[ADT] Fix a confusing interface spec and some annoying peculiarities
[oota-llvm.git] / include / llvm / ADT / IntervalMap.h
1 //===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a coalescing interval map for small objects.
11 //
12 // KeyT objects are mapped to ValT objects. Intervals of keys that map to the
13 // same value are represented in a compressed form.
14 //
15 // Iterators provide ordered access to the compressed intervals rather than the
16 // individual keys, and insert and erase operations use key intervals as well.
17 //
18 // Like SmallVector, IntervalMap will store the first N intervals in the map
19 // object itself without any allocations. When space is exhausted it switches to
20 // a B+-tree representation with very small overhead for small key and value
21 // objects.
22 //
23 // A Traits class specifies how keys are compared. It also allows IntervalMap to
24 // work with both closed and half-open intervals.
25 //
26 // Keys and values are not stored next to each other in a std::pair, so we don't
27 // provide such a value_type. Dereferencing iterators only returns the mapped
28 // value. The interval bounds are accessible through the start() and stop()
29 // iterator methods.
30 //
31 // IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
32 // is the optimal size. For large objects use std::map instead.
33 //
34 //===----------------------------------------------------------------------===//
35 //
36 // Synopsis:
37 //
38 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
39 // class IntervalMap {
40 // public:
41 //   typedef KeyT key_type;
42 //   typedef ValT mapped_type;
43 //   typedef RecyclingAllocator<...> Allocator;
44 //   class iterator;
45 //   class const_iterator;
46 //
47 //   explicit IntervalMap(Allocator&);
48 //   ~IntervalMap():
49 //
50 //   bool empty() const;
51 //   KeyT start() const;
52 //   KeyT stop() const;
53 //   ValT lookup(KeyT x, Value NotFound = Value()) const;
54 //
55 //   const_iterator begin() const;
56 //   const_iterator end() const;
57 //   iterator begin();
58 //   iterator end();
59 //   const_iterator find(KeyT x) const;
60 //   iterator find(KeyT x);
61 //
62 //   void insert(KeyT a, KeyT b, ValT y);
63 //   void clear();
64 // };
65 //
66 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
67 // class IntervalMap::const_iterator :
68 //   public std::iterator<std::bidirectional_iterator_tag, ValT> {
69 // public:
70 //   bool operator==(const const_iterator &) const;
71 //   bool operator!=(const const_iterator &) const;
72 //   bool valid() const;
73 //
74 //   const KeyT &start() const;
75 //   const KeyT &stop() const;
76 //   const ValT &value() const;
77 //   const ValT &operator*() const;
78 //   const ValT *operator->() const;
79 //
80 //   const_iterator &operator++();
81 //   const_iterator &operator++(int);
82 //   const_iterator &operator--();
83 //   const_iterator &operator--(int);
84 //   void goToBegin();
85 //   void goToEnd();
86 //   void find(KeyT x);
87 //   void advanceTo(KeyT x);
88 // };
89 //
90 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
91 // class IntervalMap::iterator : public const_iterator {
92 // public:
93 //   void insert(KeyT a, KeyT b, Value y);
94 //   void erase();
95 // };
96 //
97 //===----------------------------------------------------------------------===//
98
99 #ifndef LLVM_ADT_INTERVALMAP_H
100 #define LLVM_ADT_INTERVALMAP_H
101
102 #include "llvm/ADT/PointerIntPair.h"
103 #include "llvm/ADT/SmallVector.h"
104 #include "llvm/Support/AlignOf.h"
105 #include "llvm/Support/Allocator.h"
106 #include "llvm/Support/RecyclingAllocator.h"
107 #include <iterator>
108
109 namespace llvm {
110
111
112 //===----------------------------------------------------------------------===//
113 //---                              Key traits                              ---//
114 //===----------------------------------------------------------------------===//
115 //
116 // The IntervalMap works with closed or half-open intervals.
117 // Adjacent intervals that map to the same value are coalesced.
118 //
119 // The IntervalMapInfo traits class is used to determine if a key is contained
120 // in an interval, and if two intervals are adjacent so they can be coalesced.
121 // The provided implementation works for closed integer intervals, other keys
122 // probably need a specialized version.
123 //
124 // The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
125 //
126 // It is assumed that (a;b] half-open intervals are not used, only [a;b) is
127 // allowed. This is so that stopLess(a, b) can be used to determine if two
128 // intervals overlap.
129 //
130 //===----------------------------------------------------------------------===//
131
132 template <typename T>
133 struct IntervalMapInfo {
134
135   /// startLess - Return true if x is not in [a;b].
136   /// This is x < a both for closed intervals and for [a;b) half-open intervals.
137   static inline bool startLess(const T &x, const T &a) {
138     return x < a;
139   }
140
141   /// stopLess - Return true if x is not in [a;b].
142   /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
143   static inline bool stopLess(const T &b, const T &x) {
144     return b < x;
145   }
146
147   /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
148   /// This is a+1 == b for closed intervals, a == b for half-open intervals.
149   static inline bool adjacent(const T &a, const T &b) {
150     return a+1 == b;
151   }
152
153 };
154
155 template <typename T>
156 struct IntervalMapHalfOpenInfo {
157
158   /// startLess - Return true if x is not in [a;b).
159   static inline bool startLess(const T &x, const T &a) {
160     return x < a;
161   }
162
163   /// stopLess - Return true if x is not in [a;b).
164   static inline bool stopLess(const T &b, const T &x) {
165     return b <= x;
166   }
167
168   /// adjacent - Return true when the intervals [x;a) and [b;y) can coalesce.
169   static inline bool adjacent(const T &a, const T &b) {
170     return a == b;
171   }
172
173 };
174
175 /// IntervalMapImpl - Namespace used for IntervalMap implementation details.
176 /// It should be considered private to the implementation.
177 namespace IntervalMapImpl {
178
179 // Forward declarations.
180 template <typename, typename, unsigned, typename> class LeafNode;
181 template <typename, typename, unsigned, typename> class BranchNode;
182
183 typedef std::pair<unsigned,unsigned> IdxPair;
184
185
186 //===----------------------------------------------------------------------===//
187 //---                    IntervalMapImpl::NodeBase                         ---//
188 //===----------------------------------------------------------------------===//
189 //
190 // Both leaf and branch nodes store vectors of pairs.
191 // Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT).
192 //
193 // Keys and values are stored in separate arrays to avoid padding caused by
194 // different object alignments. This also helps improve locality of reference
195 // when searching the keys.
196 //
197 // The nodes don't know how many elements they contain - that information is
198 // stored elsewhere. Omitting the size field prevents padding and allows a node
199 // to fill the allocated cache lines completely.
200 //
201 // These are typical key and value sizes, the node branching factor (N), and
202 // wasted space when nodes are sized to fit in three cache lines (192 bytes):
203 //
204 //   T1  T2   N Waste  Used by
205 //    4   4  24   0    Branch<4> (32-bit pointers)
206 //    8   4  16   0    Leaf<4,4>, Branch<4>
207 //    8   8  12   0    Leaf<4,8>, Branch<8>
208 //   16   4   9  12    Leaf<8,4>
209 //   16   8   8   0    Leaf<8,8>
210 //
211 //===----------------------------------------------------------------------===//
212
213 template <typename T1, typename T2, unsigned N>
214 class NodeBase {
215 public:
216   enum { Capacity = N };
217
218   T1 first[N];
219   T2 second[N];
220
221   /// copy - Copy elements from another node.
222   /// @param Other Node elements are copied from.
223   /// @param i     Beginning of the source range in other.
224   /// @param j     Beginning of the destination range in this.
225   /// @param Count Number of elements to copy.
226   template <unsigned M>
227   void copy(const NodeBase<T1, T2, M> &Other, unsigned i,
228             unsigned j, unsigned Count) {
229     assert(i + Count <= M && "Invalid source range");
230     assert(j + Count <= N && "Invalid dest range");
231     for (unsigned e = i + Count; i != e; ++i, ++j) {
232       first[j]  = Other.first[i];
233       second[j] = Other.second[i];
234     }
235   }
236
237   /// moveLeft - Move elements to the left.
238   /// @param i     Beginning of the source range.
239   /// @param j     Beginning of the destination range.
240   /// @param Count Number of elements to copy.
241   void moveLeft(unsigned i, unsigned j, unsigned Count) {
242     assert(j <= i && "Use moveRight shift elements right");
243     copy(*this, i, j, Count);
244   }
245
246   /// moveRight - Move elements to the right.
247   /// @param i     Beginning of the source range.
248   /// @param j     Beginning of the destination range.
249   /// @param Count Number of elements to copy.
250   void moveRight(unsigned i, unsigned j, unsigned Count) {
251     assert(i <= j && "Use moveLeft shift elements left");
252     assert(j + Count <= N && "Invalid range");
253     while (Count--) {
254       first[j + Count]  = first[i + Count];
255       second[j + Count] = second[i + Count];
256     }
257   }
258
259   /// erase - Erase elements [i;j).
260   /// @param i    Beginning of the range to erase.
261   /// @param j    End of the range. (Exclusive).
262   /// @param Size Number of elements in node.
263   void erase(unsigned i, unsigned j, unsigned Size) {
264     moveLeft(j, i, Size - j);
265   }
266
267   /// erase - Erase element at i.
268   /// @param i    Index of element to erase.
269   /// @param Size Number of elements in node.
270   void erase(unsigned i, unsigned Size) {
271     erase(i, i+1, Size);
272   }
273
274   /// shift - Shift elements [i;size) 1 position to the right.
275   /// @param i    Beginning of the range to move.
276   /// @param Size Number of elements in node.
