931b67e40911dd801fa865e4c86c3fd22e41c6a3
[oota-llvm.git] / include / llvm / ADT / IntervalMap.h
1 //===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a coalescing interval map for small objects.
11 //
12 // KeyT objects are mapped to ValT objects. Intervals of keys that map to the
13 // same value are represented in a compressed form.
14 //
15 // Iterators provide ordered access to the compressed intervals rather than the
16 // individual keys, and insert and erase operations use key intervals as well.
17 //
18 // Like SmallVector, IntervalMap will store the first N intervals in the map
19 // object itself without any allocations. When space is exhausted it switches to
20 // a B+-tree representation with very small overhead for small key and value
21 // objects.
22 //
23 // A Traits class specifies how keys are compared. It also allows IntervalMap to
24 // work with both closed and half-open intervals.
25 //
26 // Keys and values are not stored next to each other in a std::pair, so we don't
27 // provide such a value_type. Dereferencing iterators only returns the mapped
28 // value. The interval bounds are accessible through the start() and stop()
29 // iterator methods.
30 //
31 // IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
32 // is the optimal size. For large objects use std::map instead.
33 //
34 //===----------------------------------------------------------------------===//
35 //
36 // Synopsis:
37 //
38 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
39 // class IntervalMap {
40 // public:
41 //   typedef KeyT key_type;
42 //   typedef ValT mapped_type;
43 //   typedef RecyclingAllocator<...> Allocator;
44 //   class iterator;
45 //   class const_iterator;
46 //
47 //   explicit IntervalMap(Allocator&);
48 //   ~IntervalMap():
49 //
50 //   bool empty() const;
51 //   KeyT start() const;
52 //   KeyT stop() const;
53 //   ValT lookup(KeyT x, Value NotFound = Value()) const;
54 //
55 //   const_iterator begin() const;
56 //   const_iterator end() const;
57 //   iterator begin();
58 //   iterator end();
59 //   const_iterator find(KeyT x) const;
60 //   iterator find(KeyT x);
61 //
62 //   void insert(KeyT a, KeyT b, ValT y);
63 //   void clear();
64 // };
65 //
66 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
67 // class IntervalMap::const_iterator :
68 //   public std::iterator<std::bidirectional_iterator_tag, ValT> {
69 // public:
70 //   bool operator==(const const_iterator &) const;
71 //   bool operator!=(const const_iterator &) const;
72 //   bool valid() const;
73 //
74 //   const KeyT &start() const;
75 //   const KeyT &stop() const;
76 //   const ValT &value() const;
77 //   const ValT &operator*() const;
78 //   const ValT *operator->() const;
79 //
80 //   const_iterator &operator++();
81 //   const_iterator &operator++(int);
82 //   const_iterator &operator--();
83 //   const_iterator &operator--(int);
84 //   void goToBegin();
85 //   void goToEnd();
86 //   void find(KeyT x);
87 //   void advanceTo(KeyT x);
88 // };
89 //
90 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
91 // class IntervalMap::iterator : public const_iterator {
92 // public:
93 //   void insert(KeyT a, KeyT b, Value y);
94 //   void erase();
95 // };
96 //
97 //===----------------------------------------------------------------------===//
98
99 #ifndef LLVM_ADT_INTERVALMAP_H
100 #define LLVM_ADT_INTERVALMAP_H
101
102 #include "llvm/ADT/SmallVector.h"
103 #include "llvm/ADT/PointerIntPair.h"
104 #include "llvm/Support/Allocator.h"
105 #include "llvm/Support/RecyclingAllocator.h"
106 #include <iterator>
107
108 namespace llvm {
109
110
111 //===----------------------------------------------------------------------===//
112 //---                              Key traits                              ---//
113 //===----------------------------------------------------------------------===//
114 //
115 // The IntervalMap works with closed or half-open intervals.
116 // Adjacent intervals that map to the same value are coalesced.
117 //
118 // The IntervalMapInfo traits class is used to determine if a key is contained
119 // in an interval, and if two intervals are adjacent so they can be coalesced.
120 // The provided implementation works for closed integer intervals, other keys
121 // probably need a specialized version.
122 //
123 // The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
124 //
125 // It is assumed that (a;b] half-open intervals are not used, only [a;b) is
126 // allowed. This is so that stopLess(a, b) can be used to determine if two
127 // intervals overlap.
128 //
129 //===----------------------------------------------------------------------===//
130
131 template <typename T>
132 struct IntervalMapInfo {
133
134   /// startLess - Return true if x is not in [a;b].
135   /// This is x < a both for closed intervals and for [a;b) half-open intervals.
136   static inline bool startLess(const T &x, const T &a) {
137     return x < a;
138   }
139
140   /// stopLess - Return true if x is not in [a;b].
141   /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
142   static inline bool stopLess(const T &b, const T &x) {
143     return b < x;
144   }
145
146   /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
147   /// This is a+1 == b for closed intervals, a == b for half-open intervals.
148   static inline bool adjacent(const T &a, const T &b) {
149     return a+1 == b;
150   }
151
152 };
153
154 /// IntervalMapImpl - Namespace used for IntervalMap implementation details.
155 /// It should be considered private to the implementation.
156 namespace IntervalMapImpl {
157
158 // Forward declarations.
159 template <typename, typename, unsigned, typename> class LeafNode;
160 template <typename, typename, unsigned, typename> class BranchNode;
161
162 typedef std::pair<unsigned,unsigned> IdxPair;
163
164
165 //===----------------------------------------------------------------------===//
166 //---                    IntervalMapImpl::NodeBase                         ---//
167 //===----------------------------------------------------------------------===//
168 //
169 // Both leaf and branch nodes store vectors of pairs.
170 // Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT).
171 //
172 // Keys and values are stored in separate arrays to avoid padding caused by
173 // different object alignments. This also helps improve locality of reference
174 // when searching the keys.
175 //
176 // The nodes don't know how many elements they contain - that information is
177 // stored elsewhere. Omitting the size field prevents padding and allows a node
178 // to fill the allocated cache lines completely.
179 //
180 // These are typical key and value sizes, the node branching factor (N), and
181 // wasted space when nodes are sized to fit in three cache lines (192 bytes):
182 //
183 //   T1  T2   N Waste  Used by
184 //    4   4  24   0    Branch<4> (32-bit pointers)
185 //    8   4  16   0    Leaf<4,4>, Branch<4>
186 //    8   8  12   0    Leaf<4,8>, Branch<8>
187 //   16   4   9  12    Leaf<8,4>
188 //   16   8   8   0    Leaf<8,8>
189 //
190 //===----------------------------------------------------------------------===//
191
192 template <typename T1, typename T2, unsigned N>
193 class NodeBase {
194 public:
195   enum { Capacity = N };
196
197   T1 first[N];
198   T2 second[N];
199
200   /// copy - Copy elements from another node.
201   /// @param Other Node elements are copied from.
202   /// @param i     Beginning of the source range in other.
203   /// @param j     Beginning of the destination range in this.
204   /// @param Count Number of elements to copy.
205   template <unsigned M>
206   void copy(const NodeBase<T1, T2, M> &Other, unsigned i,
207             unsigned j, unsigned Count) {
208     assert(i + Count <= M && "Invalid source range");
209     assert(j + Count <= N && "Invalid dest range");
210     for (unsigned e = i + Count; i != e; ++i, ++j) {
211       first[j]  = Other.first[i];
212       second[j] = Other.second[i];
213     }
214   }
215
216   /// moveLeft - Move elements to the left.
217   /// @param i     Beginning of the source range.
218   /// @param j     Beginning of the destination range.
219   /// @param Count Number of elements to copy.
220   void moveLeft(unsigned i, unsigned j, unsigned Count) {
221     assert(j <= i && "Use moveRight shift elements right");
222     copy(*this, i, j, Count);
223   }
224
225   /// moveRight - Move elements to the right.
226   /// @param i     Beginning of the source range.
227   /// @param j     Beginning of the destination range.
228   /// @param Count Number of elements to copy.
229   void moveRight(unsigned i, unsigned j, unsigned Count) {
230     assert(i <= j && "Use moveLeft shift elements left");
231     assert(j + Count <= N && "Invalid range");
232     while (Count--) {
233       first[j + Count]  = first[i + Count];
234       second[j + Count] = second[i + Count];
235     }
236   }
237
238   /// erase - Erase elements [i;j).
239   /// @param i    Beginning of the range to erase.
240   /// @param j    End of the range. (Exclusive).
241   /// @param Size Number of elements in node.
242   void erase(unsigned i, unsigned j, unsigned Size) {
243     moveLeft(j, i, Size - j);
244   }
245
246   /// erase - Erase element at i.
247   /// @param i    Index of element to erase.
248   /// @param Size Number of elements in node.
249   void erase(unsigned i, unsigned Size) {
250     erase(i, i+1, Size);
251   }
252
253   /// shift - Shift elements [i;size) 1 position to the right.
254   /// @param i    Beginning of the range to move.
255   /// @param Size Number of elements in node.
256   void shift(unsigned i, unsigned Size) {
257     moveRight(i, i + 1, Size - i);
258   }
259
260   /// transferToLeftSib - Transfer elements to a left sibling node.
261   /// @param Size  Number of elements in this.
262   /// @param Sib   Left sibling node.
263   /// @param SSize Number of elements in sib.
264   /// @param Count Number of elements to transfer.
265   void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize,
266                          unsigned Count) {
267     Sib.copy(*this, 0, SSize, Count);
268     erase(0, Count, Size);
269   }
270
271   /// transferToRightSib - Transfer elements to a right sibling node.
272   /// @param Size  Number of elements in this.
273   /// @param Sib   Right sibling node.
