7f5ed137cece386b00e5e44e35000b62272bfce1
[oota-llvm.git] / examples / Kaleidoscope / MCJIT / cached / toy-jit.cpp
1 #define MINIMAL_STDERR_OUTPUT
2
3 #include "llvm/Analysis/Passes.h"
4 #include "llvm/ExecutionEngine/ExecutionEngine.h"
5 #include "llvm/IR/DataLayout.h"
6 #include "llvm/IR/DerivedTypes.h"
7 #include "llvm/IR/IRBuilder.h"
8 #include "llvm/IR/LLVMContext.h"
9 #include "llvm/IR/LegacyPassManager.h"
10 #include "llvm/IR/Module.h"
11 #include "llvm/IR/Verifier.h"
12 #include "llvm/IRReader/IRReader.h"
13 #include "llvm/Support/CommandLine.h"
14 #include "llvm/Support/SourceMgr.h"
15 #include "llvm/Support/TargetSelect.h"
16 #include "llvm/Support/raw_ostream.h"
17 #include "llvm/Transforms/Scalar.h"
18 #include <cctype>
19 #include <cstdio>
20 #include <map>
21 #include <string>
22 #include <vector>
23
24 using namespace llvm;
25
26 //===----------------------------------------------------------------------===//
27 // Command-line options
28 //===----------------------------------------------------------------------===//
29
30 namespace {
31   cl::opt<std::string>
32   InputIR("input-IR",
33               cl::desc("Specify the name of an IR file to load for function definitions"),
34               cl::value_desc("input IR file name"));
35 } // namespace
36
37 //===----------------------------------------------------------------------===//
38 // Lexer
39 //===----------------------------------------------------------------------===//
40
41 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
42 // of these for known things.
43 enum Token {
44   tok_eof = -1,
45
46   // commands
47   tok_def = -2, tok_extern = -3,
48
49   // primary
50   tok_identifier = -4, tok_number = -5,
51   
52   // control
53   tok_if = -6, tok_then = -7, tok_else = -8,
54   tok_for = -9, tok_in = -10,
55   
56   // operators
57   tok_binary = -11, tok_unary = -12,
58   
59   // var definition
60   tok_var = -13
61 };
62
63 static std::string IdentifierStr;  // Filled in if tok_identifier
64 static double NumVal;              // Filled in if tok_number
65
66 /// gettok - Return the next token from standard input.
67 static int gettok() {
68   static int LastChar = ' ';
69
70   // Skip any whitespace.
71   while (isspace(LastChar))
72     LastChar = getchar();
73
74   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
75     IdentifierStr = LastChar;
76     while (isalnum((LastChar = getchar())))
77       IdentifierStr += LastChar;
78
79     if (IdentifierStr == "def") return tok_def;
80     if (IdentifierStr == "extern") return tok_extern;
81     if (IdentifierStr == "if") return tok_if;
82     if (IdentifierStr == "then") return tok_then;
83     if (IdentifierStr == "else") return tok_else;
84     if (IdentifierStr == "for") return tok_for;
85     if (IdentifierStr == "in") return tok_in;
86     if (IdentifierStr == "binary") return tok_binary;
87     if (IdentifierStr == "unary") return tok_unary;
88     if (IdentifierStr == "var") return tok_var;
89     return tok_identifier;
90   }
91
92   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
93     std::string NumStr;
94     do {
95       NumStr += LastChar;
96       LastChar = getchar();
97     } while (isdigit(LastChar) || LastChar == '.');
98
99     NumVal = strtod(NumStr.c_str(), 0);
100     return tok_number;
101   }
102
103   if (LastChar == '#') {
104     // Comment until end of line.
105     do LastChar = getchar();
106     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
107     
108     if (LastChar != EOF)
109       return gettok();
110   }
111   
112   // Check for end of file.  Don't eat the EOF.
113   if (LastChar == EOF)
114     return tok_eof;
115
116   // Otherwise, just return the character as its ascii value.
117   int ThisChar = LastChar;
118   LastChar = getchar();
119   return ThisChar;
120 }
121
122 //===----------------------------------------------------------------------===//
123 // Abstract Syntax Tree (aka Parse Tree)
124 //===----------------------------------------------------------------------===//
125
126 /// ExprAST - Base class for all expression nodes.
127 class ExprAST {
128 public:
129   virtual ~ExprAST() {}
130   virtual Value *Codegen() = 0;
131 };
132
133 /// NumberExprAST - Expression class for numeric literals like "1.0".
134 class NumberExprAST : public ExprAST {
135   double Val;
136 public:
137   NumberExprAST(double val) : Val(val) {}
138   virtual Value *Codegen();
139 };
140
141 /// VariableExprAST - Expression class for referencing a variable, like "a".
