[Kaleidoscope] Fix incorrect use of reinterpret_cast.
[oota-llvm.git] / examples / Kaleidoscope / Chapter8 / toy.cpp
1 #include "llvm/ADT/STLExtras.h"
2 #include "llvm/ADT/Triple.h"
3 #include "llvm/Analysis/Passes.h"
4 #include "llvm/ExecutionEngine/ExecutionEngine.h"
5 #include "llvm/ExecutionEngine/MCJIT.h"
6 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
7 #include "llvm/IR/DIBuilder.h"
8 #include "llvm/IR/DataLayout.h"
9 #include "llvm/IR/DerivedTypes.h"
10 #include "llvm/IR/IRBuilder.h"
11 #include "llvm/IR/LLVMContext.h"
12 #include "llvm/IR/LegacyPassManager.h"
13 #include "llvm/IR/Module.h"
14 #include "llvm/IR/Verifier.h"
15 #include "llvm/Support/Host.h"
16 #include "llvm/Support/TargetSelect.h"
17 #include "llvm/Transforms/Scalar.h"
18 #include <cctype>
19 #include <cstdio>
20 #include <iostream>
21 #include <map>
22 #include <string>
23 #include <vector>
24 using namespace llvm;
25
26 //===----------------------------------------------------------------------===//
27 // Lexer
28 //===----------------------------------------------------------------------===//
29
30 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
31 // of these for known things.
32 enum Token {
33   tok_eof = -1,
34
35   // commands
36   tok_def = -2,
37   tok_extern = -3,
38
39   // primary
40   tok_identifier = -4,
41   tok_number = -5,
42
43   // control
44   tok_if = -6,
45   tok_then = -7,
46   tok_else = -8,
47   tok_for = -9,
48   tok_in = -10,
49
50   // operators
51   tok_binary = -11,
52   tok_unary = -12,
53
54   // var definition
55   tok_var = -13
56 };
57
58 std::string getTokName(int Tok) {
59   switch (Tok) {
60   case tok_eof:
61     return "eof";
62   case tok_def:
63     return "def";
64   case tok_extern:
65     return "extern";
66   case tok_identifier:
67     return "identifier";
68   case tok_number:
69     return "number";
70   case tok_if:
71     return "if";
72   case tok_then:
73     return "then";
74   case tok_else:
75     return "else";
76   case tok_for:
77     return "for";
78   case tok_in:
79     return "in";
80   case tok_binary:
81     return "binary";
82   case tok_unary:
83     return "unary";
84   case tok_var:
85     return "var";
86   }
87   return std::string(1, (char)Tok);
88 }
89
90 namespace {
91 class PrototypeAST;
92 class ExprAST;
93 }
94 static IRBuilder<> Builder(getGlobalContext());
95 struct DebugInfo {
96   MDCompileUnit *TheCU;
97   MDType *DblTy;
98   std::vector<MDScope *> LexicalBlocks;
99   std::map<const PrototypeAST *, MDScope *> FnScopeMap;
100
101   void emitLocation(ExprAST *AST);
102   MDType *getDoubleTy();
103 } KSDbgInfo;
104
105 static std::string IdentifierStr; // Filled in if tok_identifier
106 static double NumVal;             // Filled in if tok_number
107 struct SourceLocation {
108   int Line;
109   int Col;
110 };
111 static SourceLocation CurLoc;
112 static SourceLocation LexLoc = { 1, 0 };
113
114 static int advance() {
115   int LastChar = getchar();
116
117   if (LastChar == '\n' || LastChar == '\r') {
118     LexLoc.Line++;
119     LexLoc.Col = 0;
120   } else
121     LexLoc.Col++;
122   return LastChar;
123 }
124
125 /// gettok - Return the next token from standard input.
126 static int gettok() {
127   static int LastChar = ' ';
128
129   // Skip any whitespace.
130   while (isspace(LastChar))
131     LastChar = advance();
132
133   CurLoc = LexLoc;
134
135   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
136     IdentifierStr = LastChar;
137     while (isalnum((LastChar = advance())))
138       IdentifierStr += LastChar;
139
140     if (IdentifierStr == "def")
141       return tok_def;
142     if (IdentifierStr == "extern")
143       return tok_extern;
144     if (IdentifierStr == "if")
145       return tok_if;
146     if (IdentifierStr == "then")
147       return tok_then;
148     if (IdentifierStr == "else")
149       return tok_else;
150     if (IdentifierStr == "for")
151       return tok_for;
152     if (IdentifierStr == "in")
153       return tok_in;
154     if (IdentifierStr == "binary")
155       return tok_binary;
156     if (IdentifierStr == "unary")
157       return tok_unary;
158     if (IdentifierStr == "var")
159       return tok_var;
160     return tok_identifier;
161   }
162
163   if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
164     std::string NumStr;
165     do {
166       NumStr += LastChar;
167       LastChar = advance();
168     } while (isdigit(LastChar) || LastChar == '.');
169
170     NumVal = strtod(NumStr.c_str(), 0);
171     return tok_number;
172   }
173
174   if (LastChar == '#') {
175     // Comment until end of line.
176     do
177       LastChar = advance();
178     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
179
180     if (LastChar != EOF)
181       return gettok();
182   }
183
184   // Check for end of file.  Don't eat the EOF.
185   if (LastChar == EOF)
186     return tok_eof;
187
188   // Otherwise, just return the character as its ascii value.
189   int ThisChar = LastChar;
190   LastChar = advance();
191   return ThisChar;
192 }
193
194 //===----------------------------------------------------------------------===//
195 // Abstract Syntax Tree (aka Parse Tree)
196 //===----------------------------------------------------------------------===//
197 namespace {
198
199 std::ostream &indent(std::ostream &O, int size) {
200   return O << std::string(size, ' ');
201 }
202
203 /// ExprAST - Base class for all expression nodes.
204 class ExprAST {
205   SourceLocation Loc;
206
207 public:
208   int getLine() const { return Loc.Line; }
209   int getCol() const { return Loc.Col; }
210   ExprAST(SourceLocation Loc = CurLoc) : Loc(Loc) {}
211   virtual std::ostream &dump(std::ostream &out, int ind) {
212     return out << ':' << getLine() << ':' << getCol() << '\n';
213   }
214   virtual ~ExprAST() {}
215   virtual Value *Codegen() = 0;
216 };
217
218 /// NumberExprAST - Expression class for numeric literals like "1.0".
