Removing LLVM_DELETED_FUNCTION, as MSVC 2012 was the last reason for requiring the...
[oota-llvm.git] / include / llvm / Analysis / CallGraph.h
1 //===- CallGraph.h - Build a Module's call graph ----------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 ///
11 /// This file provides interfaces used to build and manipulate a call graph,
12 /// which is a very useful tool for interprocedural optimization.
13 ///
14 /// Every function in a module is represented as a node in the call graph.  The
15 /// callgraph node keeps track of which functions are called by the function
16 /// corresponding to the node.
17 ///
18 /// A call graph may contain nodes where the function that they correspond to
19 /// is null.  These 'external' nodes are used to represent control flow that is
20 /// not represented (or analyzable) in the module.  In particular, this
21 /// analysis builds one external node such that:
22 ///   1. All functions in the module without internal linkage will have edges
23 ///      from this external node, indicating that they could be called by
24 ///      functions outside of the module.
25 ///   2. All functions whose address is used for something more than a direct
26 ///      call, for example being stored into a memory location will also have
27 ///      an edge from this external node.  Since they may be called by an
28 ///      unknown caller later, they must be tracked as such.
29 ///
30 /// There is a second external node added for calls that leave this module.
31 /// Functions have a call edge to the external node iff:
32 ///   1. The function is external, reflecting the fact that they could call
33 ///      anything without internal linkage or that has its address taken.
34 ///   2. The function contains an indirect function call.
35 ///
36 /// As an extension in the future, there may be multiple nodes with a null
37 /// function.  These will be used when we can prove (through pointer analysis)
38 /// that an indirect call site can call only a specific set of functions.
39 ///
40 /// Because of these properties, the CallGraph captures a conservative superset
41 /// of all of the caller-callee relationships, which is useful for
42 /// transformations.
43 ///
44 /// The CallGraph class also attempts to figure out what the root of the
45 /// CallGraph is, which it currently does by looking for a function named
46 /// 'main'. If no function named 'main' is found, the external node is used as
47 /// the entry node, reflecting the fact that any function without internal
48 /// linkage could be called into (which is common for libraries).
49 ///
50 //===----------------------------------------------------------------------===//
51
52 #ifndef LLVM_ANALYSIS_CALLGRAPH_H
53 #define LLVM_ANALYSIS_CALLGRAPH_H
54
55 #include "llvm/ADT/GraphTraits.h"
56 #include "llvm/ADT/STLExtras.h"
57 #include "llvm/IR/CallSite.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/ValueHandle.h"
60 #include "llvm/Pass.h"
61 #include <map>
62
63 namespace llvm {
64
65 class Function;
66 class Module;
67 class CallGraphNode;
68
69 /// \brief The basic data container for the call graph of a \c Module of IR.
70 ///
71 /// This class exposes both the interface to the call graph for a module of IR.
72 ///
73 /// The core call graph itself can also be updated to reflect changes to the IR.
74 class CallGraph {
75   Module &M;
76
77   typedef std::map<const Function *, CallGraphNode *> FunctionMapTy;
78
79   /// \brief A map from \c Function* to \c CallGraphNode*.
80   FunctionMapTy FunctionMap;
81
82   /// \brief Root is root of the call graph, or the external node if a 'main'
83   /// function couldn't be found.
84   CallGraphNode *Root;
85
86   /// \brief This node has edges to all external functions and those internal
87   /// functions that have their address taken.
88   CallGraphNode *ExternalCallingNode;
89
90   /// \brief This node has edges to it from all functions making indirect calls
91   /// or calling an external function.
92   CallGraphNode *CallsExternalNode;
93
94   /// \brief Replace the function represented by this node by another.
95   ///
96   /// This does not rescan the body of the function, so it is suitable when
97   /// splicing the body of one function to another while also updating all
98   /// callers from the old function to the new.
99   void spliceFunction(const Function *From, const Function *To);
100
101   /// \brief Add a function to the call graph, and link the node to all of the
102   /// functions that it calls.
103   void addToCallGraph(Function *F);
104
105 public:
106   CallGraph(Module &M);
107   ~CallGraph();
108
109   void print(raw_ostream &OS) const;
110   void dump() const;
111
112   typedef FunctionMapTy::iterator iterator;
113   typedef FunctionMapTy::const_iterator const_iterator;
114
115   /// \brief Returns the module the call graph corresponds to.
116   Module &getModule() const { return M; }
117
118   inline iterator begin() { return FunctionMap.begin(); }
119   inline iterator end() { return FunctionMap.end(); }
120   inline const_iterator begin() const { return FunctionMap.begin(); }
121   inline const_iterator end() const { return FunctionMap.end(); }
122
123   /// \brief Returns the call graph node for the provided function.
