89e8368a14dc484f49bed1317b40d675066dbc5e
[oota-llvm.git] / examples / Kaleidoscope / Chapter7 / toy.cpp
1 #include "llvm/Analysis/Passes.h"
2 #include "llvm/ExecutionEngine/ExecutionEngine.h"
3 #include "llvm/ExecutionEngine/JIT.h"
4 #include "llvm/IR/DataLayout.h"
5 #include "llvm/IR/DerivedTypes.h"
6 #include "llvm/IR/IRBuilder.h"
7 #include "llvm/IR/LLVMContext.h"
8 #include "llvm/IR/Module.h"
9 #include "llvm/IR/Verifier.h"
10 #include "llvm/PassManager.h"
11 #include "llvm/Support/TargetSelect.h"
12 #include "llvm/Transforms/Scalar.h"
13 #include <cctype>
14 #include <cstdio>
15 #include <map>
16 #include <string>
17 #include <vector>
18 using namespace llvm;
19
20 //===----------------------------------------------------------------------===//
21 // Lexer
22 //===----------------------------------------------------------------------===//
23
24 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
25 // of these for known things.
26 enum Token {
27   tok_eof = -1,
28
29   // commands
30   tok_def = -2, tok_extern = -3,
31
32   // primary
33   tok_identifier = -4, tok_number = -5,
34   
35   // control
36   tok_if = -6, tok_then = -7, tok_else = -8,
37   tok_for = -9, tok_in = -10,
38   
39   // operators
40   tok_binary = -11, tok_unary = -12,
41   
42   // var definition
43   tok_var = -13
44 };
45
46 static std::string IdentifierStr;  // Filled in if tok_identifier
47 static double NumVal;              // Filled in if tok_number
48
49 /// gettok - Return the next token from standard input.
50 static int gettok() {
51   static int LastChar = ' ';
52
53   // Skip any whitespace.
54   while (isspace(LastChar))
55     LastChar = getchar();
56
57   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
58     IdentifierStr = LastChar;
59     while (isalnum((LastChar = getchar())))
60       IdentifierStr += LastChar;
61
62     if (IdentifierStr == "def") return tok_def;
63     if (IdentifierStr == "extern") return tok_extern;
64     if (IdentifierStr == "if") return tok_if;
65     if (IdentifierStr == "then") return tok_then;
66     if (IdentifierStr == "else") return tok_else;
67     if (IdentifierStr == "for") return tok_for;
68     if (IdentifierStr == "in") return tok_in;
69     if (IdentifierStr == "binary") return tok_binary;
70     if (IdentifierStr == "unary") return tok_unary;
71     if (IdentifierStr == "var") return tok_var;
72     return tok_identifier;
73   }
74
75   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
76     std::string NumStr;
77     do {
78       NumStr += LastChar;
79       LastChar = getchar();
80     } while (isdigit(LastChar) || LastChar == '.');
81
82     NumVal = strtod(NumStr.c_str(), 0);
83     return tok_number;
84   }
85
86   if (LastChar == '#') {
87     // Comment until end of line.
88     do LastChar = getchar();
89     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
90     
91     if (LastChar != EOF)
92       return gettok();
93   }
94   
95   // Check for end of file.  Don't eat the EOF.
96   if (LastChar == EOF)
97     return tok_eof;
98
99   // Otherwise, just return the character as its ascii value.
100   int ThisChar = LastChar;
101   LastChar = getchar();
102   return ThisChar;
103 }
104
105 //===----------------------------------------------------------------------===//
106 // Abstract Syntax Tree (aka Parse Tree)
107 //===----------------------------------------------------------------------===//
108 namespace {
109 /// ExprAST - Base class for all expression nodes.
110 class ExprAST {
111 public:
112   virtual ~ExprAST() {}
113   virtual Value *Codegen() = 0;
114 };
115
116 /// NumberExprAST - Expression class for numeric literals like "1.0".
117 class NumberExprAST : public ExprAST {
118   double Val;
119 public:
120   NumberExprAST(double val) : Val(val) {}
121   virtual Value *Codegen();
122 };
123
124 /// VariableExprAST - Expression class for referencing a variable, like "a".
125 class VariableExprAST : public ExprAST {
126   std::string Name;
127 public:
128   VariableExprAST(const std::string &name) : Name(name) {}
129   const std::string &getName() const { return Name; }
130   virtual Value *Codegen();
131 };
132
133 /// UnaryExprAST - Expression class for a unary operator.
