Simplify memory management with std::unique_ptr.
[oota-llvm.git] / include / llvm / ADT / ilist.h
1 //==-- llvm/ADT/ilist.h - Intrusive Linked List Template ---------*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines classes to implement an intrusive doubly linked list class
11 // (i.e. each node of the list must contain a next and previous field for the
12 // list.
13 //
14 // The ilist_traits trait class is used to gain access to the next and previous
15 // fields of the node type that the list is instantiated with.  If it is not
16 // specialized, the list defaults to using the getPrev(), getNext() method calls
17 // to get the next and previous pointers.
18 //
19 // The ilist class itself, should be a plug in replacement for list, assuming
20 // that the nodes contain next/prev pointers.  This list replacement does not
21 // provide a constant time size() method, so be careful to use empty() when you
22 // really want to know if it's empty.
23 //
24 // The ilist class is implemented by allocating a 'tail' node when the list is
25 // created (using ilist_traits<>::createSentinel()).  This tail node is
26 // absolutely required because the user must be able to compute end()-1. Because
27 // of this, users of the direct next/prev links will see an extra link on the
28 // end of the list, which should be ignored.
29 //
30 // Requirements for a user of this list:
31 //
32 //   1. The user must provide {g|s}et{Next|Prev} methods, or specialize
33 //      ilist_traits to provide an alternate way of getting and setting next and
34 //      prev links.
35 //
36 //===----------------------------------------------------------------------===//
37
38 #ifndef LLVM_ADT_ILIST_H
39 #define LLVM_ADT_ILIST_H
40
41 #include "llvm/Support/Compiler.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstddef>
45 #include <iterator>
46
47 namespace llvm {
48
49 template<typename NodeTy, typename Traits> class iplist;
50 template<typename NodeTy> class ilist_iterator;
51
52 /// ilist_nextprev_traits - A fragment for template traits for intrusive list
53 /// that provides default next/prev implementations for common operations.
54 ///
55 template<typename NodeTy>
56 struct ilist_nextprev_traits {
57   static NodeTy *getPrev(NodeTy *N) { return N->getPrev(); }
58   static NodeTy *getNext(NodeTy *N) { return N->getNext(); }
59   static const NodeTy *getPrev(const NodeTy *N) { return N->getPrev(); }
60   static const NodeTy *getNext(const NodeTy *N) { return N->getNext(); }
61
62   static void setPrev(NodeTy *N, NodeTy *Prev) { N->setPrev(Prev); }
63   static void setNext(NodeTy *N, NodeTy *Next) { N->setNext(Next); }
64 };
65
66 template<typename NodeTy>
67 struct ilist_traits;
68
69 /// ilist_sentinel_traits - A fragment for template traits for intrusive list
70 /// that provides default sentinel implementations for common operations.
71 ///
72 /// ilist_sentinel_traits implements a lazy dynamic sentinel allocation
73 /// strategy. The sentinel is stored in the prev field of ilist's Head.
74 ///
75 template<typename NodeTy>
76 struct ilist_sentinel_traits {
77   /// createSentinel - create the dynamic sentinel
78   static NodeTy *createSentinel() { return new NodeTy(); }
79
80   /// destroySentinel - deallocate the dynamic sentinel
81   static void destroySentinel(NodeTy *N) { delete N; }
82
83   /// provideInitialHead - when constructing an ilist, provide a starting
84   /// value for its Head
85   /// @return null node to indicate that it needs to be allocated later
86   static NodeTy *provideInitialHead() { return nullptr; }
87
88   /// ensureHead - make sure that Head is either already
89   /// initialized or assigned a fresh sentinel
90   /// @return the sentinel
91   static NodeTy *ensureHead(NodeTy *&Head) {
92     if (!Head) {
93       Head = ilist_traits<NodeTy>::createSentinel();
94       ilist_traits<NodeTy>::noteHead(Head, Head);
95       ilist_traits<NodeTy>::setNext(Head, nullptr);
96       return Head;
97     }
98     return ilist_traits<NodeTy>::getPrev(Head);
99   }
100
101   /// noteHead - stash the sentinel into its default location
102   static void noteHead(NodeTy *NewHead, NodeTy *Sentinel) {
103     ilist_traits<NodeTy>::setPrev(NewHead, Sentinel);
104   }
105 };
106
107 template <typename NodeTy> class ilist_half_node;
108 template <typename NodeTy> class ilist_node;
109
110 /// Traits with an embedded ilist_node as a sentinel.
