LoopNest.
524     bool isLoopInvariant(const SCEV *Expression, const Loop *LoopNest) const;
525
526     /// removeMatchingExtensions - Examines a subscript pair.
527     /// If the source and destination are identically sign (or zero)
528     /// extended, it strips off the extension in an effort to
529     /// simplify the actual analysis.
530     void removeMatchingExtensions(Subscript *Pair);
531
532     /// collectCommonLoops - Finds the set of loops from the LoopNest that
533     /// have a level <= CommonLevels and are referred to by the SCEV Expression.
534     void collectCommonLoops(const SCEV *Expression,
535                             const Loop *LoopNest,
536                             SmallBitVector &Loops) const;
537
538     /// checkSrcSubscript - Examines the SCEV Src, returning true iff it's
539     /// linear. Collect the set of loops mentioned by Src.
540     bool checkSrcSubscript(const SCEV *Src,
541                            const Loop *LoopNest,
542                            SmallBitVector &Loops);
543
544     /// checkDstSubscript - Examines the SCEV Dst, returning true iff it's
545     /// linear. Collect the set of loops mentioned by Dst.
546     bool checkDstSubscript(const SCEV *Dst,
547                            const Loop *LoopNest,
548                            SmallBitVector &Loops);
549
550     /// isKnownPredicate - Compare X and Y using the predicate Pred.
551     /// Basically a wrapper for SCEV::isKnownPredicate,
552     /// but tries harder, especially in the presence of sign and zero
553     /// extensions and symbolics.
554     bool isKnownPredicate(ICmpInst::Predicate Pred,
555                           const SCEV *X,
556                           const SCEV *Y) const;
557
558     /// collectUpperBound - All subscripts are the same type (on my machine,
559     /// an i64). The loop bound may be a smaller type. collectUpperBound
560     /// find the bound, if available, and zero extends it to the Type T.
561     /// (I zero extend since the bound should always be >= 0.)
562     /// If no upper bound is available, return NULL.
563     const SCEV *collectUpperBound(const Loop *l, Type *T) const;
564
565     /// collectConstantUpperBound - Calls collectUpperBound(), then
566     /// attempts to cast it to SCEVConstant. If the cast fails,
567     /// returns NULL.
568     const SCEVConstant *collectConstantUpperBound(const Loop *l, Type *T) const;
569
570     /// classifyPair - Examines the subscript pair (the Src and Dst SCEVs)
571     /// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
572     /// Collects the associated loops in a set.
573     Subscript::ClassificationKind classifyPair(const SCEV *Src,
574                                            const Loop *SrcLoopNest,
575                                            const SCEV *Dst,
576                                            const Loop *DstLoopNest,
577                                            SmallBitVector &Loops);
578
579     /// testZIV - Tests the ZIV subscript pair (Src and Dst) for dependence.
580     /// Returns true if any possible dependence is disproved.
581     /// If there might be a dependence, returns false.
582     /// If the dependence isn't proven to exist,
583     /// marks the Result as inconsistent.
584     bool testZIV(const SCEV *Src,
585                  const SCEV *Dst,
586                  FullDependence &Result) const;
587
588     /// testSIV - Tests the SIV subscript pair (Src and Dst) for dependence.
589     /// Things of the form [c1 + a1*i] and [c2 + a2*j], where
590     /// i and j are induction variables, c1 and c2 are loop invariant,
591     /// and a1 and a2 are constant.
592     /// Returns true if any possible dependence is disproved.
593     /// If there might be a dependence, returns false.
594     /// Sets appropriate direction vector entry and, when possible,
595     /// the distance vector entry.
596     /// If the dependence isn't proven to exist,
597     /// marks the Result as inconsistent.
598     bool testSIV(const SCEV *Src,
599                  const SCEV *Dst,
600                  unsigned &Level,
601                  FullDependence &Result,
602                  Constraint &NewConstraint,
603                  const SCEV *&SplitIter) const;
604
605     /// testRDIV - Tests the RDIV subscript pair (Src and Dst) for dependence.
606     /// Things of the form [c1 + a1*i] and [c2 + a2*j]
607     /// where i and j are induction variables, c1 and c2 are loop invariant,
608     /// and a1 and a2 are constant.
609     /// With minor algebra, this test can also be used for things like
610     /// [c1 + a1*i + a2*j][c2].
611     /// Returns true if any possible dependence is disproved.
612     /// If there might be a dependence, returns false.
613     /// Marks the Result as inconsistent.
614     bool testRDIV(const SCEV *Src,
615                   const SCEV *Dst,
616                   FullDependence &Result) const;
617
618     /// testMIV - Tests the MIV subscript pair (Src and Dst) for dependence.