274   /// @param SSize Number of elements in sib.
275   /// @param Count Number of elements to transfer.
276   void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize,
277                           unsigned Count) {
278     Sib.moveRight(0, Count, SSize);
279     Sib.copy(*this, Size-Count, 0, Count);
280   }
281
282   /// adjustFromLeftSib - Adjust the number if elements in this node by moving
283   /// elements to or from a left sibling node.
284   /// @param Size  Number of elements in this.
285   /// @param Sib   Right sibling node.
286   /// @param SSize Number of elements in sib.
287   /// @param Add   The number of elements to add to this node, possibly < 0.
288   /// @return      Number of elements added to this node, possibly negative.
289   int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
290     if (Add > 0) {
291       // We want to grow, copy from sib.
292       unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
293       Sib.transferToRightSib(SSize, *this, Size, Count);
294       return Count;
295     } else {
296       // We want to shrink, copy to sib.
297       unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
298       transferToLeftSib(Size, Sib, SSize, Count);
299       return -Count;
300     }
301   }
302 };
303
304 /// IntervalMapImpl::adjustSiblingSizes - Move elements between sibling nodes.
305 /// @param Node  Array of pointers to sibling nodes.
306 /// @param Nodes Number of nodes.
307 /// @param CurSize Array of current node sizes, will be overwritten.
308 /// @param NewSize Array of desired node sizes.
309 template <typename NodeT>
310 void adjustSiblingSizes(NodeT *Node[], unsigned Nodes,
311                         unsigned CurSize[], const unsigned NewSize[]) {
312   // Move elements right.
313   for (int n = Nodes - 1; n; --n) {
314     if (CurSize[n] == NewSize[n])
315       continue;
316     for (int m = n - 1; m != -1; --m) {
317       int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m],
318                                          NewSize[n] - CurSize[n]);
319       CurSize[m] -= d;
320       CurSize[n] += d;
321       // Keep going if the current node was exhausted.
322       if (CurSize[n] >= NewSize[n])
323           break;
324     }
325   }
326
327   if (Nodes == 0)
328     return;
329
330   // Move elements left.
331   for (unsigned n = 0; n != Nodes - 1; ++n) {
332     if (CurSize[n] == NewSize[n])
333       continue;
334     for (unsigned m = n + 1; m != Nodes; ++m) {
335       int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n],
336                                         CurSize[n] -  NewSize[n]);
337       CurSize[m] += d;
338       CurSize[n] -= d;
339       // Keep going if the current node was exhausted.
340       if (CurSize[n] >= NewSize[n])
341           break;
342     }
343   }
344
345 #ifndef NDEBUG
346   for (unsigned n = 0; n != Nodes; n++)
347     assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
348 #endif
349 }
350
351 /// IntervalMapImpl::distribute - Compute a new distribution of node elements
352 /// after an overflow or underflow. Reserve space for a new element at Position,
353 /// and compute the node that will hold Position after redistributing node
354 /// elements.
355 ///
356 /// It is required that
357 ///
358 ///   Elements == sum(CurSize), and
359 ///   Elements + Grow <= Nodes * Capacity.
360 ///
361 /// NewSize[] will be filled in such that:
362 ///
363 ///   sum(NewSize) == Elements, and
364 ///   NewSize[i] <= Capacity.
365 ///
366 /// The returned index is the node where Position will go, so:
367 ///
368 ///   sum(NewSize[0..idx-1]) <= Position
369 ///   sum(NewSize[0..idx])   >= Position
370 ///
371 /// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
372 /// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
373 /// before the one holding the Position'th element where there is room for an
374 /// insertion.
375 ///
376 /// @param Nodes    The number of nodes.
377 /// @param Elements Total elements in all nodes.
378 /// @param Capacity The capacity of each node.
379 /// @param CurSize  Array[Nodes] of current node sizes, or NULL.
380 /// @param NewSize  Array[Nodes] to receive the new node sizes.
381 /// @param Position Insert position.
382 /// @param Grow     Reserve space for a new element at Position.
383 /// @return         (node, offset) for Position.
384 IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
385                    const unsigned *CurSize, unsigned NewSize[],
386                    unsigned Position, bool Grow);
387
388
389 //===----------------------------------------------------------------------===//
390 //---                   IntervalMapImpl::NodeSizer                         ---//
391 //===----------------------------------------------------------------------===//
392 //
393 // Compute node sizes from key and value types.
394 //
395 // The branching factors are chosen to make nodes fit in three cache lines.
396 // This may not be possible if keys or values are very large. Such large objects
397 // are handled correctly, but a std::map would probably give better performance.
398 //
399 //===----------------------------------------------------------------------===//
400
401 enum {
402   // Cache line size. Most architectures have 32 or 64 byte cache lines.
403   // We use 64 bytes here because it provides good branching factors.
404   Log2CacheLine = 6,
405   CacheLineBytes = 1 << Log2CacheLine,
406   DesiredNodeBytes = 3 * CacheLineBytes
407 };
408
409 template <typename KeyT, typename ValT>
410 struct NodeSizer {
411   enum {
412     // Compute the leaf node branching factor that makes a node fit in three
413     // cache lines. The branching factor must be at least 3, or some B+-tree
414     // balancing algorithms won't work.
415     // LeafSize can't be larger than CacheLineBytes. This is required by the
416     // PointerIntPair used by NodeRef.
417     DesiredLeafSize = DesiredNodeBytes /
418       static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
419     MinLeafSize = 3,
420     LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize
421   };
422
423   typedef NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize> LeafBase;
424
425   enum {
426     // Now that we have the leaf branching factor, compute the actual allocation
427     // unit size by rounding up to a whole number of cache lines.
428     AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1),
429
430     // Determine the branching factor for branch nodes.
431     BranchSize = AllocBytes /
432       static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
433   };
434
435   /// Allocator - The recycling allocator used for both branch and leaf nodes.
436   /// This typedef is very likely to be identical for all IntervalMaps with
437   /// reasonably sized entries, so the same allocator can be shared among
438   /// different kinds of maps.
439   typedef RecyclingAllocator<BumpPtrAllocator, char,
440                              AllocBytes, CacheLineBytes> Allocator;
441
442 };
443
444
445 //===----------------------------------------------------------------------===//
446 //---                     IntervalMapImpl::NodeRef                         ---//
447 //===----------------------------------------------------------------------===//
448 //
449 // B+-tree nodes can be leaves or branches, so we need a polymorphic node
450 // pointer that can point to both kinds.
451 //
452 // All nodes are cache line aligned and the low 6 bits of a node pointer are
453 // always 0. These bits are used to store the number of elements in the
454 // referenced node. Besides saving space, placing node sizes in the parents
455 // allow tree balancing algorithms to run without faulting cache lines for nodes
456 // that may not need to be modified.
457 //
458 // A NodeRef doesn't know whether it references a leaf node or a branch node.
459 // It is the responsibility of the caller to use the correct types.
460 //
461 // Nodes are never supposed to be empty, and it is invalid to store a node size
462 // of 0 in a NodeRef. The valid range of sizes is 1-64.
463 //
464 //===----------------------------------------------------------------------===//
465
466 class NodeRef {
467   struct CacheAlignedPointerTraits {
468     static inline void *getAsVoidPointer(void *P) { return P; }
469     static inline void *getFromVoidPointer(void *P) { return P; }
470     enum { NumLowBitsAvailable = Log2CacheLine };
471   };
472   PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
473
474 public:
475   /// NodeRef - Create a null ref.
476   NodeRef() {}
477
478   /// operator bool - Detect a null ref.
479   operator bool() const { return pip.getOpaqueValue(); }
480
481   /// NodeRef - Create a reference to the node p with n elements.
482   template <typename NodeT>
483   NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) {
484     assert(n <= NodeT::Capacity && "Size too big for node");
485   }
486
487   /// size - Return the number of elements in the referenced node.
488   unsigned size() const { return pip.getInt() + 1; }
489
490   /// setSize - Update the node size.
491   void setSize(unsigned n) { pip.setInt(n - 1); }
492
493   /// subtree - Access the i'th subtree reference in a branch node.
494   /// This depends on branch nodes storing the NodeRef array as their first
495   /// member.
496   NodeRef &subtree(unsigned i) const {
497     return reinterpret_cast<NodeRef*>(pip.getPointer())[i];
498   }
499
500   /// get - Dereference as a NodeT reference.
501   template <typename NodeT>
502   NodeT &get() const {
503     return *reinterpret_cast<NodeT*>(pip.getPointer());
504   }
505
506   bool operator==(const NodeRef &RHS) const {
507     if (pip == RHS.pip)
508       return true;
509     assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
510     return false;
511   }
512
513   bool operator!=(const NodeRef &RHS) const {
514     return !operator==(RHS);
515   }
516 };
517
518 //===----------------------------------------------------------------------===//
519 //---                      IntervalMapImpl::LeafNode                       ---//
520 //===----------------------------------------------------------------------===//
521 //
522 // Leaf nodes store up to N disjoint intervals with corresponding values.
523 //
524 // The intervals are kept sorted and fully coalesced so there are no adjacent
525 // intervals mapping to the same value.
526 //
527 // These constraints are always satisfied:
528 //
529 // - Traits::stopLess(start(i), stop(i))    - Non-empty, sane intervals.
530 //
531 // - Traits::stopLess(stop(i), start(i + 1) - Sorted.
532 //
533 // - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1))
534 //                                          - Fully coalesced.