277   void shift(unsigned i, unsigned Size) {
278     moveRight(i, i + 1, Size - i);
279   }
280
281   /// transferToLeftSib - Transfer elements to a left sibling node.
282   /// @param Size  Number of elements in this.
283   /// @param Sib   Left sibling node.
284   /// @param SSize Number of elements in sib.
285   /// @param Count Number of elements to transfer.
286   void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize,
287                          unsigned Count) {
288     Sib.copy(*this, 0, SSize, Count);
289     erase(0, Count, Size);
290   }
291
292   /// transferToRightSib - Transfer elements to a right sibling node.
293   /// @param Size  Number of elements in this.
294   /// @param Sib   Right sibling node.
295   /// @param SSize Number of elements in sib.
296   /// @param Count Number of elements to transfer.
297   void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize,
298                           unsigned Count) {
299     Sib.moveRight(0, Count, SSize);
300     Sib.copy(*this, Size-Count, 0, Count);
301   }
302
303   /// adjustFromLeftSib - Adjust the number if elements in this node by moving
304   /// elements to or from a left sibling node.
305   /// @param Size  Number of elements in this.
306   /// @param Sib   Right sibling node.
307   /// @param SSize Number of elements in sib.
308   /// @param Add   The number of elements to add to this node, possibly < 0.
309   /// @return      Number of elements added to this node, possibly negative.
310   int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
311     if (Add > 0) {
312       // We want to grow, copy from sib.
313       unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
314       Sib.transferToRightSib(SSize, *this, Size, Count);
315       return Count;
316     } else {
317       // We want to shrink, copy to sib.
318       unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
319       transferToLeftSib(Size, Sib, SSize, Count);
320       return -Count;
321     }
322   }
323 };
324
325 /// IntervalMapImpl::adjustSiblingSizes - Move elements between sibling nodes.
326 /// @param Node  Array of pointers to sibling nodes.
327 /// @param Nodes Number of nodes.
328 /// @param CurSize Array of current node sizes, will be overwritten.
329 /// @param NewSize Array of desired node sizes.
330 template <typename NodeT>
331 void adjustSiblingSizes(NodeT *Node[], unsigned Nodes,
332                         unsigned CurSize[], const unsigned NewSize[]) {
333   // Move elements right.
334   for (int n = Nodes - 1; n; --n) {
335     if (CurSize[n] == NewSize[n])
336       continue;
337     for (int m = n - 1; m != -1; --m) {
338       int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m],
339                                          NewSize[n] - CurSize[n]);
340       CurSize[m] -= d;
341       CurSize[n] += d;
342       // Keep going if the current node was exhausted.
343       if (CurSize[n] >= NewSize[n])
344           break;
345     }
346   }
347
348   if (Nodes == 0)
349     return;
350
351   // Move elements left.
352   for (unsigned n = 0; n != Nodes - 1; ++n) {
353     if (CurSize[n] == NewSize[n])
354       continue;
355     for (unsigned m = n + 1; m != Nodes; ++m) {
356       int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n],
357                                         CurSize[n] -  NewSize[n]);
358       CurSize[m] += d;
359       CurSize[n] -= d;
360       // Keep going if the current node was exhausted.
361       if (CurSize[n] >= NewSize[n])
362           break;
363     }
364   }
365
366 #ifndef NDEBUG
367   for (unsigned n = 0; n != Nodes; n++)
368     assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
369 #endif
370 }
371
372 /// IntervalMapImpl::distribute - Compute a new distribution of node elements
373 /// after an overflow or underflow. Reserve space for a new element at Position,
374 /// and compute the node that will hold Position after redistributing node
375 /// elements.
376 ///
377 /// It is required that
378 ///
379 ///   Elements == sum(CurSize), and
380 ///   Elements + Grow <= Nodes * Capacity.
381 ///
382 /// NewSize[] will be filled in such that:
383 ///
384 ///   sum(NewSize) == Elements, and
385 ///   NewSize[i] <= Capacity.
386 ///
387 /// The returned index is the node where Position will go, so:
388 ///
389 ///   sum(NewSize[0..idx-1]) <= Position
390 ///   sum(NewSize[0..idx])   >= Position
391 ///
392 /// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
393 /// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
394 /// before the one holding the Position'th element where there is room for an
395 /// insertion.
396 ///
397 /// @param Nodes    The number of nodes.
398 /// @param Elements Total elements in all nodes.
399 /// @param Capacity The capacity of each node.
400 /// @param CurSize  Array[Nodes] of current node sizes, or NULL.
401 /// @param NewSize  Array[Nodes] to receive the new node sizes.
402 /// @param Position Insert position.
403 /// @param Grow     Reserve space for a new element at Position.
404 /// @return         (node, offset) for Position.
405 IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
406                    const unsigned *CurSize, unsigned NewSize[],
407                    unsigned Position, bool Grow);
408
409
410 //===----------------------------------------------------------------------===//
411 //---                   IntervalMapImpl::NodeSizer                         ---//
412 //===----------------------------------------------------------------------===//
413 //
414 // Compute node sizes from key and value types.
415 //
416 // The branching factors are chosen to make nodes fit in three cache lines.
417 // This may not be possible if keys or values are very large. Such large objects
418 // are handled correctly, but a std::map would probably give better performance.
419 //
420 //===----------------------------------------------------------------------===//
421
422 enum {
423   // Cache line size. Most architectures have 32 or 64 byte cache lines.
424   // We use 64 bytes here because it provides good branching factors.
425   Log2CacheLine = 6,
426   CacheLineBytes = 1 << Log2CacheLine,
427   DesiredNodeBytes = 3 * CacheLineBytes
428 };
429
430 template <typename KeyT, typename ValT>
431 struct NodeSizer {
432   enum {
433     // Compute the leaf node branching factor that makes a node fit in three
434     // cache lines. The branching factor must be at least 3, or some B+-tree
435     // balancing algorithms won't work.
436     // LeafSize can't be larger than CacheLineBytes. This is required by the
437     // PointerIntPair used by NodeRef.
438     DesiredLeafSize = DesiredNodeBytes /
439       static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
440     MinLeafSize = 3,
441     LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize
442   };
443
444   typedef NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize> LeafBase;
445
446   enum {
447     // Now that we have the leaf branching factor, compute the actual allocation
448     // unit size by rounding up to a whole number of cache lines.
449     AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1),
450
451     // Determine the branching factor for branch nodes.
452     BranchSize = AllocBytes /
453       static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
454   };
455
456   /// Allocator - The recycling allocator used for both branch and leaf nodes.
457   /// This typedef is very likely to be identical for all IntervalMaps with
458   /// reasonably sized entries, so the same allocator can be shared among
459   /// different kinds of maps.
460   typedef RecyclingAllocator<BumpPtrAllocator, char,
461                              AllocBytes, CacheLineBytes> Allocator;
462
463 };
464
465
466 //===----------------------------------------------------------------------===//
467 //---                     IntervalMapImpl::NodeRef                         ---//
468 //===----------------------------------------------------------------------===//
469 //
470 // B+-tree nodes can be leaves or branches, so we need a polymorphic node
471 // pointer that can point to both kinds.
472 //
473 // All nodes are cache line aligned and the low 6 bits of a node pointer are
474 // always 0. These bits are used to store the number of elements in the
475 // referenced node. Besides saving space, placing node sizes in the parents
476 // allow tree balancing algorithms to run without faulting cache lines for nodes
477 // that may not need to be modified.
478 //
479 // A NodeRef doesn't know whether it references a leaf node or a branch node.
480 // It is the responsibility of the caller to use the correct types.
481 //
482 // Nodes are never supposed to be empty, and it is invalid to store a node size
483 // of 0 in a NodeRef. The valid range of sizes is 1-64.
484 //
485 //===----------------------------------------------------------------------===//
486
487 class NodeRef {
488   struct CacheAlignedPointerTraits {
489     static inline void *getAsVoidPointer(void *P) { return P; }
490     static inline void *getFromVoidPointer(void *P) { return P; }
491     enum { NumLowBitsAvailable = Log2CacheLine };
492   };
493   PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
494
495 public:
496   /// NodeRef - Create a null ref.
497   NodeRef() {}
498
499   /// operator bool - Detect a null ref.
500   explicit operator bool() const { return pip.getOpaqueValue(); }
501
502   /// NodeRef - Create a reference to the node p with n elements.
503   template <typename NodeT>
504   NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) {
505     assert(n <= NodeT::Capacity && "Size too big for node");
506   }
507
508   /// size - Return the number of elements in the referenced node.
509   unsigned size() const { return pip.getInt() + 1; }
510
511   /// setSize - Update the node size.
512   void setSize(unsigned n) { pip.setInt(n - 1); }
513
514   /// subtree - Access the i'th subtree reference in a branch node.
515   /// This depends on branch nodes storing the NodeRef array as their first
516   /// member.
517   NodeRef &subtree(unsigned i) const {
518     return reinterpret_cast<NodeRef*>(pip.getPointer())[i];
519   }
520
521   /// get - Dereference as a NodeT reference.
522   template <typename NodeT>
523   NodeT &get() const {
524     return *reinterpret_cast<NodeT*>(pip.getPointer());
525   }
526
527   bool operator==(const NodeRef &RHS) const {
528     if (pip == RHS.pip)
529       return true;
530     assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
531     return false;
532   }
533
534   bool operator!=(const NodeRef &RHS) const {
535     return !operator==(RHS);
536   }
537 };
538
539 //===----------------------------------------------------------------------===//
540 //---                      IntervalMapImpl::LeafNode                       ---//
541 //===----------------------------------------------------------------------===//
542 //
543 // Leaf nodes store up to N disjoint intervals with corresponding values.
544 //
545 // The intervals are kept sorted and fully coalesced so there are no adjacent
546 // intervals mapping to the same value.
