Taints the non-acquire RMW's store address with the load part
[oota-llvm.git] / examples / ParallelJIT / ParallelJIT.cpp
1 //===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Parallel JIT
11 //
12 // This test program creates two LLVM functions then calls them from three
13 // separate threads.  It requires the pthreads library.
14 // The three threads are created and then block waiting on a condition variable.
15 // Once all threads are blocked on the conditional variable, the main thread
16 // wakes them up. This complicated work is performed so that all three threads
17 // call into the JIT at the same time (or the best possible approximation of the
18 // same time). This test had assertion errors until I got the locking right.
19
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ExecutionEngine/GenericValue.h"
22 #include "llvm/ExecutionEngine/Interpreter.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/Support/TargetSelect.h"
29 #include <iostream>
30 #include <pthread.h>
31
32 using namespace llvm;
33
34 static Function* createAdd1(Module *M) {
35   // Create the add1 function entry and insert this entry into module M.  The
36   // function will have a return type of "int" and take an argument of "int".
37   // The '0' terminates the list of argument types.
38   Function *Add1F =
39     cast<Function>(M->getOrInsertFunction("add1",
40                                           Type::getInt32Ty(M->getContext()),
41                                           Type::getInt32Ty(M->getContext()),
42                                           nullptr));
43
44   // Add a basic block to the function. As before, it automatically inserts
45   // because of the last argument.
46   BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", Add1F);
47
48   // Get pointers to the constant `1'.
49   Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
50
51   // Get pointers to the integer argument of the add1 function...
52   assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg
53   Argument *ArgX = &*Add1F->arg_begin();          // Get the arg
54   ArgX->setName("AnArg");            // Give it a nice symbolic name for fun.
55
56   // Create the add instruction, inserting it into the end of BB.
57   Instruction *Add = BinaryOperator::CreateAdd(One, ArgX, "addresult", BB);
58
59   // Create the return instruction and add it to the basic block
60   ReturnInst::Create(M->getContext(), Add, BB);
61
62   // Now, function add1 is ready.
63   return Add1F;
64 }
65
66 static Function *CreateFibFunction(Module *M) {
67   // Create the fib function and insert it into module M.  This function is said
68   // to return an int and take an int parameter.
69   Function *FibF = 
70     cast<Function>(M->getOrInsertFunction("fib",
71                                           Type::getInt32Ty(M->getContext()),
72                                           Type::getInt32Ty(M->getContext()),
73                                           nullptr));
74
75   // Add a basic block to the function.
76   BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", FibF);
77
78   // Get pointers to the constants.
79   Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
80   Value *Two = ConstantInt::get(Type::getInt32Ty(M->getContext()), 2);
81
82   // Get pointer to the integer argument of the add1 function...
83   Argument *ArgX = &*FibF->arg_begin(); // Get the arg.
84   ArgX->setName("AnArg");            // Give it a nice symbolic name for fun.
85
86   // Create the true_block.
87   BasicBlock *RetBB = BasicBlock::Create(M->getContext(), "return", FibF);
88   // Create an exit block.
89   BasicBlock* RecurseBB = BasicBlock::Create(M->getContext(), "recurse", FibF);
90
91   // Create the "if (arg < 2) goto exitbb"
92   Value *CondInst = new ICmpInst(*BB, ICmpInst::ICMP_SLE, ArgX, Two, "cond");
93   BranchInst::Create(RetBB, RecurseBB, CondInst, BB);
94
95   // Create: ret int 1
96   ReturnInst::Create(M->getContext(), One, RetBB);
97
98   // create fib(x-1)
99   Value *Sub = BinaryOperator::CreateSub(ArgX, One, "arg", RecurseBB);
100   Value *CallFibX1 = CallInst::Create(FibF, Sub, "fibx1", RecurseBB);
101
102   // create fib(x-2)
103   Sub = BinaryOperator::CreateSub(ArgX, Two, "arg", RecurseBB);
104   Value *CallFibX2 = CallInst::Create(FibF, Sub, "fibx2", RecurseBB);
105
106   // fib(x-1)+fib(x-2)
107   Value *Sum =
108     BinaryOperator::CreateAdd(CallFibX1, CallFibX2, "addresult", RecurseBB);
109
110   // Create the return instruction and add it to the basic block
111   ReturnInst::Create(M->getContext(), Sum, RecurseBB);
112
113   return FibF;
114 }
115
116 struct threadParams {
117   ExecutionEngine* EE;
118   Function* F;
119   int value;
120 };
121
122 // We block the subthreads just before they begin to execute:
123 // we want all of them to call into the JIT at the same time,
124 // to verify that the locking is working correctly.