142 class VariableExprAST : public ExprAST {
143   std::string Name;
144 public:
145   VariableExprAST(const std::string &name) : Name(name) {}
146   const std::string &getName() const { return Name; }
147   virtual Value *Codegen();
148 };
149
150 /// UnaryExprAST - Expression class for a unary operator.
151 class UnaryExprAST : public ExprAST {
152   char Opcode;
153   ExprAST *Operand;
154 public:
155   UnaryExprAST(char opcode, ExprAST *operand) 
156     : Opcode(opcode), Operand(operand) {}
157   virtual Value *Codegen();
158 };
159
160 /// BinaryExprAST - Expression class for a binary operator.
161 class BinaryExprAST : public ExprAST {
162   char Op;
163   ExprAST *LHS, *RHS;
164 public:
165   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
166     : Op(op), LHS(lhs), RHS(rhs) {}
167   virtual Value *Codegen();
168 };
169
170 /// CallExprAST - Expression class for function calls.
171 class CallExprAST : public ExprAST {
172   std::string Callee;
173   std::vector<ExprAST*> Args;
174 public:
175   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
176     : Callee(callee), Args(args) {}
177   virtual Value *Codegen();
178 };
179
180 /// IfExprAST - Expression class for if/then/else.
181 class IfExprAST : public ExprAST {
182   ExprAST *Cond, *Then, *Else;
183 public:
184   IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
185   : Cond(cond), Then(then), Else(_else) {}
186   virtual Value *Codegen();
187 };
188
189 /// ForExprAST - Expression class for for/in.
190 class ForExprAST : public ExprAST {
191   std::string VarName;
192   ExprAST *Start, *End, *Step, *Body;
193 public:
194   ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
195              ExprAST *step, ExprAST *body)
196     : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
197   virtual Value *Codegen();
198 };
199
200 /// VarExprAST - Expression class for var/in
201 class VarExprAST : public ExprAST {
202   std::vector<std::pair<std::string, ExprAST*> > VarNames;
203   ExprAST *Body;
204 public:
205   VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
206              ExprAST *body)
207   : VarNames(varnames), Body(body) {}
208   
209   virtual Value *Codegen();
210 };
211
212 /// PrototypeAST - This class represents the "prototype" for a function,
213 /// which captures its argument names as well as if it is an operator.
214 class PrototypeAST {
215   std::string Name;
216   std::vector<std::string> Args;
217   bool isOperator;
218   unsigned Precedence;  // Precedence if a binary op.
219 public:
220   PrototypeAST(const std::string &name, const std::vector<std::string> &args,
221                bool isoperator = false, unsigned prec = 0)
222   : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
223   
224   bool isUnaryOp() const { return isOperator && Args.size() == 1; }
225   bool isBinaryOp() const { return isOperator && Args.size() == 2; }
226   
227   char getOperatorName() const {
228     assert(isUnaryOp() || isBinaryOp());
229     return Name[Name.size()-1];
230   }
231   
232   unsigned getBinaryPrecedence() const { return Precedence; }
233   
234   Function *Codegen();
235   
236   void CreateArgumentAllocas(Function *F);
237 };
238
239 /// FunctionAST - This class represents a function definition itself.
240 class FunctionAST {
241   PrototypeAST *Proto;
242   ExprAST *Body;
243 public:
244   FunctionAST(PrototypeAST *proto, ExprAST *body)
245     : Proto(proto), Body(body) {}
246   
247   Function *Codegen();
248 };
249
250 //===----------------------------------------------------------------------===//
251 // Parser
252 //===----------------------------------------------------------------------===//
253
254 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
255 /// token the parser is looking at.  getNextToken reads another token from the
256 /// lexer and updates CurTok with its results.
257 static int CurTok;
258 static int getNextToken() {
259   return CurTok = gettok();
260 }
261
262 /// BinopPrecedence - This holds the precedence for each binary operator that is
263 /// defined.
264 static std::map<char, int> BinopPrecedence;
265
266 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
267 static int GetTokPrecedence() {
268   if (!isascii(CurTok))
269     return -1;
270   
271   // Make sure it's a declared binop.
272   int TokPrec = BinopPrecedence[CurTok];
273   if (TokPrec <= 0) return -1;
274   return TokPrec;
275 }
276
277 /// Error* - These are little helper functions for error handling.
278 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
279 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
280 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
281
282 static ExprAST *ParseExpression();
283
284 /// identifierexpr
285 ///   ::= identifier
286 ///   ::= identifier '(' expression* ')'
287 static ExprAST *ParseIdentifierExpr() {
288   std::string IdName = IdentifierStr;
289   
290   getNextToken();  // eat identifier.
291   
292   if (CurTok != '(') // Simple variable ref.
293     return new VariableExprAST(IdName);
294   
295   // Call.