219 class NumberExprAST : public ExprAST {
220   double Val;
221
222 public:
223   NumberExprAST(double val) : Val(val) {}
224   std::ostream &dump(std::ostream &out, int ind) override {
225     return ExprAST::dump(out << Val, ind);
226   }
227   Value *Codegen() override;
228 };
229
230 /// VariableExprAST - Expression class for referencing a variable, like "a".
231 class VariableExprAST : public ExprAST {
232   std::string Name;
233
234 public:
235   VariableExprAST(SourceLocation Loc, const std::string &name)
236       : ExprAST(Loc), Name(name) {}
237   const std::string &getName() const { return Name; }
238   std::ostream &dump(std::ostream &out, int ind) override {
239     return ExprAST::dump(out << Name, ind);
240   }
241   Value *Codegen() override;
242 };
243
244 /// UnaryExprAST - Expression class for a unary operator.
245 class UnaryExprAST : public ExprAST {
246   char Opcode;
247   ExprAST *Operand;
248
249 public:
250   UnaryExprAST(char opcode, ExprAST *operand)
251       : Opcode(opcode), Operand(operand) {}
252   std::ostream &dump(std::ostream &out, int ind) override {
253     ExprAST::dump(out << "unary" << Opcode, ind);
254     Operand->dump(out, ind + 1);
255     return out;
256   }
257   Value *Codegen() override;
258 };
259
260 /// BinaryExprAST - Expression class for a binary operator.
261 class BinaryExprAST : public ExprAST {
262   char Op;
263   ExprAST *LHS, *RHS;
264
265 public:
266   BinaryExprAST(SourceLocation Loc, char op, ExprAST *lhs, ExprAST *rhs)
267       : ExprAST(Loc), Op(op), LHS(lhs), RHS(rhs) {}
268   std::ostream &dump(std::ostream &out, int ind) override {
269     ExprAST::dump(out << "binary" << Op, ind);
270     LHS->dump(indent(out, ind) << "LHS:", ind + 1);
271     RHS->dump(indent(out, ind) << "RHS:", ind + 1);
272     return out;
273   }
274   Value *Codegen() override;
275 };
276
277 /// CallExprAST - Expression class for function calls.
278 class CallExprAST : public ExprAST {
279   std::string Callee;
280   std::vector<ExprAST *> Args;
281
282 public:
283   CallExprAST(SourceLocation Loc, const std::string &callee,
284               std::vector<ExprAST *> &args)
285       : ExprAST(Loc), Callee(callee), Args(args) {}
286   std::ostream &dump(std::ostream &out, int ind) override {
287     ExprAST::dump(out << "call " << Callee, ind);
288     for (ExprAST *Arg : Args)
289       Arg->dump(indent(out, ind + 1), ind + 1);
290     return out;
291   }
292   Value *Codegen() override;
293 };
294
295 /// IfExprAST - Expression class for if/then/else.
296 class IfExprAST : public ExprAST {
297   ExprAST *Cond, *Then, *Else;
298
299 public:
300   IfExprAST(SourceLocation Loc, ExprAST *cond, ExprAST *then, ExprAST *_else)
301       : ExprAST(Loc), Cond(cond), Then(then), Else(_else) {}
302   std::ostream &dump(std::ostream &out, int ind) override {
303     ExprAST::dump(out << "if", ind);
304     Cond->dump(indent(out, ind) << "Cond:", ind + 1);
305     Then->dump(indent(out, ind) << "Then:", ind + 1);
306     Else->dump(indent(out, ind) << "Else:", ind + 1);
307     return out;
308   }
309   Value *Codegen() override;
310 };
311
312 /// ForExprAST - Expression class for for/in.
313 class ForExprAST : public ExprAST {
314   std::string VarName;
315   ExprAST *Start, *End, *Step, *Body;
316
317 public:
318   ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
319              ExprAST *step, ExprAST *body)
320       : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
321   std::ostream &dump(std::ostream &out, int ind) override {
322     ExprAST::dump(out << "for", ind);
323     Start->dump(indent(out, ind) << "Cond:", ind + 1);
324     End->dump(indent(out, ind) << "End:", ind + 1);
325     Step->dump(indent(out, ind) << "Step:", ind + 1);
326     Body->dump(indent(out, ind) << "Body:", ind + 1);
327     return out;
328   }
329   Value *Codegen() override;
330 };
331
332 /// VarExprAST - Expression class for var/in
333 class VarExprAST : public ExprAST {
334   std::vector<std::pair<std::string, ExprAST *> > VarNames;
335   ExprAST *Body;
336
337 public:
338   VarExprAST(const std::vector<std::pair<std::string, ExprAST *> > &varnames,
339              ExprAST *body)
340       : VarNames(varnames), Body(body) {}
341
342   std::ostream &dump(std::ostream &out, int ind) override {
343     ExprAST::dump(out << "var", ind);
344     for (const auto &NamedVar : VarNames)
345       NamedVar.second->dump(indent(out, ind) << NamedVar.first << ':', ind + 1);
346     Body->dump(indent(out, ind) << "Body:", ind + 1);
347     return out;
348   }
349   Value *Codegen() override;
350 };
351
352 /// PrototypeAST - This class represents the "prototype" for a function,
353 /// which captures its argument names as well as if it is an operator.
354 class PrototypeAST {
355   std::string Name;
356   std::vector<std::string> Args;
357   bool isOperator;
358   unsigned Precedence; // Precedence if a binary op.