535 //
536 //===----------------------------------------------------------------------===//
537
538 template <typename KeyT, typename ValT, unsigned N, typename Traits>
539 class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
540 public:
541   const KeyT &start(unsigned i) const { return this->first[i].first; }
542   const KeyT &stop(unsigned i) const { return this->first[i].second; }
543   const ValT &value(unsigned i) const { return this->second[i]; }
544
545   KeyT &start(unsigned i) { return this->first[i].first; }
546   KeyT &stop(unsigned i) { return this->first[i].second; }
547   ValT &value(unsigned i) { return this->second[i]; }
548
549   /// findFrom - Find the first interval after i that may contain x.
550   /// @param i    Starting index for the search.
551   /// @param Size Number of elements in node.
552   /// @param x    Key to search for.
553   /// @return     First index with !stopLess(key[i].stop, x), or size.
554   ///             This is the first interval that can possibly contain x.
555   unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
556     assert(i <= Size && Size <= N && "Bad indices");
557     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
558            "Index is past the needed point");
559     while (i != Size && Traits::stopLess(stop(i), x)) ++i;
560     return i;
561   }
562
563   /// safeFind - Find an interval that is known to exist. This is the same as
564   /// findFrom except is it assumed that x is at least within range of the last
565   /// interval.
566   /// @param i Starting index for the search.
567   /// @param x Key to search for.
568   /// @return  First index with !stopLess(key[i].stop, x), never size.
569   ///          This is the first interval that can possibly contain x.
570   unsigned safeFind(unsigned i, KeyT x) const {
571     assert(i < N && "Bad index");
572     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
573            "Index is past the needed point");
574     while (Traits::stopLess(stop(i), x)) ++i;
575     assert(i < N && "Unsafe intervals");
576     return i;
577   }
578
579   /// safeLookup - Lookup mapped value for a safe key.
580   /// It is assumed that x is within range of the last entry.
581   /// @param x        Key to search for.
582   /// @param NotFound Value to return if x is not in any interval.
583   /// @return         The mapped value at x or NotFound.
584   ValT safeLookup(KeyT x, ValT NotFound) const {
585     unsigned i = safeFind(0, x);
586     return Traits::startLess(x, start(i)) ? NotFound : value(i);
587   }
588
589   unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y);
590 };
591
592 /// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
593 /// possible. This may cause the node to grow by 1, or it may cause the node
594 /// to shrink because of coalescing.
595 /// @param i    Starting index = insertFrom(0, size, a)
596 /// @param Size Number of elements in node.
597 /// @param a    Interval start.
598 /// @param b    Interval stop.
599 /// @param y    Value be mapped.
600 /// @return     (insert position, new size), or (i, Capacity+1) on overflow.
601 template <typename KeyT, typename ValT, unsigned N, typename Traits>
602 unsigned LeafNode<KeyT, ValT, N, Traits>::
603 insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y) {
604   unsigned i = Pos;
605   assert(i <= Size && Size <= N && "Invalid index");
606   assert(!Traits::stopLess(b, a) && "Invalid interval");
607
608   // Verify the findFrom invariant.
609   assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
610   assert((i == Size || !Traits::stopLess(stop(i), a)));
611   assert((i == Size || Traits::stopLess(b, start(i))) && "Overlapping insert");
612
613   // Coalesce with previous interval.
614   if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) {
615     Pos = i - 1;
616     // Also coalesce with next interval?
617     if (i != Size && value(i) == y && Traits::adjacent(b, start(i))) {
618       stop(i - 1) = stop(i);
619       this->erase(i, Size);
620       return Size - 1;
621     }
622     stop(i - 1) = b;
623     return Size;
624   }
625
626   // Detect overflow.
627   if (i == N)
628     return N + 1;
629
630   // Add new interval at end.
631   if (i == Size) {
632     start(i) = a;
633     stop(i) = b;
634     value(i) = y;
635     return Size + 1;
636   }
637
638   // Try to coalesce with following interval.
639   if (value(i) == y && Traits::adjacent(b, start(i))) {
640     start(i) = a;
641     return Size;
642   }
643
644   // We must insert before i. Detect overflow.
645   if (Size == N)
646     return N + 1;
647
648   // Insert before i.
649   this->shift(i, Size);
650   start(i) = a;
651   stop(i) = b;
652   value(i) = y;
653   return Size + 1;
654 }
655
656
657 //===----------------------------------------------------------------------===//
658 //---                   IntervalMapImpl::BranchNode                        ---//
659 //===----------------------------------------------------------------------===//
660 //
661 // A branch node stores references to 1--N subtrees all of the same height.
662 //
663 // The key array in a branch node holds the rightmost stop key of each subtree.
664 // It is redundant to store the last stop key since it can be found in the
665 // parent node, but doing so makes tree balancing a lot simpler.
666 //
667 // It is unusual for a branch node to only have one subtree, but it can happen
668 // in the root node if it is smaller than the normal nodes.
669 //
670 // When all of the leaf nodes from all the subtrees are concatenated, they must
671 // satisfy the same constraints as a single leaf node. They must be sorted,
672 // sane, and fully coalesced.
673 //
674 //===----------------------------------------------------------------------===//
675
676 template <typename KeyT, typename ValT, unsigned N, typename Traits>
677 class BranchNode : public NodeBase<NodeRef, KeyT, N> {
678 public:
679   const KeyT &stop(unsigned i) const { return this->second[i]; }
680   const NodeRef &subtree(unsigned i) const { return this->first[i]; }
681
682   KeyT &stop(unsigned i) { return this->second[i]; }
683   NodeRef &subtree(unsigned i) { return this->first[i]; }
684
685   /// findFrom - Find the first subtree after i that may contain x.
686   /// @param i    Starting index for the search.
687   /// @param Size Number of elements in node.
688   /// @param x    Key to search for.
689   /// @return     First index with !stopLess(key[i], x), or size.
690   ///             This is the first subtree that can possibly contain x.
691   unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
692     assert(i <= Size && Size <= N && "Bad indices");
693     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
694            "Index to findFrom is past the needed point");
695     while (i != Size && Traits::stopLess(stop(i), x)) ++i;
696     return i;
697   }
698
699   /// safeFind - Find a subtree that is known to exist. This is the same as
700   /// findFrom except is it assumed that x is in range.
701   /// @param i Starting index for the search.
702   /// @param x Key to search for.
703   /// @return  First index with !stopLess(key[i], x), never size.
704   ///          This is the first subtree that can possibly contain x.
705   unsigned safeFind(unsigned i, KeyT x) const {
706     assert(i < N && "Bad index");
707     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
708            "Index is past the needed point");
709     while (Traits::stopLess(stop(i), x)) ++i;
710     assert(i < N && "Unsafe intervals");
711     return i;
712   }
713
714   /// safeLookup - Get the subtree containing x, Assuming that x is in range.
715   /// @param x Key to search for.
716   /// @return  Subtree containing x
717   NodeRef safeLookup(KeyT x) const {
718     return subtree(safeFind(0, x));
719   }
720
721   /// insert - Insert a new (subtree, stop) pair.
722   /// @param i    Insert position, following entries will be shifted.
723   /// @param Size Number of elements in node.
724   /// @param Node Subtree to insert.
725   /// @param Stop Last key in subtree.
726   void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
727     assert(Size < N && "branch node overflow");
728     assert(i <= Size && "Bad insert position");
729     this->shift(i, Size);
730     subtree(i) = Node;
731     stop(i) = Stop;
732   }
733 };
734
735 //===----------------------------------------------------------------------===//
736 //---                         IntervalMapImpl::Path                        ---//
737 //===----------------------------------------------------------------------===//
738 //
739 // A Path is used by iterators to represent a position in a B+-tree, and the
740 // path to get there from the root.
741 //
742 // The Path class also contains the tree navigation code that doesn't have to
743 // be templatized.
744 //
745 //===----------------------------------------------------------------------===//
746
747 class Path {
748   /// Entry - Each step in the path is a node pointer and an offset into that
749   /// node.
750   struct Entry {
751     void *node;
752     unsigned size;
753     unsigned offset;
754
755     Entry(void *Node, unsigned Size, unsigned Offset)
756       : node(Node), size(Size), offset(Offset) {}
757
758     Entry(NodeRef Node, unsigned Offset)
759       : node(&Node.subtree(0)), size(Node.size()), offset(Offset) {}
760
761     NodeRef &subtree(unsigned i) const {
762       return reinterpret_cast<NodeRef*>(node)[i];
763     }
764   };
765
766   /// path - The path entries, path[0] is the root node, path.back() is a leaf.
767   SmallVector<Entry, 4> path;
768
769 public:
770   // Node accessors.
771   template <typename NodeT> NodeT &node(unsigned Level) const {
772     return *reinterpret_cast<NodeT*>(path[Level].node);
773   }
774   unsigned size(unsigned Level) const { return path[Level].size; }
775   unsigned offset(unsigned Level) const { return path[Level].offset; }
776   unsigned &offset(unsigned Level) { return path[Level].offset; }
777
778   // Leaf accessors.
779   template <typename NodeT> NodeT &leaf() const {
780     return *reinterpret_cast<NodeT*>(path.back().node);
781   }
782   unsigned leafSize() const { return path.back().size; }
783   unsigned leafOffset() const { return path.back().offset; }
784   unsigned &leafOffset() { return path.back().offset; }
785
786   /// valid - Return true if path is at a valid node, not at end().
787   bool valid() const {
788     return !path.empty() && path.front().offset < path.front().size;
789   }
790
791   /// height - Return the height of the tree corresponding to this path.
792   /// This matches map->height in a full path.
793   unsigned height() const { return path.size() - 1; }
794
795   /// subtree - Get the subtree referenced from Level. When the path is
796   /// consistent, node(Level + 1) == subtree(Level).
797   /// @param Level 0..height-1. The leaves have no subtrees.