547 //
548 // These constraints are always satisfied:
549 //
550 // - Traits::stopLess(start(i), stop(i))    - Non-empty, sane intervals.
551 //
552 // - Traits::stopLess(stop(i), start(i + 1) - Sorted.
553 //
554 // - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1))
555 //                                          - Fully coalesced.
556 //
557 //===----------------------------------------------------------------------===//
558
559 template <typename KeyT, typename ValT, unsigned N, typename Traits>
560 class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
561 public:
562   const KeyT &start(unsigned i) const { return this->first[i].first; }
563   const KeyT &stop(unsigned i) const { return this->first[i].second; }
564   const ValT &value(unsigned i) const { return this->second[i]; }
565
566   KeyT &start(unsigned i) { return this->first[i].first; }
567   KeyT &stop(unsigned i) { return this->first[i].second; }
568   ValT &value(unsigned i) { return this->second[i]; }
569
570   /// findFrom - Find the first interval after i that may contain x.
571   /// @param i    Starting index for the search.
572   /// @param Size Number of elements in node.
573   /// @param x    Key to search for.
574   /// @return     First index with !stopLess(key[i].stop, x), or size.
575   ///             This is the first interval that can possibly contain x.
576   unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
577     assert(i <= Size && Size <= N && "Bad indices");
578     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
579            "Index is past the needed point");
580     while (i != Size && Traits::stopLess(stop(i), x)) ++i;
581     return i;
582   }
583
584   /// safeFind - Find an interval that is known to exist. This is the same as
585   /// findFrom except is it assumed that x is at least within range of the last
586   /// interval.
587   /// @param i Starting index for the search.
588   /// @param x Key to search for.
589   /// @return  First index with !stopLess(key[i].stop, x), never size.
590   ///          This is the first interval that can possibly contain x.
591   unsigned safeFind(unsigned i, KeyT x) const {
592     assert(i < N && "Bad index");
593     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
594            "Index is past the needed point");
595     while (Traits::stopLess(stop(i), x)) ++i;
596     assert(i < N && "Unsafe intervals");
597     return i;
598   }
599
600   /// safeLookup - Lookup mapped value for a safe key.
601   /// It is assumed that x is within range of the last entry.
602   /// @param x        Key to search for.
603   /// @param NotFound Value to return if x is not in any interval.
604   /// @return         The mapped value at x or NotFound.
605   ValT safeLookup(KeyT x, ValT NotFound) const {
606     unsigned i = safeFind(0, x);
607     return Traits::startLess(x, start(i)) ? NotFound : value(i);
608   }
609
610   unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y);
611 };
612
613 /// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
614 /// possible. This may cause the node to grow by 1, or it may cause the node
615 /// to shrink because of coalescing.
616 /// @param Pos  Starting index = insertFrom(0, size, a)
617 /// @param Size Number of elements in node.
618 /// @param a    Interval start.
619 /// @param b    Interval stop.
620 /// @param y    Value be mapped.
621 /// @return     (insert position, new size), or (i, Capacity+1) on overflow.
622 template <typename KeyT, typename ValT, unsigned N, typename Traits>
623 unsigned LeafNode<KeyT, ValT, N, Traits>::
624 insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y) {
625   unsigned i = Pos;
626   assert(i <= Size && Size <= N && "Invalid index");
627   assert(!Traits::stopLess(b, a) && "Invalid interval");
628
629   // Verify the findFrom invariant.
630   assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
631   assert((i == Size || !Traits::stopLess(stop(i), a)));
632   assert((i == Size || Traits::stopLess(b, start(i))) && "Overlapping insert");
633
634   // Coalesce with previous interval.
635   if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) {
636     Pos = i - 1;
637     // Also coalesce with next interval?
638     if (i != Size && value(i) == y && Traits::adjacent(b, start(i))) {
639       stop(i - 1) = stop(i);
640       this->erase(i, Size);
641       return Size - 1;
642     }
643     stop(i - 1) = b;
644     return Size;
645   }
646
647   // Detect overflow.
648   if (i == N)
649     return N + 1;
650
651   // Add new interval at end.
652   if (i == Size) {
653     start(i) = a;
654     stop(i) = b;
655     value(i) = y;
656     return Size + 1;
657   }
658
659   // Try to coalesce with following interval.
660   if (value(i) == y && Traits::adjacent(b, start(i))) {
661     start(i) = a;
662     return Size;
663   }
664
665   // We must insert before i. Detect overflow.
666   if (Size == N)
667     return N + 1;
668
669   // Insert before i.
670   this->shift(i, Size);
671   start(i) = a;
672   stop(i) = b;
673   value(i) = y;
674   return Size + 1;
675 }
676
677
678 //===----------------------------------------------------------------------===//
679 //---                   IntervalMapImpl::BranchNode                        ---//
680 //===----------------------------------------------------------------------===//
681 //
682 // A branch node stores references to 1--N subtrees all of the same height.
683 //
684 // The key array in a branch node holds the rightmost stop key of each subtree.
685 // It is redundant to store the last stop key since it can be found in the
686 // parent node, but doing so makes tree balancing a lot simpler.
687 //
688 // It is unusual for a branch node to only have one subtree, but it can happen
689 // in the root node if it is smaller than the normal nodes.
690 //
691 // When all of the leaf nodes from all the subtrees are concatenated, they must
692 // satisfy the same constraints as a single leaf node. They must be sorted,
693 // sane, and fully coalesced.
694 //
695 //===----------------------------------------------------------------------===//
696
697 template <typename KeyT, typename ValT, unsigned N, typename Traits>
698 class BranchNode : public NodeBase<NodeRef, KeyT, N> {
699 public:
700   const KeyT &stop(unsigned i) const { return this->second[i]; }
701   const NodeRef &subtree(unsigned i) const { return this->first[i]; }
702
703   KeyT &stop(unsigned i) { return this->second[i]; }
704   NodeRef &subtree(unsigned i) { return this->first[i]; }
705
706   /// findFrom - Find the first subtree after i that may contain x.
707   /// @param i    Starting index for the search.
708   /// @param Size Number of elements in node.
709   /// @param x    Key to search for.
710   /// @return     First index with !stopLess(key[i], x), or size.
711   ///             This is the first subtree that can possibly contain x.
712   unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
713     assert(i <= Size && Size <= N && "Bad indices");
714     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
715            "Index to findFrom is past the needed point");
716     while (i != Size && Traits::stopLess(stop(i), x)) ++i;
717     return i;
718   }
719
720   /// safeFind - Find a subtree that is known to exist. This is the same as
721   /// findFrom except is it assumed that x is in range.
722   /// @param i Starting index for the search.
723   /// @param x Key to search for.
724   /// @return  First index with !stopLess(key[i], x), never size.
725   ///          This is the first subtree that can possibly contain x.
726   unsigned safeFind(unsigned i, KeyT x) const {
727     assert(i < N && "Bad index");
728     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
729            "Index is past the needed point");
730     while (Traits::stopLess(stop(i), x)) ++i;
731     assert(i < N && "Unsafe intervals");
732     return i;
733   }
734
735   /// safeLookup - Get the subtree containing x, Assuming that x is in range.
736   /// @param x Key to search for.
737   /// @return  Subtree containing x
738   NodeRef safeLookup(KeyT x) const {
739     return subtree(safeFind(0, x));
740   }
741
742   /// insert - Insert a new (subtree, stop) pair.
743   /// @param i    Insert position, following entries will be shifted.
744   /// @param Size Number of elements in node.
745   /// @param Node Subtree to insert.
746   /// @param Stop Last key in subtree.
747   void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
748     assert(Size < N && "branch node overflow");
749     assert(i <= Size && "Bad insert position");
750     this->shift(i, Size);
751     subtree(i) = Node;
752     stop(i) = Stop;
753   }
754 };
755
756 //===----------------------------------------------------------------------===//
757 //---                         IntervalMapImpl::Path                        ---//
758 //===----------------------------------------------------------------------===//
759 //
760 // A Path is used by iterators to represent a position in a B+-tree, and the
761 // path to get there from the root.
762 //
763 // The Path class also contains the tree navigation code that doesn't have to
764 // be templatized.
765 //
766 //===----------------------------------------------------------------------===//
767
768 class Path {
769   /// Entry - Each step in the path is a node pointer and an offset into that
770   /// node.
771   struct Entry {
772     void *node;
773     unsigned size;
774     unsigned offset;
775
776     Entry(void *Node, unsigned Size, unsigned Offset)
777       : node(Node), size(Size), offset(Offset) {}
778
779     Entry(NodeRef Node, unsigned Offset)
780       : node(&Node.subtree(0)), size(Node.size()), offset(Offset) {}
781
782     NodeRef &subtree(unsigned i) const {
783       return reinterpret_cast<NodeRef*>(node)[i];
784     }
785   };
786
787   /// path - The path entries, path[0] is the root node, path.back() is a leaf.
788   SmallVector<Entry, 4> path;
789
790 public:
791   // Node accessors.
792   template <typename NodeT> NodeT &node(unsigned Level) const {
793     return *reinterpret_cast<NodeT*>(path[Level].node);
794   }
795   unsigned size(unsigned Level) const { return path[Level].size; }
796   unsigned offset(unsigned Level) const { return path[Level].offset; }
797   unsigned &offset(unsigned Level) { return path[Level].offset; }
798
799   // Leaf accessors.
800   template <typename NodeT> NodeT &leaf() const {
801     return *reinterpret_cast<NodeT*>(path.back().node);
802   }
803   unsigned leafSize() const { return path.back().size; }
804   unsigned leafOffset() const { return path.back().offset; }
805   unsigned &leafOffset() { return path.back().offset; }
806
807   /// valid - Return true if path is at a valid node, not at end().