359   int Line;
360
361 public:
362   PrototypeAST(SourceLocation Loc, const std::string &name,
363                const std::vector<std::string> &args, bool isoperator = false,
364                unsigned prec = 0)
365       : Name(name), Args(args), isOperator(isoperator), Precedence(prec),
366         Line(Loc.Line) {}
367
368   bool isUnaryOp() const { return isOperator && Args.size() == 1; }
369   bool isBinaryOp() const { return isOperator && Args.size() == 2; }
370
371   char getOperatorName() const {
372     assert(isUnaryOp() || isBinaryOp());
373     return Name[Name.size() - 1];
374   }
375
376   unsigned getBinaryPrecedence() const { return Precedence; }
377
378   Function *Codegen();
379
380   void CreateArgumentAllocas(Function *F);
381   const std::vector<std::string> &getArgs() const { return Args; }
382 };
383
384 /// FunctionAST - This class represents a function definition itself.
385 class FunctionAST {
386   PrototypeAST *Proto;
387   ExprAST *Body;
388
389 public:
390   FunctionAST(PrototypeAST *proto, ExprAST *body) : Proto(proto), Body(body) {}
391
392   std::ostream &dump(std::ostream &out, int ind) {
393     indent(out, ind) << "FunctionAST\n";
394     ++ind;
395     indent(out, ind) << "Body:";
396     return Body ? Body->dump(out, ind) : out << "null\n";
397   }
398
399   Function *Codegen();
400 };
401 } // end anonymous namespace
402
403 //===----------------------------------------------------------------------===//
404 // Parser
405 //===----------------------------------------------------------------------===//
406
407 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
408 /// token the parser is looking at.  getNextToken reads another token from the
409 /// lexer and updates CurTok with its results.
410 static int CurTok;
411 static int getNextToken() { return CurTok = gettok(); }
412
413 /// BinopPrecedence - This holds the precedence for each binary operator that is
414 /// defined.
415 static std::map<char, int> BinopPrecedence;
416
417 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
418 static int GetTokPrecedence() {
419   if (!isascii(CurTok))
420     return -1;
421
422   // Make sure it's a declared binop.
423   int TokPrec = BinopPrecedence[CurTok];
424   if (TokPrec <= 0)
425     return -1;
426   return TokPrec;
427 }
428
429 /// Error* - These are little helper functions for error handling.
430 ExprAST *Error(const char *Str) {
431   fprintf(stderr, "Error: %s\n", Str);
432   return 0;
433 }
434 PrototypeAST *ErrorP(const char *Str) {
435   Error(Str);
436   return 0;
437 }
438 FunctionAST *ErrorF(const char *Str) {
439   Error(Str);
440   return 0;
441 }
442
443 static ExprAST *ParseExpression();
444
445 /// identifierexpr
446 ///   ::= identifier
447 ///   ::= identifier '(' expression* ')'
448 static ExprAST *ParseIdentifierExpr() {
449   std::string IdName = IdentifierStr;
450
451   SourceLocation LitLoc = CurLoc;
452
453   getNextToken(); // eat identifier.
454
455   if (CurTok != '(') // Simple variable ref.
456     return new VariableExprAST(LitLoc, IdName);
457
458   // Call.
459   getNextToken(); // eat (
460   std::vector<ExprAST *> Args;
461   if (CurTok != ')') {
462     while (1) {
463       ExprAST *Arg = ParseExpression();
464       if (!Arg)
465         return 0;
466       Args.push_back(Arg);
467
468       if (CurTok == ')')
469         break;
470
471       if (CurTok != ',')
472         return Error("Expected ')' or ',' in argument list");
473       getNextToken();
474     }
475   }
476
477   // Eat the ')'.
478   getNextToken();
479
480   return new CallExprAST(LitLoc, IdName, Args);
481 }
482
483 /// numberexpr ::= number
484 static ExprAST *ParseNumberExpr() {
485   ExprAST *Result = new NumberExprAST(NumVal);
486   getNextToken(); // consume the number
487   return Result;
488 }
489
490 /// parenexpr ::= '(' expression ')'
491 static ExprAST *ParseParenExpr() {
492   getNextToken(); // eat (.
493   ExprAST *V = ParseExpression();
494   if (!V)
495     return 0;
496
497   if (CurTok != ')')
498     return Error("expected ')'");
499   getNextToken(); // eat ).
500   return V;
501 }
502
503 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
504 static ExprAST *ParseIfExpr() {
505   SourceLocation IfLoc = CurLoc;
506
507   getNextToken(); // eat the if.
508
509   // condition.
510   ExprAST *Cond = ParseExpression();
511   if (!Cond)
512     return 0;
513
514   if (CurTok != tok_then)
515     return Error("expected then");
516   getNextToken(); // eat the then
517
518   ExprAST *Then = ParseExpression();
519   if (Then == 0)
520     return 0;
521
522   if (CurTok != tok_else)
523     return Error("expected else");
524
525   getNextToken();
526
527   ExprAST *Else = ParseExpression();
528   if (!Else)
529     return 0;
530
531   return new IfExprAST(IfLoc, Cond, Then, Else);
532 }
533
534 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
535 static ExprAST *ParseForExpr() {
536   getNextToken(); // eat the for.
537
538   if (CurTok != tok_identifier)
539     return Error("expected identifier after for");
540
541   std::string IdName = IdentifierStr;
542   getNextToken(); // eat identifier.
543
544   if (CurTok != '=')
545     return Error("expected '=' after for");
546   getNextToken(); // eat '='.
547
548   ExprAST *Start = ParseExpression();
549   if (Start == 0)
550     return 0;
551   if (CurTok != ',')
552     return Error("expected ',' after for start value");
553   getNextToken();
554
555   ExprAST *End = ParseExpression();
556   if (End == 0)
557     return 0;
558
559   // The step value is optional.
560   ExprAST *Step = 0;
561   if (CurTok == ',') {
562     getNextToken();
563     Step = ParseExpression();
564     if (Step == 0)
565       return 0;
566   }
567
568   if (CurTok != tok_in)
569     return Error("expected 'in' after for");
570   getNextToken(); // eat 'in'.
571
572   ExprAST *Body = ParseExpression();
573   if (Body == 0)
574     return 0;
575
576   return new ForExprAST(IdName, Start, End, Step, Body);
577 }
578
579 /// varexpr ::= 'var' identifier ('=' expression)?
580 //                    (',' identifier ('=' expression)?)* 'in' expression
581 static ExprAST *ParseVarExpr() {
582   getNextToken(); // eat the var.