134 class UnaryExprAST : public ExprAST {
135   char Opcode;
136   ExprAST *Operand;
137 public:
138   UnaryExprAST(char opcode, ExprAST *operand) 
139     : Opcode(opcode), Operand(operand) {}
140   virtual Value *Codegen();
141 };
142
143 /// BinaryExprAST - Expression class for a binary operator.
144 class BinaryExprAST : public ExprAST {
145   char Op;
146   ExprAST *LHS, *RHS;
147 public:
148   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
149     : Op(op), LHS(lhs), RHS(rhs) {}
150   virtual Value *Codegen();
151 };
152
153 /// CallExprAST - Expression class for function calls.
154 class CallExprAST : public ExprAST {
155   std::string Callee;
156   std::vector<ExprAST*> Args;
157 public:
158   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
159     : Callee(callee), Args(args) {}
160   virtual Value *Codegen();
161 };
162
163 /// IfExprAST - Expression class for if/then/else.
164 class IfExprAST : public ExprAST {
165   ExprAST *Cond, *Then, *Else;
166 public:
167   IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
168   : Cond(cond), Then(then), Else(_else) {}
169   virtual Value *Codegen();
170 };
171
172 /// ForExprAST - Expression class for for/in.
173 class ForExprAST : public ExprAST {
174   std::string VarName;
175   ExprAST *Start, *End, *Step, *Body;
176 public:
177   ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
178              ExprAST *step, ExprAST *body)
179     : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
180   virtual Value *Codegen();
181 };
182
183 /// VarExprAST - Expression class for var/in
184 class VarExprAST : public ExprAST {
185   std::vector<std::pair<std::string, ExprAST*> > VarNames;
186   ExprAST *Body;
187 public:
188   VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
189              ExprAST *body)
190   : VarNames(varnames), Body(body) {}
191   
192   virtual Value *Codegen();
193 };
194
195 /// PrototypeAST - This class represents the "prototype" for a function,
196 /// which captures its argument names as well as if it is an operator.
197 class PrototypeAST {
198   std::string Name;
199   std::vector<std::string> Args;
200   bool isOperator;
201   unsigned Precedence;  // Precedence if a binary op.
202 public:
203   PrototypeAST(const std::string &name, const std::vector<std::string> &args,
204                bool isoperator = false, unsigned prec = 0)
205   : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
206   
207   bool isUnaryOp() const { return isOperator && Args.size() == 1; }
208   bool isBinaryOp() const { return isOperator && Args.size() == 2; }
209   
210   char getOperatorName() const {
211     assert(isUnaryOp() || isBinaryOp());
212     return Name[Name.size()-1];
213   }
214   
215   unsigned getBinaryPrecedence() const { return Precedence; }
216   
217   Function *Codegen();
218   
219   void CreateArgumentAllocas(Function *F);
220 };
221
222 /// FunctionAST - This class represents a function definition itself.
223 class FunctionAST {
224   PrototypeAST *Proto;
225   ExprAST *Body;
226 public:
227   FunctionAST(PrototypeAST *proto, ExprAST *body)
228     : Proto(proto), Body(body) {}
229   
230   Function *Codegen();
231 };
232 } // end anonymous namespace
233
234 //===----------------------------------------------------------------------===//
235 // Parser
236 //===----------------------------------------------------------------------===//
237
238 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
239 /// token the parser is looking at.  getNextToken reads another token from the
240 /// lexer and updates CurTok with its results.
241 static int CurTok;
242 static int getNextToken() {
243   return CurTok = gettok();
244 }
245
246 /// BinopPrecedence - This holds the precedence for each binary operator that is
247 /// defined.
248 static std::map<char, int> BinopPrecedence;
249
250 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
251 static int GetTokPrecedence() {
252   if (!isascii(CurTok))
253     return -1;
254   
255   // Make sure it's a declared binop.
256   int TokPrec = BinopPrecedence[CurTok];
257   if (TokPrec <= 0) return -1;
258   return TokPrec;
259 }
260
261 /// Error* - These are little helper functions for error handling.
262 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
263 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
264 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
265
266 static ExprAST *ParseExpression();
267
268 /// identifierexpr
269 ///   ::= identifier
270 ///   ::= identifier '(' expression* ')'
271 static ExprAST *ParseIdentifierExpr() {
272   std::string IdName = IdentifierStr;
273   
274   getNextToken();  // eat identifier.