124   inline const CallGraphNode *operator[](const Function *F) const {
125     const_iterator I = FunctionMap.find(F);
126     assert(I != FunctionMap.end() && "Function not in callgraph!");
127     return I->second;
128   }
129
130   /// \brief Returns the call graph node for the provided function.
131   inline CallGraphNode *operator[](const Function *F) {
132     const_iterator I = FunctionMap.find(F);
133     assert(I != FunctionMap.end() && "Function not in callgraph!");
134     return I->second;
135   }
136
137   /// \brief Returns the \c CallGraphNode which is used to represent
138   /// undetermined calls into the callgraph.
139   CallGraphNode *getExternalCallingNode() const { return ExternalCallingNode; }
140
141   CallGraphNode *getCallsExternalNode() const { return CallsExternalNode; }
142
143   //===---------------------------------------------------------------------
144   // Functions to keep a call graph up to date with a function that has been
145   // modified.
146   //
147
148   /// \brief Unlink the function from this module, returning it.
149   ///
150   /// Because this removes the function from the module, the call graph node is
151   /// destroyed.  This is only valid if the function does not call any other
152   /// functions (ie, there are no edges in it's CGN).  The easiest way to do
153   /// this is to dropAllReferences before calling this.
154   Function *removeFunctionFromModule(CallGraphNode *CGN);
155
156   /// \brief Similar to operator[], but this will insert a new CallGraphNode for
157   /// \c F if one does not already exist.
158   CallGraphNode *getOrInsertFunction(const Function *F);
159 };
160
161 /// \brief A node in the call graph for a module.
162 ///
163 /// Typically represents a function in the call graph. There are also special
164 /// "null" nodes used to represent theoretical entries in the call graph.
165 class CallGraphNode {
166 public:
167   /// \brief A pair of the calling instruction (a call or invoke)
168   /// and the call graph node being called.
169   typedef std::pair<WeakVH, CallGraphNode *> CallRecord;
170
171 public:
172   typedef std::vector<CallRecord> CalledFunctionsVector;
173
174   /// \brief Creates a node for the specified function.
175   inline CallGraphNode(Function *F) : F(F), NumReferences(0) {}
176
177   ~CallGraphNode() {
178     assert(NumReferences == 0 && "Node deleted while references remain");
179   }
180
181   typedef std::vector<CallRecord>::iterator iterator;
182   typedef std::vector<CallRecord>::const_iterator const_iterator;
183
184   /// \brief Returns the function that this call graph node represents.
185   Function *getFunction() const { return F; }
186
187   inline iterator begin() { return CalledFunctions.begin(); }
188   inline iterator end() { return CalledFunctions.end(); }
189   inline const_iterator begin() const { return CalledFunctions.begin(); }
190   inline const_iterator end() const { return CalledFunctions.end(); }
191   inline bool empty() const { return CalledFunctions.empty(); }
192   inline unsigned size() const { return (unsigned)CalledFunctions.size(); }
193
194   /// \brief Returns the number of other CallGraphNodes in this CallGraph that
195   /// reference this node in their callee list.
196   unsigned getNumReferences() const { return NumReferences; }
197
198   /// \brief Returns the i'th called function.
199   CallGraphNode *operator[](unsigned i) const {
200     assert(i < CalledFunctions.size() && "Invalid index");
201     return CalledFunctions[i].second;
202   }
203
204   /// \brief Print out this call graph node.
205   void dump() const;
206   void print(raw_ostream &OS) const;
207
208   //===---------------------------------------------------------------------
209   // Methods to keep a call graph up to date with a function that has been
210   // modified
211   //
212
213   /// \brief Removes all edges from this CallGraphNode to any functions it
214   /// calls.
215   void removeAllCalledFunctions() {
216     while (!CalledFunctions.empty()) {
217       CalledFunctions.back().second->DropRef();
218       CalledFunctions.pop_back();
219     }
220   }
221
222   /// \brief Moves all the callee information from N to this node.
223   void stealCalledFunctionsFrom(CallGraphNode *N) {
224     assert(CalledFunctions.empty() &&
225            "Cannot steal callsite information if I already have some");
226     std::swap(CalledFunctions, N->CalledFunctions);
227   }
228
229   /// \brief Adds a function to the list of functions called by this one.
230   void addCalledFunction(CallSite CS, CallGraphNode *M) {
231     assert(!CS.getInstruction() || !CS.getCalledFunction() ||
232            !CS.getCalledFunction()->isIntrinsic());
233     CalledFunctions.push_back(std::make_pair(CS.getInstruction(), M));
234     M->AddRef();
235   }
236
237   void removeCallEdge(iterator I) {
238     I->second->DropRef();
239     *I = CalledFunctions.back();
240     CalledFunctions.pop_back();
241   }
242
243   /// \brief Removes the edge in the node for the specified call site.