583
584   std::vector<std::pair<std::string, ExprAST *> > VarNames;
585
586   // At least one variable name is required.
587   if (CurTok != tok_identifier)
588     return Error("expected identifier after var");
589
590   while (1) {
591     std::string Name = IdentifierStr;
592     getNextToken(); // eat identifier.
593
594     // Read the optional initializer.
595     ExprAST *Init = 0;
596     if (CurTok == '=') {
597       getNextToken(); // eat the '='.
598
599       Init = ParseExpression();
600       if (Init == 0)
601         return 0;
602     }
603
604     VarNames.push_back(std::make_pair(Name, Init));
605
606     // End of var list, exit loop.
607     if (CurTok != ',')
608       break;
609     getNextToken(); // eat the ','.
610
611     if (CurTok != tok_identifier)
612       return Error("expected identifier list after var");
613   }
614
615   // At this point, we have to have 'in'.
616   if (CurTok != tok_in)
617     return Error("expected 'in' keyword after 'var'");
618   getNextToken(); // eat 'in'.
619
620   ExprAST *Body = ParseExpression();
621   if (Body == 0)
622     return 0;
623
624   return new VarExprAST(VarNames, Body);
625 }
626
627 /// primary
628 ///   ::= identifierexpr
629 ///   ::= numberexpr
630 ///   ::= parenexpr
631 ///   ::= ifexpr
632 ///   ::= forexpr
633 ///   ::= varexpr
634 static ExprAST *ParsePrimary() {
635   switch (CurTok) {
636   default:
637     return Error("unknown token when expecting an expression");
638   case tok_identifier:
639     return ParseIdentifierExpr();
640   case tok_number:
641     return ParseNumberExpr();
642   case '(':
643     return ParseParenExpr();
644   case tok_if:
645     return ParseIfExpr();
646   case tok_for:
647     return ParseForExpr();
648   case tok_var:
649     return ParseVarExpr();
650   }
651 }
652
653 /// unary
654 ///   ::= primary
655 ///   ::= '!' unary
656 static ExprAST *ParseUnary() {
657   // If the current token is not an operator, it must be a primary expr.
658   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
659     return ParsePrimary();
660
661   // If this is a unary operator, read it.
662   int Opc = CurTok;
663   getNextToken();
664   if (ExprAST *Operand = ParseUnary())
665     return new UnaryExprAST(Opc, Operand);
666   return 0;
667 }
668
669 /// binoprhs
670 ///   ::= ('+' unary)*
671 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
672   // If this is a binop, find its precedence.
673   while (1) {
674     int TokPrec = GetTokPrecedence();
675
676     // If this is a binop that binds at least as tightly as the current binop,
677     // consume it, otherwise we are done.
678     if (TokPrec < ExprPrec)
679       return LHS;
680
681     // Okay, we know this is a binop.
682     int BinOp = CurTok;
683     SourceLocation BinLoc = CurLoc;
684     getNextToken(); // eat binop
685
686     // Parse the unary expression after the binary operator.
687     ExprAST *RHS = ParseUnary();
688     if (!RHS)
689       return 0;
690
691     // If BinOp binds less tightly with RHS than the operator after RHS, let
692     // the pending operator take RHS as its LHS.
693     int NextPrec = GetTokPrecedence();
694     if (TokPrec < NextPrec) {
695       RHS = ParseBinOpRHS(TokPrec + 1, RHS);
696       if (RHS == 0)
697         return 0;
698     }
699
700     // Merge LHS/RHS.
701     LHS = new BinaryExprAST(BinLoc, BinOp, LHS, RHS);
702   }
703 }
704
705 /// expression
706 ///   ::= unary binoprhs
707 ///
708 static ExprAST *ParseExpression() {
709   ExprAST *LHS = ParseUnary();
710   if (!LHS)
711     return 0;
712
713   return ParseBinOpRHS(0, LHS);
714 }
715
716 /// prototype
717 ///   ::= id '(' id* ')'
718 ///   ::= binary LETTER number? (id, id)
719 ///   ::= unary LETTER (id)
720 static PrototypeAST *ParsePrototype() {
721   std::string FnName;
722
723   SourceLocation FnLoc = CurLoc;
724
725   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
726   unsigned BinaryPrecedence = 30;
727
728   switch (CurTok) {
729   default:
730     return ErrorP("Expected function name in prototype");
731   case tok_identifier:
732     FnName = IdentifierStr;
733     Kind = 0;
734     getNextToken();
735     break;
736   case tok_unary:
737     getNextToken();
738     if (!isascii(CurTok))
739       return ErrorP("Expected unary operator");
740     FnName = "unary";
741     FnName += (char)CurTok;
742     Kind = 1;
743     getNextToken();
744     break;
745   case tok_binary:
746     getNextToken();
747     if (!isascii(CurTok))
748       return ErrorP("Expected binary operator");
749     FnName = "binary";
750     FnName += (char)CurTok;
751     Kind = 2;
752     getNextToken();
753
754     // Read the precedence if present.
755     if (CurTok == tok_number) {
756       if (NumVal < 1 || NumVal > 100)
757         return ErrorP("Invalid precedecnce: must be 1..100");
758       BinaryPrecedence = (unsigned)NumVal;
759       getNextToken();
760     }
761     break;
762   }
763
764   if (CurTok != '(')
765     return ErrorP("Expected '(' in prototype");
766
767   std::vector<std::string> ArgNames;
768   while (getNextToken() == tok_identifier)
769     ArgNames.push_back(IdentifierStr);
770   if (CurTok != ')')
771     return ErrorP("Expected ')' in prototype");
772
773   // success.
774   getNextToken(); // eat ')'.
775
776   // Verify right number of names for operator.
777   if (Kind && ArgNames.size() != Kind)
778     return ErrorP("Invalid number of operands for operator");
779
780   return new PrototypeAST(FnLoc, FnName, ArgNames, Kind != 0, BinaryPrecedence);
781 }
782
783 /// definition ::= 'def' prototype expression
784 static FunctionAST *ParseDefinition() {
785   getNextToken(); // eat def.
