4a6a280d0c8ca8b5a023bd62ad811a47a714a1c7
[oota-llvm.git] / include / llvm / Analysis / BranchProbabilityInfo.h
1 //===--- BranchProbabilityInfo.h - Branch Probability Analysis --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass is used to evaluate branch probabilties.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H
15 #define LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H
16
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/IR/CFG.h"
20 #include "llvm/InitializePasses.h"
21 #include "llvm/Pass.h"
22 #include "llvm/Support/BranchProbability.h"
23
24 namespace llvm {
25 class LoopInfo;
26 class raw_ostream;
27
28 /// \brief Analysis pass providing branch probability information.
29 ///
30 /// This is a function analysis pass which provides information on the relative
31 /// probabilities of each "edge" in the function's CFG where such an edge is
32 /// defined by a pair (PredBlock and an index in the successors). The
33 /// probability of an edge from one block is always relative to the
34 /// probabilities of other edges from the block. The probabilites of all edges
35 /// from a block sum to exactly one (100%).
36 /// We use a pair (PredBlock and an index in the successors) to uniquely
37 /// identify an edge, since we can have multiple edges from Src to Dst.
38 /// As an example, we can have a switch which jumps to Dst with value 0 and
39 /// value 10.
40 class BranchProbabilityInfo : public FunctionPass {
41 public:
42   static char ID;
43
44   BranchProbabilityInfo() : FunctionPass(ID) {
45     initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
46   }
47
48   void getAnalysisUsage(AnalysisUsage &AU) const override;
49   bool runOnFunction(Function &F) override;
50   void print(raw_ostream &OS, const Module *M = 0) const override;
51
52   /// \brief Get an edge's probability, relative to other out-edges of the Src.
53   ///
54   /// This routine provides access to the fractional probability between zero
55   /// (0%) and one (100%) of this edge executing, relative to other edges
56   /// leaving the 'Src' block. The returned probability is never zero, and can
57   /// only be one if the source block has only one successor.
58   BranchProbability getEdgeProbability(const BasicBlock *Src,
59                                        unsigned IndexInSuccessors) const;
60
61   /// \brief Get the probability of going from Src to Dst.
62   ///
63   /// It returns the sum of all probabilities for edges from Src to Dst.
64   BranchProbability getEdgeProbability(const BasicBlock *Src,
65                                        const BasicBlock *Dst) const;
66
67   /// \brief Test if an edge is hot relative to other out-edges of the Src.
68   ///
69   /// Check whether this edge out of the source block is 'hot'. We define hot
70   /// as having a relative probability >= 80%.
71   bool isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const;
72
73   /// \brief Retrieve the hot successor of a block if one exists.
74   ///
75   /// Given a basic block, look through its successors and if one exists for
76   /// which \see isEdgeHot would return true, return that successor block.
77   BasicBlock *getHotSucc(BasicBlock *BB) const;
78
79   /// \brief Print an edge's probability.
80   ///
81   /// Retrieves an edge's probability similarly to \see getEdgeProbability, but
82   /// then prints that probability to the provided stream. That stream is then
83   /// returned.
84   raw_ostream &printEdgeProbability(raw_ostream &OS, const BasicBlock *Src,
85                                     const BasicBlock *Dst) const;
86
87   /// \brief Get the raw edge weight calculated for the edge.
88   ///
89   /// This returns the raw edge weight. It is guaranteed to fall between 1 and
90   /// UINT32_MAX. Note that the raw edge weight is not meaningful in isolation.
91   /// This interface should be very carefully, and primarily by routines that
92   /// are updating the analysis by later calling setEdgeWeight.
93   uint32_t getEdgeWeight(const BasicBlock *Src,
94                          unsigned IndexInSuccessors) const;
95
96   /// \brief Get the raw edge weight calculated for the block pair.
97   ///
98   /// This returns the sum of all raw edge weights from Src to Dst.
99   /// It is guaranteed to fall between 1 and UINT32_MAX.
100   uint32_t getEdgeWeight(const BasicBlock *Src, const BasicBlock *Dst) const;
101
102   uint32_t getEdgeWeight(const BasicBlock *Src,
103                          succ_const_iterator Dst) const;
104
105   /// \brief Set the raw edge weight for a given edge.
106   ///
107   /// This allows a pass to explicitly set the edge weight for an edge. It can
108   /// be used when updating the CFG to update and preserve the branch
109   /// probability information. Read the implementation of how these edge
110   /// weights are calculated carefully before using!
111   void setEdgeWeight(const BasicBlock *Src, unsigned IndexInSuccessors,
112                      uint32_t Weight);
113
114 private:
115   // Since we allow duplicate edges from one basic block to another, we use
116   // a pair (PredBlock and an index in the successors) to specify an edge.
117   typedef std::pair<const BasicBlock *, unsigned> Edge;
118
119   // Default weight value. Used when we don't have information about the edge.
120   // TODO: DEFAULT_WEIGHT makes sense during static predication, when none of
121   // the successors have a weight yet. But it doesn't make sense when providing
122   // weight to an edge that may have siblings with non-zero weights. This can
123   // be handled various ways, but it's probably fine for an edge with unknown
124   // weight to just "inherit" the non-zero weight of an adjacent successor.
125   static const uint32_t DEFAULT_WEIGHT = 16;
126
127   DenseMap<Edge, uint32_t> Weights;
128
129   /// \brief Handle to the LoopInfo analysis.
130   LoopInfo *LI;
131
132   /// \brief Track the last function we run over for printing.
133   Function *LastF;
134
135   /// \brief Track the set of blocks directly succeeded by a returning block.
136   SmallPtrSet<BasicBlock *, 16> PostDominatedByUnreachable;
137
138   /// \brief Track the set of blocks that always lead to a cold call.
139   SmallPtrSet<BasicBlock *, 16> PostDominatedByColdCall;
140
141   /// \brief Get sum of the block successors' weights.
142   uint32_t getSumForBlock(const BasicBlock *BB) const;
143
144   bool calcUnreachableHeuristics(BasicBlock *BB);
145   bool calcMetadataWeights(BasicBlock *BB);
146   bool calcColdCallHeuristics(BasicBlock *BB);
147   bool calcPointerHeuristics(BasicBlock *BB);
148   bool calcLoopBranchHeuristics(BasicBlock *BB);
149   bool calcZeroHeuristics(BasicBlock *BB);
150   bool calcFloatingPointHeuristics(BasicBlock *BB);
151   bool calcInvokeHeuristics(BasicBlock *BB);
152 };
153
154 }
155
156 #endif