5294bb71ee19b955a54b4b24ea8ae2efc93fb3be
[oota-llvm.git] / examples / Kaleidoscope / MCJIT / complete / toy.cpp
1 #include "llvm/Analysis/Passes.h"
2 #include "llvm/ExecutionEngine/ExecutionEngine.h"
3 #include "llvm/ExecutionEngine/MCJIT.h"
4 #include "llvm/ExecutionEngine/ObjectCache.h"
5 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
6 #include "llvm/IR/DataLayout.h"
7 #include "llvm/IR/DerivedTypes.h"
8 #include "llvm/IR/IRBuilder.h"
9 #include "llvm/IR/LLVMContext.h"
10 #include "llvm/IR/LegacyPassManager.h"
11 #include "llvm/IR/Module.h"
12 #include "llvm/IR/Verifier.h"
13 #include "llvm/IRReader/IRReader.h"
14 #include "llvm/Support/CommandLine.h"
15 #include "llvm/Support/FileSystem.h"
16 #include "llvm/Support/Path.h"
17 #include "llvm/Support/SourceMgr.h"
18 #include "llvm/Support/TargetSelect.h"
19 #include "llvm/Support/raw_ostream.h"
20 #include "llvm/Transforms/Scalar.h"
21 #include <cctype>
22 #include <cstdio>
23 #include <map>
24 #include <string>
25 #include <vector>
26
27 using namespace llvm;
28
29 //===----------------------------------------------------------------------===//
30 // Command-line options
31 //===----------------------------------------------------------------------===//
32
33 namespace {
34   cl::opt<std::string>
35   InputIR("input-IR",
36               cl::desc("Specify the name of an IR file to load for function definitions"),
37               cl::value_desc("input IR file name"));
38
39   cl::opt<bool>
40   VerboseOutput("verbose",
41                 cl::desc("Enable verbose output (results, IR, etc.) to stderr"),
42                 cl::init(false));
43
44   cl::opt<bool>
45   SuppressPrompts("suppress-prompts",
46                   cl::desc("Disable printing the 'ready' prompt"),
47                   cl::init(false));
48
49   cl::opt<bool>
50   DumpModulesOnExit("dump-modules",
51                   cl::desc("Dump IR from modules to stderr on shutdown"),
52                   cl::init(false));
53
54   cl::opt<bool> EnableLazyCompilation(
55     "enable-lazy-compilation", cl::desc("Enable lazy compilation when using the MCJIT engine"),
56     cl::init(true));
57
58   cl::opt<bool> UseObjectCache(
59     "use-object-cache", cl::desc("Enable use of the MCJIT object caching"),
60     cl::init(false));
61 } // namespace
62
63 //===----------------------------------------------------------------------===//
64 // Lexer
65 //===----------------------------------------------------------------------===//
66
67 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
68 // of these for known things.
69 enum Token {
70   tok_eof = -1,
71
72   // commands
73   tok_def = -2, tok_extern = -3,
74
75   // primary
76   tok_identifier = -4, tok_number = -5,
77
78   // control
79   tok_if = -6, tok_then = -7, tok_else = -8,
80   tok_for = -9, tok_in = -10,
81
82   // operators
83   tok_binary = -11, tok_unary = -12,
84
85   // var definition
86   tok_var = -13
87 };
88
89 static std::string IdentifierStr;  // Filled in if tok_identifier
90 static double NumVal;              // Filled in if tok_number
91
92 /// gettok - Return the next token from standard input.
93 static int gettok() {
94   static int LastChar = ' ';
95
96   // Skip any whitespace.
97   while (isspace(LastChar))
98     LastChar = getchar();
99
100   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
101     IdentifierStr = LastChar;
102     while (isalnum((LastChar = getchar())))
103       IdentifierStr += LastChar;
104
105     if (IdentifierStr == "def") return tok_def;
106     if (IdentifierStr == "extern") return tok_extern;
107     if (IdentifierStr == "if") return tok_if;
108     if (IdentifierStr == "then") return tok_then;
109     if (IdentifierStr == "else") return tok_else;
110     if (IdentifierStr == "for") return tok_for;
111     if (IdentifierStr == "in") return tok_in;
112     if (IdentifierStr == "binary") return tok_binary;
113     if (IdentifierStr == "unary") return tok_unary;
114     if (IdentifierStr == "var") return tok_var;
115     return tok_identifier;
116   }
117
118   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
119     std::string NumStr;
120     do {
121       NumStr += LastChar;
122       LastChar = getchar();
123     } while (isdigit(LastChar) || LastChar == '.');
124
125     NumVal = strtod(NumStr.c_str(), 0);
126     return tok_number;
127   }
128
129   if (LastChar == '#') {
130     // Comment until end of line.
131     do LastChar = getchar();
132     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
133
134     if (LastChar != EOF)
135       return gettok();
136   }
137
138   // Check for end of file.  Don't eat the EOF.
139   if (LastChar == EOF)
140     return tok_eof;
141
142   // Otherwise, just return the character as its ascii value.
143   int ThisChar = LastChar;
144   LastChar = getchar();
145   return ThisChar;
146 }
147
148 //===----------------------------------------------------------------------===//
149 // Abstract Syntax Tree (aka Parse Tree)
150 //===----------------------------------------------------------------------===//
151
152 /// ExprAST - Base class for all expression nodes.
153 class ExprAST {
154 public:
155   virtual ~ExprAST() {}
156   virtual Value *Codegen() = 0;
157 };
158
159 /// NumberExprAST - Expression class for numeric literals like "1.0".
160 class NumberExprAST : public ExprAST {
161   double Val;
162 public:
163   NumberExprAST(double val) : Val(val) {}
164   virtual Value *Codegen();
165 };
166
167 /// VariableExprAST - Expression class for referencing a variable, like "a".
168 class VariableExprAST : public ExprAST {
169   std::string Name;
170 public:
171   VariableExprAST(const std::string &name) : Name(name) {}
172   const std::string &getName() const { return Name; }
173   virtual Value *Codegen();
174 };
175
176 /// UnaryExprAST - Expression class for a unary operator.
177 class UnaryExprAST : public ExprAST {
178   char Opcode;
179   ExprAST *Operand;
180 public:
181   UnaryExprAST(char opcode, ExprAST *operand)
182     : Opcode(opcode), Operand(operand) {}
183   virtual Value *Codegen();
184 };
185
186 /// BinaryExprAST - Expression class for a binary operator.
187 class BinaryExprAST : public ExprAST {
188   char Op;
189   ExprAST *LHS, *RHS;
190 public:
191   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
192     : Op(op), LHS(lhs), RHS(rhs) {}
193   virtual Value *Codegen();
194 };
195
196 /// CallExprAST - Expression class for function calls.