786   PrototypeAST *Proto = ParsePrototype();
787   if (Proto == 0)
788     return 0;
789
790   if (ExprAST *E = ParseExpression())
791     return new FunctionAST(Proto, E);
792   return 0;
793 }
794
795 /// toplevelexpr ::= expression
796 static FunctionAST *ParseTopLevelExpr() {
797   SourceLocation FnLoc = CurLoc;
798   if (ExprAST *E = ParseExpression()) {
799     // Make an anonymous proto.
800     PrototypeAST *Proto =
801         new PrototypeAST(FnLoc, "main", std::vector<std::string>());
802     return new FunctionAST(Proto, E);
803   }
804   return 0;
805 }
806
807 /// external ::= 'extern' prototype
808 static PrototypeAST *ParseExtern() {
809   getNextToken(); // eat extern.
810   return ParsePrototype();
811 }
812
813 //===----------------------------------------------------------------------===//
814 // Debug Info Support
815 //===----------------------------------------------------------------------===//
816
817 static DIBuilder *DBuilder;
818
819 MDType *DebugInfo::getDoubleTy() {
820   if (DblTy)
821     return DblTy;
822
823   DblTy = DBuilder->createBasicType("double", 64, 64, dwarf::DW_ATE_float);
824   return DblTy;
825 }
826
827 void DebugInfo::emitLocation(ExprAST *AST) {
828   if (!AST)
829     return Builder.SetCurrentDebugLocation(DebugLoc());
830   MDScope *Scope;
831   if (LexicalBlocks.empty())
832     Scope = TheCU;
833   else
834     Scope = LexicalBlocks.back();
835   Builder.SetCurrentDebugLocation(
836       DebugLoc::get(AST->getLine(), AST->getCol(), Scope));
837 }
838
839 static MDSubroutineType *CreateFunctionType(unsigned NumArgs, MDFile *Unit) {
840   SmallVector<Metadata *, 8> EltTys;
841   MDType *DblTy = KSDbgInfo.getDoubleTy();
842
843   // Add the result type.
844   EltTys.push_back(DblTy);
845
846   for (unsigned i = 0, e = NumArgs; i != e; ++i)
847     EltTys.push_back(DblTy);
848
849   return DBuilder->createSubroutineType(Unit,
850                                         DBuilder->getOrCreateTypeArray(EltTys));
851 }
852
853 //===----------------------------------------------------------------------===//
854 // Code Generation
855 //===----------------------------------------------------------------------===//
856
857 static Module *TheModule;
858 static std::map<std::string, AllocaInst *> NamedValues;
859 static legacy::FunctionPassManager *TheFPM;
860
861 Value *ErrorV(const char *Str) {
862   Error(Str);
863   return 0;
864 }
865
866 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
867 /// the function.  This is used for mutable variables etc.
868 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
869                                           const std::string &VarName) {
870   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
871                    TheFunction->getEntryBlock().begin());
872   return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
873                            VarName.c_str());
874 }
875
876 Value *NumberExprAST::Codegen() {
877   KSDbgInfo.emitLocation(this);
878   return ConstantFP::get(getGlobalContext(), APFloat(Val));
879 }
880
881 Value *VariableExprAST::Codegen() {
882   // Look this variable up in the function.
883   Value *V = NamedValues[Name];
884   if (V == 0)
885     return ErrorV("Unknown variable name");
886
887   KSDbgInfo.emitLocation(this);
888   // Load the value.
889   return Builder.CreateLoad(V, Name.c_str());
890 }
891
892 Value *UnaryExprAST::Codegen() {
893   Value *OperandV = Operand->Codegen();
894   if (OperandV == 0)
895     return 0;
896
897   Function *F = TheModule->getFunction(std::string("unary") + Opcode);
898   if (F == 0)
899     return ErrorV("Unknown unary operator");
900
901   KSDbgInfo.emitLocation(this);
902   return Builder.CreateCall(F, OperandV, "unop");
903 }
904
905 Value *BinaryExprAST::Codegen() {
906   KSDbgInfo.emitLocation(this);
907
908   // Special case '=' because we don't want to emit the LHS as an expression.
909   if (Op == '=') {
910     // Assignment requires the LHS to be an identifier.
911     // This assume we're building without RTTI because LLVM builds that way by
912     // default.  If you build LLVM with RTTI this can be changed to a
913     // dynamic_cast for automatic error checking.
914     VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS);
915     if (!LHSE)
916       return ErrorV("destination of '=' must be a variable");
917     // Codegen the RHS.
918     Value *Val = RHS->Codegen();
919     if (Val == 0)
920       return 0;
921
922     // Look up the name.
923     Value *Variable = NamedValues[LHSE->getName()];
924     if (Variable == 0)
925       return ErrorV("Unknown variable name");
926
927     Builder.CreateStore(Val, Variable);
928     return Val;
929   }
930
931   Value *L = LHS->Codegen();
932   Value *R = RHS->Codegen();
933   if (L == 0 || R == 0)
934     return 0;
935
936   switch (Op) {
937   case '+':
938     return Builder.CreateFAdd(L, R, "addtmp");
939   case '-':
940     return Builder.CreateFSub(L, R, "subtmp");
941   case '*':
942     return Builder.CreateFMul(L, R, "multmp");
943   case '<':
944     L = Builder.CreateFCmpULT(L, R, "cmptmp");
945     // Convert bool 0/1 to double 0.0 or 1.0
946     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
947                                 "booltmp");
948   default:
949     break;
950   }
951
952   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
953   // a call to it.
954   Function *F = TheModule->getFunction(std::string("binary") + Op);
955   assert(F && "binary operator not found!");
956
957   Value *Ops[] = { L, R };
958   return Builder.CreateCall(F, Ops, "binop");
959 }
960
961 Value *CallExprAST::Codegen() {
962   KSDbgInfo.emitLocation(this);
963
964   // Look up the name in the global module table.
965   Function *CalleeF = TheModule->getFunction(Callee);
966   if (CalleeF == 0)
967     return ErrorV("Unknown function referenced");
968
969   // If argument mismatch error.