125 class WaitForThreads
126 {
127 public:
128   WaitForThreads()
129   {
130     n = 0;
131     waitFor = 0;
132
133     int result = pthread_cond_init( &condition, nullptr );
134     assert( result == 0 );
135
136     result = pthread_mutex_init( &mutex, nullptr );
137     assert( result == 0 );
138   }
139
140   ~WaitForThreads()
141   {
142     int result = pthread_cond_destroy( &condition );
143     (void)result;
144     assert( result == 0 );
145
146     result = pthread_mutex_destroy( &mutex );
147     assert( result == 0 );
148   }
149
150   // All threads will stop here until another thread calls releaseThreads
151   void block()
152   {
153     int result = pthread_mutex_lock( &mutex );
154     (void)result;
155     assert( result == 0 );
156     n ++;
157     //~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl;
158
159     assert( waitFor == 0 || n <= waitFor );
160     if ( waitFor > 0 && n == waitFor )
161     {
162       // There are enough threads blocked that we can release all of them
163       std::cout << "Unblocking threads from block()" << std::endl;
164       unblockThreads();
165     }
166     else
167     {
168       // We just need to wait until someone unblocks us
169       result = pthread_cond_wait( &condition, &mutex );
170       assert( result == 0 );
171     }
172
173     // unlock the mutex before returning
174     result = pthread_mutex_unlock( &mutex );
175     assert( result == 0 );
176   }
177
178   // If there are num or more threads blocked, it will signal them all
179   // Otherwise, this thread blocks until there are enough OTHER threads
180   // blocked
181   void releaseThreads( size_t num )
182   {
183     int result = pthread_mutex_lock( &mutex );
184     (void)result;
185     assert( result == 0 );
186
187     if ( n >= num ) {
188       std::cout << "Unblocking threads from releaseThreads()" << std::endl;
189       unblockThreads();
190     }
191     else
192     {
193       waitFor = num;
194       pthread_cond_wait( &condition, &mutex );
195     }
196
197     // unlock the mutex before returning
198     result = pthread_mutex_unlock( &mutex );
199     assert( result == 0 );
200   }
201
202 private:
203   void unblockThreads()
204   {
205     // Reset the counters to zero: this way, if any new threads
206     // enter while threads are exiting, they will block instead
207     // of triggering a new release of threads
208     n = 0;
209
210     // Reset waitFor to zero: this way, if waitFor threads enter
211     // while threads are exiting, they will block instead of
212     // triggering a new release of threads
213     waitFor = 0;
214
215     int result = pthread_cond_broadcast( &condition );
216     (void)result;
217     assert(result == 0);
218   }
219
220   size_t n;
221   size_t waitFor;
222   pthread_cond_t condition;
223   pthread_mutex_t mutex;
224 };
225
226 static WaitForThreads synchronize;
227
228 void* callFunc( void* param )
229 {
230   struct threadParams* p = (struct threadParams*) param;
231
232   // Call the `foo' function with no arguments:
233   std::vector<GenericValue> Args(1);
234   Args[0].IntVal = APInt(32, p->value);
235
236   synchronize.block(); // wait until other threads are at this point
237   GenericValue gv = p->EE->runFunction(p->F, Args);
238
239   return (void*)(intptr_t)gv.IntVal.getZExtValue();
240 }
241
242 int main() {
243   InitializeNativeTarget();
244   LLVMContext Context;
245
246   // Create some module to put our function into it.
247   std::unique_ptr<Module> Owner = make_unique<Module>("test", Context);
248   Module *M = Owner.get();
249
250   Function* add1F = createAdd1( M );
251   Function* fibF = CreateFibFunction( M );
252
253   // Now we create the JIT.
254   ExecutionEngine* EE = EngineBuilder(std::move(Owner)).create();
255
256   //~ std::cout << "We just constructed this LLVM module:\n\n" << *M;
257   //~ std::cout << "\n\nRunning foo: " << std::flush;
258
259   // Create one thread for add1 and two threads for fib
260   struct threadParams add1 = { EE, add1F, 1000 };
261   struct threadParams fib1 = { EE, fibF, 39 };
262   struct threadParams fib2 = { EE, fibF, 42 };
263
264   pthread_t add1Thread;
265   int result = pthread_create( &add1Thread, nullptr, callFunc, &add1 );
266   if ( result != 0 ) {
267           std::cerr << "Could not create thread" << std::endl;
268           return 1;
269   }
270
271   pthread_t fibThread1;
272   result = pthread_create( &fibThread1, nullptr, callFunc, &fib1 );
273   if ( result != 0 ) {
274           std::cerr << "Could not create thread" << std::endl;
275           return 1;
276   }
277
278   pthread_t fibThread2;
279   result = pthread_create( &fibThread2, nullptr, callFunc, &fib2 );
280   if ( result != 0 ) {
281           std::cerr << "Could not create thread" << std::endl;
282           return 1;
283   }
284
285   synchronize.releaseThreads(3); // wait until other threads are at this point
286
287   void* returnValue;
288   result = pthread_join( add1Thread, &returnValue );
289   if ( result != 0 ) {
290           std::cerr << "Could not join thread" << std::endl;
291           return 1;
292   }
293   std::cout << "Add1 returned " << intptr_t(returnValue) << std::endl;
294
295   result = pthread_join( fibThread1, &returnValue );
296   if ( result != 0 ) {
297           std::cerr << "Could not join thread" << std::endl;
298           return 1;
299   }
300   std::cout << "Fib1 returned " << intptr_t(returnValue) << std::endl;
301
302   result = pthread_join( fibThread2, &returnValue );
303   if ( result != 0 ) {
304           std::cerr << "Could not join thread" << std::endl;
305           return 1;
306   }
307   std::cout << "Fib2 returned " << intptr_t(returnValue) << std::endl;
308
309   return 0;
310 }