244   ///
245   /// Note that this method takes linear time, so it should be used sparingly.
246   void removeCallEdgeFor(CallSite CS);
247
248   /// \brief Removes all call edges from this node to the specified callee
249   /// function.
250   ///
251   /// This takes more time to execute than removeCallEdgeTo, so it should not
252   /// be used unless necessary.
253   void removeAnyCallEdgeTo(CallGraphNode *Callee);
254
255   /// \brief Removes one edge associated with a null callsite from this node to
256   /// the specified callee function.
257   void removeOneAbstractEdgeTo(CallGraphNode *Callee);
258
259   /// \brief Replaces the edge in the node for the specified call site with a
260   /// new one.
261   ///
262   /// Note that this method takes linear time, so it should be used sparingly.
263   void replaceCallEdge(CallSite CS, CallSite NewCS, CallGraphNode *NewNode);
264
265 private:
266   friend class CallGraph;
267
268   AssertingVH<Function> F;
269
270   std::vector<CallRecord> CalledFunctions;
271
272   /// \brief The number of times that this CallGraphNode occurs in the
273   /// CalledFunctions array of this or other CallGraphNodes.
274   unsigned NumReferences;
275
276   CallGraphNode(const CallGraphNode &) = delete;
277   void operator=(const CallGraphNode &) = delete;
278
279   void DropRef() { --NumReferences; }
280   void AddRef() { ++NumReferences; }
281
282   /// \brief A special function that should only be used by the CallGraph class.
283   void allReferencesDropped() { NumReferences = 0; }
284 };
285
286 /// \brief An analysis pass to compute the \c CallGraph for a \c Module.
287 ///
288 /// This class implements the concept of an analysis pass used by the \c
289 /// ModuleAnalysisManager to run an analysis over a module and cache the
290 /// resulting data.
291 class CallGraphAnalysis {
292 public:
293   /// \brief A formulaic typedef to inform clients of the result type.
294   typedef CallGraph Result;
295
296   static void *ID() { return (void *)&PassID; }
297
298   /// \brief Compute the \c CallGraph for the module \c M.
299   ///
300   /// The real work here is done in the \c CallGraph constructor.
301   CallGraph run(Module *M) { return CallGraph(*M); }
302
303 private:
304   static char PassID;
305 };
306
307 /// \brief The \c ModulePass which wraps up a \c CallGraph and the logic to
308 /// build it.
309 ///
310 /// This class exposes both the interface to the call graph container and the
311 /// module pass which runs over a module of IR and produces the call graph. The
312 /// call graph interface is entirelly a wrapper around a \c CallGraph object
313 /// which is stored internally for each module.
314 class CallGraphWrapperPass : public ModulePass {
315   std::unique_ptr<CallGraph> G;
316
317 public:
318   static char ID; // Class identification, replacement for typeinfo
319
320   CallGraphWrapperPass();
321   virtual ~CallGraphWrapperPass();
322
323   /// \brief The internal \c CallGraph around which the rest of this interface
324   /// is wrapped.
325   const CallGraph &getCallGraph() const { return *G; }
326   CallGraph &getCallGraph() { return *G; }
327
328   typedef CallGraph::iterator iterator;
329   typedef CallGraph::const_iterator const_iterator;
330
331   /// \brief Returns the module the call graph corresponds to.
332   Module &getModule() const { return G->getModule(); }
333
334   inline iterator begin() { return G->begin(); }
335   inline iterator end() { return G->end(); }
336   inline const_iterator begin() const { return G->begin(); }
337   inline const_iterator end() const { return G->end(); }
338
339   /// \brief Returns the call graph node for the provided function.
340   inline const CallGraphNode *operator[](const Function *F) const {
341     return (*G)[F];
342   }
343
344   /// \brief Returns the call graph node for the provided function.
345   inline CallGraphNode *operator[](const Function *F) { return (*G)[F]; }
346
347   /// \brief Returns the \c CallGraphNode which is used to represent
348   /// undetermined calls into the callgraph.
349   CallGraphNode *getExternalCallingNode() const {
350     return G->getExternalCallingNode();
351   }
352
353   CallGraphNode *getCallsExternalNode() const {
354     return G->getCallsExternalNode();
355   }
356
357   //===---------------------------------------------------------------------
358   // Functions to keep a call graph up to date with a function that has been
359   // modified.
360   //
361
362   /// \brief Unlink the function from this module, returning it.
363   ///
364   /// Because this removes the function from the module, the call graph node is
365   /// destroyed.  This is only valid if the function does not call any other
366   /// functions (ie, there are no edges in it's CGN).  The easiest way to do
367   /// this is to dropAllReferences before calling this.