970   if (CalleeF->arg_size() != Args.size())
971     return ErrorV("Incorrect # arguments passed");
972
973   std::vector<Value *> ArgsV;
974   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
975     ArgsV.push_back(Args[i]->Codegen());
976     if (ArgsV.back() == 0)
977       return 0;
978   }
979
980   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
981 }
982
983 Value *IfExprAST::Codegen() {
984   KSDbgInfo.emitLocation(this);
985
986   Value *CondV = Cond->Codegen();
987   if (CondV == 0)
988     return 0;
989
990   // Convert condition to a bool by comparing equal to 0.0.
991   CondV = Builder.CreateFCmpONE(
992       CondV, ConstantFP::get(getGlobalContext(), APFloat(0.0)), "ifcond");
993
994   Function *TheFunction = Builder.GetInsertBlock()->getParent();
995
996   // Create blocks for the then and else cases.  Insert the 'then' block at the
997   // end of the function.
998   BasicBlock *ThenBB =
999       BasicBlock::Create(getGlobalContext(), "then", TheFunction);
1000   BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
1001   BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
1002
1003   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
1004
1005   // Emit then value.
1006   Builder.SetInsertPoint(ThenBB);
1007
1008   Value *ThenV = Then->Codegen();
1009   if (ThenV == 0)
1010     return 0;
1011
1012   Builder.CreateBr(MergeBB);
1013   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
1014   ThenBB = Builder.GetInsertBlock();
1015
1016   // Emit else block.
1017   TheFunction->getBasicBlockList().push_back(ElseBB);
1018   Builder.SetInsertPoint(ElseBB);
1019
1020   Value *ElseV = Else->Codegen();
1021   if (ElseV == 0)
1022     return 0;
1023
1024   Builder.CreateBr(MergeBB);
1025   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
1026   ElseBB = Builder.GetInsertBlock();
1027
1028   // Emit merge block.
1029   TheFunction->getBasicBlockList().push_back(MergeBB);
1030   Builder.SetInsertPoint(MergeBB);
1031   PHINode *PN =
1032       Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, "iftmp");
1033
1034   PN->addIncoming(ThenV, ThenBB);
1035   PN->addIncoming(ElseV, ElseBB);
1036   return PN;
1037 }
1038
1039 Value *ForExprAST::Codegen() {
1040   // Output this as:
1041   //   var = alloca double
1042   //   ...
1043   //   start = startexpr
1044   //   store start -> var
1045   //   goto loop
1046   // loop:
1047   //   ...
1048   //   bodyexpr
1049   //   ...
1050   // loopend:
1051   //   step = stepexpr
1052   //   endcond = endexpr
1053   //
1054   //   curvar = load var
1055   //   nextvar = curvar + step
1056   //   store nextvar -> var
1057   //   br endcond, loop, endloop
1058   // outloop:
1059
1060   Function *TheFunction = Builder.GetInsertBlock()->getParent();
1061
1062   // Create an alloca for the variable in the entry block.
1063   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1064
1065   KSDbgInfo.emitLocation(this);
1066
1067   // Emit the start code first, without 'variable' in scope.
1068   Value *StartVal = Start->Codegen();
1069   if (StartVal == 0)
1070     return 0;
1071
1072   // Store the value into the alloca.
1073   Builder.CreateStore(StartVal, Alloca);
1074
1075   // Make the new basic block for the loop header, inserting after current
1076   // block.
1077   BasicBlock *LoopBB =
1078       BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
1079
1080   // Insert an explicit fall through from the current block to the LoopBB.
1081   Builder.CreateBr(LoopBB);
1082
1083   // Start insertion in LoopBB.
1084   Builder.SetInsertPoint(LoopBB);
1085
1086   // Within the loop, the variable is defined equal to the PHI node.  If it
1087   // shadows an existing variable, we have to restore it, so save it now.
1088   AllocaInst *OldVal = NamedValues[VarName];
1089   NamedValues[VarName] = Alloca;
1090
1091   // Emit the body of the loop.  This, like any other expr, can change the
1092   // current BB.  Note that we ignore the value computed by the body, but don't
1093   // allow an error.
1094   if (Body->Codegen() == 0)
1095     return 0;
1096
1097   // Emit the step value.
1098   Value *StepVal;
1099   if (Step) {
1100     StepVal = Step->Codegen();
1101     if (StepVal == 0)
1102       return 0;
1103   } else {
1104     // If not specified, use 1.0.
1105     StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
1106   }
1107
1108   // Compute the end condition.
1109   Value *EndCond = End->Codegen();
1110   if (EndCond == 0)
1111     return EndCond;
1112
1113   // Reload, increment, and restore the alloca.  This handles the case where
1114   // the body of the loop mutates the variable.
1115   Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
1116   Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
1117   Builder.CreateStore(NextVar, Alloca);
1118
1119   // Convert condition to a bool by comparing equal to 0.0.
1120   EndCond = Builder.CreateFCmpONE(
1121       EndCond, ConstantFP::get(getGlobalContext(), APFloat(0.0)), "loopcond");
1122
1123   // Create the "after loop" block and insert it.
1124   BasicBlock *AfterBB =
1125       BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
1126
1127   // Insert the conditional branch into the end of LoopEndBB.
1128   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
1129
1130   // Any new code will be inserted in AfterBB.
1131   Builder.SetInsertPoint(AfterBB);
1132
1133   // Restore the unshadowed variable.
1134   if (OldVal)
1135     NamedValues[VarName] = OldVal;
1136   else
1137     NamedValues.erase(VarName);
1138
1139   // for expr always returns 0.0.
1140   return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
1141 }
1142
1143 Value *VarExprAST::Codegen() {
1144   std::vector<AllocaInst *> OldBindings;
1145
1146   Function *TheFunction = Builder.GetInsertBlock()->getParent();
1147
1148   // Register all variables and emit their initializer.
1149   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
1150     const std::string &VarName = VarNames[i].first;
1151     ExprAST *Init = VarNames[i].second;
1152
1153     // Emit the initializer before adding the variable to scope, this prevents
1154     // the initializer from referencing the variable itself, and permits stuff
1155     // like this:
1156     //  var a = 1 in
1157     //    var a = a in ...   # refers to outer 'a'.