296   getNextToken();  // eat (
297   std::vector<ExprAST*> Args;
298   if (CurTok != ')') {
299     while (1) {
300       ExprAST *Arg = ParseExpression();
301       if (!Arg) return 0;
302       Args.push_back(Arg);
303
304       if (CurTok == ')') break;
305
306       if (CurTok != ',')
307         return Error("Expected ')' or ',' in argument list");
308       getNextToken();
309     }
310   }
311
312   // Eat the ')'.
313   getNextToken();
314   
315   return new CallExprAST(IdName, Args);
316 }
317
318 /// numberexpr ::= number
319 static ExprAST *ParseNumberExpr() {
320   ExprAST *Result = new NumberExprAST(NumVal);
321   getNextToken(); // consume the number
322   return Result;
323 }
324
325 /// parenexpr ::= '(' expression ')'
326 static ExprAST *ParseParenExpr() {
327   getNextToken();  // eat (.
328   ExprAST *V = ParseExpression();
329   if (!V) return 0;
330   
331   if (CurTok != ')')
332     return Error("expected ')'");
333   getNextToken();  // eat ).
334   return V;
335 }
336
337 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
338 static ExprAST *ParseIfExpr() {
339   getNextToken();  // eat the if.
340   
341   // condition.
342   ExprAST *Cond = ParseExpression();
343   if (!Cond) return 0;
344   
345   if (CurTok != tok_then)
346     return Error("expected then");
347   getNextToken();  // eat the then
348   
349   ExprAST *Then = ParseExpression();
350   if (Then == 0) return 0;
351   
352   if (CurTok != tok_else)
353     return Error("expected else");
354   
355   getNextToken();
356   
357   ExprAST *Else = ParseExpression();
358   if (!Else) return 0;
359   
360   return new IfExprAST(Cond, Then, Else);
361 }
362
363 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
364 static ExprAST *ParseForExpr() {
365   getNextToken();  // eat the for.
366
367   if (CurTok != tok_identifier)
368     return Error("expected identifier after for");
369   
370   std::string IdName = IdentifierStr;
371   getNextToken();  // eat identifier.
372   
373   if (CurTok != '=')
374     return Error("expected '=' after for");
375   getNextToken();  // eat '='.
376   
377   
378   ExprAST *Start = ParseExpression();
379   if (Start == 0) return 0;
380   if (CurTok != ',')
381     return Error("expected ',' after for start value");
382   getNextToken();
383   
384   ExprAST *End = ParseExpression();
385   if (End == 0) return 0;
386   
387   // The step value is optional.
388   ExprAST *Step = 0;
389   if (CurTok == ',') {
390     getNextToken();
391     Step = ParseExpression();
392     if (Step == 0) return 0;
393   }
394   
395   if (CurTok != tok_in)
396     return Error("expected 'in' after for");
397   getNextToken();  // eat 'in'.
398   
399   ExprAST *Body = ParseExpression();
400   if (Body == 0) return 0;
401
402   return new ForExprAST(IdName, Start, End, Step, Body);
403 }
404
405 /// varexpr ::= 'var' identifier ('=' expression)? 
406 //                    (',' identifier ('=' expression)?)* 'in' expression
407 static ExprAST *ParseVarExpr() {
408   getNextToken();  // eat the var.
409
410   std::vector<std::pair<std::string, ExprAST*> > VarNames;
411
412   // At least one variable name is required.
413   if (CurTok != tok_identifier)
414     return Error("expected identifier after var");
415   
416   while (1) {
417     std::string Name = IdentifierStr;
418     getNextToken();  // eat identifier.
419
420     // Read the optional initializer.
421     ExprAST *Init = 0;
422     if (CurTok == '=') {
423       getNextToken(); // eat the '='.
424       
425       Init = ParseExpression();
426       if (Init == 0) return 0;
427     }
428     
429     VarNames.push_back(std::make_pair(Name, Init));
430     
431     // End of var list, exit loop.
432     if (CurTok != ',') break;
433     getNextToken(); // eat the ','.
434     
435     if (CurTok != tok_identifier)
436       return Error("expected identifier list after var");
437   }
438   
439   // At this point, we have to have 'in'.
440   if (CurTok != tok_in)
441     return Error("expected 'in' keyword after 'var'");
442   getNextToken();  // eat 'in'.
443   
444   ExprAST *Body = ParseExpression();
445   if (Body == 0) return 0;
446   
447   return new VarExprAST(VarNames, Body);
448 }
449
450 /// primary
451 ///   ::= identifierexpr
452 ///   ::= numberexpr
453 ///   ::= parenexpr
454 ///   ::= ifexpr
455 ///   ::= forexpr
456 ///   ::= varexpr
457 static ExprAST *ParsePrimary() {
458   switch (CurTok) {
459   default: return Error("unknown token when expecting an expression");
460   case tok_identifier: return ParseIdentifierExpr();
461   case tok_number:     return ParseNumberExpr();
462   case '(':            return ParseParenExpr();
463   case tok_if:         return ParseIfExpr();
464   case tok_for:        return ParseForExpr();
465   case tok_var:        return ParseVarExpr();
466   }
467 }
468
469 /// unary
470 ///   ::= primary
471 ///   ::= '!' unary
472 static ExprAST *ParseUnary() {
473   // If the current token is not an operator, it must be a primary expr.