111 ///
112 /// FIXME: The downcast in createSentinel() is UB.
113 template <typename NodeTy> struct ilist_embedded_sentinel_traits {
114   /// Get hold of the node that marks the end of the list.
115   NodeTy *createSentinel() const {
116     // Since i(p)lists always publicly derive from their corresponding traits,
117     // placing a data member in this class will augment the i(p)list.  But since
118     // the NodeTy is expected to be publicly derive from ilist_node<NodeTy>,
119     // there is a legal viable downcast from it to NodeTy. We use this trick to
120     // superimpose an i(p)list with a "ghostly" NodeTy, which becomes the
121     // sentinel. Dereferencing the sentinel is forbidden (save the
122     // ilist_node<NodeTy>), so no one will ever notice the superposition.
123     return static_cast<NodeTy *>(&Sentinel);
124   }
125   static void destroySentinel(NodeTy *) {}
126
127   NodeTy *provideInitialHead() const { return createSentinel(); }
128   NodeTy *ensureHead(NodeTy *) const { return createSentinel(); }
129   static void noteHead(NodeTy *, NodeTy *) {}
130
131 private:
132   mutable ilist_node<NodeTy> Sentinel;
133 };
134
135 /// Trait with an embedded ilist_half_node as a sentinel.
136 ///
137 /// FIXME: The downcast in createSentinel() is UB.
138 template <typename NodeTy> struct ilist_half_embedded_sentinel_traits {
139   /// Get hold of the node that marks the end of the list.
140   NodeTy *createSentinel() const {
141     // See comment in ilist_embedded_sentinel_traits::createSentinel().
142     return static_cast<NodeTy *>(&Sentinel);
143   }
144   static void destroySentinel(NodeTy *) {}
145
146   NodeTy *provideInitialHead() const { return createSentinel(); }
147   NodeTy *ensureHead(NodeTy *) const { return createSentinel(); }
148   static void noteHead(NodeTy *, NodeTy *) {}
149
150 private:
151   mutable ilist_half_node<NodeTy> Sentinel;
152 };
153
154 /// ilist_node_traits - A fragment for template traits for intrusive list
155 /// that provides default node related operations.
156 ///
157 template<typename NodeTy>
158 struct ilist_node_traits {
159   static NodeTy *createNode(const NodeTy &V) { return new NodeTy(V); }
160   static void deleteNode(NodeTy *V) { delete V; }
161
162   void addNodeToList(NodeTy *) {}
163   void removeNodeFromList(NodeTy *) {}
164   void transferNodesFromList(ilist_node_traits &    /*SrcTraits*/,
165                              ilist_iterator<NodeTy> /*first*/,
166                              ilist_iterator<NodeTy> /*last*/) {}
167 };
168
169 /// ilist_default_traits - Default template traits for intrusive list.
170 /// By inheriting from this, you can easily use default implementations
171 /// for all common operations.
172 ///
173 template<typename NodeTy>
174 struct ilist_default_traits : public ilist_nextprev_traits<NodeTy>,
175                               public ilist_sentinel_traits<NodeTy>,
176                               public ilist_node_traits<NodeTy> {
177 };
178
179 // Template traits for intrusive list.  By specializing this template class, you
180 // can change what next/prev fields are used to store the links...
181 template<typename NodeTy>
182 struct ilist_traits : public ilist_default_traits<NodeTy> {};
183
184 // Const traits are the same as nonconst traits...
185 template<typename Ty>
186 struct ilist_traits<const Ty> : public ilist_traits<Ty> {};
187
188 //===----------------------------------------------------------------------===//
189 // ilist_iterator<Node> - Iterator for intrusive list.
190 //
191 template<typename NodeTy>
192 class ilist_iterator
193   : public std::iterator<std::bidirectional_iterator_tag, NodeTy, ptrdiff_t> {
194
195 public:
196   typedef ilist_traits<NodeTy> Traits;
197   typedef std::iterator<std::bidirectional_iterator_tag,
198                         NodeTy, ptrdiff_t> super;
199
200   typedef typename super::value_type value_type;
201   typedef typename super::difference_type difference_type;
202   typedef typename super::pointer pointer;
203   typedef typename super::reference reference;
204 private:
205   pointer NodePtr;
206
207   // ilist_iterator is not a random-access iterator, but it has an
208   // implicit conversion to pointer-type, which is. Declare (but
209   // don't define) these functions as private to help catch
210   // accidental misuse.