1158     Value *InitVal;
1159     if (Init) {
1160       InitVal = Init->Codegen();
1161       if (InitVal == 0)
1162         return 0;
1163     } else { // If not specified, use 0.0.
1164       InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
1165     }
1166
1167     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1168     Builder.CreateStore(InitVal, Alloca);
1169
1170     // Remember the old variable binding so that we can restore the binding when
1171     // we unrecurse.
1172     OldBindings.push_back(NamedValues[VarName]);
1173
1174     // Remember this binding.
1175     NamedValues[VarName] = Alloca;
1176   }
1177
1178   KSDbgInfo.emitLocation(this);
1179
1180   // Codegen the body, now that all vars are in scope.
1181   Value *BodyVal = Body->Codegen();
1182   if (BodyVal == 0)
1183     return 0;
1184
1185   // Pop all our variables from scope.
1186   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1187     NamedValues[VarNames[i].first] = OldBindings[i];
1188
1189   // Return the body computation.
1190   return BodyVal;
1191 }
1192
1193 Function *PrototypeAST::Codegen() {
1194   // Make the function type:  double(double,double) etc.
1195   std::vector<Type *> Doubles(Args.size(),
1196                               Type::getDoubleTy(getGlobalContext()));
1197   FunctionType *FT =
1198       FunctionType::get(Type::getDoubleTy(getGlobalContext()), Doubles, false);
1199
1200   Function *F =
1201       Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
1202
1203   // If F conflicted, there was already something named 'Name'.  If it has a
1204   // body, don't allow redefinition or reextern.
1205   if (F->getName() != Name) {
1206     // Delete the one we just made and get the existing one.
1207     F->eraseFromParent();
1208     F = TheModule->getFunction(Name);
1209
1210     // If F already has a body, reject this.
1211     if (!F->empty()) {
1212       ErrorF("redefinition of function");
1213       return 0;
1214     }
1215
1216     // If F took a different number of args, reject.
1217     if (F->arg_size() != Args.size()) {
1218       ErrorF("redefinition of function with different # args");
1219       return 0;
1220     }
1221   }
1222
1223   // Set names for all arguments.
1224   unsigned Idx = 0;
1225   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
1226        ++AI, ++Idx)
1227     AI->setName(Args[Idx]);
1228
1229   // Create a subprogram DIE for this function.
1230   MDFile *Unit = DBuilder->createFile(KSDbgInfo.TheCU->getFilename(),
1231                                       KSDbgInfo.TheCU->getDirectory());
1232   MDScope *FContext = Unit;
1233   unsigned LineNo = Line;
1234   unsigned ScopeLine = Line;
1235   MDSubprogram *SP = DBuilder->createFunction(
1236       FContext, Name, StringRef(), Unit, LineNo,
1237       CreateFunctionType(Args.size(), Unit), false /* internal linkage */,
1238       true /* definition */, ScopeLine, DebugNode::FlagPrototyped, false, F);
1239
1240   KSDbgInfo.FnScopeMap[this] = SP;
1241   return F;
1242 }
1243
1244 /// CreateArgumentAllocas - Create an alloca for each argument and register the
1245 /// argument in the symbol table so that references to it will succeed.
1246 void PrototypeAST::CreateArgumentAllocas(Function *F) {
1247   Function::arg_iterator AI = F->arg_begin();
1248   for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
1249     // Create an alloca for this variable.
1250     AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
1251
1252     // Create a debug descriptor for the variable.
1253     MDScope *Scope = KSDbgInfo.LexicalBlocks.back();
1254     MDFile *Unit = DBuilder->createFile(KSDbgInfo.TheCU->getFilename(),
1255                                         KSDbgInfo.TheCU->getDirectory());
1256     MDLocalVariable *D = DBuilder->createLocalVariable(
1257         dwarf::DW_TAG_arg_variable, Scope, Args[Idx], Unit, Line,
1258         KSDbgInfo.getDoubleTy(), Idx);
1259
1260     DBuilder->insertDeclare(Alloca, D, DBuilder->createExpression(),
1261                             DebugLoc::get(Line, 0, Scope),
1262                             Builder.GetInsertBlock());
1263
1264     // Store the initial value into the alloca.
1265     Builder.CreateStore(AI, Alloca);
1266
1267     // Add arguments to variable symbol table.
1268     NamedValues[Args[Idx]] = Alloca;
1269   }
1270 }
1271
1272 Function *FunctionAST::Codegen() {
1273   NamedValues.clear();
1274
1275   Function *TheFunction = Proto->Codegen();
1276   if (TheFunction == 0)
1277     return 0;
1278
1279   // Push the current scope.
1280   KSDbgInfo.LexicalBlocks.push_back(KSDbgInfo.FnScopeMap[Proto]);
1281
1282   // Unset the location for the prologue emission (leading instructions with no
1283   // location in a function are considered part of the prologue and the debugger
1284   // will run past them when breaking on a function)
1285   KSDbgInfo.emitLocation(nullptr);
1286
1287   // If this is an operator, install it.
1288   if (Proto->isBinaryOp())
1289     BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
1290
1291   // Create a new basic block to start insertion into.
1292   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
1293   Builder.SetInsertPoint(BB);
1294
1295   // Add all arguments to the symbol table and create their allocas.
1296   Proto->CreateArgumentAllocas(TheFunction);
1297
1298   KSDbgInfo.emitLocation(Body);
1299
1300   if (Value *RetVal = Body->Codegen()) {
1301     // Finish off the function.
1302     Builder.CreateRet(RetVal);
1303
1304     // Pop off the lexical block for the function.
1305     KSDbgInfo.LexicalBlocks.pop_back();
1306
1307     // Validate the generated code, checking for consistency.
1308     verifyFunction(*TheFunction);
1309
1310     // Optimize the function.
1311     TheFPM->run(*TheFunction);
1312
1313     return TheFunction;
1314   }
1315
1316   // Error reading body, remove function.
1317   TheFunction->eraseFromParent();
1318
1319   if (Proto->isBinaryOp())
1320     BinopPrecedence.erase(Proto->getOperatorName());
1321
1322   // Pop off the lexical block for the function since we added it
1323   // unconditionally.