474   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
475     return ParsePrimary();
476   
477   // If this is a unary operator, read it.
478   int Opc = CurTok;
479   getNextToken();
480   if (ExprAST *Operand = ParseUnary())
481     return new UnaryExprAST(Opc, Operand);
482   return 0;
483 }
484
485 /// binoprhs
486 ///   ::= ('+' unary)*
487 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
488   // If this is a binop, find its precedence.
489   while (1) {
490     int TokPrec = GetTokPrecedence();
491     
492     // If this is a binop that binds at least as tightly as the current binop,
493     // consume it, otherwise we are done.
494     if (TokPrec < ExprPrec)
495       return LHS;
496     
497     // Okay, we know this is a binop.
498     int BinOp = CurTok;
499     getNextToken();  // eat binop
500     
501     // Parse the unary expression after the binary operator.
502     ExprAST *RHS = ParseUnary();
503     if (!RHS) return 0;
504     
505     // If BinOp binds less tightly with RHS than the operator after RHS, let
506     // the pending operator take RHS as its LHS.
507     int NextPrec = GetTokPrecedence();
508     if (TokPrec < NextPrec) {
509       RHS = ParseBinOpRHS(TokPrec+1, RHS);
510       if (RHS == 0) return 0;
511     }
512     
513     // Merge LHS/RHS.
514     LHS = new BinaryExprAST(BinOp, LHS, RHS);
515   }
516 }
517
518 /// expression
519 ///   ::= unary binoprhs
520 ///
521 static ExprAST *ParseExpression() {
522   ExprAST *LHS = ParseUnary();
523   if (!LHS) return 0;
524   
525   return ParseBinOpRHS(0, LHS);
526 }
527
528 /// prototype
529 ///   ::= id '(' id* ')'
530 ///   ::= binary LETTER number? (id, id)
531 ///   ::= unary LETTER (id)
532 static PrototypeAST *ParsePrototype() {
533   std::string FnName;
534   
535   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
536   unsigned BinaryPrecedence = 30;
537   
538   switch (CurTok) {
539   default:
540     return ErrorP("Expected function name in prototype");
541   case tok_identifier:
542     FnName = IdentifierStr;
543     Kind = 0;
544     getNextToken();
545     break;
546   case tok_unary:
547     getNextToken();
548     if (!isascii(CurTok))
549       return ErrorP("Expected unary operator");
550     FnName = "unary";
551     FnName += (char)CurTok;
552     Kind = 1;
553     getNextToken();
554     break;
555   case tok_binary:
556     getNextToken();
557     if (!isascii(CurTok))
558       return ErrorP("Expected binary operator");
559     FnName = "binary";
560     FnName += (char)CurTok;
561     Kind = 2;
562     getNextToken();
563     
564     // Read the precedence if present.
565     if (CurTok == tok_number) {
566       if (NumVal < 1 || NumVal > 100)
567         return ErrorP("Invalid precedecnce: must be 1..100");
568       BinaryPrecedence = (unsigned)NumVal;
569       getNextToken();
570     }
571     break;
572   }
573   
574   if (CurTok != '(')
575     return ErrorP("Expected '(' in prototype");
576   
577   std::vector<std::string> ArgNames;
578   while (getNextToken() == tok_identifier)
579     ArgNames.push_back(IdentifierStr);
580   if (CurTok != ')')
581     return ErrorP("Expected ')' in prototype");
582   
583   // success.
584   getNextToken();  // eat ')'.
585   
586   // Verify right number of names for operator.
587   if (Kind && ArgNames.size() != Kind)
588     return ErrorP("Invalid number of operands for operator");
589   
590   return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
591 }
592
593 /// definition ::= 'def' prototype expression
594 static FunctionAST *ParseDefinition() {
595   getNextToken();  // eat def.
596   PrototypeAST *Proto = ParsePrototype();
597   if (Proto == 0) return 0;
598
599   if (ExprAST *E = ParseExpression())
600     return new FunctionAST(Proto, E);
601   return 0;
602 }
603
604 /// toplevelexpr ::= expression
605 static FunctionAST *ParseTopLevelExpr() {
606   if (ExprAST *E = ParseExpression()) {
607     // Make an anonymous proto.
608     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
609     return new FunctionAST(Proto, E);
610   }
611   return 0;
612 }
613
614 /// external ::= 'extern' prototype
615 static PrototypeAST *ParseExtern() {
616   getNextToken();  // eat extern.