798   NodeRef &subtree(unsigned Level) const {
799     return path[Level].subtree(path[Level].offset);
800   }
801
802   /// reset - Reset cached information about node(Level) from subtree(Level -1).
803   /// @param Level 1..height. THe node to update after parent node changed.
804   void reset(unsigned Level) {
805     path[Level] = Entry(subtree(Level - 1), offset(Level));
806   }
807
808   /// push - Add entry to path.
809   /// @param Node Node to add, should be subtree(path.size()-1).
810   /// @param Offset Offset into Node.
811   void push(NodeRef Node, unsigned Offset) {
812     path.push_back(Entry(Node, Offset));
813   }
814
815   /// pop - Remove the last path entry.
816   void pop() {
817     path.pop_back();
818   }
819
820   /// setSize - Set the size of a node both in the path and in the tree.
821   /// @param Level 0..height. Note that setting the root size won't change
822   ///              map->rootSize.
823   /// @param Size New node size.
824   void setSize(unsigned Level, unsigned Size) {
825     path[Level].size = Size;
826     if (Level)
827       subtree(Level - 1).setSize(Size);
828   }
829
830   /// setRoot - Clear the path and set a new root node.
831   /// @param Node New root node.
832   /// @param Size New root size.
833   /// @param Offset Offset into root node.
834   void setRoot(void *Node, unsigned Size, unsigned Offset) {
835     path.clear();
836     path.push_back(Entry(Node, Size, Offset));
837   }
838
839   /// replaceRoot - Replace the current root node with two new entries after the
840   /// tree height has increased.
841   /// @param Root The new root node.
842   /// @param Size Number of entries in the new root.
843   /// @param Offsets Offsets into the root and first branch nodes.
844   void replaceRoot(void *Root, unsigned Size, IdxPair Offsets);
845
846   /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
847   /// @param Level Get the sibling to node(Level).
848   /// @return Left sibling, or NodeRef().
849   NodeRef getLeftSibling(unsigned Level) const;
850
851   /// moveLeft - Move path to the left sibling at Level. Leave nodes below Level
852   /// unaltered.
853   /// @param Level Move node(Level).
854   void moveLeft(unsigned Level);
855
856   /// fillLeft - Grow path to Height by taking leftmost branches.
857   /// @param Height The target height.
858   void fillLeft(unsigned Height) {
859     while (height() < Height)
860       push(subtree(height()), 0);
861   }
862
863   /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
864   /// @param Level Get the sinbling to node(Level).
865   /// @return Left sibling, or NodeRef().
866   NodeRef getRightSibling(unsigned Level) const;
867
868   /// moveRight - Move path to the left sibling at Level. Leave nodes below
869   /// Level unaltered.
870   /// @param Level Move node(Level).
871   void moveRight(unsigned Level);
872
873   /// atBegin - Return true if path is at begin().
874   bool atBegin() const {
875     for (unsigned i = 0, e = path.size(); i != e; ++i)
876       if (path[i].offset != 0)
877         return false;
878     return true;
879   }
880
881   /// atLastEntry - Return true if the path is at the last entry of the node at
882   /// Level.
883   /// @param Level Node to examine.
884   bool atLastEntry(unsigned Level) const {
885     return path[Level].offset == path[Level].size - 1;
886   }
887
888   /// legalizeForInsert - Prepare the path for an insertion at Level. When the
889   /// path is at end(), node(Level) may not be a legal node. legalizeForInsert
890   /// ensures that node(Level) is real by moving back to the last node at Level,
891   /// and setting offset(Level) to size(Level) if required.
892   /// @param Level The level where an insertion is about to take place.
893   void legalizeForInsert(unsigned Level) {
894     if (valid())
895       return;
896     moveLeft(Level);
897     ++path[Level].offset;
898   }
899 };
900
901 } // namespace IntervalMapImpl
902
903
904 //===----------------------------------------------------------------------===//
905 //---                          IntervalMap                                ----//
906 //===----------------------------------------------------------------------===//
907
908 template <typename KeyT, typename ValT,
909           unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
910           typename Traits = IntervalMapInfo<KeyT> >
911 class IntervalMap {
912   typedef IntervalMapImpl::NodeSizer<KeyT, ValT> Sizer;
913   typedef IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits> Leaf;
914   typedef IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>
915     Branch;
916   typedef IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits> RootLeaf;
917   typedef IntervalMapImpl::IdxPair IdxPair;
918
919   // The RootLeaf capacity is given as a template parameter. We must compute the
920   // corresponding RootBranch capacity.
921   enum {
922     DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
923       (sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)),
924     RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
925   };
926
927   typedef IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>
928     RootBranch;
929
930   // When branched, we store a global start key as well as the branch node.
931   struct RootBranchData {
932     KeyT start;
933     RootBranch node;
934   };
935
936   enum {
937     RootDataSize = sizeof(RootBranchData) > sizeof(RootLeaf) ?
938                    sizeof(RootBranchData) : sizeof(RootLeaf)
939   };
940
941 public:
942   typedef typename Sizer::Allocator Allocator;
943   typedef KeyT KeyType;
944   typedef ValT ValueType;
945   typedef Traits KeyTraits;
946
947 private:
948   // The root data is either a RootLeaf or a RootBranchData instance.
949   // We can't put them in a union since C++03 doesn't allow non-trivial
950   // constructors in unions.
951   // Instead, we use a char array with pointer alignment. The alignment is
952   // ensured by the allocator member in the class, but still verified in the
953   // constructor. We don't support keys or values that are more aligned than a
954   // pointer.
955   char data[RootDataSize];
956
957   // Tree height.
958   // 0: Leaves in root.
959   // 1: Root points to leaf.
960   // 2: root->branch->leaf ...
961   unsigned height;
962
963   // Number of entries in the root node.
964   unsigned rootSize;
965
966   // Allocator used for creating external nodes.
967   Allocator &allocator;
968
969   /// dataAs - Represent data as a node type without breaking aliasing rules.
970   template <typename T>
971   T &dataAs() const {
972     union {
973       const char *d;
974       T *t;
975     } u;
976     u.d = data;
977     return *u.t;
978   }
979
980   const RootLeaf &rootLeaf() const {
981     assert(!branched() && "Cannot acces leaf data in branched root");
982     return dataAs<RootLeaf>();
983   }
984   RootLeaf &rootLeaf() {
985     assert(!branched() && "Cannot acces leaf data in branched root");
986     return dataAs<RootLeaf>();
987   }
988   RootBranchData &rootBranchData() const {
989     assert(branched() && "Cannot access branch data in non-branched root");
990     return dataAs<RootBranchData>();
991   }
992   RootBranchData &rootBranchData() {
993     assert(branched() && "Cannot access branch data in non-branched root");
994     return dataAs<RootBranchData>();
995   }
996   const RootBranch &rootBranch() const { return rootBranchData().node; }
997   RootBranch &rootBranch()             { return rootBranchData().node; }
998   KeyT rootBranchStart() const { return rootBranchData().start; }
999   KeyT &rootBranchStart()      { return rootBranchData().start; }
1000
1001   template <typename NodeT> NodeT *newNode() {
1002     return new(allocator.template Allocate<NodeT>()) NodeT();
1003   }
1004
1005   template <typename NodeT> void deleteNode(NodeT *P) {
1006     P->~NodeT();
1007     allocator.Deallocate(P);
1008   }
1009
1010   IdxPair branchRoot(unsigned Position);
1011   IdxPair splitRoot(unsigned Position);
1012
1013   void switchRootToBranch() {
1014     rootLeaf().~RootLeaf();
1015     height = 1;
1016     new (&rootBranchData()) RootBranchData();
1017   }
1018
1019   void switchRootToLeaf() {
1020     rootBranchData().~RootBranchData();
1021     height = 0;
1022     new(&rootLeaf()) RootLeaf();
1023   }
1024
1025   bool branched() const { return height > 0; }
1026
1027   ValT treeSafeLookup(KeyT x, ValT NotFound) const;
1028   void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef,
1029                   unsigned Level));
1030   void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level);
1031
1032 public:
1033   explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
1034     assert((uintptr_t(data) & (alignOf<RootLeaf>() - 1)) == 0 &&
1035            "Insufficient alignment");
1036     new(&rootLeaf()) RootLeaf();
1037   }
1038
1039   ~IntervalMap() {
1040     clear();
1041     rootLeaf().~RootLeaf();
1042   }
1043
1044   /// empty -  Return true when no intervals are mapped.
1045   bool empty() const {
1046     return rootSize == 0;
1047   }
1048
1049   /// start - Return the smallest mapped key in a non-empty map.
1050   KeyT start() const {
1051     assert(!empty() && "Empty IntervalMap has no start");
1052     return !branched() ? rootLeaf().start(0) : rootBranchStart();
1053   }
1054
1055   /// stop - Return the largest mapped key in a non-empty map.
1056   KeyT stop() const {
1057     assert(!empty() && "Empty IntervalMap has no stop");
1058     return !branched() ? rootLeaf().stop(rootSize - 1) :
1059                          rootBranch().stop(rootSize - 1);
1060   }
1061
1062   /// lookup - Return the mapped value at x or NotFound.
1063   ValT lookup(KeyT x, ValT NotFound = ValT()) const {
1064     if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
1065       return NotFound;
1066     return branched() ? treeSafeLookup(x, NotFound) :
1067                         rootLeaf().safeLookup(x, NotFound);
1068   }
1069
1070   /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
1071   /// It is assumed that no key in the interval is mapped to another value, but
1072   /// overlapping intervals already mapped to y will be coalesced.