197 class CallExprAST : public ExprAST {
198   std::string Callee;
199   std::vector<ExprAST*> Args;
200 public:
201   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
202     : Callee(callee), Args(args) {}
203   virtual Value *Codegen();
204 };
205
206 /// IfExprAST - Expression class for if/then/else.
207 class IfExprAST : public ExprAST {
208   ExprAST *Cond, *Then, *Else;
209 public:
210   IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
211   : Cond(cond), Then(then), Else(_else) {}
212   virtual Value *Codegen();
213 };
214
215 /// ForExprAST - Expression class for for/in.
216 class ForExprAST : public ExprAST {
217   std::string VarName;
218   ExprAST *Start, *End, *Step, *Body;
219 public:
220   ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
221              ExprAST *step, ExprAST *body)
222     : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
223   virtual Value *Codegen();
224 };
225
226 /// VarExprAST - Expression class for var/in
227 class VarExprAST : public ExprAST {
228   std::vector<std::pair<std::string, ExprAST*> > VarNames;
229   ExprAST *Body;
230 public:
231   VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
232              ExprAST *body)
233   : VarNames(varnames), Body(body) {}
234
235   virtual Value *Codegen();
236 };
237
238 /// PrototypeAST - This class represents the "prototype" for a function,
239 /// which captures its argument names as well as if it is an operator.
240 class PrototypeAST {
241   std::string Name;
242   std::vector<std::string> Args;
243   bool isOperator;
244   unsigned Precedence;  // Precedence if a binary op.
245 public:
246   PrototypeAST(const std::string &name, const std::vector<std::string> &args,
247                bool isoperator = false, unsigned prec = 0)
248   : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
249
250   bool isUnaryOp() const { return isOperator && Args.size() == 1; }
251   bool isBinaryOp() const { return isOperator && Args.size() == 2; }
252
253   char getOperatorName() const {
254     assert(isUnaryOp() || isBinaryOp());
255     return Name[Name.size()-1];
256   }
257
258   unsigned getBinaryPrecedence() const { return Precedence; }
259
260   Function *Codegen();
261
262   void CreateArgumentAllocas(Function *F);
263 };
264
265 /// FunctionAST - This class represents a function definition itself.
266 class FunctionAST {
267   PrototypeAST *Proto;
268   ExprAST *Body;
269 public:
270   FunctionAST(PrototypeAST *proto, ExprAST *body)
271     : Proto(proto), Body(body) {}
272
273   Function *Codegen();
274 };
275
276 //===----------------------------------------------------------------------===//
277 // Parser
278 //===----------------------------------------------------------------------===//
279
280 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
281 /// token the parser is looking at.  getNextToken reads another token from the
282 /// lexer and updates CurTok with its results.
283 static int CurTok;
284 static int getNextToken() {
285   return CurTok = gettok();
286 }
287
288 /// BinopPrecedence - This holds the precedence for each binary operator that is
289 /// defined.
290 static std::map<char, int> BinopPrecedence;
291
292 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
293 static int GetTokPrecedence() {
294   if (!isascii(CurTok))
295     return -1;
296
297   // Make sure it's a declared binop.
298   int TokPrec = BinopPrecedence[CurTok];
299   if (TokPrec <= 0) return -1;
300   return TokPrec;
301 }
302
303 /// Error* - These are little helper functions for error handling.
304 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
305 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
306 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
307
308 static ExprAST *ParseExpression();
309
310 /// identifierexpr
311 ///   ::= identifier
312 ///   ::= identifier '(' expression* ')'
313 static ExprAST *ParseIdentifierExpr() {
314   std::string IdName = IdentifierStr;
315
316   getNextToken();  // eat identifier.
317
318   if (CurTok != '(') // Simple variable ref.
319     return new VariableExprAST(IdName);
320
321   // Call.
322   getNextToken();  // eat (
323   std::vector<ExprAST*> Args;
324   if (CurTok != ')') {
325     while (1) {
326       ExprAST *Arg = ParseExpression();
327       if (!Arg) return 0;
328       Args.push_back(Arg);
329
330       if (CurTok == ')') break;
331
332       if (CurTok != ',')
333         return Error("Expected ')' or ',' in argument list");
334       getNextToken();
335     }
336   }
337
338   // Eat the ')'.
339   getNextToken();
340
341   return new CallExprAST(IdName, Args);
342 }
343
344 /// numberexpr ::= number
345 static ExprAST *ParseNumberExpr() {
346   ExprAST *Result = new NumberExprAST(NumVal);
347   getNextToken(); // consume the number
348   return Result;
349 }
350
351 /// parenexpr ::= '(' expression ')'
352 static ExprAST *ParseParenExpr() {
353   getNextToken();  // eat (.
354   ExprAST *V = ParseExpression();
355   if (!V) return 0;
356
357   if (CurTok != ')')
358     return Error("expected ')'");
359   getNextToken();  // eat ).
360   return V;
361 }
362
363 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
364 static ExprAST *ParseIfExpr() {
365   getNextToken();  // eat the if.
366
367   // condition.
368   ExprAST *Cond = ParseExpression();
369   if (!Cond) return 0;
370
371   if (CurTok != tok_then)
372     return Error("expected then");
373   getNextToken();  // eat the then
374
375   ExprAST *Then = ParseExpression();
376   if (Then == 0) return 0;
377
378   if (CurTok != tok_else)
379     return Error("expected else");
380
381   getNextToken();
382
383   ExprAST *Else = ParseExpression();
384   if (!Else) return 0;
385
386   return new IfExprAST(Cond, Then, Else);
387 }
388
389 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
390 static ExprAST *ParseForExpr() {
391   getNextToken();  // eat the for.
392
393   if (CurTok != tok_identifier)
394     return Error("expected identifier after for");
395
396   std::string IdName = IdentifierStr;
397   getNextToken();  // eat identifier.
398
399   if (CurTok != '=')
400     return Error("expected '=' after for");
401   getNextToken();  // eat '='.
402
403
404   ExprAST *Start = ParseExpression();
405   if (Start == 0) return 0;
406   if (CurTok != ',')
407     return Error("expected ',' after for start value");
408   getNextToken();
409
410   ExprAST *End = ParseExpression();
411   if (End == 0) return 0;
412
413   // The step value is optional.
414   ExprAST *Step = 0;
415   if (CurTok == ',') {
416     getNextToken();
417     Step = ParseExpression();
418     if (Step == 0) return 0;
419   }
420
421   if (CurTok != tok_in)
422     return Error("expected 'in' after for");
423   getNextToken();  // eat 'in'.