617   return ParsePrototype();
618 }
619
620 //===----------------------------------------------------------------------===//
621 // Code Generation
622 //===----------------------------------------------------------------------===//
623
624 static Module *TheModule;
625 static FunctionPassManager *TheFPM;
626 static IRBuilder<> Builder(getGlobalContext());
627 static std::map<std::string, AllocaInst*> NamedValues;
628
629 Value *ErrorV(const char *Str) { Error(Str); return 0; }
630
631 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
632 /// the function.  This is used for mutable variables etc.
633 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
634                                           const std::string &VarName) {
635   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
636                  TheFunction->getEntryBlock().begin());
637   return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
638                            VarName.c_str());
639 }
640
641 Value *NumberExprAST::Codegen() {
642   return ConstantFP::get(getGlobalContext(), APFloat(Val));
643 }
644
645 Value *VariableExprAST::Codegen() {
646   // Look this variable up in the function.
647   Value *V = NamedValues[Name];
648   if (V == 0) return ErrorV("Unknown variable name");
649
650   // Load the value.
651   return Builder.CreateLoad(V, Name.c_str());
652 }
653
654 Value *UnaryExprAST::Codegen() {
655   Value *OperandV = Operand->Codegen();
656   if (OperandV == 0) return 0;
657 #ifdef USE_MCJIT
658   Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode));
659 #else
660   Function *F = TheModule->getFunction(std::string("unary")+Opcode);
661 #endif
662   if (F == 0)
663     return ErrorV("Unknown unary operator");
664   
665   return Builder.CreateCall(F, OperandV, "unop");
666 }
667
668 Value *BinaryExprAST::Codegen() {
669   // Special case '=' because we don't want to emit the LHS as an expression.
670   if (Op == '=') {
671     // Assignment requires the LHS to be an identifier.
672     // For now, I'm building without RTTI because LLVM builds that way by
673     // default and so we need to build that way to use the command line supprt.
674     // If you build LLVM with RTTI this can be changed back to a dynamic_cast.
675     VariableExprAST *LHSE = reinterpret_cast<VariableExprAST*>(LHS);
676     if (!LHSE)
677       return ErrorV("destination of '=' must be a variable");
678     // Codegen the RHS.
679     Value *Val = RHS->Codegen();
680     if (Val == 0) return 0;
681
682     // Look up the name.
683     Value *Variable = NamedValues[LHSE->getName()];
684     if (Variable == 0) return ErrorV("Unknown variable name");
685
686     Builder.CreateStore(Val, Variable);
687     return Val;
688   }
689   
690   Value *L = LHS->Codegen();
691   Value *R = RHS->Codegen();
692   if (L == 0 || R == 0) return 0;
693   
694   switch (Op) {
695   case '+': return Builder.CreateFAdd(L, R, "addtmp");
696   case '-': return Builder.CreateFSub(L, R, "subtmp");
697   case '*': return Builder.CreateFMul(L, R, "multmp");
698   case '/': return Builder.CreateFDiv(L, R, "divtmp");
699   case '<':
700     L = Builder.CreateFCmpULT(L, R, "cmptmp");
701     // Convert bool 0/1 to double 0.0 or 1.0
702     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
703                                 "booltmp");
704   default: break;
705   }
706   
707   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
708   // a call to it.
709   Function *F = TheModule->getFunction(std::string("binary")+Op);
710   assert(F && "binary operator not found!");
711   
712   Value *Ops[] = { L, R };
713   return Builder.CreateCall(F, Ops, "binop");
714 }
715
716 Value *CallExprAST::Codegen() {
717   // Look up the name in the global module table.
718   Function *CalleeF = TheModule->getFunction(Callee);
719   if (CalleeF == 0) {
720     char error_str[64];
721     sprintf(error_str, "Unknown function referenced %s", Callee.c_str()); 
722     return ErrorV(error_str);
723   }
724   
725   // If argument mismatch error.
726   if (CalleeF->arg_size() != Args.size())
727     return ErrorV("Incorrect # arguments passed");
728
729   std::vector<Value*> ArgsV;
730   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
731     ArgsV.push_back(Args[i]->Codegen());
732     if (ArgsV.back() == 0) return 0;
733   }
734   
735   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
736 }
737
738 Value *IfExprAST::Codegen() {
739   Value *CondV = Cond->Codegen();
740   if (CondV == 0) return 0;
741   
742   // Convert condition to a bool by comparing equal to 0.0.
743   CondV = Builder.CreateFCmpONE(CondV, 
744                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
745                                 "ifcond");
746   
747   Function *TheFunction = Builder.GetInsertBlock()->getParent();
748   
749   // Create blocks for the then and else cases.  Insert the 'then' block at the
750   // end of the function.
751   BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
752   BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
753   BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
754   
755   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
756   
757   // Emit then value.