1073   void insert(KeyT a, KeyT b, ValT y) {
1074     if (branched() || rootSize == RootLeaf::Capacity)
1075       return find(a).insert(a, b, y);
1076
1077     // Easy insert into root leaf.
1078     unsigned p = rootLeaf().findFrom(0, rootSize, a);
1079     rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y);
1080   }
1081
1082   /// clear - Remove all entries.
1083   void clear();
1084
1085   class const_iterator;
1086   class iterator;
1087   friend class const_iterator;
1088   friend class iterator;
1089
1090   const_iterator begin() const {
1091     const_iterator I(*this);
1092     I.goToBegin();
1093     return I;
1094   }
1095
1096   iterator begin() {
1097     iterator I(*this);
1098     I.goToBegin();
1099     return I;
1100   }
1101
1102   const_iterator end() const {
1103     const_iterator I(*this);
1104     I.goToEnd();
1105     return I;
1106   }
1107
1108   iterator end() {
1109     iterator I(*this);
1110     I.goToEnd();
1111     return I;
1112   }
1113
1114   /// find - Return an iterator pointing to the first interval ending at or
1115   /// after x, or end().
1116   const_iterator find(KeyT x) const {
1117     const_iterator I(*this);
1118     I.find(x);
1119     return I;
1120   }
1121
1122   iterator find(KeyT x) {
1123     iterator I(*this);
1124     I.find(x);
1125     return I;
1126   }
1127 };
1128
1129 /// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
1130 /// branched root.
1131 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1132 ValT IntervalMap<KeyT, ValT, N, Traits>::
1133 treeSafeLookup(KeyT x, ValT NotFound) const {
1134   assert(branched() && "treeLookup assumes a branched root");
1135
1136   IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x);
1137   for (unsigned h = height-1; h; --h)
1138     NR = NR.get<Branch>().safeLookup(x);
1139   return NR.get<Leaf>().safeLookup(x, NotFound);
1140 }
1141
1142
1143 // branchRoot - Switch from a leaf root to a branched root.
1144 // Return the new (root offset, node offset) corresponding to Position.
1145 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1146 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
1147 branchRoot(unsigned Position) {
1148   using namespace IntervalMapImpl;
1149   // How many external leaf nodes to hold RootLeaf+1?
1150   const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
1151
1152   // Compute element distribution among new nodes.
1153   unsigned size[Nodes];
1154   IdxPair NewOffset(0, Position);
1155
1156   // Is is very common for the root node to be smaller than external nodes.
1157   if (Nodes == 1)
1158     size[0] = rootSize;
1159   else
1160     NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  NULL, size,
1161                            Position, true);
1162
1163   // Allocate new nodes.
1164   unsigned pos = 0;
1165   NodeRef node[Nodes];
1166   for (unsigned n = 0; n != Nodes; ++n) {
1167     Leaf *L = newNode<Leaf>();
1168     L->copy(rootLeaf(), pos, 0, size[n]);
1169     node[n] = NodeRef(L, size[n]);
1170     pos += size[n];
1171   }
1172
1173   // Destroy the old leaf node, construct branch node instead.
1174   switchRootToBranch();
1175   for (unsigned n = 0; n != Nodes; ++n) {
1176     rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1);
1177     rootBranch().subtree(n) = node[n];
1178   }
1179   rootBranchStart() = node[0].template get<Leaf>().start(0);
1180   rootSize = Nodes;
1181   return NewOffset;
1182 }
1183
1184 // splitRoot - Split the current BranchRoot into multiple Branch nodes.
1185 // Return the new (root offset, node offset) corresponding to Position.
1186 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1187 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
1188 splitRoot(unsigned Position) {
1189   using namespace IntervalMapImpl;
1190   // How many external leaf nodes to hold RootBranch+1?
1191   const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
1192
1193   // Compute element distribution among new nodes.
1194   unsigned Size[Nodes];
1195   IdxPair NewOffset(0, Position);
1196
1197   // Is is very common for the root node to be smaller than external nodes.
1198   if (Nodes == 1)
1199     Size[0] = rootSize;
1200   else
1201     NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  NULL, Size,
1202                            Position, true);
1203
1204   // Allocate new nodes.
1205   unsigned Pos = 0;
1206   NodeRef Node[Nodes];
1207   for (unsigned n = 0; n != Nodes; ++n) {
1208     Branch *B = newNode<Branch>();
1209     B->copy(rootBranch(), Pos, 0, Size[n]);
1210     Node[n] = NodeRef(B, Size[n]);
1211     Pos += Size[n];
1212   }
1213
1214   for (unsigned n = 0; n != Nodes; ++n) {
1215     rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1);
1216     rootBranch().subtree(n) = Node[n];
1217   }
1218   rootSize = Nodes;
1219   ++height;
1220   return NewOffset;
1221 }
1222
1223 /// visitNodes - Visit each external node.
1224 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1225 void IntervalMap<KeyT, ValT, N, Traits>::
1226 visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) {
1227   if (!branched())
1228     return;
1229   SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs;
1230
1231   // Collect level 0 nodes from the root.
1232   for (unsigned i = 0; i != rootSize; ++i)
1233     Refs.push_back(rootBranch().subtree(i));
1234
1235   // Visit all branch nodes.
1236   for (unsigned h = height - 1; h; --h) {
1237     for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
1238       for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
1239         NextRefs.push_back(Refs[i].subtree(j));
1240       (this->*f)(Refs[i], h);
1241     }
1242     Refs.clear();
1243     Refs.swap(NextRefs);
1244   }
1245
1246   // Visit all leaf nodes.
1247   for (unsigned i = 0, e = Refs.size(); i != e; ++i)
1248     (this->*f)(Refs[i], 0);
1249 }
1250
1251 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1252 void IntervalMap<KeyT, ValT, N, Traits>::
1253 deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) {
1254   if (Level)
1255     deleteNode(&Node.get<Branch>());
1256   else
1257     deleteNode(&Node.get<Leaf>());
1258 }
1259
1260 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1261 void IntervalMap<KeyT, ValT, N, Traits>::
1262 clear() {
1263   if (branched()) {
1264     visitNodes(&IntervalMap::deleteNode);
1265     switchRootToLeaf();
1266   }
1267   rootSize = 0;
1268 }
1269
1270 //===----------------------------------------------------------------------===//
1271 //---                   IntervalMap::const_iterator                       ----//
1272 //===----------------------------------------------------------------------===//
1273
1274 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1275 class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
1276   public std::iterator<std::bidirectional_iterator_tag, ValT> {
1277 protected:
1278   friend class IntervalMap;
1279
1280   // The map referred to.
1281   IntervalMap *map;
1282
1283   // We store a full path from the root to the current position.
1284   // The path may be partially filled, but never between iterator calls.
1285   IntervalMapImpl::Path path;
1286
1287   explicit const_iterator(const IntervalMap &map) :
1288     map(const_cast<IntervalMap*>(&map)) {}
1289
1290   bool branched() const {
1291     assert(map && "Invalid iterator");
1292     return map->branched();
1293   }
1294
1295   void setRoot(unsigned Offset) {
1296     if (branched())
1297       path.setRoot(&map->rootBranch(), map->rootSize, Offset);
1298     else
1299       path.setRoot(&map->rootLeaf(), map->rootSize, Offset);
1300   }
1301
1302   void pathFillFind(KeyT x);
1303   void treeFind(KeyT x);
1304   void treeAdvanceTo(KeyT x);
1305
1306   /// unsafeStart - Writable access to start() for iterator.
1307   KeyT &unsafeStart() const {
1308     assert(valid() && "Cannot access invalid iterator");
1309     return branched() ? path.leaf<Leaf>().start(path.leafOffset()) :
1310                         path.leaf<RootLeaf>().start(path.leafOffset());
1311   }
1312
1313   /// unsafeStop - Writable access to stop() for iterator.
1314   KeyT &unsafeStop() const {
1315     assert(valid() && "Cannot access invalid iterator");
1316     return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) :
1317                         path.leaf<RootLeaf>().stop(path.leafOffset());
1318   }
1319
1320   /// unsafeValue - Writable access to value() for iterator.
1321   ValT &unsafeValue() const {
1322     assert(valid() && "Cannot access invalid iterator");
1323     return branched() ? path.leaf<Leaf>().value(path.leafOffset()) :
1324                         path.leaf<RootLeaf>().value(path.leafOffset());
1325   }
1326
1327 public:
1328   /// const_iterator - Create an iterator that isn't pointing anywhere.
1329   const_iterator() : map(0) {}
1330
1331   /// setMap - Change the map iterated over. This call must be followed by a
1332   /// call to goToBegin(), goToEnd(), or find()
1333   void setMap(const IntervalMap &m) { map = const_cast<IntervalMap*>(&m); }
1334
1335   /// valid - Return true if the current position is valid, false for end().
1336   bool valid() const { return path.valid(); }
1337
1338   /// atBegin - Return true if the current position is the first map entry.
1339   bool atBegin() const { return path.atBegin(); }
1340
1341   /// start - Return the beginning of the current interval.
1342   const KeyT &start() const { return unsafeStart(); }
1343
1344   /// stop - Return the end of the current interval.
1345   const KeyT &stop() const { return unsafeStop(); }
1346
1347   /// value - Return the mapped value at the current interval.
1348   const ValT &value() const { return unsafeValue(); }
1349
1350   const ValT &operator*() const { return value(); }
1351
1352   bool operator==(const const_iterator &RHS) const {
1353     assert(map == RHS.map && "Cannot compare iterators from different maps");
1354     if (!valid())
1355       return !RHS.valid();
1356     if (path.leafOffset() != RHS.path.leafOffset())
1357       return false;
1358     return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>();
1359   }
1360
1361   bool operator!=(const const_iterator &RHS) const {
1362     return !operator==(RHS);
1363   }
1364
1365   /// goToBegin - Move to the first interval in map.