424
425   ExprAST *Body = ParseExpression();
426   if (Body == 0) return 0;
427
428   return new ForExprAST(IdName, Start, End, Step, Body);
429 }
430
431 /// varexpr ::= 'var' identifier ('=' expression)?
432 //                    (',' identifier ('=' expression)?)* 'in' expression
433 static ExprAST *ParseVarExpr() {
434   getNextToken();  // eat the var.
435
436   std::vector<std::pair<std::string, ExprAST*> > VarNames;
437
438   // At least one variable name is required.
439   if (CurTok != tok_identifier)
440     return Error("expected identifier after var");
441
442   while (1) {
443     std::string Name = IdentifierStr;
444     getNextToken();  // eat identifier.
445
446     // Read the optional initializer.
447     ExprAST *Init = 0;
448     if (CurTok == '=') {
449       getNextToken(); // eat the '='.
450
451       Init = ParseExpression();
452       if (Init == 0) return 0;
453     }
454
455     VarNames.push_back(std::make_pair(Name, Init));
456
457     // End of var list, exit loop.
458     if (CurTok != ',') break;
459     getNextToken(); // eat the ','.
460
461     if (CurTok != tok_identifier)
462       return Error("expected identifier list after var");
463   }
464
465   // At this point, we have to have 'in'.
466   if (CurTok != tok_in)
467     return Error("expected 'in' keyword after 'var'");
468   getNextToken();  // eat 'in'.
469
470   ExprAST *Body = ParseExpression();
471   if (Body == 0) return 0;
472
473   return new VarExprAST(VarNames, Body);
474 }
475
476 /// primary
477 ///   ::= identifierexpr
478 ///   ::= numberexpr
479 ///   ::= parenexpr
480 ///   ::= ifexpr
481 ///   ::= forexpr
482 ///   ::= varexpr
483 static ExprAST *ParsePrimary() {
484   switch (CurTok) {
485   default: return Error("unknown token when expecting an expression");
486   case tok_identifier: return ParseIdentifierExpr();
487   case tok_number:     return ParseNumberExpr();
488   case '(':            return ParseParenExpr();
489   case tok_if:         return ParseIfExpr();
490   case tok_for:        return ParseForExpr();
491   case tok_var:        return ParseVarExpr();
492   }
493 }
494
495 /// unary
496 ///   ::= primary
497 ///   ::= '!' unary
498 static ExprAST *ParseUnary() {
499   // If the current token is not an operator, it must be a primary expr.
500   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
501     return ParsePrimary();
502
503   // If this is a unary operator, read it.
504   int Opc = CurTok;
505   getNextToken();
506   if (ExprAST *Operand = ParseUnary())
507     return new UnaryExprAST(Opc, Operand);
508   return 0;
509 }
510
511 /// binoprhs
512 ///   ::= ('+' unary)*
513 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
514   // If this is a binop, find its precedence.
515   while (1) {
516     int TokPrec = GetTokPrecedence();
517
518     // If this is a binop that binds at least as tightly as the current binop,
519     // consume it, otherwise we are done.
520     if (TokPrec < ExprPrec)
521       return LHS;
522
523     // Okay, we know this is a binop.
524     int BinOp = CurTok;
525     getNextToken();  // eat binop
526
527     // Parse the unary expression after the binary operator.
528     ExprAST *RHS = ParseUnary();
529     if (!RHS) return 0;
530
531     // If BinOp binds less tightly with RHS than the operator after RHS, let
532     // the pending operator take RHS as its LHS.
533     int NextPrec = GetTokPrecedence();
534     if (TokPrec < NextPrec) {
535       RHS = ParseBinOpRHS(TokPrec+1, RHS);
536       if (RHS == 0) return 0;
537     }
538
539     // Merge LHS/RHS.
540     LHS = new BinaryExprAST(BinOp, LHS, RHS);
541   }
542 }
543
544 /// expression
545 ///   ::= unary binoprhs
546 ///
547 static ExprAST *ParseExpression() {
548   ExprAST *LHS = ParseUnary();
549   if (!LHS) return 0;
550
551   return ParseBinOpRHS(0, LHS);
552 }
553
554 /// prototype
555 ///   ::= id '(' id* ')'
556 ///   ::= binary LETTER number? (id, id)
557 ///   ::= unary LETTER (id)
558 static PrototypeAST *ParsePrototype() {
559   std::string FnName;
560
561   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
562   unsigned BinaryPrecedence = 30;
563
564   switch (CurTok) {
565   default:
566     return ErrorP("Expected function name in prototype");
567   case tok_identifier:
568     FnName = IdentifierStr;
569     Kind = 0;
570     getNextToken();
571     break;
572   case tok_unary:
573     getNextToken();
574     if (!isascii(CurTok))
575       return ErrorP("Expected unary operator");
576     FnName = "unary";
577     FnName += (char)CurTok;
578     Kind = 1;
579     getNextToken();
580     break;
581   case tok_binary:
582     getNextToken();
583     if (!isascii(CurTok))
584       return ErrorP("Expected binary operator");
585     FnName = "binary";
586     FnName += (char)CurTok;
587     Kind = 2;
588     getNextToken();
589
590     // Read the precedence if present.
591     if (CurTok == tok_number) {
592       if (NumVal < 1 || NumVal > 100)
593         return ErrorP("Invalid precedecnce: must be 1..100");
594       BinaryPrecedence = (unsigned)NumVal;
595       getNextToken();
596     }
597     break;
598   }
599
600   if (CurTok != '(')
601     return ErrorP("Expected '(' in prototype");
602
603   std::vector<std::string> ArgNames;
604   while (getNextToken() == tok_identifier)
605     ArgNames.push_back(IdentifierStr);
606   if (CurTok != ')')
607     return ErrorP("Expected ')' in prototype");
608
609   // success.
610   getNextToken();  // eat ')'.
611
612   // Verify right number of names for operator.
613   if (Kind && ArgNames.size() != Kind)
614     return ErrorP("Invalid number of operands for operator");
615
616   return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
617 }
618
619 /// definition ::= 'def' prototype expression
620 static FunctionAST *ParseDefinition() {
621   getNextToken();  // eat def.
622   PrototypeAST *Proto = ParsePrototype();
623   if (Proto == 0) return 0;
624
625   if (ExprAST *E = ParseExpression())
626     return new FunctionAST(Proto, E);
627   return 0;
628 }
629
630 /// toplevelexpr ::= expression
631 static FunctionAST *ParseTopLevelExpr() {
632   if (ExprAST *E = ParseExpression()) {
633     // Make an anonymous proto.