758   Builder.SetInsertPoint(ThenBB);
759   
760   Value *ThenV = Then->Codegen();
761   if (ThenV == 0) return 0;
762   
763   Builder.CreateBr(MergeBB);
764   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
765   ThenBB = Builder.GetInsertBlock();
766   
767   // Emit else block.
768   TheFunction->getBasicBlockList().push_back(ElseBB);
769   Builder.SetInsertPoint(ElseBB);
770   
771   Value *ElseV = Else->Codegen();
772   if (ElseV == 0) return 0;
773   
774   Builder.CreateBr(MergeBB);
775   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
776   ElseBB = Builder.GetInsertBlock();
777   
778   // Emit merge block.
779   TheFunction->getBasicBlockList().push_back(MergeBB);
780   Builder.SetInsertPoint(MergeBB);
781   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
782                                   "iftmp");
783   
784   PN->addIncoming(ThenV, ThenBB);
785   PN->addIncoming(ElseV, ElseBB);
786   return PN;
787 }
788
789 Value *ForExprAST::Codegen() {
790   // Output this as:
791   //   var = alloca double
792   //   ...
793   //   start = startexpr
794   //   store start -> var
795   //   goto loop
796   // loop: 
797   //   ...
798   //   bodyexpr
799   //   ...
800   // loopend:
801   //   step = stepexpr
802   //   endcond = endexpr
803   //
804   //   curvar = load var
805   //   nextvar = curvar + step
806   //   store nextvar -> var
807   //   br endcond, loop, endloop
808   // outloop:
809   
810   Function *TheFunction = Builder.GetInsertBlock()->getParent();
811
812   // Create an alloca for the variable in the entry block.
813   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
814   
815   // Emit the start code first, without 'variable' in scope.
816   Value *StartVal = Start->Codegen();
817   if (StartVal == 0) return 0;
818   
819   // Store the value into the alloca.
820   Builder.CreateStore(StartVal, Alloca);
821   
822   // Make the new basic block for the loop header, inserting after current
823   // block.
824   BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
825   
826   // Insert an explicit fall through from the current block to the LoopBB.
827   Builder.CreateBr(LoopBB);
828
829   // Start insertion in LoopBB.
830   Builder.SetInsertPoint(LoopBB);
831   
832   // Within the loop, the variable is defined equal to the PHI node.  If it
833   // shadows an existing variable, we have to restore it, so save it now.
834   AllocaInst *OldVal = NamedValues[VarName];
835   NamedValues[VarName] = Alloca;
836   
837   // Emit the body of the loop.  This, like any other expr, can change the
838   // current BB.  Note that we ignore the value computed by the body, but don't
839   // allow an error.
840   if (Body->Codegen() == 0)
841     return 0;
842   
843   // Emit the step value.
844   Value *StepVal;
845   if (Step) {
846     StepVal = Step->Codegen();
847     if (StepVal == 0) return 0;
848   } else {
849     // If not specified, use 1.0.
850     StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
851   }
852   
853   // Compute the end condition.
854   Value *EndCond = End->Codegen();
855   if (EndCond == 0) return EndCond;
856   
857   // Reload, increment, and restore the alloca.  This handles the case where
858   // the body of the loop mutates the variable.
859   Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
860   Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
861   Builder.CreateStore(NextVar, Alloca);
862   
863   // Convert condition to a bool by comparing equal to 0.0.
864   EndCond = Builder.CreateFCmpONE(EndCond, 
865                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
866                                   "loopcond");
867   
868   // Create the "after loop" block and insert it.
869   BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
870   
871   // Insert the conditional branch into the end of LoopEndBB.
872   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
873   
874   // Any new code will be inserted in AfterBB.
875   Builder.SetInsertPoint(AfterBB);
876   
877   // Restore the unshadowed variable.
878   if (OldVal)
879     NamedValues[VarName] = OldVal;
880   else
881     NamedValues.erase(VarName);
882
883   
884   // for expr always returns 0.0.
885   return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
886 }
887
888 Value *VarExprAST::Codegen() {
889   std::vector<AllocaInst *> OldBindings;
890   
891   Function *TheFunction = Builder.GetInsertBlock()->getParent();
892
893   // Register all variables and emit their initializer.
894   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
895     const std::string &VarName = VarNames[i].first;
896     ExprAST *Init = VarNames[i].second;
897     
898     // Emit the initializer before adding the variable to scope, this prevents
899     // the initializer from referencing the variable itself, and permits stuff
900     // like this:
901     //  var a = 1 in
902     //    var a = a in ...   # refers to outer 'a'.
903     Value *InitVal;
904     if (Init) {
905       InitVal = Init->Codegen();
906       if (InitVal == 0) return 0;
907     } else { // If not specified, use 0.0.
908       InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
909     }
910     
911     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
912     Builder.CreateStore(InitVal, Alloca);
913
914     // Remember the old variable binding so that we can restore the binding when
915     // we unrecurse.