808   bool valid() const {
809     return !path.empty() && path.front().offset < path.front().size;
810   }
811
812   /// height - Return the height of the tree corresponding to this path.
813   /// This matches map->height in a full path.
814   unsigned height() const { return path.size() - 1; }
815
816   /// subtree - Get the subtree referenced from Level. When the path is
817   /// consistent, node(Level + 1) == subtree(Level).
818   /// @param Level 0..height-1. The leaves have no subtrees.
819   NodeRef &subtree(unsigned Level) const {
820     return path[Level].subtree(path[Level].offset);
821   }
822
823   /// reset - Reset cached information about node(Level) from subtree(Level -1).
824   /// @param Level 1..height. THe node to update after parent node changed.
825   void reset(unsigned Level) {
826     path[Level] = Entry(subtree(Level - 1), offset(Level));
827   }
828
829   /// push - Add entry to path.
830   /// @param Node Node to add, should be subtree(path.size()-1).
831   /// @param Offset Offset into Node.
832   void push(NodeRef Node, unsigned Offset) {
833     path.push_back(Entry(Node, Offset));
834   }
835
836   /// pop - Remove the last path entry.
837   void pop() {
838     path.pop_back();
839   }
840
841   /// setSize - Set the size of a node both in the path and in the tree.
842   /// @param Level 0..height. Note that setting the root size won't change
843   ///              map->rootSize.
844   /// @param Size New node size.
845   void setSize(unsigned Level, unsigned Size) {
846     path[Level].size = Size;
847     if (Level)
848       subtree(Level - 1).setSize(Size);
849   }
850
851   /// setRoot - Clear the path and set a new root node.
852   /// @param Node New root node.
853   /// @param Size New root size.
854   /// @param Offset Offset into root node.
855   void setRoot(void *Node, unsigned Size, unsigned Offset) {
856     path.clear();
857     path.push_back(Entry(Node, Size, Offset));
858   }
859
860   /// replaceRoot - Replace the current root node with two new entries after the
861   /// tree height has increased.
862   /// @param Root The new root node.
863   /// @param Size Number of entries in the new root.
864   /// @param Offsets Offsets into the root and first branch nodes.
865   void replaceRoot(void *Root, unsigned Size, IdxPair Offsets);
866
867   /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
868   /// @param Level Get the sibling to node(Level).
869   /// @return Left sibling, or NodeRef().
870   NodeRef getLeftSibling(unsigned Level) const;
871
872   /// moveLeft - Move path to the left sibling at Level. Leave nodes below Level
873   /// unaltered.
874   /// @param Level Move node(Level).
875   void moveLeft(unsigned Level);
876
877   /// fillLeft - Grow path to Height by taking leftmost branches.
878   /// @param Height The target height.
879   void fillLeft(unsigned Height) {
880     while (height() < Height)
881       push(subtree(height()), 0);
882   }
883
884   /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
885   /// @param Level Get the sinbling to node(Level).
886   /// @return Left sibling, or NodeRef().
887   NodeRef getRightSibling(unsigned Level) const;
888
889   /// moveRight - Move path to the left sibling at Level. Leave nodes below
890   /// Level unaltered.
891   /// @param Level Move node(Level).
892   void moveRight(unsigned Level);
893
894   /// atBegin - Return true if path is at begin().
895   bool atBegin() const {
896     for (unsigned i = 0, e = path.size(); i != e; ++i)
897       if (path[i].offset != 0)
898         return false;
899     return true;
900   }
901
902   /// atLastEntry - Return true if the path is at the last entry of the node at
903   /// Level.
904   /// @param Level Node to examine.
905   bool atLastEntry(unsigned Level) const {
906     return path[Level].offset == path[Level].size - 1;
907   }
908
909   /// legalizeForInsert - Prepare the path for an insertion at Level. When the
910   /// path is at end(), node(Level) may not be a legal node. legalizeForInsert
911   /// ensures that node(Level) is real by moving back to the last node at Level,
912   /// and setting offset(Level) to size(Level) if required.
913   /// @param Level The level where an insertion is about to take place.
914   void legalizeForInsert(unsigned Level) {
915     if (valid())
916       return;
917     moveLeft(Level);
918     ++path[Level].offset;
919   }
920 };
921
922 } // namespace IntervalMapImpl
923
924
925 //===----------------------------------------------------------------------===//
926 //---                          IntervalMap                                ----//
927 //===----------------------------------------------------------------------===//
928
929 template <typename KeyT, typename ValT,
930           unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
931           typename Traits = IntervalMapInfo<KeyT> >
932 class IntervalMap {
933   typedef IntervalMapImpl::NodeSizer<KeyT, ValT> Sizer;
934   typedef IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits> Leaf;
935   typedef IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>
936     Branch;
937   typedef IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits> RootLeaf;
938   typedef IntervalMapImpl::IdxPair IdxPair;
939
940   // The RootLeaf capacity is given as a template parameter. We must compute the
941   // corresponding RootBranch capacity.
942   enum {
943     DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
944       (sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)),
945     RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
946   };
947
948   typedef IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>
949     RootBranch;
950
951   // When branched, we store a global start key as well as the branch node.
952   struct RootBranchData {
953     KeyT start;
954     RootBranch node;
955   };
956
957 public:
958   typedef typename Sizer::Allocator Allocator;
959   typedef KeyT KeyType;
960   typedef ValT ValueType;
961   typedef Traits KeyTraits;
962
963 private:
964   // The root data is either a RootLeaf or a RootBranchData instance.
965   AlignedCharArrayUnion<RootLeaf, RootBranchData> data;
966
967   // Tree height.
968   // 0: Leaves in root.
969   // 1: Root points to leaf.
970   // 2: root->branch->leaf ...
971   unsigned height;
972
973   // Number of entries in the root node.
974   unsigned rootSize;
975
976   // Allocator used for creating external nodes.
977   Allocator &allocator;
978
979   /// dataAs - Represent data as a node type without breaking aliasing rules.
980   template <typename T>
981   T &dataAs() const {
982     union {
983       const char *d;
984       T *t;
985     } u;
986     u.d = data.buffer;
987     return *u.t;
988   }
989
990   const RootLeaf &rootLeaf() const {
991     assert(!branched() && "Cannot acces leaf data in branched root");
992     return dataAs<RootLeaf>();
993   }
994   RootLeaf &rootLeaf() {
995     assert(!branched() && "Cannot acces leaf data in branched root");
996     return dataAs<RootLeaf>();
997   }
998   RootBranchData &rootBranchData() const {
999     assert(branched() && "Cannot access branch data in non-branched root");
1000     return dataAs<RootBranchData>();
1001   }
1002   RootBranchData &rootBranchData() {
1003     assert(branched() && "Cannot access branch data in non-branched root");
1004     return dataAs<RootBranchData>();
1005   }
1006   const RootBranch &rootBranch() const { return rootBranchData().node; }
1007   RootBranch &rootBranch()             { return rootBranchData().node; }
1008   KeyT rootBranchStart() const { return rootBranchData().start; }
1009   KeyT &rootBranchStart()      { return rootBranchData().start; }
1010
1011   template <typename NodeT> NodeT *newNode() {
1012     return new(allocator.template Allocate<NodeT>()) NodeT();
1013   }
1014
1015   template <typename NodeT> void deleteNode(NodeT *P) {
1016     P->~NodeT();
1017     allocator.Deallocate(P);
1018   }
1019
1020   IdxPair branchRoot(unsigned Position);
1021   IdxPair splitRoot(unsigned Position);
1022
1023   void switchRootToBranch() {
1024     rootLeaf().~RootLeaf();
1025     height = 1;
1026     new (&rootBranchData()) RootBranchData();
1027   }
1028
1029   void switchRootToLeaf() {
1030     rootBranchData().~RootBranchData();
1031     height = 0;
1032     new(&rootLeaf()) RootLeaf();
1033   }
1034
1035   bool branched() const { return height > 0; }
1036
1037   ValT treeSafeLookup(KeyT x, ValT NotFound) const;
1038   void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef,
1039                   unsigned Level));
1040   void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level);
1041
1042 public:
1043   explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
1044     assert((uintptr_t(data.buffer) & (alignOf<RootLeaf>() - 1)) == 0 &&
1045            "Insufficient alignment");
1046     new(&rootLeaf()) RootLeaf();
1047   }
1048
1049   ~IntervalMap() {
1050     clear();
1051     rootLeaf().~RootLeaf();
1052   }
1053
1054   /// empty -  Return true when no intervals are mapped.
1055   bool empty() const {
1056     return rootSize == 0;
1057   }
1058
1059   /// start - Return the smallest mapped key in a non-empty map.
1060   KeyT start() const {
1061     assert(!empty() && "Empty IntervalMap has no start");
1062     return !branched() ? rootLeaf().start(0) : rootBranchStart();
1063   }
1064
1065   /// stop - Return the largest mapped key in a non-empty map.
1066   KeyT stop() const {
1067     assert(!empty() && "Empty IntervalMap has no stop");
1068     return !branched() ? rootLeaf().stop(rootSize - 1) :
1069                          rootBranch().stop(rootSize - 1);
1070   }
1071
1072   /// lookup - Return the mapped value at x or NotFound.
1073   ValT lookup(KeyT x, ValT NotFound = ValT()) const {
1074     if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
1075       return NotFound;
1076     return branched() ? treeSafeLookup(x, NotFound) :
1077                         rootLeaf().safeLookup(x, NotFound);
1078   }
1079
1080   /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
1081   /// It is assumed that no key in the interval is mapped to another value, but
1082   /// overlapping intervals already mapped to y will be coalesced.