1366   void goToBegin() {
1367     setRoot(0);
1368     if (branched())
1369       path.fillLeft(map->height);
1370   }
1371
1372   /// goToEnd - Move beyond the last interval in map.
1373   void goToEnd() {
1374     setRoot(map->rootSize);
1375   }
1376
1377   /// preincrement - move to the next interval.
1378   const_iterator &operator++() {
1379     assert(valid() && "Cannot increment end()");
1380     if (++path.leafOffset() == path.leafSize() && branched())
1381       path.moveRight(map->height);
1382     return *this;
1383   }
1384
1385   /// postincrement - Dont do that!
1386   const_iterator operator++(int) {
1387     const_iterator tmp = *this;
1388     operator++();
1389     return tmp;
1390   }
1391
1392   /// predecrement - move to the previous interval.
1393   const_iterator &operator--() {
1394     if (path.leafOffset() && (valid() || !branched()))
1395       --path.leafOffset();
1396     else
1397       path.moveLeft(map->height);
1398     return *this;
1399   }
1400
1401   /// postdecrement - Dont do that!
1402   const_iterator operator--(int) {
1403     const_iterator tmp = *this;
1404     operator--();
1405     return tmp;
1406   }
1407
1408   /// find - Move to the first interval with stop >= x, or end().
1409   /// This is a full search from the root, the current position is ignored.
1410   void find(KeyT x) {
1411     if (branched())
1412       treeFind(x);
1413     else
1414       setRoot(map->rootLeaf().findFrom(0, map->rootSize, x));
1415   }
1416
1417   /// advanceTo - Move to the first interval with stop >= x, or end().
1418   /// The search is started from the current position, and no earlier positions
1419   /// can be found. This is much faster than find() for small moves.
1420   void advanceTo(KeyT x) {
1421     if (!valid())
1422       return;
1423     if (branched())
1424       treeAdvanceTo(x);
1425     else
1426       path.leafOffset() =
1427         map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x);
1428   }
1429
1430 };
1431
1432 /// pathFillFind - Complete path by searching for x.
1433 /// @param x Key to search for.
1434 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1435 void IntervalMap<KeyT, ValT, N, Traits>::
1436 const_iterator::pathFillFind(KeyT x) {
1437   IntervalMapImpl::NodeRef NR = path.subtree(path.height());
1438   for (unsigned i = map->height - path.height() - 1; i; --i) {
1439     unsigned p = NR.get<Branch>().safeFind(0, x);
1440     path.push(NR, p);
1441     NR = NR.subtree(p);
1442   }
1443   path.push(NR, NR.get<Leaf>().safeFind(0, x));
1444 }
1445
1446 /// treeFind - Find in a branched tree.
1447 /// @param x Key to search for.
1448 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1449 void IntervalMap<KeyT, ValT, N, Traits>::
1450 const_iterator::treeFind(KeyT x) {
1451   setRoot(map->rootBranch().findFrom(0, map->rootSize, x));
1452   if (valid())
1453     pathFillFind(x);
1454 }
1455
1456 /// treeAdvanceTo - Find position after the current one.
1457 /// @param x Key to search for.
1458 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1459 void IntervalMap<KeyT, ValT, N, Traits>::
1460 const_iterator::treeAdvanceTo(KeyT x) {
1461   // Can we stay on the same leaf node?
1462   if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) {
1463     path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x);
1464     return;
1465   }
1466
1467   // Drop the current leaf.
1468   path.pop();
1469
1470   // Search towards the root for a usable subtree.
1471   if (path.height()) {
1472     for (unsigned l = path.height() - 1; l; --l) {
1473       if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) {
1474         // The branch node at l+1 is usable
1475         path.offset(l + 1) =
1476           path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x);
1477         return pathFillFind(x);
1478       }
1479       path.pop();
1480     }
1481     // Is the level-1 Branch usable?
1482     if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) {
1483       path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x);
1484       return pathFillFind(x);
1485     }
1486   }
1487
1488   // We reached the root.
1489   setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x));
1490   if (valid())
1491     pathFillFind(x);
1492 }
1493
1494 //===----------------------------------------------------------------------===//
1495 //---                       IntervalMap::iterator                         ----//
1496 //===----------------------------------------------------------------------===//
1497
1498 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1499 class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
1500   friend class IntervalMap;
1501   typedef IntervalMapImpl::IdxPair IdxPair;
1502
1503   explicit iterator(IntervalMap &map) : const_iterator(map) {}
1504
1505   void setNodeStop(unsigned Level, KeyT Stop);
1506   bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop);
1507   template <typename NodeT> bool overflow(unsigned Level);
1508   void treeInsert(KeyT a, KeyT b, ValT y);
1509   void eraseNode(unsigned Level);
1510   void treeErase(bool UpdateRoot = true);
1511   bool canCoalesceLeft(KeyT Start, ValT x);
1512   bool canCoalesceRight(KeyT Stop, ValT x);
1513
1514 public:
1515   /// iterator - Create null iterator.
1516   iterator() {}
1517
1518   /// setStart - Move the start of the current interval.
1519   /// This may cause coalescing with the previous interval.
1520   /// @param a New start key, must not overlap the previous interval.
1521   void setStart(KeyT a);
1522
1523   /// setStop - Move the end of the current interval.
1524   /// This may cause coalescing with the following interval.
1525   /// @param b New stop key, must not overlap the following interval.
1526   void setStop(KeyT b);
1527
1528   /// setValue - Change the mapped value of the current interval.
1529   /// This may cause coalescing with the previous and following intervals.
1530   /// @param x New value.
1531   void setValue(ValT x);
1532
1533   /// setStartUnchecked - Move the start of the current interval without
1534   /// checking for coalescing or overlaps.
1535   /// This should only be used when it is known that coalescing is not required.
1536   /// @param a New start key.
1537   void setStartUnchecked(KeyT a) { this->unsafeStart() = a; }
1538
1539   /// setStopUnchecked - Move the end of the current interval without checking
1540   /// for coalescing or overlaps.
1541   /// This should only be used when it is known that coalescing is not required.
1542   /// @param b New stop key.
1543   void setStopUnchecked(KeyT b) {
1544     this->unsafeStop() = b;
1545     // Update keys in branch nodes as well.
1546     if (this->path.atLastEntry(this->path.height()))
1547       setNodeStop(this->path.height(), b);
1548   }
1549
1550   /// setValueUnchecked - Change the mapped value of the current interval
1551   /// without checking for coalescing.
1552   /// @param x New value.
1553   void setValueUnchecked(ValT x) { this->unsafeValue() = x; }
1554
1555   /// insert - Insert mapping [a;b] -> y before the current position.
1556   void insert(KeyT a, KeyT b, ValT y);
1557
1558   /// erase - Erase the current interval.
1559   void erase();
1560
1561   iterator &operator++() {
1562     const_iterator::operator++();
1563     return *this;
1564   }
1565
1566   iterator operator++(int) {
1567     iterator tmp = *this;
1568     operator++();
1569     return tmp;
1570   }
1571
1572   iterator &operator--() {
1573     const_iterator::operator--();
1574     return *this;
1575   }
1576
1577   iterator operator--(int) {
1578     iterator tmp = *this;
1579     operator--();
1580     return tmp;
1581   }
1582
1583 };
1584
1585 /// canCoalesceLeft - Can the current interval coalesce to the left after
1586 /// changing start or value?
1587 /// @param Start New start of current interval.
1588 /// @param Value New value for current interval.
1589 /// @return True when updating the current interval would enable coalescing.
1590 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1591 bool IntervalMap<KeyT, ValT, N, Traits>::
1592 iterator::canCoalesceLeft(KeyT Start, ValT Value) {
1593   using namespace IntervalMapImpl;
1594   Path &P = this->path;
1595   if (!this->branched()) {
1596     unsigned i = P.leafOffset();
1597     RootLeaf &Node = P.leaf<RootLeaf>();
1598     return i && Node.value(i-1) == Value &&
1599                 Traits::adjacent(Node.stop(i-1), Start);
1600   }
1601   // Branched.
1602   if (unsigned i = P.leafOffset()) {
1603     Leaf &Node = P.leaf<Leaf>();
1604     return Node.value(i-1) == Value && Traits::adjacent(Node.stop(i-1), Start);
1605   } else if (NodeRef NR = P.getLeftSibling(P.height())) {
1606     unsigned i = NR.size() - 1;
1607     Leaf &Node = NR.get<Leaf>();
1608     return Node.value(i) == Value && Traits::adjacent(Node.stop(i), Start);
1609   }
1610   return false;
1611 }
1612
1613 /// canCoalesceRight - Can the current interval coalesce to the right after
1614 /// changing stop or value?
1615 /// @param Stop New stop of current interval.
1616 /// @param Value New value for current interval.
1617 /// @return True when updating the current interval would enable coalescing.
1618 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1619 bool IntervalMap<KeyT, ValT, N, Traits>::
1620 iterator::canCoalesceRight(KeyT Stop, ValT Value) {
1621   using namespace IntervalMapImpl;
1622   Path &P = this->path;
1623   unsigned i = P.leafOffset() + 1;
1624   if (!this->branched()) {
1625     if (i >= P.leafSize())
1626       return false;
1627     RootLeaf &Node = P.leaf<RootLeaf>();
1628     return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1629   }
1630   // Branched.