634     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
635     return new FunctionAST(Proto, E);
636   }
637   return 0;
638 }
639
640 /// external ::= 'extern' prototype
641 static PrototypeAST *ParseExtern() {
642   getNextToken();  // eat extern.
643   return ParsePrototype();
644 }
645
646 //===----------------------------------------------------------------------===//
647 // Quick and dirty hack
648 //===----------------------------------------------------------------------===//
649
650 // FIXME: Obviously we can do better than this
651 std::string GenerateUniqueName(const char *root)
652 {
653   static int i = 0;
654   char s[16];
655   sprintf(s, "%s%d", root, i++);
656   std::string S = s;
657   return S;
658 }
659
660 std::string MakeLegalFunctionName(std::string Name)
661 {
662   std::string NewName;
663   if (!Name.length())
664       return GenerateUniqueName("anon_func_");
665
666   // Start with what we have
667   NewName = Name;
668
669   // Look for a numberic first character
670   if (NewName.find_first_of("0123456789") == 0) {
671     NewName.insert(0, 1, 'n');
672   }
673
674   // Replace illegal characters with their ASCII equivalent
675   std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
676   size_t pos;
677   while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
678     char old_c = NewName.at(pos);
679     char new_str[16];
680     sprintf(new_str, "%d", (int)old_c);
681     NewName = NewName.replace(pos, 1, new_str);
682   }
683
684   return NewName;
685 }
686
687 //===----------------------------------------------------------------------===//
688 // MCJIT object cache class
689 //===----------------------------------------------------------------------===//
690
691 class MCJITObjectCache : public ObjectCache {
692 public:
693   MCJITObjectCache() {
694     // Set IR cache directory
695     sys::fs::current_path(CacheDir);
696     sys::path::append(CacheDir, "toy_object_cache");
697   }
698
699   virtual ~MCJITObjectCache() {
700   }
701
702   virtual void notifyObjectCompiled(const Module *M, const MemoryBuffer *Obj) {
703     // Get the ModuleID
704     const std::string ModuleID = M->getModuleIdentifier();
705
706     // If we've flagged this as an IR file, cache it
707     if (0 == ModuleID.compare(0, 3, "IR:")) {
708       std::string IRFileName = ModuleID.substr(3);
709       SmallString<128>IRCacheFile = CacheDir;
710       sys::path::append(IRCacheFile, IRFileName);
711       if (!sys::fs::exists(CacheDir.str()) && sys::fs::create_directory(CacheDir.str())) {
712         fprintf(stderr, "Unable to create cache directory\n");
713         return;
714       }
715       std::string ErrStr;
716       raw_fd_ostream IRObjectFile(IRCacheFile.c_str(), ErrStr, raw_fd_ostream::F_Binary);
717       IRObjectFile << Obj->getBuffer();
718     }
719   }
720
721   // MCJIT will call this function before compiling any module
722   // MCJIT takes ownership of both the MemoryBuffer object and the memory
723   // to which it refers.
724   virtual MemoryBuffer* getObject(const Module* M) {
725     // Get the ModuleID
726     const std::string ModuleID = M->getModuleIdentifier();
727
728     // If we've flagged this as an IR file, cache it
729     if (0 == ModuleID.compare(0, 3, "IR:")) {
730       std::string IRFileName = ModuleID.substr(3);
731       SmallString<128> IRCacheFile = CacheDir;
732       sys::path::append(IRCacheFile, IRFileName);
733       if (!sys::fs::exists(IRCacheFile.str())) {
734         // This file isn't in our cache
735         return NULL;
736       }
737       std::unique_ptr<MemoryBuffer> IRObjectBuffer;
738       MemoryBuffer::getFile(IRCacheFile.c_str(), IRObjectBuffer, -1, false);
739       // MCJIT will want to write into this buffer, and we don't want that
740       // because the file has probably just been mmapped.  Instead we make
741       // a copy.  The filed-based buffer will be released when it goes
742       // out of scope.
743       return MemoryBuffer::getMemBufferCopy(IRObjectBuffer->getBuffer());
744     }
745
746     return NULL;
747   }
748
749 private:
750   SmallString<128> CacheDir;
751 };
752
753 //===----------------------------------------------------------------------===//
754 // IR input file handler
755 //===----------------------------------------------------------------------===//
756
757 Module* parseInputIR(std::string InputFile, LLVMContext &Context) {
758   SMDiagnostic Err;
759   Module *M = ParseIRFile(InputFile, Err, Context);
760   if (!M) {
761     Err.print("IR parsing failed: ", errs());
762     return NULL;
763   }
764
765   char ModID[256];
766   sprintf(ModID, "IR:%s", InputFile.c_str());
767   M->setModuleIdentifier(ModID);
768   return M;
769 }
770
771 //===----------------------------------------------------------------------===//
772 // Helper class for execution engine abstraction
773 //===----------------------------------------------------------------------===//
774
775 class BaseHelper
776 {
777 public:
778   BaseHelper() {}
779   virtual ~BaseHelper() {}
780
781   virtual Function *getFunction(const std::string FnName) = 0;
782   virtual Module *getModuleForNewFunction() = 0;
783   virtual void *getPointerToFunction(Function* F) = 0;
784   virtual void *getPointerToNamedFunction(const std::string &Name) = 0;
785   virtual void closeCurrentModule() = 0;
786   virtual void runFPM(Function &F) = 0;
787   virtual void dump();
788 };
789
790 //===----------------------------------------------------------------------===//
791 // MCJIT helper class
792 //===----------------------------------------------------------------------===//
793
794 class MCJITHelper : public BaseHelper
795 {
796 public:
797   MCJITHelper(LLVMContext& C) : Context(C), CurrentModule(NULL) {
798     if (!InputIR.empty()) {
799       Module *M = parseInputIR(InputIR, Context);
800       Modules.push_back(M);
801       if (!EnableLazyCompilation)
802         compileModule(M);
803     }
804   }
805   ~MCJITHelper();
806
807   Function *getFunction(const std::string FnName);
808   Module *getModuleForNewFunction();
809   void *getPointerToFunction(Function* F);
810   void *getPointerToNamedFunction(const std::string &Name);
811   void closeCurrentModule();
812   virtual void runFPM(Function &F) {} // Not needed, see compileModule
813   void dump();
814
815 protected:
816   ExecutionEngine *compileModule(Module *M);
817
818 private:
819   typedef std::vector<Module*> ModuleVector;
820
821   MCJITObjectCache OurObjectCache;
822
823   LLVMContext  &Context;
824   ModuleVector  Modules;
825
826   std::map<Module *, ExecutionEngine *> EngineMap;
827
828   Module       *CurrentModule;
829 };
830
831 class HelpingMemoryManager : public SectionMemoryManager
832 {
833   HelpingMemoryManager(const HelpingMemoryManager&) = delete;
834   void operator=(const HelpingMemoryManager&) = delete;
835
836 public:
837   HelpingMemoryManager(MCJITHelper *Helper) : MasterHelper(Helper) {}
838   virtual ~HelpingMemoryManager() {}
839
840   /// This method returns the address of the specified function.