211   void operator[](difference_type) const;
212   void operator+(difference_type) const;
213   void operator-(difference_type) const;
214   void operator+=(difference_type) const;
215   void operator-=(difference_type) const;
216   template<class T> void operator<(T) const;
217   template<class T> void operator<=(T) const;
218   template<class T> void operator>(T) const;
219   template<class T> void operator>=(T) const;
220   template<class T> void operator-(T) const;
221 public:
222
223   explicit ilist_iterator(pointer NP) : NodePtr(NP) {}
224   explicit ilist_iterator(reference NR) : NodePtr(&NR) {}
225   ilist_iterator() : NodePtr(nullptr) {}
226
227   // This is templated so that we can allow constructing a const iterator from
228   // a nonconst iterator...
229   template<class node_ty>
230   ilist_iterator(const ilist_iterator<node_ty> &RHS)
231     : NodePtr(RHS.getNodePtrUnchecked()) {}
232
233   // This is templated so that we can allow assigning to a const iterator from
234   // a nonconst iterator...
235   template<class node_ty>
236   const ilist_iterator &operator=(const ilist_iterator<node_ty> &RHS) {
237     NodePtr = RHS.getNodePtrUnchecked();
238     return *this;
239   }
240
241   void reset(pointer NP) { NodePtr = NP; }
242
243   // Accessors...
244   explicit operator pointer() const {
245     return NodePtr;
246   }
247
248   reference operator*() const {
249     return *NodePtr;
250   }
251   pointer operator->() const { return &operator*(); }
252
253   // Comparison operators
254   template <class Y> bool operator==(const ilist_iterator<Y> &RHS) const {
255     return NodePtr == RHS.getNodePtrUnchecked();
256   }
257   template <class Y> bool operator!=(const ilist_iterator<Y> &RHS) const {
258     return NodePtr != RHS.getNodePtrUnchecked();
259   }
260
261   // Increment and decrement operators...
262   ilist_iterator &operator--() {      // predecrement - Back up
263     NodePtr = Traits::getPrev(NodePtr);
264     assert(NodePtr && "--'d off the beginning of an ilist!");
265     return *this;
266   }
267   ilist_iterator &operator++() {      // preincrement - Advance
268     NodePtr = Traits::getNext(NodePtr);
269     return *this;
270   }
271   ilist_iterator operator--(int) {    // postdecrement operators...
272     ilist_iterator tmp = *this;
273     --*this;
274     return tmp;
275   }
276   ilist_iterator operator++(int) {    // postincrement operators...
277     ilist_iterator tmp = *this;
278     ++*this;
279     return tmp;
280   }
281
282   // Internal interface, do not use...
283   pointer getNodePtrUnchecked() const { return NodePtr; }
284 };
285
286 // These are to catch errors when people try to use them as random access
287 // iterators.
288 template<typename T>
289 void operator-(int, ilist_iterator<T>) = delete;
290 template<typename T>
291 void operator-(ilist_iterator<T>,int) = delete;
292
293 template<typename T>
294 void operator+(int, ilist_iterator<T>) = delete;
295 template<typename T>
296 void operator+(ilist_iterator<T>,int) = delete;
297
298 // operator!=/operator== - Allow mixed comparisons without dereferencing
299 // the iterator, which could very likely be pointing to end().
300 template<typename T>
301 bool operator!=(const T* LHS, const ilist_iterator<const T> &RHS) {
302   return LHS != RHS.getNodePtrUnchecked();
303 }
304 template<typename T>
305 bool operator==(const T* LHS, const ilist_iterator<const T> &RHS) {
306   return LHS == RHS.getNodePtrUnchecked();
307 }
308 template<typename T>
309 bool operator!=(T* LHS, const ilist_iterator<T> &RHS) {
310   return LHS != RHS.getNodePtrUnchecked();
311 }
312 template<typename T>
313 bool operator==(T* LHS, const ilist_iterator<T> &RHS) {
314   return LHS == RHS.getNodePtrUnchecked();
315 }
316
317
318 // Allow ilist_iterators to convert into pointers to a node automatically when
319 // used by the dyn_cast, cast, isa mechanisms...