916     OldBindings.push_back(NamedValues[VarName]);
917     
918     // Remember this binding.
919     NamedValues[VarName] = Alloca;
920   }
921   
922   // Codegen the body, now that all vars are in scope.
923   Value *BodyVal = Body->Codegen();
924   if (BodyVal == 0) return 0;
925   
926   // Pop all our variables from scope.
927   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
928     NamedValues[VarNames[i].first] = OldBindings[i];
929
930   // Return the body computation.
931   return BodyVal;
932 }
933
934 Function *PrototypeAST::Codegen() {
935   // Make the function type:  double(double,double) etc.
936   std::vector<Type*> Doubles(Args.size(), 
937                              Type::getDoubleTy(getGlobalContext()));
938   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
939                                        Doubles, false);
940
941   Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
942   // If F conflicted, there was already something named 'Name'.  If it has a
943   // body, don't allow redefinition or reextern.
944   if (F->getName() != Name) {
945     // Delete the one we just made and get the existing one.
946     F->eraseFromParent();
947     F = TheModule->getFunction(Name);
948     // If F already has a body, reject this.
949     if (!F->empty()) {
950       ErrorF("redefinition of function");
951       return 0;
952     }
953     // If F took a different number of args, reject.
954     if (F->arg_size() != Args.size()) {
955       ErrorF("redefinition of function with different # args");
956       return 0;
957     }
958   }
959
960   // Set names for all arguments.
961   unsigned Idx = 0;
962   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
963        ++AI, ++Idx)
964     AI->setName(Args[Idx]);
965     
966   return F;
967 }
968
969 /// CreateArgumentAllocas - Create an alloca for each argument and register the
970 /// argument in the symbol table so that references to it will succeed.
971 void PrototypeAST::CreateArgumentAllocas(Function *F) {
972   Function::arg_iterator AI = F->arg_begin();
973   for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
974     // Create an alloca for this variable.
975     AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
976
977     // Store the initial value into the alloca.
978     Builder.CreateStore(AI, Alloca);
979
980     // Add arguments to variable symbol table.
981     NamedValues[Args[Idx]] = Alloca;
982   }
983 }
984
985 Function *FunctionAST::Codegen() {
986   NamedValues.clear();
987   
988   Function *TheFunction = Proto->Codegen();
989   if (TheFunction == 0)
990     return 0;
991
992   // If this is an operator, install it.
993   if (Proto->isBinaryOp())
994     BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
995
996   // Create a new basic block to start insertion into.
997   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
998   Builder.SetInsertPoint(BB);
999   
1000   // Add all arguments to the symbol table and create their allocas.
1001   Proto->CreateArgumentAllocas(TheFunction);
1002
1003   if (Value *RetVal = Body->Codegen()) {
1004     // Finish off the function.
1005     Builder.CreateRet(RetVal);
1006
1007     // Validate the generated code, checking for consistency.
1008     verifyFunction(*TheFunction);
1009
1010     // Optimize the function.
1011     TheFPM->run(*TheFunction);
1012
1013     return TheFunction;
1014   }
1015   
1016   // Error reading body, remove function.
1017   TheFunction->eraseFromParent();
1018
1019   if (Proto->isBinaryOp())
1020     BinopPrecedence.erase(Proto->getOperatorName());
1021   return 0;
1022 }
1023
1024 //===----------------------------------------------------------------------===//
1025 // Top-Level parsing and JIT Driver
1026 //===----------------------------------------------------------------------===//
1027
1028 static ExecutionEngine *TheExecutionEngine;
1029
1030 static void HandleDefinition() {
1031   if (FunctionAST *F = ParseDefinition()) {
1032     if (Function *LF = F->Codegen()) {
1033 #ifndef MINIMAL_STDERR_OUTPUT
1034       fprintf(stderr, "Read function definition:");
1035       LF->dump();
1036 #endif
1037     }
1038   } else {
1039     // Skip token for error recovery.
1040     getNextToken();
1041   }
1042 }
1043
1044 static void HandleExtern() {
1045   if (PrototypeAST *P = ParseExtern()) {
1046     if (Function *F = P->Codegen()) {
1047 #ifndef MINIMAL_STDERR_OUTPUT
1048       fprintf(stderr, "Read extern: ");
1049       F->dump();
1050 #endif
1051     }
1052   } else {
1053     // Skip token for error recovery.
1054     getNextToken();
1055   }
1056 }
1057
1058 static void HandleTopLevelExpression() {
1059   // Evaluate a top-level expression into an anonymous function.
1060   if (FunctionAST *F = ParseTopLevelExpr()) {
1061     if (Function *LF = F->Codegen()) {
1062       // JIT the function, returning a function pointer.
1063       void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
1064       // Cast it to the right type (takes no arguments, returns a double) so we
1065       // can call it as a native function.