841   /// Our implementation will attempt to find functions in other
842   /// modules associated with the MCJITHelper to cross link functions
843   /// from one generated module to another.
844   ///
845   /// If \p AbortOnFailure is false and no function with the given name is
846   /// found, this function returns a null pointer. Otherwise, it prints a
847   /// message to stderr and aborts.
848   virtual void *getPointerToNamedFunction(const std::string &Name,
849                                           bool AbortOnFailure = true);
850 private:
851   MCJITHelper *MasterHelper;
852 };
853
854 void *HelpingMemoryManager::getPointerToNamedFunction(const std::string &Name,
855                                         bool AbortOnFailure)
856 {
857   // Try the standard symbol resolution first, but ask it not to abort.
858   void *pfn = RTDyldMemoryManager::getPointerToNamedFunction(Name, false);
859   if (pfn)
860     return pfn;
861
862   pfn = MasterHelper->getPointerToNamedFunction(Name);
863   if (!pfn && AbortOnFailure)
864     report_fatal_error("Program used external function '" + Name +
865                         "' which could not be resolved!");
866   return pfn;
867 }
868
869 MCJITHelper::~MCJITHelper()
870 {
871   // Walk the vector of modules.
872   ModuleVector::iterator it, end;
873   for (it = Modules.begin(), end = Modules.end();
874        it != end; ++it) {
875     // See if we have an execution engine for this module.
876     std::map<Module*, ExecutionEngine*>::iterator mapIt = EngineMap.find(*it);
877     // If we have an EE, the EE owns the module so just delete the EE.
878     if (mapIt != EngineMap.end()) {
879       delete mapIt->second;
880     } else {
881       // Otherwise, we still own the module.  Delete it now.
882       delete *it;
883     }
884   }
885 }
886
887 Function *MCJITHelper::getFunction(const std::string FnName) {
888   ModuleVector::iterator begin = Modules.begin();
889   ModuleVector::iterator end = Modules.end();
890   ModuleVector::iterator it;
891   for (it = begin; it != end; ++it) {
892     Function *F = (*it)->getFunction(FnName);
893     if (F) {
894       if (*it == CurrentModule)
895           return F;
896
897       assert(CurrentModule != NULL);
898
899       // This function is in a module that has already been JITed.
900       // We just need a prototype for external linkage.
901       Function *PF = CurrentModule->getFunction(FnName);
902       if (PF && !PF->empty()) {
903         ErrorF("redefinition of function across modules");
904         return 0;
905       }
906
907       // If we don't have a prototype yet, create one.
908       if (!PF)
909         PF = Function::Create(F->getFunctionType(),
910                                       Function::ExternalLinkage,
911                                       FnName,
912                                       CurrentModule);
913       return PF;
914     }
915   }
916   return NULL;
917 }
918
919 Module *MCJITHelper::getModuleForNewFunction() {
920   // If we have a Module that hasn't been JITed, use that.
921   if (CurrentModule)
922     return CurrentModule;
923
924   // Otherwise create a new Module.
925   std::string ModName = GenerateUniqueName("mcjit_module_");
926   Module *M = new Module(ModName, Context);
927   Modules.push_back(M);
928   CurrentModule = M;
929
930   return M;
931 }
932
933 ExecutionEngine *MCJITHelper::compileModule(Module *M) {
934   assert(EngineMap.find(M) == EngineMap.end());
935
936   if (M == CurrentModule)
937     closeCurrentModule();
938
939   std::string ErrStr;
940   ExecutionEngine *EE = EngineBuilder(M)
941                             .setErrorStr(&ErrStr)
942                             .setMCJITMemoryManager(new HelpingMemoryManager(this))
943                             .create();
944   if (!EE) {
945     fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
946     exit(1);
947   }
948
949   if (UseObjectCache)
950     EE->setObjectCache(&OurObjectCache);
951   // Get the ModuleID so we can identify IR input files
952   const std::string ModuleID = M->getModuleIdentifier();
953
954   // If we've flagged this as an IR file, it doesn't need function passes run.
955   if (0 != ModuleID.compare(0, 3, "IR:")) {
956     FunctionPassManager *FPM = 0;
957
958     // Create a FPM for this module
959     FPM = new FunctionPassManager(M);
960
961     // Set up the optimizer pipeline.  Start with registering info about how the
962     // target lays out data structures.
963     FPM->add(new DataLayout(*EE->getDataLayout()));
964     // Provide basic AliasAnalysis support for GVN.
965     FPM->add(createBasicAliasAnalysisPass());
966     // Promote allocas to registers.
967     FPM->add(createPromoteMemoryToRegisterPass());
968     // Do simple "peephole" optimizations and bit-twiddling optzns.
969     FPM->add(createInstructionCombiningPass());
970     // Reassociate expressions.
971     FPM->add(createReassociatePass());
972     // Eliminate Common SubExpressions.
973     FPM->add(createGVNPass());
974     // Simplify the control flow graph (deleting unreachable blocks, etc).