320
321 template<typename From> struct simplify_type;
322
323 template<typename NodeTy> struct simplify_type<ilist_iterator<NodeTy> > {
324   typedef NodeTy* SimpleType;
325
326   static SimpleType getSimplifiedValue(ilist_iterator<NodeTy> &Node) {
327     return &*Node;
328   }
329 };
330 template<typename NodeTy> struct simplify_type<const ilist_iterator<NodeTy> > {
331   typedef /*const*/ NodeTy* SimpleType;
332
333   static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) {
334     return &*Node;
335   }
336 };
337
338
339 //===----------------------------------------------------------------------===//
340 //
341 /// iplist - The subset of list functionality that can safely be used on nodes
342 /// of polymorphic types, i.e. a heterogeneous list with a common base class that
343 /// holds the next/prev pointers.  The only state of the list itself is a single
344 /// pointer to the head of the list.
345 ///
346 /// This list can be in one of three interesting states:
347 /// 1. The list may be completely unconstructed.  In this case, the head
348 ///    pointer is null.  When in this form, any query for an iterator (e.g.
349 ///    begin() or end()) causes the list to transparently change to state #2.
350 /// 2. The list may be empty, but contain a sentinel for the end iterator. This
351 ///    sentinel is created by the Traits::createSentinel method and is a link
352 ///    in the list.  When the list is empty, the pointer in the iplist points
353 ///    to the sentinel.  Once the sentinel is constructed, it
354 ///    is not destroyed until the list is.
355 /// 3. The list may contain actual objects in it, which are stored as a doubly
356 ///    linked list of nodes.  One invariant of the list is that the predecessor
357 ///    of the first node in the list always points to the last node in the list,
358 ///    and the successor pointer for the sentinel (which always stays at the
359 ///    end of the list) is always null.
360 ///
361 template<typename NodeTy, typename Traits=ilist_traits<NodeTy> >
362 class iplist : public Traits {
363   mutable NodeTy *Head;
364
365   // Use the prev node pointer of 'head' as the tail pointer.  This is really a
366   // circularly linked list where we snip the 'next' link from the sentinel node
367   // back to the first node in the list (to preserve assertions about going off
368   // the end of the list).
369   NodeTy *getTail() { return this->ensureHead(Head); }
370   const NodeTy *getTail() const { return this->ensureHead(Head); }
371   void setTail(NodeTy *N) const { this->noteHead(Head, N); }
372
373   /// CreateLazySentinel - This method verifies whether the sentinel for the
374   /// list has been created and lazily makes it if not.
375   void CreateLazySentinel() const {
376     this->ensureHead(Head);
377   }
378
379   static bool op_less(NodeTy &L, NodeTy &R) { return L < R; }
380   static bool op_equal(NodeTy &L, NodeTy &R) { return L == R; }
381
382   // No fundamental reason why iplist can't be copyable, but the default
383   // copy/copy-assign won't do.
384   iplist(const iplist &) = delete;
385   void operator=(const iplist &) = delete;
386
387 public:
388   typedef NodeTy *pointer;
389   typedef const NodeTy *const_pointer;
390   typedef NodeTy &reference;
391   typedef const NodeTy &const_reference;
392   typedef NodeTy value_type;
393   typedef ilist_iterator<NodeTy> iterator;
394   typedef ilist_iterator<const NodeTy> const_iterator;
395   typedef size_t size_type;
396   typedef ptrdiff_t difference_type;
397   typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
398   typedef std::reverse_iterator<iterator>  reverse_iterator;
399
400   iplist() : Head(this->provideInitialHead()) {}
401   ~iplist() {
402     if (!Head) return;
403     clear();
404     Traits::destroySentinel(getTail());
405   }
406
407   // Iterator creation methods.
408   iterator begin() {
409     CreateLazySentinel();
410     return iterator(Head);
411   }
412   const_iterator begin() const {
413     CreateLazySentinel();
414     return const_iterator(Head);
415   }
416   iterator end() {
417     CreateLazySentinel();
418     return iterator(getTail());
419   }
420   const_iterator end() const {
421     CreateLazySentinel();
422     return const_iterator(getTail());
423   }
424
425   // reverse iterator creation methods.