275   
276   if (CurTok != '(') // Simple variable ref.
277     return new VariableExprAST(IdName);
278   
279   // Call.
280   getNextToken();  // eat (
281   std::vector<ExprAST*> Args;
282   if (CurTok != ')') {
283     while (1) {
284       ExprAST *Arg = ParseExpression();
285       if (!Arg) return 0;
286       Args.push_back(Arg);
287
288       if (CurTok == ')') break;
289
290       if (CurTok != ',')
291         return Error("Expected ')' or ',' in argument list");
292       getNextToken();
293     }
294   }
295
296   // Eat the ')'.
297   getNextToken();
298   
299   return new CallExprAST(IdName, Args);
300 }
301
302 /// numberexpr ::= number
303 static ExprAST *ParseNumberExpr() {
304   ExprAST *Result = new NumberExprAST(NumVal);
305   getNextToken(); // consume the number
306   return Result;
307 }
308
309 /// parenexpr ::= '(' expression ')'
310 static ExprAST *ParseParenExpr() {
311   getNextToken();  // eat (.
312   ExprAST *V = ParseExpression();
313   if (!V) return 0;
314   
315   if (CurTok != ')')
316     return Error("expected ')'");
317   getNextToken();  // eat ).
318   return V;
319 }
320
321 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
322 static ExprAST *ParseIfExpr() {
323   getNextToken();  // eat the if.
324   
325   // condition.
326   ExprAST *Cond = ParseExpression();
327   if (!Cond) return 0;
328   
329   if (CurTok != tok_then)
330     return Error("expected then");
331   getNextToken();  // eat the then
332   
333   ExprAST *Then = ParseExpression();
334   if (Then == 0) return 0;
335   
336   if (CurTok != tok_else)
337     return Error("expected else");
338   
339   getNextToken();
340   
341   ExprAST *Else = ParseExpression();
342   if (!Else) return 0;
343   
344   return new IfExprAST(Cond, Then, Else);
345 }
346
347 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
348 static ExprAST *ParseForExpr() {
349   getNextToken();  // eat the for.
350
351   if (CurTok != tok_identifier)
352     return Error("expected identifier after for");
353   
354   std::string IdName = IdentifierStr;
355   getNextToken();  // eat identifier.
356   
357   if (CurTok != '=')
358     return Error("expected '=' after for");
359   getNextToken();  // eat '='.
360   
361   
362   ExprAST *Start = ParseExpression();
363   if (Start == 0) return 0;
364   if (CurTok != ',')
365     return Error("expected ',' after for start value");
366   getNextToken();
367   
368   ExprAST *End = ParseExpression();
369   if (End == 0) return 0;
370   
371   // The step value is optional.
372   ExprAST *Step = 0;
373   if (CurTok == ',') {
374     getNextToken();
375     Step = ParseExpression();
376     if (Step == 0) return 0;
377   }
378   
379   if (CurTok != tok_in)
380     return Error("expected 'in' after for");
381   getNextToken();  // eat 'in'.
382   
383   ExprAST *Body = ParseExpression();
384   if (Body == 0) return 0;
385
386   return new ForExprAST(IdName, Start, End, Step, Body);
387 }
388
389 /// varexpr ::= 'var' identifier ('=' expression)? 
390 //                    (',' identifier ('=' expression)?)* 'in' expression
391 static ExprAST *ParseVarExpr() {
392   getNextToken();  // eat the var.
393
394   std::vector<std::pair<std::string, ExprAST*> > VarNames;
395
396   // At least one variable name is required.
397   if (CurTok != tok_identifier)
398     return Error("expected identifier after var");
399   
400   while (1) {
401     std::string Name = IdentifierStr;
402     getNextToken();  // eat identifier.
403
404     // Read the optional initializer.
405     ExprAST *Init = 0;
406     if (CurTok == '=') {
407       getNextToken(); // eat the '='.
408       
409       Init = ParseExpression();
410       if (Init == 0) return 0;
411     }
412     
413     VarNames.push_back(std::make_pair(Name, Init));
414     
415     // End of var list, exit loop.
416     if (CurTok != ',') break;
417     getNextToken(); // eat the ','.