1066       double (*FP)() = (double (*)())(intptr_t)FPtr;
1067 #ifdef MINIMAL_STDERR_OUTPUT
1068       FP();
1069 #else
1070       fprintf(stderr, "Evaluated to %f\n", FP());
1071 #endif
1072     }
1073   } else {
1074     // Skip token for error recovery.
1075     getNextToken();
1076   }
1077 }
1078
1079 /// top ::= definition | external | expression | ';'
1080 static void MainLoop() {
1081   while (1) {
1082 #ifndef MINIMAL_STDERR_OUTPUT
1083     fprintf(stderr, "ready> ");
1084 #endif
1085     switch (CurTok) {
1086     case tok_eof:    return;
1087     case ';':        getNextToken(); break;  // ignore top-level semicolons.
1088     case tok_def:    HandleDefinition(); break;
1089     case tok_extern: HandleExtern(); break;
1090     default:         HandleTopLevelExpression(); break;
1091     }
1092   }
1093 }
1094
1095 //===----------------------------------------------------------------------===//
1096 // "Library" functions that can be "extern'd" from user code.
1097 //===----------------------------------------------------------------------===//
1098
1099 /// putchard - putchar that takes a double and returns 0.
1100 extern "C" 
1101 double putchard(double X) {
1102   putchar((char)X);
1103   return 0;
1104 }
1105
1106 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1107 extern "C" 
1108 double printd(double X) {
1109   printf("%f", X);
1110   return 0;
1111 }
1112
1113 extern "C" 
1114 double printlf() {
1115   printf("\n");
1116   return 0;
1117 }
1118
1119 //===----------------------------------------------------------------------===//
1120 // Command line input file handlers
1121 //===----------------------------------------------------------------------===//
1122
1123 Module* parseInputIR(std::string InputFile) {
1124   SMDiagnostic Err;
1125   Module *M = ParseIRFile(InputFile, Err, getGlobalContext());
1126   if (!M) {
1127     Err.print("IR parsing failed: ", errs());
1128     return NULL;
1129   }
1130
1131   return M;
1132 }
1133
1134 //===----------------------------------------------------------------------===//
1135 // Main driver code.
1136 //===----------------------------------------------------------------------===//
1137
1138 int main(int argc, char **argv) {
1139   InitializeNativeTarget();
1140   LLVMContext &Context = getGlobalContext();
1141
1142   cl::ParseCommandLineOptions(argc, argv,
1143                               "Kaleidoscope example program\n");
1144
1145   // Install standard binary operators.
1146   // 1 is lowest precedence.
1147   BinopPrecedence['='] = 2;
1148   BinopPrecedence['<'] = 10;
1149   BinopPrecedence['+'] = 20;
1150   BinopPrecedence['-'] = 20;
1151   BinopPrecedence['/'] = 40;
1152   BinopPrecedence['*'] = 40;  // highest.
1153
1154   // Make the module, which holds all the code.
1155   if (!InputIR.empty()) {
1156     TheModule = parseInputIR(InputIR);
1157   } else {
1158     TheModule = new Module("my cool jit", Context);
1159   }
1160
1161   // Create the JIT.  This takes ownership of the module.
1162   std::string ErrStr;
1163   TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
1164   if (!TheExecutionEngine) {
1165     fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
1166     exit(1);
1167   }
1168
1169   FunctionPassManager OurFPM(TheModule);
1170
1171   // Set up the optimizer pipeline.  Start with registering info about how the
1172   // target lays out data structures.
1173   OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
1174   // Provide basic AliasAnalysis support for GVN.
1175   OurFPM.add(createBasicAliasAnalysisPass());
1176   // Promote allocas to registers.
1177   OurFPM.add(createPromoteMemoryToRegisterPass());
1178   // Do simple "peephole" optimizations and bit-twiddling optzns.
1179   OurFPM.add(createInstructionCombiningPass());
1180   // Reassociate expressions.
1181   OurFPM.add(createReassociatePass());
1182   // Eliminate Common SubExpressions.
1183   OurFPM.add(createGVNPass());
1184   // Simplify the control flow graph (deleting unreachable blocks, etc).
1185   OurFPM.add(createCFGSimplificationPass());
1186
1187   OurFPM.doInitialization();
1188
1189   // Set the global so the code gen can use this.
1190   TheFPM = &OurFPM;
1191
1192   // Prime the first token.
1193 #ifndef MINIMAL_STDERR_OUTPUT
1194   fprintf(stderr, "ready> ");
1195 #endif
1196   getNextToken();
1197
1198   // Run the main "interpreter loop" now.
1199   MainLoop();
1200
1201   // Print out all of the generated code.
1202   TheFPM = 0;
1203 #if !defined(MINIMAL_STDERR_OUTPUT) || defined(DUMP_FINAL_MODULE)
1204   TheModule->dump();
1205 #endif
1206   return 0;
1207 }