426   reverse_iterator rbegin()            { return reverse_iterator(end()); }
427   const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
428   reverse_iterator rend()              { return reverse_iterator(begin()); }
429   const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
430
431
432   // Miscellaneous inspection routines.
433   size_type max_size() const { return size_type(-1); }
434   bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const {
435     return !Head || Head == getTail();
436   }
437
438   // Front and back accessor functions...
439   reference front() {
440     assert(!empty() && "Called front() on empty list!");
441     return *Head;
442   }
443   const_reference front() const {
444     assert(!empty() && "Called front() on empty list!");
445     return *Head;
446   }
447   reference back() {
448     assert(!empty() && "Called back() on empty list!");
449     return *this->getPrev(getTail());
450   }
451   const_reference back() const {
452     assert(!empty() && "Called back() on empty list!");
453     return *this->getPrev(getTail());
454   }
455
456   void swap(iplist &RHS) {
457     assert(0 && "Swap does not use list traits callback correctly yet!");
458     std::swap(Head, RHS.Head);
459   }
460
461   iterator insert(iterator where, NodeTy *New) {
462     NodeTy *CurNode = where.getNodePtrUnchecked();
463     NodeTy *PrevNode = this->getPrev(CurNode);
464     this->setNext(New, CurNode);
465     this->setPrev(New, PrevNode);
466
467     if (CurNode != Head)  // Is PrevNode off the beginning of the list?
468       this->setNext(PrevNode, New);
469     else
470       Head = New;
471     this->setPrev(CurNode, New);
472
473     this->addNodeToList(New);  // Notify traits that we added a node...
474     return iterator(New);
475   }
476
477   iterator insertAfter(iterator where, NodeTy *New) {
478     if (empty())
479       return insert(begin(), New);
480     else
481       return insert(++where, New);
482   }
483
484   NodeTy *remove(iterator &IT) {
485     assert(IT != end() && "Cannot remove end of list!");
486     NodeTy *Node = &*IT;
487     NodeTy *NextNode = this->getNext(Node);
488     NodeTy *PrevNode = this->getPrev(Node);
489
490     if (Node != Head)  // Is PrevNode off the beginning of the list?
491       this->setNext(PrevNode, NextNode);
492     else
493       Head = NextNode;
494     this->setPrev(NextNode, PrevNode);
495     IT.reset(NextNode);
496     this->removeNodeFromList(Node);  // Notify traits that we removed a node...
497
498     // Set the next/prev pointers of the current node to null.  This isn't
499     // strictly required, but this catches errors where a node is removed from
500     // an ilist (and potentially deleted) with iterators still pointing at it.
501     // When those iterators are incremented or decremented, they will assert on
502     // the null next/prev pointer instead of "usually working".
503     this->setNext(Node, nullptr);
504     this->setPrev(Node, nullptr);
505     return Node;
506   }
507
508   NodeTy *remove(const iterator &IT) {
509     iterator MutIt = IT;
510     return remove(MutIt);
511   }
512
513   NodeTy *remove(NodeTy *IT) { return remove(iterator(IT)); }
514   NodeTy *remove(NodeTy &IT) { return remove(iterator(IT)); }
515
516   // erase - remove a node from the controlled sequence... and delete it.
517   iterator erase(iterator where) {
518     this->deleteNode(remove(where));
519     return where;
520   }
521
522   iterator erase(NodeTy *IT) { return erase(iterator(IT)); }
523   iterator erase(NodeTy &IT) { return erase(iterator(IT)); }
524
525   /// Remove all nodes from the list like clear(), but do not call
526   /// removeNodeFromList() or deleteNode().
527   ///
528   /// This should only be used immediately before freeing nodes in bulk to
529   /// avoid traversing the list and bringing all the nodes into cache.
530   void clearAndLeakNodesUnsafely() {
531     if (Head) {
532       Head = getTail();
533       this->setPrev(Head, Head);
534     }
535   }
536
537 private:
538   // transfer - The heart of the splice function.  Move linked list nodes from
539   // [first, last) into position.
540   //
541   void transfer(iterator position, iplist &L2, iterator first, iterator last) {
542     assert(first != last && "Should be checked by callers");
543     // Position cannot be contained in the range to be transferred.
544     // Check for the most common mistake.
545     assert(position != first &&
546            "Insertion point can't be one of the transferred nodes");
547
548     if (position != last) {
549       // Note: we have to be careful about the case when we move the first node
550       // in the list.  This node is the list sentinel node and we can't move it.