1324   KSDbgInfo.LexicalBlocks.pop_back();
1325
1326   return 0;
1327 }
1328
1329 //===----------------------------------------------------------------------===//
1330 // Top-Level parsing and JIT Driver
1331 //===----------------------------------------------------------------------===//
1332
1333 static ExecutionEngine *TheExecutionEngine;
1334
1335 static void HandleDefinition() {
1336   if (FunctionAST *F = ParseDefinition()) {
1337     if (!F->Codegen()) {
1338       fprintf(stderr, "Error reading function definition:");
1339     }
1340   } else {
1341     // Skip token for error recovery.
1342     getNextToken();
1343   }
1344 }
1345
1346 static void HandleExtern() {
1347   if (PrototypeAST *P = ParseExtern()) {
1348     if (!P->Codegen()) {
1349       fprintf(stderr, "Error reading extern");
1350     }
1351   } else {
1352     // Skip token for error recovery.
1353     getNextToken();
1354   }
1355 }
1356
1357 static void HandleTopLevelExpression() {
1358   // Evaluate a top-level expression into an anonymous function.
1359   if (FunctionAST *F = ParseTopLevelExpr()) {
1360     if (!F->Codegen()) {
1361       fprintf(stderr, "Error generating code for top level expr");
1362     }
1363   } else {
1364     // Skip token for error recovery.
1365     getNextToken();
1366   }
1367 }
1368
1369 /// top ::= definition | external | expression | ';'
1370 static void MainLoop() {
1371   while (1) {
1372     switch (CurTok) {
1373     case tok_eof:
1374       return;
1375     case ';':
1376       getNextToken();
1377       break; // ignore top-level semicolons.
1378     case tok_def:
1379       HandleDefinition();
1380       break;
1381     case tok_extern:
1382       HandleExtern();
1383       break;
1384     default:
1385       HandleTopLevelExpression();
1386       break;
1387     }
1388   }
1389 }
1390
1391 //===----------------------------------------------------------------------===//
1392 // "Library" functions that can be "extern'd" from user code.
1393 //===----------------------------------------------------------------------===//
1394
1395 /// putchard - putchar that takes a double and returns 0.
1396 extern "C" double putchard(double X) {
1397   putchar((char)X);
1398   return 0;
1399 }
1400
1401 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1402 extern "C" double printd(double X) {
1403   printf("%f\n", X);
1404   return 0;
1405 }
1406
1407 //===----------------------------------------------------------------------===//
1408 // Main driver code.
1409 //===----------------------------------------------------------------------===//
1410
1411 int main() {
1412   InitializeNativeTarget();
1413   InitializeNativeTargetAsmPrinter();
1414   InitializeNativeTargetAsmParser();
1415   LLVMContext &Context = getGlobalContext();
1416
1417   // Install standard binary operators.
1418   // 1 is lowest precedence.
1419   BinopPrecedence['='] = 2;
1420   BinopPrecedence['<'] = 10;
1421   BinopPrecedence['+'] = 20;
1422   BinopPrecedence['-'] = 20;
1423   BinopPrecedence['*'] = 40; // highest.
1424
1425   // Prime the first token.
1426   getNextToken();
1427
1428   // Make the module, which holds all the code.
1429   std::unique_ptr<Module> Owner = make_unique<Module>("my cool jit", Context);
1430   TheModule = Owner.get();
1431
1432   // Add the current debug info version into the module.
1433   TheModule->addModuleFlag(Module::Warning, "Debug Info Version",
1434                            DEBUG_METADATA_VERSION);
1435
1436   // Darwin only supports dwarf2.
1437   if (Triple(sys::getProcessTriple()).isOSDarwin())
1438     TheModule->addModuleFlag(llvm::Module::Warning, "Dwarf Version", 2);
1439
1440   // Construct the DIBuilder, we do this here because we need the module.
1441   DBuilder = new DIBuilder(*TheModule);
1442
1443   // Create the compile unit for the module.
1444   // Currently down as "fib.ks" as a filename since we're redirecting stdin
1445   // but we'd like actual source locations.
1446   KSDbgInfo.TheCU = DBuilder->createCompileUnit(
1447       dwarf::DW_LANG_C, "fib.ks", ".", "Kaleidoscope Compiler", 0, "", 0);
1448
1449   // Create the JIT.  This takes ownership of the module.
1450   std::string ErrStr;
1451   TheExecutionEngine =
1452       EngineBuilder(std::move(Owner))
1453           .setErrorStr(&ErrStr)
1454           .setMCJITMemoryManager(llvm::make_unique<SectionMemoryManager>())
1455           .create();
1456   if (!TheExecutionEngine) {
1457     fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
1458     exit(1);
1459   }
1460
1461   legacy::FunctionPassManager OurFPM(TheModule);
1462
1463   // Set up the optimizer pipeline.  Start with registering info about how the
1464   // target lays out data structures.
1465   TheModule->setDataLayout(*TheExecutionEngine->getDataLayout());
1466 #if 0
1467   // Provide basic AliasAnalysis support for GVN.
1468   OurFPM.add(createBasicAliasAnalysisPass());
1469   // Promote allocas to registers.
1470   OurFPM.add(createPromoteMemoryToRegisterPass());
1471   // Do simple "peephole" optimizations and bit-twiddling optzns.
1472   OurFPM.add(createInstructionCombiningPass());
1473   // Reassociate expressions.
1474   OurFPM.add(createReassociatePass());
1475   // Eliminate Common SubExpressions.
1476   OurFPM.add(createGVNPass());
1477   // Simplify the control flow graph (deleting unreachable blocks, etc).
1478   OurFPM.add(createCFGSimplificationPass());
1479   #endif
1480   OurFPM.doInitialization();
1481
1482   // Set the global so the code gen can use this.
1483   TheFPM = &OurFPM;
1484
1485   // Run the main "interpreter loop" now.
1486   MainLoop();
1487
1488   TheFPM = 0;
1489
1490   // Finalize the debug info.
1491   DBuilder->finalize();
1492
1493   // Print out all of the generated code.
1494   TheModule->dump();
1495
1496   return 0;
1497 }