975     FPM->add(createCFGSimplificationPass());
976
977     FPM->doInitialization();
978
979     // For each function in the module
980     Module::iterator it;
981     Module::iterator end = M->end();
982     for (it = M->begin(); it != end; ++it) {
983       // Run the FPM on this function
984       FPM->run(*it);
985     }
986
987     delete FPM;
988   }
989
990   EE->finalizeObject();
991
992   // Store this engine
993   EngineMap[M] = EE;
994
995   return EE;
996 }
997
998 void *MCJITHelper::getPointerToFunction(Function* F) {
999   // Look for this function in an existing module
1000   ModuleVector::iterator begin = Modules.begin();
1001   ModuleVector::iterator end = Modules.end();
1002   ModuleVector::iterator it;
1003   std::string FnName = F->getName();
1004   for (it = begin; it != end; ++it) {
1005     Function *MF = (*it)->getFunction(FnName);
1006     if (MF == F) {
1007       std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it);
1008       if (eeIt != EngineMap.end()) {
1009         void *P = eeIt->second->getPointerToFunction(F);
1010         if (P)
1011           return P;
1012       } else {
1013         ExecutionEngine *EE = compileModule(*it);
1014         void *P = EE->getPointerToFunction(F);
1015         if (P)
1016           return P;
1017       }
1018     }
1019   }
1020   return NULL;
1021 }
1022
1023 void MCJITHelper::closeCurrentModule() {
1024     // If we have an open module (and we should), pack it up
1025   if (CurrentModule) {
1026     CurrentModule = NULL;
1027   }
1028 }
1029
1030 void *MCJITHelper::getPointerToNamedFunction(const std::string &Name)
1031 {
1032   // Look for the functions in our modules, compiling only as necessary
1033   ModuleVector::iterator begin = Modules.begin();
1034   ModuleVector::iterator end = Modules.end();
1035   ModuleVector::iterator it;
1036   for (it = begin; it != end; ++it) {
1037     Function *F = (*it)->getFunction(Name);
1038     if (F && !F->empty()) {
1039       std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it);
1040       if (eeIt != EngineMap.end()) {
1041         void *P = eeIt->second->getPointerToFunction(F);
1042         if (P)
1043           return P;
1044       } else {
1045         ExecutionEngine *EE = compileModule(*it);
1046         void *P = EE->getPointerToFunction(F);
1047         if (P)
1048           return P;
1049       }
1050     }
1051   }
1052   return NULL;
1053 }
1054
1055 void MCJITHelper::dump()
1056 {
1057   ModuleVector::iterator begin = Modules.begin();
1058   ModuleVector::iterator end = Modules.end();
1059   ModuleVector::iterator it;
1060   for (it = begin; it != end; ++it)
1061     (*it)->dump();
1062 }
1063
1064 //===----------------------------------------------------------------------===//
1065 // Code Generation
1066 //===----------------------------------------------------------------------===//
1067
1068 static BaseHelper *TheHelper;
1069 static IRBuilder<> Builder(getGlobalContext());
1070 static std::map<std::string, AllocaInst*> NamedValues;
1071
1072 Value *ErrorV(const char *Str) { Error(Str); return 0; }
1073
1074 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
1075 /// the function.  This is used for mutable variables etc.
1076 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
1077                                           const std::string &VarName) {
1078   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
1079                  TheFunction->getEntryBlock().begin());
1080   return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
1081                            VarName.c_str());
1082 }
1083
1084 Value *NumberExprAST::Codegen() {
1085   return ConstantFP::get(getGlobalContext(), APFloat(Val));
1086 }
1087
1088 Value *VariableExprAST::Codegen() {
1089   // Look this variable up in the function.
1090   Value *V = NamedValues[Name];
1091   if (V == 0) return ErrorV("Unknown variable name");
1092
1093   // Load the value.
1094   return Builder.CreateLoad(V, Name.c_str());
1095 }
1096
1097 Value *UnaryExprAST::Codegen() {
1098   Value *OperandV = Operand->Codegen();
1099   if (OperandV == 0) return 0;
1100   Function *F;
1101   F = TheHelper->getFunction(
1102       MakeLegalFunctionName(std::string("unary") + Opcode));
1103   if (F == 0)
1104     return ErrorV("Unknown unary operator");
1105
1106   return Builder.CreateCall(F, OperandV, "unop");
1107 }
1108
1109 Value *BinaryExprAST::Codegen() {
1110   // Special case '=' because we don't want to emit the LHS as an expression.
1111   if (Op == '=') {
1112     // Assignment requires the LHS to be an identifier.
1113     // This assume we're building without RTTI because LLVM builds that way by
1114     // default.  If you build LLVM with RTTI this can be changed to a
1115     // dynamic_cast for automatic error checking.
1116     VariableExprAST *LHSE = reinterpret_cast<VariableExprAST*>(LHS);
1117     if (!LHSE)
1118       return ErrorV("destination of '=' must be a variable");
1119     // Codegen the RHS.
1120     Value *Val = RHS->Codegen();
1121     if (Val == 0) return 0;
1122
1123     // Look up the name.
1124     Value *Variable = NamedValues[LHSE->getName()];
1125     if (Variable == 0) return ErrorV("Unknown variable name");
1126
1127     Builder.CreateStore(Val, Variable);
1128     return Val;
1129   }
1130
1131   Value *L = LHS->Codegen();
1132   Value *R = RHS->Codegen();
1133   if (L == 0 || R == 0) return 0;
1134
1135   switch (Op) {
1136   case '+': return Builder.CreateFAdd(L, R, "addtmp");
1137   case '-': return Builder.CreateFSub(L, R, "subtmp");
1138   case '*': return Builder.CreateFMul(L, R, "multmp");
1139   case '/': return Builder.CreateFDiv(L, R, "divtmp");
1140   case '<':
1141     L = Builder.CreateFCmpULT(L, R, "cmptmp");
1142     // Convert bool 0/1 to double 0.0 or 1.0
1143     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
1144                                 "booltmp");
1145   default: break;
1146   }
1147
1148   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
1149   // a call to it.
1150   Function *F;
1151   F = TheHelper->getFunction(MakeLegalFunctionName(std::string("binary")+Op));
1152   assert(F && "binary operator not found!");
1153
1154   Value *Ops[] = { L, R };
1155   return Builder.CreateCall(F, Ops, "binop");
1156 }
1157
1158 Value *CallExprAST::Codegen() {
1159   // Look up the name in the global module table.
1160   Function *CalleeF = TheHelper->getFunction(Callee);
1161   if (CalleeF == 0) {
1162     char error_str[64];
1163     sprintf(error_str, "Unknown function referenced %s", Callee.c_str());
1164     return ErrorV(error_str);
1165   }
1166
1167   // If argument mismatch error.
1168   if (CalleeF->arg_size() != Args.size())
1169     return ErrorV("Incorrect # arguments passed");
1170
1171   std::vector<Value*> ArgsV;
1172   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1173     ArgsV.push_back(Args[i]->Codegen());
1174     if (ArgsV.back() == 0) return 0;
1175   }
1176
1177   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
1178 }
1179
1180 Value *IfExprAST::Codegen() {
1181   Value *CondV = Cond->Codegen();
1182   if (CondV == 0) return 0;
1183
1184   // Convert condition to a bool by comparing equal to 0.0.
1185   CondV = Builder.CreateFCmpONE(CondV,
1186                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
1187                                 "ifcond");
1188
1189   Function *TheFunction = Builder.GetInsertBlock()->getParent();
1190
1191   // Create blocks for the then and else cases.  Insert the 'then' block at the
1192   // end of the function.
1193   BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
1194   BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
1195   BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
1196
1197   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
1198
1199   // Emit then value.