551       NodeTy *ThisSentinel = getTail();
552       setTail(nullptr);
553       NodeTy *L2Sentinel = L2.getTail();
554       L2.setTail(nullptr);
555
556       // Remove [first, last) from its old position.
557       NodeTy *First = &*first, *Prev = this->getPrev(First);
558       NodeTy *Next = last.getNodePtrUnchecked(), *Last = this->getPrev(Next);
559       if (Prev)
560         this->setNext(Prev, Next);
561       else
562         L2.Head = Next;
563       this->setPrev(Next, Prev);
564
565       // Splice [first, last) into its new position.
566       NodeTy *PosNext = position.getNodePtrUnchecked();
567       NodeTy *PosPrev = this->getPrev(PosNext);
568
569       // Fix head of list...
570       if (PosPrev)
571         this->setNext(PosPrev, First);
572       else
573         Head = First;
574       this->setPrev(First, PosPrev);
575
576       // Fix end of list...
577       this->setNext(Last, PosNext);
578       this->setPrev(PosNext, Last);
579
580       this->transferNodesFromList(L2, iterator(First), iterator(PosNext));
581
582       // Now that everything is set, restore the pointers to the list sentinels.
583       L2.setTail(L2Sentinel);
584       setTail(ThisSentinel);
585     }
586   }
587
588 public:
589
590   //===----------------------------------------------------------------------===
591   // Functionality derived from other functions defined above...
592   //
593
594   size_type LLVM_ATTRIBUTE_UNUSED_RESULT size() const {
595     if (!Head) return 0; // Don't require construction of sentinel if empty.
596     return std::distance(begin(), end());
597   }
598
599   iterator erase(iterator first, iterator last) {
600     while (first != last)
601       first = erase(first);
602     return last;
603   }
604
605   void clear() { if (Head) erase(begin(), end()); }
606
607   // Front and back inserters...
608   void push_front(NodeTy *val) { insert(begin(), val); }
609   void push_back(NodeTy *val) { insert(end(), val); }
610   void pop_front() {
611     assert(!empty() && "pop_front() on empty list!");
612     erase(begin());
613   }
614   void pop_back() {
615     assert(!empty() && "pop_back() on empty list!");
616     iterator t = end(); erase(--t);
617   }
618
619   // Special forms of insert...
620   template<class InIt> void insert(iterator where, InIt first, InIt last) {
621     for (; first != last; ++first) insert(where, *first);
622   }
623
624   // Splice members - defined in terms of transfer...
625   void splice(iterator where, iplist &L2) {
626     if (!L2.empty())
627       transfer(where, L2, L2.begin(), L2.end());
628   }
629   void splice(iterator where, iplist &L2, iterator first) {
630     iterator last = first; ++last;
631     if (where == first || where == last) return; // No change
632     transfer(where, L2, first, last);
633   }
634   void splice(iterator where, iplist &L2, iterator first, iterator last) {
635     if (first != last) transfer(where, L2, first, last);
636   }
637   void splice(iterator where, iplist &L2, NodeTy &N) {
638     splice(where, L2, iterator(N));
639   }
640   void splice(iterator where, iplist &L2, NodeTy *N) {
641     splice(where, L2, iterator(N));
642   }
643
644   template <class Compare>
645   void merge(iplist &Right, Compare comp) {
646     if (this == &Right)
647       return;
648     iterator First1 = begin(), Last1 = end();
649     iterator First2 = Right.begin(), Last2 = Right.end();
650     while (First1 != Last1 && First2 != Last2) {
651       if (comp(*First2, *First1)) {
652         iterator Next = First2;
653         transfer(First1, Right, First2, ++Next);
654         First2 = Next;
655       } else {
656         ++First1;
657       }
658     }
659     if (First2 != Last2)
660       transfer(Last1, Right, First2, Last2);
661   }
662   void merge(iplist &Right) { return merge(Right, op_less); }
663
664   template <class Compare>
665   void sort(Compare comp) {
666     // The list is empty, vacuously sorted.
667     if (empty())
668       return;
669     // The list has a single element, vacuously sorted.
670     if (std::next(begin()) == end())
671       return;
672     // Find the split point for the list.