1631   if (i < P.leafSize()) {
1632     Leaf &Node = P.leaf<Leaf>();
1633     return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1634   } else if (NodeRef NR = P.getRightSibling(P.height())) {
1635     Leaf &Node = NR.get<Leaf>();
1636     return Node.value(0) == Value && Traits::adjacent(Stop, Node.start(0));
1637   }
1638   return false;
1639 }
1640
1641 /// setNodeStop - Update the stop key of the current node at level and above.
1642 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1643 void IntervalMap<KeyT, ValT, N, Traits>::
1644 iterator::setNodeStop(unsigned Level, KeyT Stop) {
1645   // There are no references to the root node, so nothing to update.
1646   if (!Level)
1647     return;
1648   IntervalMapImpl::Path &P = this->path;
1649   // Update nodes pointing to the current node.
1650   while (--Level) {
1651     P.node<Branch>(Level).stop(P.offset(Level)) = Stop;
1652     if (!P.atLastEntry(Level))
1653       return;
1654   }
1655   // Update root separately since it has a different layout.
1656   P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop;
1657 }
1658
1659 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1660 void IntervalMap<KeyT, ValT, N, Traits>::
1661 iterator::setStart(KeyT a) {
1662   assert(Traits::stopLess(a, this->stop()) && "Cannot move start beyond stop");
1663   KeyT &CurStart = this->unsafeStart();
1664   if (!Traits::startLess(a, CurStart) || !canCoalesceLeft(a, this->value())) {
1665     CurStart = a;
1666     return;
1667   }
1668   // Coalesce with the interval to the left.
1669   --*this;
1670   a = this->start();
1671   erase();
1672   setStartUnchecked(a);
1673 }
1674
1675 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1676 void IntervalMap<KeyT, ValT, N, Traits>::
1677 iterator::setStop(KeyT b) {
1678   assert(Traits::stopLess(this->start(), b) && "Cannot move stop beyond start");
1679   if (Traits::startLess(b, this->stop()) ||
1680       !canCoalesceRight(b, this->value())) {
1681     setStopUnchecked(b);
1682     return;
1683   }
1684   // Coalesce with interval to the right.
1685   KeyT a = this->start();
1686   erase();
1687   setStartUnchecked(a);
1688 }
1689
1690 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1691 void IntervalMap<KeyT, ValT, N, Traits>::
1692 iterator::setValue(ValT x) {
1693   setValueUnchecked(x);
1694   if (canCoalesceRight(this->stop(), x)) {
1695     KeyT a = this->start();
1696     erase();
1697     setStartUnchecked(a);
1698   }
1699   if (canCoalesceLeft(this->start(), x)) {
1700     --*this;
1701     KeyT a = this->start();
1702     erase();
1703     setStartUnchecked(a);
1704   }
1705 }
1706
1707 /// insertNode - insert a node before the current path at level.
1708 /// Leave the current path pointing at the new node.
1709 /// @param Level path index of the node to be inserted.
1710 /// @param Node The node to be inserted.
1711 /// @param Stop The last index in the new node.
1712 /// @return True if the tree height was increased.
1713 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1714 bool IntervalMap<KeyT, ValT, N, Traits>::
1715 iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) {
1716   assert(Level && "Cannot insert next to the root");
1717   bool SplitRoot = false;
1718   IntervalMap &IM = *this->map;
1719   IntervalMapImpl::Path &P = this->path;
1720
1721   if (Level == 1) {
1722     // Insert into the root branch node.
1723     if (IM.rootSize < RootBranch::Capacity) {
1724       IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop);
1725       P.setSize(0, ++IM.rootSize);
1726       P.reset(Level);
1727       return SplitRoot;
1728     }
1729
1730     // We need to split the root while keeping our position.
1731     SplitRoot = true;
1732     IdxPair Offset = IM.splitRoot(P.offset(0));
1733     P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1734
1735     // Fall through to insert at the new higher level.
1736     ++Level;
1737   }
1738
1739   // When inserting before end(), make sure we have a valid path.
1740   P.legalizeForInsert(--Level);
1741
1742   // Insert into the branch node at Level-1.
1743   if (P.size(Level) == Branch::Capacity) {
1744     // Branch node is full, handle handle the overflow.
1745     assert(!SplitRoot && "Cannot overflow after splitting the root");
1746     SplitRoot = overflow<Branch>(Level);
1747     Level += SplitRoot;
1748   }
1749   P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop);
1750   P.setSize(Level, P.size(Level) + 1);
1751   if (P.atLastEntry(Level))
1752     setNodeStop(Level, Stop);
1753   P.reset(Level + 1);
1754   return SplitRoot;
1755 }
1756
1757 // insert
1758 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1759 void IntervalMap<KeyT, ValT, N, Traits>::
1760 iterator::insert(KeyT a, KeyT b, ValT y) {
1761   if (this->branched())
1762     return treeInsert(a, b, y);
1763   IntervalMap &IM = *this->map;
1764   IntervalMapImpl::Path &P = this->path;
1765
1766   // Try simple root leaf insert.
1767   unsigned Size = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y);
1768
1769   // Was the root node insert successful?
1770   if (Size <= RootLeaf::Capacity) {
1771     P.setSize(0, IM.rootSize = Size);
1772     return;
1773   }
1774
1775   // Root leaf node is full, we must branch.
1776   IdxPair Offset = IM.branchRoot(P.leafOffset());
1777   P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1778
1779   // Now it fits in the new leaf.
1780   treeInsert(a, b, y);
1781 }
1782
1783
1784 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1785 void IntervalMap<KeyT, ValT, N, Traits>::
1786 iterator::treeInsert(KeyT a, KeyT b, ValT y) {
1787   using namespace IntervalMapImpl;
1788   Path &P = this->path;
1789
1790   if (!P.valid())
1791     P.legalizeForInsert(this->map->height);
1792
1793   // Check if this insertion will extend the node to the left.
1794   if (P.leafOffset() == 0 && Traits::startLess(a, P.leaf<Leaf>().start(0))) {
1795     // Node is growing to the left, will it affect a left sibling node?
1796     if (NodeRef Sib = P.getLeftSibling(P.height())) {
1797       Leaf &SibLeaf = Sib.get<Leaf>();
1798       unsigned SibOfs = Sib.size() - 1;
1799       if (SibLeaf.value(SibOfs) == y &&
1800           Traits::adjacent(SibLeaf.stop(SibOfs), a)) {
1801         // This insertion will coalesce with the last entry in SibLeaf. We can
1802         // handle it in two ways:
1803         //  1. Extend SibLeaf.stop to b and be done, or
1804         //  2. Extend a to SibLeaf, erase the SibLeaf entry and continue.
1805         // We prefer 1., but need 2 when coalescing to the right as well.
1806         Leaf &CurLeaf = P.leaf<Leaf>();
1807         P.moveLeft(P.height());
1808         if (Traits::stopLess(b, CurLeaf.start(0)) &&
1809             (y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) {
1810           // Easy, just extend SibLeaf and we're done.
1811           setNodeStop(P.height(), SibLeaf.stop(SibOfs) = b);
1812           return;
1813         } else {
1814           // We have both left and right coalescing. Erase the old SibLeaf entry
1815           // and continue inserting the larger interval.
1816           a = SibLeaf.start(SibOfs);
1817           treeErase(/* UpdateRoot= */false);
1818         }
1819       }
1820     } else {
1821       // No left sibling means we are at begin(). Update cached bound.
1822       this->map->rootBranchStart() = a;
1823     }
1824   }
1825
1826   // When we are inserting at the end of a leaf node, we must update stops.
1827   unsigned Size = P.leafSize();
1828   bool Grow = P.leafOffset() == Size;
1829   Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), Size, a, b, y);
1830
1831   // Leaf insertion unsuccessful? Overflow and try again.
1832   if (Size > Leaf::Capacity) {
1833     overflow<Leaf>(P.height());
1834     Grow = P.leafOffset() == P.leafSize();
1835     Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y);
1836     assert(Size <= Leaf::Capacity && "overflow() didn't make room");
1837   }
1838
1839   // Inserted, update offset and leaf size.
1840   P.setSize(P.height(), Size);
1841
1842   // Insert was the last node entry, update stops.
1843   if (Grow)
1844     setNodeStop(P.height(), b);
1845 }
1846
1847 /// erase - erase the current interval and move to the next position.
1848 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1849 void IntervalMap<KeyT, ValT, N, Traits>::
1850 iterator::erase() {
1851   IntervalMap &IM = *this->map;
1852   IntervalMapImpl::Path &P = this->path;
1853   assert(P.valid() && "Cannot erase end()");
1854   if (this->branched())
1855     return treeErase();
1856   IM.rootLeaf().erase(P.leafOffset(), IM.rootSize);
1857   P.setSize(0, --IM.rootSize);
1858 }
1859
1860 /// treeErase - erase() for a branched tree.
1861 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1862 void IntervalMap<KeyT, ValT, N, Traits>::
1863 iterator::treeErase(bool UpdateRoot) {
1864   IntervalMap &IM = *this->map;
1865   IntervalMapImpl::Path &P = this->path;
1866   Leaf &Node = P.leaf<Leaf>();
1867
1868   // Nodes are not allowed to become empty.
1869   if (P.leafSize() == 1) {
1870     IM.deleteNode(&Node);
1871     eraseNode(IM.height);
1872     // Update rootBranchStart if we erased begin().
1873     if (UpdateRoot && IM.branched() && P.valid() && P.atBegin())
1874       IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1875     return;
1876   }
1877
1878   // Erase current entry.
1879   Node.erase(P.leafOffset(), P.leafSize());
1880   unsigned NewSize = P.leafSize() - 1;
1881   P.setSize(IM.height, NewSize);
1882   // When we erase the last entry, update stop and move to a legal position.