418     
419     if (CurTok != tok_identifier)
420       return Error("expected identifier list after var");
421   }
422   
423   // At this point, we have to have 'in'.
424   if (CurTok != tok_in)
425     return Error("expected 'in' keyword after 'var'");
426   getNextToken();  // eat 'in'.
427   
428   ExprAST *Body = ParseExpression();
429   if (Body == 0) return 0;
430   
431   return new VarExprAST(VarNames, Body);
432 }
433
434 /// primary
435 ///   ::= identifierexpr
436 ///   ::= numberexpr
437 ///   ::= parenexpr
438 ///   ::= ifexpr
439 ///   ::= forexpr
440 ///   ::= varexpr
441 static ExprAST *ParsePrimary() {
442   switch (CurTok) {
443   default: return Error("unknown token when expecting an expression");
444   case tok_identifier: return ParseIdentifierExpr();
445   case tok_number:     return ParseNumberExpr();
446   case '(':            return ParseParenExpr();
447   case tok_if:         return ParseIfExpr();
448   case tok_for:        return ParseForExpr();
449   case tok_var:        return ParseVarExpr();
450   }
451 }
452
453 /// unary
454 ///   ::= primary
455 ///   ::= '!' unary
456 static ExprAST *ParseUnary() {
457   // If the current token is not an operator, it must be a primary expr.
458   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
459     return ParsePrimary();
460   
461   // If this is a unary operator, read it.
462   int Opc = CurTok;
463   getNextToken();
464   if (ExprAST *Operand = ParseUnary())
465     return new UnaryExprAST(Opc, Operand);
466   return 0;
467 }
468
469 /// binoprhs
470 ///   ::= ('+' unary)*
471 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
472   // If this is a binop, find its precedence.
473   while (1) {
474     int TokPrec = GetTokPrecedence();
475     
476     // If this is a binop that binds at least as tightly as the current binop,
477     // consume it, otherwise we are done.
478     if (TokPrec < ExprPrec)
479       return LHS;
480     
481     // Okay, we know this is a binop.
482     int BinOp = CurTok;
483     getNextToken();  // eat binop
484     
485     // Parse the unary expression after the binary operator.
486     ExprAST *RHS = ParseUnary();
487     if (!RHS) return 0;
488     
489     // If BinOp binds less tightly with RHS than the operator after RHS, let
490     // the pending operator take RHS as its LHS.
491     int NextPrec = GetTokPrecedence();
492     if (TokPrec < NextPrec) {
493       RHS = ParseBinOpRHS(TokPrec+1, RHS);
494       if (RHS == 0) return 0;
495     }
496     
497     // Merge LHS/RHS.
498     LHS = new BinaryExprAST(BinOp, LHS, RHS);
499   }
500 }
501
502 /// expression
503 ///   ::= unary binoprhs
504 ///
505 static ExprAST *ParseExpression() {
506   ExprAST *LHS = ParseUnary();
507   if (!LHS) return 0;
508   
509   return ParseBinOpRHS(0, LHS);
510 }
511
512 /// prototype
513 ///   ::= id '(' id* ')'
514 ///   ::= binary LETTER number? (id, id)
515 ///   ::= unary LETTER (id)
516 static PrototypeAST *ParsePrototype() {
517   std::string FnName;
518   
519   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
520   unsigned BinaryPrecedence = 30;
521   
522   switch (CurTok) {
523   default:
524     return ErrorP("Expected function name in prototype");
525   case tok_identifier:
526     FnName = IdentifierStr;
527     Kind = 0;
528     getNextToken();
529     break;
530   case tok_unary:
531     getNextToken();
532     if (!isascii(CurTok))
533       return ErrorP("Expected unary operator");
534     FnName = "unary";
535     FnName += (char)CurTok;
536     Kind = 1;
537     getNextToken();
538     break;
539   case tok_binary:
540     getNextToken();
541     if (!isascii(CurTok))
542       return ErrorP("Expected binary operator");
543     FnName = "binary";
544     FnName += (char)CurTok;
545     Kind = 2;
546     getNextToken();
547     
548     // Read the precedence if present.