368   Function *removeFunctionFromModule(CallGraphNode *CGN) {
369     return G->removeFunctionFromModule(CGN);
370   }
371
372   /// \brief Similar to operator[], but this will insert a new CallGraphNode for
373   /// \c F if one does not already exist.
374   CallGraphNode *getOrInsertFunction(const Function *F) {
375     return G->getOrInsertFunction(F);
376   }
377
378   //===---------------------------------------------------------------------
379   // Implementation of the ModulePass interface needed here.
380   //
381
382   void getAnalysisUsage(AnalysisUsage &AU) const override;
383   bool runOnModule(Module &M) override;
384   void releaseMemory() override;
385
386   void print(raw_ostream &o, const Module *) const override;
387   void dump() const;
388 };
389
390 //===----------------------------------------------------------------------===//
391 // GraphTraits specializations for call graphs so that they can be treated as
392 // graphs by the generic graph algorithms.
393 //
394
395 // Provide graph traits for tranversing call graphs using standard graph
396 // traversals.
397 template <> struct GraphTraits<CallGraphNode *> {
398   typedef CallGraphNode NodeType;
399
400   typedef CallGraphNode::CallRecord CGNPairTy;
401   typedef std::pointer_to_unary_function<CGNPairTy, CallGraphNode *>
402   CGNDerefFun;
403
404   static NodeType *getEntryNode(CallGraphNode *CGN) { return CGN; }
405
406   typedef mapped_iterator<NodeType::iterator, CGNDerefFun> ChildIteratorType;
407
408   static inline ChildIteratorType child_begin(NodeType *N) {
409     return map_iterator(N->begin(), CGNDerefFun(CGNDeref));
410   }
411   static inline ChildIteratorType child_end(NodeType *N) {
412     return map_iterator(N->end(), CGNDerefFun(CGNDeref));
413   }
414
415   static CallGraphNode *CGNDeref(CGNPairTy P) { return P.second; }
416 };
417
418 template <> struct GraphTraits<const CallGraphNode *> {
419   typedef const CallGraphNode NodeType;
420
421   typedef CallGraphNode::CallRecord CGNPairTy;
422   typedef std::pointer_to_unary_function<CGNPairTy, const CallGraphNode *>
423       CGNDerefFun;
424
425   static NodeType *getEntryNode(const CallGraphNode *CGN) { return CGN; }
426
427   typedef mapped_iterator<NodeType::const_iterator, CGNDerefFun>
428       ChildIteratorType;
429
430   static inline ChildIteratorType child_begin(NodeType *N) {
431     return map_iterator(N->begin(), CGNDerefFun(CGNDeref));
432   }
433   static inline ChildIteratorType child_end(NodeType *N) {
434     return map_iterator(N->end(), CGNDerefFun(CGNDeref));
435   }
436
437   static const CallGraphNode *CGNDeref(CGNPairTy P) { return P.second; }
438 };
439
440 template <>
441 struct GraphTraits<CallGraph *> : public GraphTraits<CallGraphNode *> {
442   static NodeType *getEntryNode(CallGraph *CGN) {
443     return CGN->getExternalCallingNode(); // Start at the external node!
444   }
445   typedef std::pair<const Function *, CallGraphNode *> PairTy;
446   typedef std::pointer_to_unary_function<PairTy, CallGraphNode &> DerefFun;
447
448   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
449   typedef mapped_iterator<CallGraph::iterator, DerefFun> nodes_iterator;
450   static nodes_iterator nodes_begin(CallGraph *CG) {
451     return map_iterator(CG->begin(), DerefFun(CGdereference));
452   }
453   static nodes_iterator nodes_end(CallGraph *CG) {
454     return map_iterator(CG->end(), DerefFun(CGdereference));
455   }
456
457   static CallGraphNode &CGdereference(PairTy P) { return *P.second; }
458 };
459
460 template <>
461 struct GraphTraits<const CallGraph *> : public GraphTraits<
462                                             const CallGraphNode *> {
463   static NodeType *getEntryNode(const CallGraph *CGN) {
464     return CGN->getExternalCallingNode(); // Start at the external node!
465   }
466   typedef std::pair<const Function *, const CallGraphNode *> PairTy;
467   typedef std::pointer_to_unary_function<PairTy, const CallGraphNode &>
468       DerefFun;
469
470   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
471   typedef mapped_iterator<CallGraph::const_iterator, DerefFun> nodes_iterator;
472   static nodes_iterator nodes_begin(const CallGraph *CG) {
473     return map_iterator(CG->begin(), DerefFun(CGdereference));
474   }
475   static nodes_iterator nodes_end(const CallGraph *CG) {
476     return map_iterator(CG->end(), DerefFun(CGdereference));
477   }
478
479   static const CallGraphNode &CGdereference(PairTy P) { return *P.second; }
480 };
481
482 } // End llvm namespace
483
484 #endif