1083   void insert(KeyT a, KeyT b, ValT y) {
1084     if (branched() || rootSize == RootLeaf::Capacity)
1085       return find(a).insert(a, b, y);
1086
1087     // Easy insert into root leaf.
1088     unsigned p = rootLeaf().findFrom(0, rootSize, a);
1089     rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y);
1090   }
1091
1092   /// clear - Remove all entries.
1093   void clear();
1094
1095   class const_iterator;
1096   class iterator;
1097   friend class const_iterator;
1098   friend class iterator;
1099
1100   const_iterator begin() const {
1101     const_iterator I(*this);
1102     I.goToBegin();
1103     return I;
1104   }
1105
1106   iterator begin() {
1107     iterator I(*this);
1108     I.goToBegin();
1109     return I;
1110   }
1111
1112   const_iterator end() const {
1113     const_iterator I(*this);
1114     I.goToEnd();
1115     return I;
1116   }
1117
1118   iterator end() {
1119     iterator I(*this);
1120     I.goToEnd();
1121     return I;
1122   }
1123
1124   /// find - Return an iterator pointing to the first interval ending at or
1125   /// after x, or end().
1126   const_iterator find(KeyT x) const {
1127     const_iterator I(*this);
1128     I.find(x);
1129     return I;
1130   }
1131
1132   iterator find(KeyT x) {
1133     iterator I(*this);
1134     I.find(x);
1135     return I;
1136   }
1137 };
1138
1139 /// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
1140 /// branched root.
1141 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1142 ValT IntervalMap<KeyT, ValT, N, Traits>::
1143 treeSafeLookup(KeyT x, ValT NotFound) const {
1144   assert(branched() && "treeLookup assumes a branched root");
1145
1146   IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x);
1147   for (unsigned h = height-1; h; --h)
1148     NR = NR.get<Branch>().safeLookup(x);
1149   return NR.get<Leaf>().safeLookup(x, NotFound);
1150 }
1151
1152
1153 // branchRoot - Switch from a leaf root to a branched root.
1154 // Return the new (root offset, node offset) corresponding to Position.
1155 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1156 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
1157 branchRoot(unsigned Position) {
1158   using namespace IntervalMapImpl;
1159   // How many external leaf nodes to hold RootLeaf+1?
1160   const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
1161
1162   // Compute element distribution among new nodes.
1163   unsigned size[Nodes];
1164   IdxPair NewOffset(0, Position);
1165
1166   // Is is very common for the root node to be smaller than external nodes.
1167   if (Nodes == 1)
1168     size[0] = rootSize;
1169   else
1170     NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  nullptr, size,
1171                            Position, true);
1172
1173   // Allocate new nodes.
1174   unsigned pos = 0;
1175   NodeRef node[Nodes];
1176   for (unsigned n = 0; n != Nodes; ++n) {
1177     Leaf *L = newNode<Leaf>();
1178     L->copy(rootLeaf(), pos, 0, size[n]);
1179     node[n] = NodeRef(L, size[n]);
1180     pos += size[n];
1181   }
1182
1183   // Destroy the old leaf node, construct branch node instead.
1184   switchRootToBranch();
1185   for (unsigned n = 0; n != Nodes; ++n) {
1186     rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1);
1187     rootBranch().subtree(n) = node[n];
1188   }
1189   rootBranchStart() = node[0].template get<Leaf>().start(0);
1190   rootSize = Nodes;
1191   return NewOffset;
1192 }
1193
1194 // splitRoot - Split the current BranchRoot into multiple Branch nodes.
1195 // Return the new (root offset, node offset) corresponding to Position.
1196 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1197 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
1198 splitRoot(unsigned Position) {
1199   using namespace IntervalMapImpl;
1200   // How many external leaf nodes to hold RootBranch+1?
1201   const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
1202
1203   // Compute element distribution among new nodes.
1204   unsigned Size[Nodes];
1205   IdxPair NewOffset(0, Position);
1206
1207   // Is is very common for the root node to be smaller than external nodes.
1208   if (Nodes == 1)
1209     Size[0] = rootSize;
1210   else
1211     NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  nullptr, Size,
1212                            Position, true);
1213
1214   // Allocate new nodes.
1215   unsigned Pos = 0;
1216   NodeRef Node[Nodes];
1217   for (unsigned n = 0; n != Nodes; ++n) {
1218     Branch *B = newNode<Branch>();
1219     B->copy(rootBranch(), Pos, 0, Size[n]);
1220     Node[n] = NodeRef(B, Size[n]);
1221     Pos += Size[n];
1222   }
1223
1224   for (unsigned n = 0; n != Nodes; ++n) {
1225     rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1);
1226     rootBranch().subtree(n) = Node[n];
1227   }
1228   rootSize = Nodes;
1229   ++height;
1230   return NewOffset;
1231 }
1232
1233 /// visitNodes - Visit each external node.
1234 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1235 void IntervalMap<KeyT, ValT, N, Traits>::
1236 visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) {
1237   if (!branched())
1238     return;
1239   SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs;
1240
1241   // Collect level 0 nodes from the root.
1242   for (unsigned i = 0; i != rootSize; ++i)
1243     Refs.push_back(rootBranch().subtree(i));
1244
1245   // Visit all branch nodes.
1246   for (unsigned h = height - 1; h; --h) {
1247     for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
1248       for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
1249         NextRefs.push_back(Refs[i].subtree(j));
1250       (this->*f)(Refs[i], h);
1251     }
1252     Refs.clear();
1253     Refs.swap(NextRefs);
1254   }
1255
1256   // Visit all leaf nodes.
1257   for (unsigned i = 0, e = Refs.size(); i != e; ++i)
1258     (this->*f)(Refs[i], 0);
1259 }
1260
1261 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1262 void IntervalMap<KeyT, ValT, N, Traits>::
1263 deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) {
1264   if (Level)
1265     deleteNode(&Node.get<Branch>());
1266   else
1267     deleteNode(&Node.get<Leaf>());
1268 }
1269
1270 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1271 void IntervalMap<KeyT, ValT, N, Traits>::
1272 clear() {
1273   if (branched()) {
1274     visitNodes(&IntervalMap::deleteNode);
1275     switchRootToLeaf();
1276   }
1277   rootSize = 0;
1278 }
1279
1280 //===----------------------------------------------------------------------===//
1281 //---                   IntervalMap::const_iterator                       ----//
1282 //===----------------------------------------------------------------------===//
1283
1284 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1285 class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
1286   public std::iterator<std::bidirectional_iterator_tag, ValT> {
1287 protected:
1288   friend class IntervalMap;
1289
1290   // The map referred to.
1291   IntervalMap *map;
1292
1293   // We store a full path from the root to the current position.
1294   // The path may be partially filled, but never between iterator calls.
1295   IntervalMapImpl::Path path;
1296
1297   explicit const_iterator(const IntervalMap &map) :
1298     map(const_cast<IntervalMap*>(&map)) {}
1299
1300   bool branched() const {
1301     assert(map && "Invalid iterator");
1302     return map->branched();
1303   }
1304
1305   void setRoot(unsigned Offset) {
1306     if (branched())
1307       path.setRoot(&map->rootBranch(), map->rootSize, Offset);
1308     else
1309       path.setRoot(&map->rootLeaf(), map->rootSize, Offset);
1310   }
1311
1312   void pathFillFind(KeyT x);
1313   void treeFind(KeyT x);
1314   void treeAdvanceTo(KeyT x);
1315
1316   /// unsafeStart - Writable access to start() for iterator.
1317   KeyT &unsafeStart() const {
1318     assert(valid() && "Cannot access invalid iterator");
1319     return branched() ? path.leaf<Leaf>().start(path.leafOffset()) :
1320                         path.leaf<RootLeaf>().start(path.leafOffset());
1321   }
1322
1323   /// unsafeStop - Writable access to stop() for iterator.
1324   KeyT &unsafeStop() const {
1325     assert(valid() && "Cannot access invalid iterator");
1326     return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) :
1327                         path.leaf<RootLeaf>().stop(path.leafOffset());
1328   }
1329
1330   /// unsafeValue - Writable access to value() for iterator.
1331   ValT &unsafeValue() const {
1332     assert(valid() && "Cannot access invalid iterator");
1333     return branched() ? path.leaf<Leaf>().value(path.leafOffset()) :
1334                         path.leaf<RootLeaf>().value(path.leafOffset());
1335   }
1336
1337 public:
1338   /// const_iterator - Create an iterator that isn't pointing anywhere.
1339   const_iterator() : map(nullptr) {}
1340
1341   /// setMap - Change the map iterated over. This call must be followed by a
1342   /// call to goToBegin(), goToEnd(), or find()
1343   void setMap(const IntervalMap &m) { map = const_cast<IntervalMap*>(&m); }
1344
1345   /// valid - Return true if the current position is valid, false for end().
1346   bool valid() const { return path.valid(); }
1347
1348   /// atBegin - Return true if the current position is the first map entry.
1349   bool atBegin() const { return path.atBegin(); }
1350
1351   /// start - Return the beginning of the current interval.
1352   const KeyT &start() const { return unsafeStart(); }
1353
1354   /// stop - Return the end of the current interval.
1355   const KeyT &stop() const { return unsafeStop(); }
1356
1357   /// value - Return the mapped value at the current interval.
1358   const ValT &value() const { return unsafeValue(); }
1359
1360   const ValT &operator*() const { return value(); }
1361
1362   bool operator==(const const_iterator &RHS) const {
1363     assert(map == RHS.map && "Cannot compare iterators from different maps");
1364     if (!valid())
1365       return !RHS.valid();
1366     if (path.leafOffset() != RHS.path.leafOffset())
1367       return false;
1368     return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>();
1369   }
1370
1371   bool operator!=(const const_iterator &RHS) const {
1372     return !operator==(RHS);
1373   }
1374
1375   /// goToBegin - Move to the first interval in map.