1200   Builder.SetInsertPoint(ThenBB);
1201
1202   Value *ThenV = Then->Codegen();
1203   if (ThenV == 0) return 0;
1204
1205   Builder.CreateBr(MergeBB);
1206   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
1207   ThenBB = Builder.GetInsertBlock();
1208
1209   // Emit else block.
1210   TheFunction->getBasicBlockList().push_back(ElseBB);
1211   Builder.SetInsertPoint(ElseBB);
1212
1213   Value *ElseV = Else->Codegen();
1214   if (ElseV == 0) return 0;
1215
1216   Builder.CreateBr(MergeBB);
1217   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
1218   ElseBB = Builder.GetInsertBlock();
1219
1220   // Emit merge block.
1221   TheFunction->getBasicBlockList().push_back(MergeBB);
1222   Builder.SetInsertPoint(MergeBB);
1223   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
1224                                   "iftmp");
1225
1226   PN->addIncoming(ThenV, ThenBB);
1227   PN->addIncoming(ElseV, ElseBB);
1228   return PN;
1229 }
1230
1231 Value *ForExprAST::Codegen() {
1232   // Output this as:
1233   //   var = alloca double
1234   //   ...
1235   //   start = startexpr
1236   //   store start -> var
1237   //   goto loop
1238   // loop:
1239   //   ...
1240   //   bodyexpr
1241   //   ...
1242   // loopend:
1243   //   step = stepexpr
1244   //   endcond = endexpr
1245   //
1246   //   curvar = load var
1247   //   nextvar = curvar + step
1248   //   store nextvar -> var
1249   //   br endcond, loop, endloop
1250   // outloop:
1251
1252   Function *TheFunction = Builder.GetInsertBlock()->getParent();
1253
1254   // Create an alloca for the variable in the entry block.
1255   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1256
1257   // Emit the start code first, without 'variable' in scope.
1258   Value *StartVal = Start->Codegen();
1259   if (StartVal == 0) return 0;
1260
1261   // Store the value into the alloca.
1262   Builder.CreateStore(StartVal, Alloca);
1263
1264   // Make the new basic block for the loop header, inserting after current
1265   // block.
1266   BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
1267
1268   // Insert an explicit fall through from the current block to the LoopBB.
1269   Builder.CreateBr(LoopBB);
1270
1271   // Start insertion in LoopBB.
1272   Builder.SetInsertPoint(LoopBB);
1273
1274   // Within the loop, the variable is defined equal to the PHI node.  If it
1275   // shadows an existing variable, we have to restore it, so save it now.
1276   AllocaInst *OldVal = NamedValues[VarName];
1277   NamedValues[VarName] = Alloca;
1278
1279   // Emit the body of the loop.  This, like any other expr, can change the
1280   // current BB.  Note that we ignore the value computed by the body, but don't
1281   // allow an error.
1282   if (Body->Codegen() == 0)
1283     return 0;
1284
1285   // Emit the step value.
1286   Value *StepVal;
1287   if (Step) {
1288     StepVal = Step->Codegen();
1289     if (StepVal == 0) return 0;
1290   } else {
1291     // If not specified, use 1.0.
1292     StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
1293   }
1294
1295   // Compute the end condition.
1296   Value *EndCond = End->Codegen();
1297   if (EndCond == 0) return EndCond;
1298
1299   // Reload, increment, and restore the alloca.  This handles the case where
1300   // the body of the loop mutates the variable.
1301   Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
1302   Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
1303   Builder.CreateStore(NextVar, Alloca);
1304
1305   // Convert condition to a bool by comparing equal to 0.0.
1306   EndCond = Builder.CreateFCmpONE(EndCond,
1307                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
1308                                   "loopcond");
1309
1310   // Create the "after loop" block and insert it.
1311   BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
1312
1313   // Insert the conditional branch into the end of LoopEndBB.
1314   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
1315
1316   // Any new code will be inserted in AfterBB.
1317   Builder.SetInsertPoint(AfterBB);
1318
1319   // Restore the unshadowed variable.
1320   if (OldVal)
1321     NamedValues[VarName] = OldVal;
1322   else
1323     NamedValues.erase(VarName);
1324
1325
1326   // for expr always returns 0.0.
1327   return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
1328 }
1329
1330 Value *VarExprAST::Codegen() {
1331   std::vector<AllocaInst *> OldBindings;
1332
1333   Function *TheFunction = Builder.GetInsertBlock()->getParent();
1334
1335   // Register all variables and emit their initializer.
1336   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
1337     const std::string &VarName = VarNames[i].first;
1338     ExprAST *Init = VarNames[i].second;
1339
1340     // Emit the initializer before adding the variable to scope, this prevents
1341     // the initializer from referencing the variable itself, and permits stuff
1342     // like this:
1343     //  var a = 1 in
1344     //    var a = a in ...   # refers to outer 'a'.
1345     Value *InitVal;
1346     if (Init) {
1347       InitVal = Init->Codegen();
1348       if (InitVal == 0) return 0;
1349     } else { // If not specified, use 0.0.
1350       InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
1351     }
1352
1353     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1354     Builder.CreateStore(InitVal, Alloca);
1355
1356     // Remember the old variable binding so that we can restore the binding when
1357     // we unrecurse.
1358     OldBindings.push_back(NamedValues[VarName]);
1359
1360     // Remember this binding.
1361     NamedValues[VarName] = Alloca;
1362   }
1363
1364   // Codegen the body, now that all vars are in scope.
1365   Value *BodyVal = Body->Codegen();
1366   if (BodyVal == 0) return 0;
1367
1368   // Pop all our variables from scope.
1369   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1370     NamedValues[VarNames[i].first] = OldBindings[i];
1371
1372   // Return the body computation.
1373   return BodyVal;
1374 }
1375
1376 Function *PrototypeAST::Codegen() {
1377   // Make the function type:  double(double,double) etc.
1378   std::vector<Type*> Doubles(Args.size(),
1379                              Type::getDoubleTy(getGlobalContext()));
1380   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
1381                                        Doubles, false);
1382
1383   std::string FnName;
1384   FnName = MakeLegalFunctionName(Name);
1385
1386   Module* M = TheHelper->getModuleForNewFunction();
1387   Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, M);
1388
1389   // FIXME: Implement duplicate function detection.
1390   // The check below will only work if the duplicate is in the open module.
1391   // If F conflicted, there was already something named 'Name'.  If it has a
1392   // body, don't allow redefinition or reextern.
1393   if (F->getName() != FnName) {
1394     // Delete the one we just made and get the existing one.