619     /// Returns true if dependence disproved.
620     /// Can sometimes refine direction vectors.
621     bool testMIV(const SCEV *Src,
622                  const SCEV *Dst,
623                  const SmallBitVector &Loops,
624                  FullDependence &Result) const;
625
626     /// strongSIVtest - Tests the strong SIV subscript pair (Src and Dst)
627     /// for dependence.
628     /// Things of the form [c1 + a*i] and [c2 + a*i],
629     /// where i is an induction variable, c1 and c2 are loop invariant,
630     /// and a is a constant
631     /// Returns true if any possible dependence is disproved.
632     /// If there might be a dependence, returns false.
633     /// Sets appropriate direction and distance.
634     bool strongSIVtest(const SCEV *Coeff,
635                        const SCEV *SrcConst,
636                        const SCEV *DstConst,
637                        const Loop *CurrentLoop,
638                        unsigned Level,
639                        FullDependence &Result,
640                        Constraint &NewConstraint) const;
641
642     /// weakCrossingSIVtest - Tests the weak-crossing SIV subscript pair
643     /// (Src and Dst) for dependence.
644     /// Things of the form [c1 + a*i] and [c2 - a*i],
645     /// where i is an induction variable, c1 and c2 are loop invariant,
646     /// and a is a constant.
647     /// Returns true if any possible dependence is disproved.
648     /// If there might be a dependence, returns false.
649     /// Sets appropriate direction entry.
650     /// Set consistent to false.
651     /// Marks the dependence as splitable.
652     bool weakCrossingSIVtest(const SCEV *SrcCoeff,
653                              const SCEV *SrcConst,
654                              const SCEV *DstConst,
655                              const Loop *CurrentLoop,
656                              unsigned Level,
657                              FullDependence &Result,
658                              Constraint &NewConstraint,
659                              const SCEV *&SplitIter) const;
660
661     /// ExactSIVtest - Tests the SIV subscript pair
662     /// (Src and Dst) for dependence.
663     /// Things of the form [c1 + a1*i] and [c2 + a2*i],
664     /// where i is an induction variable, c1 and c2 are loop invariant,
665     /// and a1 and a2 are constant.
666     /// Returns true if any possible dependence is disproved.
667     /// If there might be a dependence, returns false.
668     /// Sets appropriate direction entry.
669     /// Set consistent to false.
670     bool exactSIVtest(const SCEV *SrcCoeff,
671                       const SCEV *DstCoeff,
672                       const SCEV *SrcConst,
673                       const SCEV *DstConst,
674                       const Loop *CurrentLoop,
675                       unsigned Level,
676                       FullDependence &Result,
677                       Constraint &NewConstraint) const;
678
679     /// weakZeroSrcSIVtest - Tests the weak-zero SIV subscript pair
680     /// (Src and Dst) for dependence.
681     /// Things of the form [c1] and [c2 + a*i],
682     /// where i is an induction variable, c1 and c2 are loop invariant,
683     /// and a is a constant. See also weakZeroDstSIVtest.
684     /// Returns true if any possible dependence is disproved.
685     /// If there might be a dependence, returns false.
686     /// Sets appropriate direction entry.
687     /// Set consistent to false.
688     /// If loop peeling will break the dependence, mark appropriately.
689     bool weakZeroSrcSIVtest(const SCEV *DstCoeff,
690                             const SCEV *SrcConst,
691                             const SCEV *DstConst,
692                             const Loop *CurrentLoop,
693                             unsigned Level,
694                             FullDependence &Result,
695                             Constraint &NewConstraint) const;
696
697     /// weakZeroDstSIVtest - Tests the weak-zero SIV subscript pair
698     /// (Src and Dst) for dependence.
699     /// Things of the form [c1 + a*i] and [c2],
700     /// where i is an induction variable, c1 and c2 are loop invariant,
701     /// and a is a constant. See also weakZeroSrcSIVtest.
702     /// Returns true if any possible dependence is disproved.
703     /// If there might be a dependence, returns false.
704     /// Sets appropriate direction entry.
705     /// Set consistent to false.
706     /// If loop peeling will break the dependence, mark appropriately.
707     bool weakZeroDstSIVtest(const SCEV *SrcCoeff,
708                             const SCEV *SrcConst,
709                             const SCEV *DstConst,
710                             const Loop *CurrentLoop,
711                             unsigned Level,
712                             FullDependence &Result,
713                             Constraint &NewConstraint) const;
714
715     /// exactRDIVtest - Tests the RDIV subscript pair for dependence.
716     /// Things of the form [c1 + a*i] and [c2 + b*j],
717     /// where i and j are induction variable, c1 and c2 are loop invariant,
718     /// and a and b are constants.