1376   void goToBegin() {
1377     setRoot(0);
1378     if (branched())
1379       path.fillLeft(map->height);
1380   }
1381
1382   /// goToEnd - Move beyond the last interval in map.
1383   void goToEnd() {
1384     setRoot(map->rootSize);
1385   }
1386
1387   /// preincrement - move to the next interval.
1388   const_iterator &operator++() {
1389     assert(valid() && "Cannot increment end()");
1390     if (++path.leafOffset() == path.leafSize() && branched())
1391       path.moveRight(map->height);
1392     return *this;
1393   }
1394
1395   /// postincrement - Dont do that!
1396   const_iterator operator++(int) {
1397     const_iterator tmp = *this;
1398     operator++();
1399     return tmp;
1400   }
1401
1402   /// predecrement - move to the previous interval.
1403   const_iterator &operator--() {
1404     if (path.leafOffset() && (valid() || !branched()))
1405       --path.leafOffset();
1406     else
1407       path.moveLeft(map->height);
1408     return *this;
1409   }
1410
1411   /// postdecrement - Dont do that!
1412   const_iterator operator--(int) {
1413     const_iterator tmp = *this;
1414     operator--();
1415     return tmp;
1416   }
1417
1418   /// find - Move to the first interval with stop >= x, or end().
1419   /// This is a full search from the root, the current position is ignored.
1420   void find(KeyT x) {
1421     if (branched())
1422       treeFind(x);
1423     else
1424       setRoot(map->rootLeaf().findFrom(0, map->rootSize, x));
1425   }
1426
1427   /// advanceTo - Move to the first interval with stop >= x, or end().
1428   /// The search is started from the current position, and no earlier positions
1429   /// can be found. This is much faster than find() for small moves.
1430   void advanceTo(KeyT x) {
1431     if (!valid())
1432       return;
1433     if (branched())
1434       treeAdvanceTo(x);
1435     else
1436       path.leafOffset() =
1437         map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x);
1438   }
1439
1440 };
1441
1442 /// pathFillFind - Complete path by searching for x.
1443 /// @param x Key to search for.
1444 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1445 void IntervalMap<KeyT, ValT, N, Traits>::
1446 const_iterator::pathFillFind(KeyT x) {
1447   IntervalMapImpl::NodeRef NR = path.subtree(path.height());
1448   for (unsigned i = map->height - path.height() - 1; i; --i) {
1449     unsigned p = NR.get<Branch>().safeFind(0, x);
1450     path.push(NR, p);
1451     NR = NR.subtree(p);
1452   }
1453   path.push(NR, NR.get<Leaf>().safeFind(0, x));
1454 }
1455
1456 /// treeFind - Find in a branched tree.
1457 /// @param x Key to search for.
1458 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1459 void IntervalMap<KeyT, ValT, N, Traits>::
1460 const_iterator::treeFind(KeyT x) {
1461   setRoot(map->rootBranch().findFrom(0, map->rootSize, x));
1462   if (valid())
1463     pathFillFind(x);
1464 }
1465
1466 /// treeAdvanceTo - Find position after the current one.
1467 /// @param x Key to search for.
1468 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1469 void IntervalMap<KeyT, ValT, N, Traits>::
1470 const_iterator::treeAdvanceTo(KeyT x) {
1471   // Can we stay on the same leaf node?
1472   if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) {
1473     path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x);
1474     return;
1475   }
1476
1477   // Drop the current leaf.
1478   path.pop();
1479
1480   // Search towards the root for a usable subtree.
1481   if (path.height()) {
1482     for (unsigned l = path.height() - 1; l; --l) {
1483       if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) {
1484         // The branch node at l+1 is usable
1485         path.offset(l + 1) =
1486           path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x);
1487         return pathFillFind(x);
1488       }
1489       path.pop();
1490     }
1491     // Is the level-1 Branch usable?
1492     if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) {
1493       path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x);
1494       return pathFillFind(x);
1495     }
1496   }
1497
1498   // We reached the root.
1499   setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x));
1500   if (valid())
1501     pathFillFind(x);
1502 }
1503
1504 //===----------------------------------------------------------------------===//
1505 //---                       IntervalMap::iterator                         ----//
1506 //===----------------------------------------------------------------------===//
1507
1508 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1509 class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
1510   friend class IntervalMap;
1511   typedef IntervalMapImpl::IdxPair IdxPair;
1512
1513   explicit iterator(IntervalMap &map) : const_iterator(map) {}
1514
1515   void setNodeStop(unsigned Level, KeyT Stop);
1516   bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop);
1517   template <typename NodeT> bool overflow(unsigned Level);
1518   void treeInsert(KeyT a, KeyT b, ValT y);
1519   void eraseNode(unsigned Level);
1520   void treeErase(bool UpdateRoot = true);
1521   bool canCoalesceLeft(KeyT Start, ValT x);
1522   bool canCoalesceRight(KeyT Stop, ValT x);
1523
1524 public:
1525   /// iterator - Create null iterator.
1526   iterator() {}
1527
1528   /// setStart - Move the start of the current interval.
1529   /// This may cause coalescing with the previous interval.
1530   /// @param a New start key, must not overlap the previous interval.
1531   void setStart(KeyT a);
1532
1533   /// setStop - Move the end of the current interval.
1534   /// This may cause coalescing with the following interval.
1535   /// @param b New stop key, must not overlap the following interval.
1536   void setStop(KeyT b);
1537
1538   /// setValue - Change the mapped value of the current interval.
1539   /// This may cause coalescing with the previous and following intervals.
1540   /// @param x New value.
1541   void setValue(ValT x);
1542
1543   /// setStartUnchecked - Move the start of the current interval without
1544   /// checking for coalescing or overlaps.
1545   /// This should only be used when it is known that coalescing is not required.
1546   /// @param a New start key.
1547   void setStartUnchecked(KeyT a) { this->unsafeStart() = a; }
1548
1549   /// setStopUnchecked - Move the end of the current interval without checking
1550   /// for coalescing or overlaps.
1551   /// This should only be used when it is known that coalescing is not required.
1552   /// @param b New stop key.
1553   void setStopUnchecked(KeyT b) {
1554     this->unsafeStop() = b;
1555     // Update keys in branch nodes as well.
1556     if (this->path.atLastEntry(this->path.height()))
1557       setNodeStop(this->path.height(), b);
1558   }
1559
1560   /// setValueUnchecked - Change the mapped value of the current interval
1561   /// without checking for coalescing.
1562   /// @param x New value.
1563   void setValueUnchecked(ValT x) { this->unsafeValue() = x; }
1564
1565   /// insert - Insert mapping [a;b] -> y before the current position.
1566   void insert(KeyT a, KeyT b, ValT y);
1567
1568   /// erase - Erase the current interval.
1569   void erase();
1570
1571   iterator &operator++() {
1572     const_iterator::operator++();
1573     return *this;
1574   }
1575
1576   iterator operator++(int) {
1577     iterator tmp = *this;
1578     operator++();
1579     return tmp;
1580   }
1581
1582   iterator &operator--() {
1583     const_iterator::operator--();
1584     return *this;
1585   }
1586
1587   iterator operator--(int) {
1588     iterator tmp = *this;
1589     operator--();
1590     return tmp;
1591   }
1592
1593 };
1594
1595 /// canCoalesceLeft - Can the current interval coalesce to the left after
1596 /// changing start or value?
1597 /// @param Start New start of current interval.
1598 /// @param Value New value for current interval.
1599 /// @return True when updating the current interval would enable coalescing.
1600 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1601 bool IntervalMap<KeyT, ValT, N, Traits>::
1602 iterator::canCoalesceLeft(KeyT Start, ValT Value) {
1603   using namespace IntervalMapImpl;
1604   Path &P = this->path;
1605   if (!this->branched()) {
1606     unsigned i = P.leafOffset();
1607     RootLeaf &Node = P.leaf<RootLeaf>();
1608     return i && Node.value(i-1) == Value &&
1609                 Traits::adjacent(Node.stop(i-1), Start);
1610   }
1611   // Branched.
1612   if (unsigned i = P.leafOffset()) {
1613     Leaf &Node = P.leaf<Leaf>();
1614     return Node.value(i-1) == Value && Traits::adjacent(Node.stop(i-1), Start);
1615   } else if (NodeRef NR = P.getLeftSibling(P.height())) {
1616     unsigned i = NR.size() - 1;
1617     Leaf &Node = NR.get<Leaf>();
1618     return Node.value(i) == Value && Traits::adjacent(Node.stop(i), Start);
1619   }
1620   return false;
1621 }
1622
1623 /// canCoalesceRight - Can the current interval coalesce to the right after
1624 /// changing stop or value?
1625 /// @param Stop New stop of current interval.
1626 /// @param Value New value for current interval.
1627 /// @return True when updating the current interval would enable coalescing.
1628 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1629 bool IntervalMap<KeyT, ValT, N, Traits>::
1630 iterator::canCoalesceRight(KeyT Stop, ValT Value) {
1631   using namespace IntervalMapImpl;
1632   Path &P = this->path;
1633   unsigned i = P.leafOffset() + 1;
1634   if (!this->branched()) {
1635     if (i >= P.leafSize())
1636       return false;
1637     RootLeaf &Node = P.leaf<RootLeaf>();
1638     return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1639   }
1640   // Branched.