673     iterator Center = begin(), End = begin();
674     while (End != end() && std::next(End) != end()) {
675       Center = std::next(Center);
676       End = std::next(std::next(End));
677     }
678     // Split the list into two.
679     iplist RightHalf;
680     RightHalf.splice(RightHalf.begin(), *this, Center, end());
681
682     // Sort the two sublists.
683     sort(comp);
684     RightHalf.sort(comp);
685
686     // Merge the two sublists back together.
687     merge(RightHalf, comp);
688   }
689   void sort() { sort(op_less); }
690
691   /// \brief Get the previous node, or \c nullptr for the list head.
692   NodeTy *getPrevNode(NodeTy &N) const {
693     auto I = N.getIterator();
694     if (I == begin())
695       return nullptr;
696     return &*std::prev(I);
697   }
698   /// \brief Get the previous node, or \c nullptr for the list head.
699   const NodeTy *getPrevNode(const NodeTy &N) const {
700     return getPrevNode(const_cast<NodeTy &>(N));
701   }
702
703   /// \brief Get the next node, or \c nullptr for the list tail.
704   NodeTy *getNextNode(NodeTy &N) const {
705     auto Next = std::next(N.getIterator());
706     if (Next == end())
707       return nullptr;
708     return &*Next;
709   }
710   /// \brief Get the next node, or \c nullptr for the list tail.
711   const NodeTy *getNextNode(const NodeTy &N) const {
712     return getNextNode(const_cast<NodeTy &>(N));
713   }
714 };
715
716
717 template<typename NodeTy>
718 struct ilist : public iplist<NodeTy> {
719   typedef typename iplist<NodeTy>::size_type size_type;
720   typedef typename iplist<NodeTy>::iterator iterator;
721
722   ilist() {}
723   ilist(const ilist &right) {
724     insert(this->begin(), right.begin(), right.end());
725   }
726   explicit ilist(size_type count) {
727     insert(this->begin(), count, NodeTy());
728   }
729   ilist(size_type count, const NodeTy &val) {
730     insert(this->begin(), count, val);
731   }
732   template<class InIt> ilist(InIt first, InIt last) {
733     insert(this->begin(), first, last);
734   }
735
736   // bring hidden functions into scope
737   using iplist<NodeTy>::insert;
738   using iplist<NodeTy>::push_front;
739   using iplist<NodeTy>::push_back;
740
741   // Main implementation here - Insert for a node passed by value...
742   iterator insert(iterator where, const NodeTy &val) {
743     return insert(where, this->createNode(val));
744   }
745
746
747   // Front and back inserters...
748   void push_front(const NodeTy &val) { insert(this->begin(), val); }
749   void push_back(const NodeTy &val) { insert(this->end(), val); }
750
751   void insert(iterator where, size_type count, const NodeTy &val) {
752     for (; count != 0; --count) insert(where, val);
753   }
754
755   // Assign special forms...
756   void assign(size_type count, const NodeTy &val) {
757     iterator I = this->begin();
758     for (; I != this->end() && count != 0; ++I, --count)
759       *I = val;
760     if (count != 0)
761       insert(this->end(), val, val);
762     else
763       erase(I, this->end());
764   }
765   template<class InIt> void assign(InIt first1, InIt last1) {
766     iterator first2 = this->begin(), last2 = this->end();
767     for ( ; first1 != last1 && first2 != last2; ++first1, ++first2)
768       *first1 = *first2;
769     if (first2 == last2)
770       erase(first1, last1);
771     else
772       insert(last1, first2, last2);
773   }
774
775
776   // Resize members...
777   void resize(size_type newsize, NodeTy val) {
778     iterator i = this->begin();
779     size_type len = 0;
780     for ( ; i != this->end() && len < newsize; ++i, ++len) /* empty*/ ;
781
782     if (len == newsize)
783       erase(i, this->end());
784     else                                          // i == end()
785       insert(this->end(), newsize - len, val);
786   }
787   void resize(size_type newsize) { resize(newsize, NodeTy()); }
788 };
789
790 } // End llvm namespace
791
792 namespace std {
793   // Ensure that swap uses the fast list swap...
794   template<class Ty>
795   void swap(llvm::iplist<Ty> &Left, llvm::iplist<Ty> &Right) {
796     Left.swap(Right);
797   }
798 }  // End 'std' extensions...
799
800 #endif // LLVM_ADT_ILIST_H