719     /// Returns true if any possible dependence is disproved.
720     /// Marks the result as inconsistent.
721     /// Works in some cases that symbolicRDIVtest doesn't,
722     /// and vice versa.
723     bool exactRDIVtest(const SCEV *SrcCoeff,
724                        const SCEV *DstCoeff,
725                        const SCEV *SrcConst,
726                        const SCEV *DstConst,
727                        const Loop *SrcLoop,
728                        const Loop *DstLoop,
729                        FullDependence &Result) const;
730
731     /// symbolicRDIVtest - Tests the RDIV subscript pair for dependence.
732     /// Things of the form [c1 + a*i] and [c2 + b*j],
733     /// where i and j are induction variable, c1 and c2 are loop invariant,
734     /// and a and b are constants.
735     /// Returns true if any possible dependence is disproved.
736     /// Marks the result as inconsistent.
737     /// Works in some cases that exactRDIVtest doesn't,
738     /// and vice versa. Can also be used as a backup for
739     /// ordinary SIV tests.
740     bool symbolicRDIVtest(const SCEV *SrcCoeff,
741                           const SCEV *DstCoeff,
742                           const SCEV *SrcConst,
743                           const SCEV *DstConst,
744                           const Loop *SrcLoop,
745                           const Loop *DstLoop) const;
746
747     /// gcdMIVtest - Tests an MIV subscript pair for dependence.
748     /// Returns true if any possible dependence is disproved.
749     /// Marks the result as inconsistent.
750     /// Can sometimes disprove the equal direction for 1 or more loops.
751     //  Can handle some symbolics that even the SIV tests don't get,
752     /// so we use it as a backup for everything.
753     bool gcdMIVtest(const SCEV *Src,
754                     const SCEV *Dst,
755                     FullDependence &Result) const;
756
757     /// banerjeeMIVtest - Tests an MIV subscript pair for dependence.
758     /// Returns true if any possible dependence is disproved.
759     /// Marks the result as inconsistent.
760     /// Computes directions.
761     bool banerjeeMIVtest(const SCEV *Src,
762                          const SCEV *Dst,
763                          const SmallBitVector &Loops,
764                          FullDependence &Result) const;
765
766     /// collectCoefficientInfo - Walks through the subscript,
767     /// collecting each coefficient, the associated loop bounds,
768     /// and recording its positive and negative parts for later use.
769     CoefficientInfo *collectCoeffInfo(const SCEV *Subscript,
770                                       bool SrcFlag,
771                                       const SCEV *&Constant) const;
772
773     /// getPositivePart - X^+ = max(X, 0).
774     ///
775     const SCEV *getPositivePart(const SCEV *X) const;
776
777     /// getNegativePart - X^- = min(X, 0).
778     ///
779     const SCEV *getNegativePart(const SCEV *X) const;
780
781     /// getLowerBound - Looks through all the bounds info and
782     /// computes the lower bound given the current direction settings
783     /// at each level.
784     const SCEV *getLowerBound(BoundInfo *Bound) const;
785
786     /// getUpperBound - Looks through all the bounds info and
787     /// computes the upper bound given the current direction settings
788     /// at each level.
789     const SCEV *getUpperBound(BoundInfo *Bound) const;
790
791     /// exploreDirections - Hierarchically expands the direction vector
792     /// search space, combining the directions of discovered dependences
793     /// in the DirSet field of Bound. Returns the number of distinct
794     /// dependences discovered. If the dependence is disproved,
795     /// it will return 0.
796     unsigned exploreDirections(unsigned Level,
797                                CoefficientInfo *A,
798                                CoefficientInfo *B,
799                                BoundInfo *Bound,
800                                const SmallBitVector &Loops,
801                                unsigned &DepthExpanded,
802                                const SCEV *Delta) const;
803
804     /// testBounds - Returns true iff the current bounds are plausible.
805     ///
806     bool testBounds(unsigned char DirKind,
807                     unsigned Level,
808                     BoundInfo *Bound,
809                     const SCEV *Delta) const;
810
811     /// findBoundsALL - Computes the upper and lower bounds for level K
812     /// using the * direction. Records them in Bound.
813     void findBoundsALL(CoefficientInfo *A,
814                        CoefficientInfo *B,
815                        BoundInfo *Bound,
816                        unsigned K) const;
817
818     /// findBoundsLT - Computes the upper and lower bounds for level K
819     /// using the < direction. Records them in Bound.
820     void findBoundsLT(CoefficientInfo *A,
821                       CoefficientInfo *B,
822                       BoundInfo *Bound,
823                       unsigned K) const;
824
825     /// findBoundsGT - Computes the upper and lower bounds for level K
826     /// using the > direction. Records them in Bound.