1641   if (i < P.leafSize()) {
1642     Leaf &Node = P.leaf<Leaf>();
1643     return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1644   } else if (NodeRef NR = P.getRightSibling(P.height())) {
1645     Leaf &Node = NR.get<Leaf>();
1646     return Node.value(0) == Value && Traits::adjacent(Stop, Node.start(0));
1647   }
1648   return false;
1649 }
1650
1651 /// setNodeStop - Update the stop key of the current node at level and above.
1652 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1653 void IntervalMap<KeyT, ValT, N, Traits>::
1654 iterator::setNodeStop(unsigned Level, KeyT Stop) {
1655   // There are no references to the root node, so nothing to update.
1656   if (!Level)
1657     return;
1658   IntervalMapImpl::Path &P = this->path;
1659   // Update nodes pointing to the current node.
1660   while (--Level) {
1661     P.node<Branch>(Level).stop(P.offset(Level)) = Stop;
1662     if (!P.atLastEntry(Level))
1663       return;
1664   }
1665   // Update root separately since it has a different layout.
1666   P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop;
1667 }
1668
1669 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1670 void IntervalMap<KeyT, ValT, N, Traits>::
1671 iterator::setStart(KeyT a) {
1672   assert(Traits::stopLess(a, this->stop()) && "Cannot move start beyond stop");
1673   KeyT &CurStart = this->unsafeStart();
1674   if (!Traits::startLess(a, CurStart) || !canCoalesceLeft(a, this->value())) {
1675     CurStart = a;
1676     return;
1677   }
1678   // Coalesce with the interval to the left.
1679   --*this;
1680   a = this->start();
1681   erase();
1682   setStartUnchecked(a);
1683 }
1684
1685 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1686 void IntervalMap<KeyT, ValT, N, Traits>::
1687 iterator::setStop(KeyT b) {
1688   assert(Traits::stopLess(this->start(), b) && "Cannot move stop beyond start");
1689   if (Traits::startLess(b, this->stop()) ||
1690       !canCoalesceRight(b, this->value())) {
1691     setStopUnchecked(b);
1692     return;
1693   }
1694   // Coalesce with interval to the right.
1695   KeyT a = this->start();
1696   erase();
1697   setStartUnchecked(a);
1698 }
1699
1700 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1701 void IntervalMap<KeyT, ValT, N, Traits>::
1702 iterator::setValue(ValT x) {
1703   setValueUnchecked(x);
1704   if (canCoalesceRight(this->stop(), x)) {
1705     KeyT a = this->start();
1706     erase();
1707     setStartUnchecked(a);
1708   }
1709   if (canCoalesceLeft(this->start(), x)) {
1710     --*this;
1711     KeyT a = this->start();
1712     erase();
1713     setStartUnchecked(a);
1714   }
1715 }
1716
1717 /// insertNode - insert a node before the current path at level.
1718 /// Leave the current path pointing at the new node.
1719 /// @param Level path index of the node to be inserted.
1720 /// @param Node The node to be inserted.
1721 /// @param Stop The last index in the new node.
1722 /// @return True if the tree height was increased.
1723 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1724 bool IntervalMap<KeyT, ValT, N, Traits>::
1725 iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) {
1726   assert(Level && "Cannot insert next to the root");
1727   bool SplitRoot = false;
1728   IntervalMap &IM = *this->map;
1729   IntervalMapImpl::Path &P = this->path;
1730
1731   if (Level == 1) {
1732     // Insert into the root branch node.
1733     if (IM.rootSize < RootBranch::Capacity) {
1734       IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop);
1735       P.setSize(0, ++IM.rootSize);
1736       P.reset(Level);
1737       return SplitRoot;
1738     }
1739
1740     // We need to split the root while keeping our position.
1741     SplitRoot = true;
1742     IdxPair Offset = IM.splitRoot(P.offset(0));
1743     P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1744
1745     // Fall through to insert at the new higher level.
1746     ++Level;
1747   }
1748
1749   // When inserting before end(), make sure we have a valid path.
1750   P.legalizeForInsert(--Level);
1751
1752   // Insert into the branch node at Level-1.
1753   if (P.size(Level) == Branch::Capacity) {
1754     // Branch node is full, handle handle the overflow.
1755     assert(!SplitRoot && "Cannot overflow after splitting the root");
1756     SplitRoot = overflow<Branch>(Level);
1757     Level += SplitRoot;
1758   }
1759   P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop);
1760   P.setSize(Level, P.size(Level) + 1);
1761   if (P.atLastEntry(Level))
1762     setNodeStop(Level, Stop);
1763   P.reset(Level + 1);
1764   return SplitRoot;
1765 }
1766
1767 // insert
1768 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1769 void IntervalMap<KeyT, ValT, N, Traits>::
1770 iterator::insert(KeyT a, KeyT b, ValT y) {
1771   if (this->branched())
1772     return treeInsert(a, b, y);
1773   IntervalMap &IM = *this->map;
1774   IntervalMapImpl::Path &P = this->path;
1775
1776   // Try simple root leaf insert.
1777   unsigned Size = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y);
1778
1779   // Was the root node insert successful?
1780   if (Size <= RootLeaf::Capacity) {
1781     P.setSize(0, IM.rootSize = Size);
1782     return;
1783   }
1784
1785   // Root leaf node is full, we must branch.
1786   IdxPair Offset = IM.branchRoot(P.leafOffset());
1787   P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1788
1789   // Now it fits in the new leaf.
1790   treeInsert(a, b, y);
1791 }
1792
1793
1794 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1795 void IntervalMap<KeyT, ValT, N, Traits>::
1796 iterator::treeInsert(KeyT a, KeyT b, ValT y) {
1797   using namespace IntervalMapImpl;
1798   Path &P = this->path;
1799
1800   if (!P.valid())
1801     P.legalizeForInsert(this->map->height);
1802
1803   // Check if this insertion will extend the node to the left.
1804   if (P.leafOffset() == 0 && Traits::startLess(a, P.leaf<Leaf>().start(0))) {
1805     // Node is growing to the left, will it affect a left sibling node?
1806     if (NodeRef Sib = P.getLeftSibling(P.height())) {
1807       Leaf &SibLeaf = Sib.get<Leaf>();
1808       unsigned SibOfs = Sib.size() - 1;
1809       if (SibLeaf.value(SibOfs) == y &&
1810           Traits::adjacent(SibLeaf.stop(SibOfs), a)) {
1811         // This insertion will coalesce with the last entry in SibLeaf. We can
1812         // handle it in two ways:
1813         //  1. Extend SibLeaf.stop to b and be done, or
1814         //  2. Extend a to SibLeaf, erase the SibLeaf entry and continue.
1815         // We prefer 1., but need 2 when coalescing to the right as well.
1816         Leaf &CurLeaf = P.leaf<Leaf>();
1817         P.moveLeft(P.height());
1818         if (Traits::stopLess(b, CurLeaf.start(0)) &&
1819             (y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) {
1820           // Easy, just extend SibLeaf and we're done.
1821           setNodeStop(P.height(), SibLeaf.stop(SibOfs) = b);
1822           return;
1823         } else {
1824           // We have both left and right coalescing. Erase the old SibLeaf entry
1825           // and continue inserting the larger interval.
1826           a = SibLeaf.start(SibOfs);
1827           treeErase(/* UpdateRoot= */false);
1828         }
1829       }
1830     } else {
1831       // No left sibling means we are at begin(). Update cached bound.
1832       this->map->rootBranchStart() = a;
1833     }
1834   }
1835
1836   // When we are inserting at the end of a leaf node, we must update stops.
1837   unsigned Size = P.leafSize();
1838   bool Grow = P.leafOffset() == Size;
1839   Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), Size, a, b, y);
1840
1841   // Leaf insertion unsuccessful? Overflow and try again.
1842   if (Size > Leaf::Capacity) {
1843     overflow<Leaf>(P.height());
1844     Grow = P.leafOffset() == P.leafSize();
1845     Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y);
1846     assert(Size <= Leaf::Capacity && "overflow() didn't make room");
1847   }
1848
1849   // Inserted, update offset and leaf size.
1850   P.setSize(P.height(), Size);
1851
1852   // Insert was the last node entry, update stops.
1853   if (Grow)
1854     setNodeStop(P.height(), b);
1855 }
1856
1857 /// erase - erase the current interval and move to the next position.
1858 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1859 void IntervalMap<KeyT, ValT, N, Traits>::
1860 iterator::erase() {
1861   IntervalMap &IM = *this->map;
1862   IntervalMapImpl::Path &P = this->path;
1863   assert(P.valid() && "Cannot erase end()");
1864   if (this->branched())
1865     return treeErase();
1866   IM.rootLeaf().erase(P.leafOffset(), IM.rootSize);
1867   P.setSize(0, --IM.rootSize);
1868 }
1869
1870 /// treeErase - erase() for a branched tree.
1871 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1872 void IntervalMap<KeyT, ValT, N, Traits>::
1873 iterator::treeErase(bool UpdateRoot) {
1874   IntervalMap &IM = *this->map;
1875   IntervalMapImpl::Path &P = this->path;
1876   Leaf &Node = P.leaf<Leaf>();
1877
1878   // Nodes are not allowed to become empty.
1879   if (P.leafSize() == 1) {
1880     IM.deleteNode(&Node);
1881     eraseNode(IM.height);
1882     // Update rootBranchStart if we erased begin().
1883     if (UpdateRoot && IM.branched() && P.valid() && P.atBegin())
1884       IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1885     return;
1886   }
1887
1888   // Erase current entry.
1889   Node.erase(P.leafOffset(), P.leafSize());
1890   unsigned NewSize = P.leafSize() - 1;
1891   P.setSize(IM.height, NewSize);
1892   // When we erase the last entry, update stop and move to a legal position.