1883   if (P.leafOffset() == NewSize) {
1884     setNodeStop(IM.height, Node.stop(NewSize - 1));
1885     P.moveRight(IM.height);
1886   } else if (UpdateRoot && P.atBegin())
1887     IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1888 }
1889
1890 /// eraseNode - Erase the current node at Level from its parent and move path to
1891 /// the first entry of the next sibling node.
1892 /// The node must be deallocated by the caller.
1893 /// @param Level 1..height, the root node cannot be erased.
1894 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1895 void IntervalMap<KeyT, ValT, N, Traits>::
1896 iterator::eraseNode(unsigned Level) {
1897   assert(Level && "Cannot erase root node");
1898   IntervalMap &IM = *this->map;
1899   IntervalMapImpl::Path &P = this->path;
1900
1901   if (--Level == 0) {
1902     IM.rootBranch().erase(P.offset(0), IM.rootSize);
1903     P.setSize(0, --IM.rootSize);
1904     // If this cleared the root, switch to height=0.
1905     if (IM.empty()) {
1906       IM.switchRootToLeaf();
1907       this->setRoot(0);
1908       return;
1909     }
1910   } else {
1911     // Remove node ref from branch node at Level.
1912     Branch &Parent = P.node<Branch>(Level);
1913     if (P.size(Level) == 1) {
1914       // Branch node became empty, remove it recursively.
1915       IM.deleteNode(&Parent);
1916       eraseNode(Level);
1917     } else {
1918       // Branch node won't become empty.
1919       Parent.erase(P.offset(Level), P.size(Level));
1920       unsigned NewSize = P.size(Level) - 1;
1921       P.setSize(Level, NewSize);
1922       // If we removed the last branch, update stop and move to a legal pos.
1923       if (P.offset(Level) == NewSize) {
1924         setNodeStop(Level, Parent.stop(NewSize - 1));
1925         P.moveRight(Level);
1926       }
1927     }
1928   }
1929   // Update path cache for the new right sibling position.
1930   if (P.valid()) {
1931     P.reset(Level + 1);
1932     P.offset(Level + 1) = 0;
1933   }
1934 }
1935
1936 /// overflow - Distribute entries of the current node evenly among
1937 /// its siblings and ensure that the current node is not full.
1938 /// This may require allocating a new node.
1939 /// @param NodeT The type of node at Level (Leaf or Branch).
1940 /// @param Level path index of the overflowing node.
1941 /// @return True when the tree height was changed.
1942 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1943 template <typename NodeT>
1944 bool IntervalMap<KeyT, ValT, N, Traits>::
1945 iterator::overflow(unsigned Level) {
1946   using namespace IntervalMapImpl;
1947   Path &P = this->path;
1948   unsigned CurSize[4];
1949   NodeT *Node[4];
1950   unsigned Nodes = 0;
1951   unsigned Elements = 0;
1952   unsigned Offset = P.offset(Level);
1953
1954   // Do we have a left sibling?
1955   NodeRef LeftSib = P.getLeftSibling(Level);
1956   if (LeftSib) {
1957     Offset += Elements = CurSize[Nodes] = LeftSib.size();
1958     Node[Nodes++] = &LeftSib.get<NodeT>();
1959   }
1960
1961   // Current node.
1962   Elements += CurSize[Nodes] = P.size(Level);
1963   Node[Nodes++] = &P.node<NodeT>(Level);
1964
1965   // Do we have a right sibling?
1966   NodeRef RightSib = P.getRightSibling(Level);
1967   if (RightSib) {
1968     Elements += CurSize[Nodes] = RightSib.size();
1969     Node[Nodes++] = &RightSib.get<NodeT>();
1970   }
1971
1972   // Do we need to allocate a new node?
1973   unsigned NewNode = 0;
1974   if (Elements + 1 > Nodes * NodeT::Capacity) {
1975     // Insert NewNode at the penultimate position, or after a single node.
1976     NewNode = Nodes == 1 ? 1 : Nodes - 1;
1977     CurSize[Nodes] = CurSize[NewNode];
1978     Node[Nodes] = Node[NewNode];
1979     CurSize[NewNode] = 0;
1980     Node[NewNode] = this->map->template newNode<NodeT>();
1981     ++Nodes;
1982   }
1983
1984   // Compute the new element distribution.
1985   unsigned NewSize[4];
1986   IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity,
1987                                  CurSize, NewSize, Offset, true);
1988   adjustSiblingSizes(Node, Nodes, CurSize, NewSize);
1989
1990   // Move current location to the leftmost node.
1991   if (LeftSib)
1992     P.moveLeft(Level);
1993
1994   // Elements have been rearranged, now update node sizes and stops.
1995   bool SplitRoot = false;
1996   unsigned Pos = 0;
1997   for (;;) {
1998     KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
1999     if (NewNode && Pos == NewNode) {
2000       SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop);
2001       Level += SplitRoot;
2002     } else {
2003       P.setSize(Level, NewSize[Pos]);
2004       setNodeStop(Level, Stop);
2005     }
2006     if (Pos + 1 == Nodes)
2007       break;
2008     P.moveRight(Level);
2009     ++Pos;
2010   }
2011
2012   // Where was I? Find NewOffset.
2013   while(Pos != NewOffset.first) {
2014     P.moveLeft(Level);
2015     --Pos;
2016   }
2017   P.offset(Level) = NewOffset.second;
2018   return SplitRoot;
2019 }
2020
2021 //===----------------------------------------------------------------------===//
2022 //---                       IntervalMapOverlaps                           ----//
2023 //===----------------------------------------------------------------------===//
2024
2025 /// IntervalMapOverlaps - Iterate over the overlaps of mapped intervals in two
2026 /// IntervalMaps. The maps may be different, but the KeyT and Traits types
2027 /// should be the same.
2028 ///
2029 /// Typical uses:
2030 ///
2031 /// 1. Test for overlap:
2032 ///    bool overlap = IntervalMapOverlaps(a, b).valid();
2033 ///
2034 /// 2. Enumerate overlaps:
2035 ///    for (IntervalMapOverlaps I(a, b); I.valid() ; ++I) { ... }
2036 ///
2037 template <typename MapA, typename MapB>
2038 class IntervalMapOverlaps {
2039   typedef typename MapA::KeyType KeyType;
2040   typedef typename MapA::KeyTraits Traits;
2041   typename MapA::const_iterator posA;
2042   typename MapB::const_iterator posB;
2043
2044   /// advance - Move posA and posB forward until reaching an overlap, or until
2045   /// either meets end.
2046   /// Don't move the iterators if they are already overlapping.
2047   void advance() {
2048     if (!valid())
2049       return;
2050
2051     if (Traits::stopLess(posA.stop(), posB.start())) {
2052       // A ends before B begins. Catch up.
2053       posA.advanceTo(posB.start());
2054       if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
2055         return;
2056     } else if (Traits::stopLess(posB.stop(), posA.start())) {
2057       // B ends before A begins. Catch up.
2058       posB.advanceTo(posA.start());
2059       if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
2060         return;
2061     } else
2062       // Already overlapping.
2063       return;
2064
2065     for (;;) {
2066       // Make a.end > b.start.
2067       posA.advanceTo(posB.start());
2068       if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
2069         return;
2070       // Make b.end > a.start.
2071       posB.advanceTo(posA.start());
2072       if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
2073         return;
2074     }
2075   }
2076
2077 public:
2078   /// IntervalMapOverlaps - Create an iterator for the overlaps of a and b.
2079   IntervalMapOverlaps(const MapA &a, const MapB &b)
2080     : posA(b.empty() ? a.end() : a.find(b.start())),
2081       posB(posA.valid() ? b.find(posA.start()) : b.end()) { advance(); }
2082
2083   /// valid - Return true if iterator is at an overlap.
2084   bool valid() const {
2085     return posA.valid() && posB.valid();
2086   }
2087
2088   /// a - access the left hand side in the overlap.
2089   const typename MapA::const_iterator &a() const { return posA; }
2090
2091   /// b - access the right hand side in the overlap.
2092   const typename MapB::const_iterator &b() const { return posB; }
2093
2094   /// start - Beginning of the overlapping interval.
2095   KeyType start() const {
2096     KeyType ak = a().start();
2097     KeyType bk = b().start();
2098     return Traits::startLess(ak, bk) ? bk : ak;
2099   }
2100
2101   /// stop - End of the overlapping interval.
2102   KeyType stop() const {
2103     KeyType ak = a().stop();
2104     KeyType bk = b().stop();
2105     return Traits::startLess(ak, bk) ? ak : bk;
2106   }
2107
2108   /// skipA - Move to the next overlap that doesn't involve a().
2109   void skipA() {
2110     ++posA;
2111     advance();
2112   }
2113
2114   /// skipB - Move to the next overlap that doesn't involve b().
2115   void skipB() {
2116     ++posB;
2117     advance();
2118   }
2119
2120   /// Preincrement - Move to the next overlap.
2121   IntervalMapOverlaps &operator++() {
2122     // Bump the iterator that ends first. The other one may have more overlaps.
2123     if (Traits::startLess(posB.stop(), posA.stop()))
2124       skipB();
2125     else
2126       skipA();
2127     return *this;
2128   }
2129
2130   /// advanceTo - Move to the first overlapping interval with
2131   /// stopLess(x, stop()).
2132   void advanceTo(KeyType x) {
2133     if (!valid())
2134       return;
2135     // Make sure advanceTo sees monotonic keys.
2136     if (Traits::stopLess(posA.stop(), x))
2137       posA.advanceTo(x);
2138     if (Traits::stopLess(posB.stop(), x))
2139       posB.advanceTo(x);
2140     advance();
2141   }
2142 };
2143
2144 } // namespace llvm
2145
2146 #endif