827     void findBoundsGT(CoefficientInfo *A,
828                       CoefficientInfo *B,
829                       BoundInfo *Bound,
830                       unsigned K) const;
831
832     /// findBoundsEQ - Computes the upper and lower bounds for level K
833     /// using the = direction. Records them in Bound.
834     void findBoundsEQ(CoefficientInfo *A,
835                       CoefficientInfo *B,
836                       BoundInfo *Bound,
837                       unsigned K) const;
838
839     /// intersectConstraints - Updates X with the intersection
840     /// of the Constraints X and Y. Returns true if X has changed.
841     bool intersectConstraints(Constraint *X,
842                               const Constraint *Y);
843
844     /// propagate - Review the constraints, looking for opportunities
845     /// to simplify a subscript pair (Src and Dst).
846     /// Return true if some simplification occurs.
847     /// If the simplification isn't exact (that is, if it is conservative
848     /// in terms of dependence), set consistent to false.
849     bool propagate(const SCEV *&Src,
850                    const SCEV *&Dst,
851                    SmallBitVector &Loops,
852                    SmallVectorImpl<Constraint> &Constraints,
853                    bool &Consistent);
854
855     /// propagateDistance - Attempt to propagate a distance
856     /// constraint into a subscript pair (Src and Dst).
857     /// Return true if some simplification occurs.
858     /// If the simplification isn't exact (that is, if it is conservative
859     /// in terms of dependence), set consistent to false.
860     bool propagateDistance(const SCEV *&Src,
861                            const SCEV *&Dst,
862                            Constraint &CurConstraint,
863                            bool &Consistent);
864
865     /// propagatePoint - Attempt to propagate a point
866     /// constraint into a subscript pair (Src and Dst).
867     /// Return true if some simplification occurs.
868     bool propagatePoint(const SCEV *&Src,
869                         const SCEV *&Dst,
870                         Constraint &CurConstraint);
871
872     /// propagateLine - Attempt to propagate a line
873     /// constraint into a subscript pair (Src and Dst).
874     /// Return true if some simplification occurs.
875     /// If the simplification isn't exact (that is, if it is conservative
876     /// in terms of dependence), set consistent to false.
877     bool propagateLine(const SCEV *&Src,
878                        const SCEV *&Dst,
879                        Constraint &CurConstraint,
880                        bool &Consistent);
881
882     /// findCoefficient - Given a linear SCEV,
883     /// return the coefficient corresponding to specified loop.
884     /// If there isn't one, return the SCEV constant 0.
885     /// For example, given a*i + b*j + c*k, returning the coefficient
886     /// corresponding to the j loop would yield b.
887     const SCEV *findCoefficient(const SCEV *Expr,
888                                 const Loop *TargetLoop) const;
889
890     /// zeroCoefficient - Given a linear SCEV,
891     /// return the SCEV given by zeroing out the coefficient
892     /// corresponding to the specified loop.
893     /// For example, given a*i + b*j + c*k, zeroing the coefficient
894     /// corresponding to the j loop would yield a*i + c*k.
895     const SCEV *zeroCoefficient(const SCEV *Expr,
896                                 const Loop *TargetLoop) const;
897
898     /// addToCoefficient - Given a linear SCEV Expr,
899     /// return the SCEV given by adding some Value to the
900     /// coefficient corresponding to the specified TargetLoop.
901     /// For example, given a*i + b*j + c*k, adding 1 to the coefficient
902     /// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
903     const SCEV *addToCoefficient(const SCEV *Expr,
904                                  const Loop *TargetLoop,
905                                  const SCEV *Value)  const;
906
907     /// updateDirection - Update direction vector entry
908     /// based on the current constraint.
909     void updateDirection(Dependence::DVEntry &Level,
910                          const Constraint &CurConstraint) const;
911
912     bool tryDelinearize(const SCEV *SrcSCEV, const SCEV *DstSCEV,
913                         SmallVectorImpl<Subscript> &Pair,
914                         const SCEV *ElementSize) const;
915
916   public:
917     static char ID; // Class identification, replacement for typeinfo
918     DependenceAnalysis() : FunctionPass(ID) {
919       initializeDependenceAnalysisPass(*PassRegistry::getPassRegistry());
920     }
921
922     bool runOnFunction(Function &F) override;
923     void releaseMemory() override;
924     void getAnalysisUsage(AnalysisUsage &) const override;
925     void print(raw_ostream &, const Module * = nullptr) const override;
926   }; // class DependenceAnalysis
927
928   /// createDependenceAnalysisPass - This creates an instance of the
929   /// DependenceAnalysis pass.
930   FunctionPass *createDependenceAnalysisPass();
931
932 } // namespace llvm
933
934 #endif