1893   if (P.leafOffset() == NewSize) {
1894     setNodeStop(IM.height, Node.stop(NewSize - 1));
1895     P.moveRight(IM.height);
1896   } else if (UpdateRoot && P.atBegin())
1897     IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1898 }
1899
1900 /// eraseNode - Erase the current node at Level from its parent and move path to
1901 /// the first entry of the next sibling node.
1902 /// The node must be deallocated by the caller.
1903 /// @param Level 1..height, the root node cannot be erased.
1904 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1905 void IntervalMap<KeyT, ValT, N, Traits>::
1906 iterator::eraseNode(unsigned Level) {
1907   assert(Level && "Cannot erase root node");
1908   IntervalMap &IM = *this->map;
1909   IntervalMapImpl::Path &P = this->path;
1910
1911   if (--Level == 0) {
1912     IM.rootBranch().erase(P.offset(0), IM.rootSize);
1913     P.setSize(0, --IM.rootSize);
1914     // If this cleared the root, switch to height=0.
1915     if (IM.empty()) {
1916       IM.switchRootToLeaf();
1917       this->setRoot(0);
1918       return;
1919     }
1920   } else {
1921     // Remove node ref from branch node at Level.
1922     Branch &Parent = P.node<Branch>(Level);
1923     if (P.size(Level) == 1) {
1924       // Branch node became empty, remove it recursively.
1925       IM.deleteNode(&Parent);
1926       eraseNode(Level);
1927     } else {
1928       // Branch node won't become empty.
1929       Parent.erase(P.offset(Level), P.size(Level));
1930       unsigned NewSize = P.size(Level) - 1;
1931       P.setSize(Level, NewSize);
1932       // If we removed the last branch, update stop and move to a legal pos.
1933       if (P.offset(Level) == NewSize) {
1934         setNodeStop(Level, Parent.stop(NewSize - 1));
1935         P.moveRight(Level);
1936       }
1937     }
1938   }
1939   // Update path cache for the new right sibling position.
1940   if (P.valid()) {
1941     P.reset(Level + 1);
1942     P.offset(Level + 1) = 0;
1943   }
1944 }
1945
1946 /// overflow - Distribute entries of the current node evenly among
1947 /// its siblings and ensure that the current node is not full.
1948 /// This may require allocating a new node.
1949 /// @tparam NodeT The type of node at Level (Leaf or Branch).
1950 /// @param Level path index of the overflowing node.
1951 /// @return True when the tree height was changed.
1952 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1953 template <typename NodeT>
1954 bool IntervalMap<KeyT, ValT, N, Traits>::
1955 iterator::overflow(unsigned Level) {
1956   using namespace IntervalMapImpl;
1957   Path &P = this->path;
1958   unsigned CurSize[4];
1959   NodeT *Node[4];
1960   unsigned Nodes = 0;
1961   unsigned Elements = 0;
1962   unsigned Offset = P.offset(Level);
1963
1964   // Do we have a left sibling?
1965   NodeRef LeftSib = P.getLeftSibling(Level);
1966   if (LeftSib) {
1967     Offset += Elements = CurSize[Nodes] = LeftSib.size();
1968     Node[Nodes++] = &LeftSib.get<NodeT>();
1969   }
1970
1971   // Current node.
1972   Elements += CurSize[Nodes] = P.size(Level);
1973   Node[Nodes++] = &P.node<NodeT>(Level);
1974
1975   // Do we have a right sibling?
1976   NodeRef RightSib = P.getRightSibling(Level);
1977   if (RightSib) {
1978     Elements += CurSize[Nodes] = RightSib.size();
1979     Node[Nodes++] = &RightSib.get<NodeT>();
1980   }
1981
1982   // Do we need to allocate a new node?
1983   unsigned NewNode = 0;
1984   if (Elements + 1 > Nodes * NodeT::Capacity) {
1985     // Insert NewNode at the penultimate position, or after a single node.
1986     NewNode = Nodes == 1 ? 1 : Nodes - 1;
1987     CurSize[Nodes] = CurSize[NewNode];
1988     Node[Nodes] = Node[NewNode];
1989     CurSize[NewNode] = 0;
1990     Node[NewNode] = this->map->template newNode<NodeT>();
1991     ++Nodes;
1992   }
1993
1994   // Compute the new element distribution.
1995   unsigned NewSize[4];
1996   IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity,
1997                                  CurSize, NewSize, Offset, true);
1998   adjustSiblingSizes(Node, Nodes, CurSize, NewSize);
1999
2000   // Move current location to the leftmost node.
2001   if (LeftSib)
2002     P.moveLeft(Level);
2003
2004   // Elements have been rearranged, now update node sizes and stops.
2005   bool SplitRoot = false;
2006   unsigned Pos = 0;
2007   for (;;) {
2008     KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
2009     if (NewNode && Pos == NewNode) {
2010       SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop);
2011       Level += SplitRoot;
2012     } else {
2013       P.setSize(Level, NewSize[Pos]);
2014       setNodeStop(Level, Stop);
2015     }
2016     if (Pos + 1 == Nodes)
2017       break;
2018     P.moveRight(Level);
2019     ++Pos;
2020   }
2021
2022   // Where was I? Find NewOffset.
2023   while(Pos != NewOffset.first) {
2024     P.moveLeft(Level);
2025     --Pos;
2026   }
2027   P.offset(Level) = NewOffset.second;
2028   return SplitRoot;
2029 }
2030
2031 //===----------------------------------------------------------------------===//
2032 //---                       IntervalMapOverlaps                           ----//
2033 //===----------------------------------------------------------------------===//
2034
2035 /// IntervalMapOverlaps - Iterate over the overlaps of mapped intervals in two
2036 /// IntervalMaps. The maps may be different, but the KeyT and Traits types
2037 /// should be the same.
2038 ///
2039 /// Typical uses:
2040 ///
2041 /// 1. Test for overlap:
2042 ///    bool overlap = IntervalMapOverlaps(a, b).valid();
2043 ///
2044 /// 2. Enumerate overlaps:
2045 ///    for (IntervalMapOverlaps I(a, b); I.valid() ; ++I) { ... }
2046 ///
2047 template <typename MapA, typename MapB>
2048 class IntervalMapOverlaps {
2049   typedef typename MapA::KeyType KeyType;
2050   typedef typename MapA::KeyTraits Traits;
2051   typename MapA::const_iterator posA;
2052   typename MapB::const_iterator posB;
2053
2054   /// advance - Move posA and posB forward until reaching an overlap, or until
2055   /// either meets end.
2056   /// Don't move the iterators if they are already overlapping.
2057   void advance() {
2058     if (!valid())
2059       return;
2060
2061     if (Traits::stopLess(posA.stop(), posB.start())) {
2062       // A ends before B begins. Catch up.
2063       posA.advanceTo(posB.start());
2064       if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
2065         return;
2066     } else if (Traits::stopLess(posB.stop(), posA.start())) {
2067       // B ends before A begins. Catch up.
2068       posB.advanceTo(posA.start());
2069       if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
2070         return;
2071     } else
2072       // Already overlapping.
2073       return;
2074
2075     for (;;) {
2076       // Make a.end > b.start.
2077       posA.advanceTo(posB.start());
2078       if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
2079         return;
2080       // Make b.end > a.start.
2081       posB.advanceTo(posA.start());
2082       if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
2083         return;
2084     }
2085   }
2086
2087 public:
2088   /// IntervalMapOverlaps - Create an iterator for the overlaps of a and b.
2089   IntervalMapOverlaps(const MapA &a, const MapB &b)
2090     : posA(b.empty() ? a.end() : a.find(b.start())),
2091       posB(posA.valid() ? b.find(posA.start()) : b.end()) { advance(); }
2092
2093   /// valid - Return true if iterator is at an overlap.
2094   bool valid() const {
2095     return posA.valid() && posB.valid();
2096   }
2097
2098   /// a - access the left hand side in the overlap.
2099   const typename MapA::const_iterator &a() const { return posA; }
2100
2101   /// b - access the right hand side in the overlap.
2102   const typename MapB::const_iterator &b() const { return posB; }
2103
2104   /// start - Beginning of the overlapping interval.
2105   KeyType start() const {
2106     KeyType ak = a().start();
2107     KeyType bk = b().start();
2108     return Traits::startLess(ak, bk) ? bk : ak;
2109   }
2110
2111   /// stop - End of the overlapping interval.
2112   KeyType stop() const {
2113     KeyType ak = a().stop();
2114     KeyType bk = b().stop();
2115     return Traits::startLess(ak, bk) ? ak : bk;
2116   }
2117
2118   /// skipA - Move to the next overlap that doesn't involve a().
2119   void skipA() {
2120     ++posA;
2121     advance();
2122   }
2123
2124   /// skipB - Move to the next overlap that doesn't involve b().
2125   void skipB() {
2126     ++posB;
2127     advance();
2128   }
2129
2130   /// Preincrement - Move to the next overlap.
2131   IntervalMapOverlaps &operator++() {
2132     // Bump the iterator that ends first. The other one may have more overlaps.
2133     if (Traits::startLess(posB.stop(), posA.stop()))
2134       skipB();
2135     else
2136       skipA();
2137     return *this;
2138   }
2139
2140   /// advanceTo - Move to the first overlapping interval with
2141   /// stopLess(x, stop()).
2142   void advanceTo(KeyType x) {
2143     if (!valid())
2144       return;
2145     // Make sure advanceTo sees monotonic keys.
2146     if (Traits::stopLess(posA.stop(), x))
2147       posA.advanceTo(x);
2148     if (Traits::stopLess(posB.stop(), x))
2149       posB.advanceTo(x);
2150     advance();
2151   }
2152 };
2153
2154 } // namespace llvm
2155
2156 #endif