1395     F->eraseFromParent();
1396     F = M->getFunction(FnName);
1397     // If F already has a body, reject this.
1398     if (!F->empty()) {
1399       ErrorF("redefinition of function");
1400       return 0;
1401     }
1402     // If F took a different number of args, reject.
1403     if (F->arg_size() != Args.size()) {
1404       ErrorF("redefinition of function with different # args");
1405       return 0;
1406     }
1407   }
1408
1409   // Set names for all arguments.
1410   unsigned Idx = 0;
1411   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
1412        ++AI, ++Idx)
1413     AI->setName(Args[Idx]);
1414
1415   return F;
1416 }
1417
1418 /// CreateArgumentAllocas - Create an alloca for each argument and register the
1419 /// argument in the symbol table so that references to it will succeed.
1420 void PrototypeAST::CreateArgumentAllocas(Function *F) {
1421   Function::arg_iterator AI = F->arg_begin();
1422   for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
1423     // Create an alloca for this variable.
1424     AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
1425
1426     // Store the initial value into the alloca.
1427     Builder.CreateStore(AI, Alloca);
1428
1429     // Add arguments to variable symbol table.
1430     NamedValues[Args[Idx]] = Alloca;
1431   }
1432 }
1433
1434 Function *FunctionAST::Codegen() {
1435   NamedValues.clear();
1436
1437   Function *TheFunction = Proto->Codegen();
1438   if (TheFunction == 0)
1439     return 0;
1440
1441   // If this is an operator, install it.
1442   if (Proto->isBinaryOp())
1443     BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
1444
1445   // Create a new basic block to start insertion into.
1446   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
1447   Builder.SetInsertPoint(BB);
1448
1449   // Add all arguments to the symbol table and create their allocas.
1450   Proto->CreateArgumentAllocas(TheFunction);
1451
1452   if (Value *RetVal = Body->Codegen()) {
1453     // Finish off the function.
1454     Builder.CreateRet(RetVal);
1455
1456     // Validate the generated code, checking for consistency.
1457     verifyFunction(*TheFunction);
1458
1459     return TheFunction;
1460   }
1461
1462   // Error reading body, remove function.
1463   TheFunction->eraseFromParent();
1464
1465   if (Proto->isBinaryOp())
1466     BinopPrecedence.erase(Proto->getOperatorName());
1467   return 0;
1468 }
1469
1470 //===----------------------------------------------------------------------===//
1471 // Top-Level parsing and JIT Driver
1472 //===----------------------------------------------------------------------===//
1473
1474 static void HandleDefinition() {
1475   if (FunctionAST *F = ParseDefinition()) {
1476     if (EnableLazyCompilation)
1477       TheHelper->closeCurrentModule();
1478     Function *LF = F->Codegen();
1479     if (LF && VerboseOutput) {
1480       fprintf(stderr, "Read function definition:");
1481       LF->dump();
1482     }
1483   } else {
1484     // Skip token for error recovery.
1485     getNextToken();
1486   }
1487 }
1488
1489 static void HandleExtern() {
1490   if (PrototypeAST *P = ParseExtern()) {
1491     Function *F = P->Codegen();
1492     if (F && VerboseOutput) {
1493       fprintf(stderr, "Read extern: ");
1494       F->dump();
1495     }
1496   } else {
1497     // Skip token for error recovery.
1498     getNextToken();
1499   }
1500 }
1501
1502 static void HandleTopLevelExpression() {
1503   // Evaluate a top-level expression into an anonymous function.
1504   if (FunctionAST *F = ParseTopLevelExpr()) {
1505     if (Function *LF = F->Codegen()) {
1506       // JIT the function, returning a function pointer.
1507       void *FPtr = TheHelper->getPointerToFunction(LF);
1508       // Cast it to the right type (takes no arguments, returns a double) so we
1509       // can call it as a native function.
1510       double (*FP)() = (double (*)())(intptr_t)FPtr;
1511       double Result = FP();
1512       if (VerboseOutput)
1513         fprintf(stderr, "Evaluated to %f\n", Result);
1514     }
1515   } else {
1516     // Skip token for error recovery.
1517     getNextToken();
1518   }
1519 }
1520
1521 /// top ::= definition | external | expression | ';'
1522 static void MainLoop() {
1523   while (1) {
1524     if (!SuppressPrompts)
1525       fprintf(stderr, "ready> ");
1526     switch (CurTok) {
1527     case tok_eof:    return;
1528     case ';':        getNextToken(); break;  // ignore top-level semicolons.
1529     case tok_def:    HandleDefinition(); break;
1530     case tok_extern: HandleExtern(); break;
1531     default:         HandleTopLevelExpression(); break;
1532     }
1533   }
1534 }
1535
1536 //===----------------------------------------------------------------------===//
1537 // "Library" functions that can be "extern'd" from user code.
1538 //===----------------------------------------------------------------------===//
1539
1540 /// putchard - putchar that takes a double and returns 0.
1541 extern "C"
1542 double putchard(double X) {
1543   putchar((char)X);
1544   return 0;
1545 }
1546
1547 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1548 extern "C"
1549 double printd(double X) {
1550   printf("%f", X);
1551   return 0;
1552 }
1553
1554 extern "C"
1555 double printlf() {
1556   printf("\n");
1557   return 0;
1558 }
1559
1560 //===----------------------------------------------------------------------===//
1561 // Main driver code.
1562 //===----------------------------------------------------------------------===//
1563
1564 int main(int argc, char **argv) {
1565   InitializeNativeTarget();
1566   InitializeNativeTargetAsmPrinter();
1567   InitializeNativeTargetAsmParser();
1568   LLVMContext &Context = getGlobalContext();
1569
1570   cl::ParseCommandLineOptions(argc, argv,
1571                               "Kaleidoscope example program\n");
1572
1573   // Install standard binary operators.
1574   // 1 is lowest precedence.
1575   BinopPrecedence['='] = 2;
1576   BinopPrecedence['<'] = 10;
1577   BinopPrecedence['+'] = 20;
1578   BinopPrecedence['-'] = 20;
1579   BinopPrecedence['/'] = 40;
1580   BinopPrecedence['*'] = 40;  // highest.
1581
1582   // Make the Helper, which holds all the code.
1583   TheHelper = new MCJITHelper(Context);
1584
1585   // Prime the first token.
1586   if (!SuppressPrompts)
1587     fprintf(stderr, "ready> ");
1588   getNextToken();
1589
1590   // Run the main "interpreter loop" now.
1591   MainLoop();
1592
1593   // Print out all of the generated code.
1594   if (DumpModulesOnExit)
1595     TheHelper->dump();
1596
1597   return 0;
1598 }