549     if (CurTok == tok_number) {
550       if (NumVal < 1 || NumVal > 100)
551         return ErrorP("Invalid precedecnce: must be 1..100");
552       BinaryPrecedence = (unsigned)NumVal;
553       getNextToken();
554     }
555     break;
556   }
557   
558   if (CurTok != '(')
559     return ErrorP("Expected '(' in prototype");
560   
561   std::vector<std::string> ArgNames;
562   while (getNextToken() == tok_identifier)
563     ArgNames.push_back(IdentifierStr);
564   if (CurTok != ')')
565     return ErrorP("Expected ')' in prototype");
566   
567   // success.
568   getNextToken();  // eat ')'.
569   
570   // Verify right number of names for operator.
571   if (Kind && ArgNames.size() != Kind)
572     return ErrorP("Invalid number of operands for operator");
573   
574   return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
575 }
576
577 /// definition ::= 'def' prototype expression
578 static FunctionAST *ParseDefinition() {
579   getNextToken();  // eat def.
580   PrototypeAST *Proto = ParsePrototype();
581   if (Proto == 0) return 0;
582
583   if (ExprAST *E = ParseExpression())
584     return new FunctionAST(Proto, E);
585   return 0;
586 }
587
588 /// toplevelexpr ::= expression
589 static FunctionAST *ParseTopLevelExpr() {
590   if (ExprAST *E = ParseExpression()) {
591     // Make an anonymous proto.
592     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
593     return new FunctionAST(Proto, E);
594   }
595   return 0;
596 }
597
598 /// external ::= 'extern' prototype
599 static PrototypeAST *ParseExtern() {
600   getNextToken();  // eat extern.
601   return ParsePrototype();
602 }
603
604 //===----------------------------------------------------------------------===//
605 // Code Generation
606 //===----------------------------------------------------------------------===//
607
608 static Module *TheModule;
609 static IRBuilder<> Builder(getGlobalContext());
610 static std::map<std::string, AllocaInst*> NamedValues;
611 static FunctionPassManager *TheFPM;
612
613 Value *ErrorV(const char *Str) { Error(Str); return 0; }
614
615 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
616 /// the function.  This is used for mutable variables etc.
617 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
618                                           const std::string &VarName) {
619   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
620                  TheFunction->getEntryBlock().begin());
621   return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
622                            VarName.c_str());
623 }
624
625 Value *NumberExprAST::Codegen() {
626   return ConstantFP::get(getGlobalContext(), APFloat(Val));
627 }
628
629 Value *VariableExprAST::Codegen() {
630   // Look this variable up in the function.
631   Value *V = NamedValues[Name];
632   if (V == 0) return ErrorV("Unknown variable name");
633
634   // Load the value.
635   return Builder.CreateLoad(V, Name.c_str());
636 }
637
638 Value *UnaryExprAST::Codegen() {
639   Value *OperandV = Operand->Codegen();
640   if (OperandV == 0) return 0;
641   
642   Function *F = TheModule->getFunction(std::string("unary")+Opcode);
643   if (F == 0)
644     return ErrorV("Unknown unary operator");
645   
646   return Builder.CreateCall(F, OperandV, "unop");
647 }
648
649 Value *BinaryExprAST::Codegen() {
650   // Special case '=' because we don't want to emit the LHS as an expression.
651   if (Op == '=') {
652     // Assignment requires the LHS to be an identifier.
653     VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS);
654     if (!LHSE)
655       return ErrorV("destination of '=' must be a variable");
656     // Codegen the RHS.
657     Value *Val = RHS->Codegen();
658     if (Val == 0) return 0;
659
660     // Look up the name.
661     Value *Variable = NamedValues[LHSE->getName()];
662     if (Variable == 0) return ErrorV("Unknown variable name");
663
664     Builder.CreateStore(Val, Variable);
665     return Val;
666   }
667   
668   Value *L = LHS->Codegen();
669   Value *R = RHS->Codegen();
670   if (L == 0 || R == 0) return 0;
671   
672   switch (Op) {
673   case '+': return Builder.CreateFAdd(L, R, "addtmp");
674   case '-': return Builder.CreateFSub(L, R, "subtmp");
675   case '*': return Builder.CreateFMul(L, R, "multmp");    
676   case '<':
677     L = Builder.CreateFCmpULT(L, R, "cmptmp");
678     // Convert bool 0/1 to double 0.0 or 1.0
679     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
680                                 "booltmp");
681   default: break;
682   }
683   
684   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
685   // a call to it.
686   Function *F = TheModule->getFunction(std::string("binary")+Op);
687   assert(F && "binary operator not found!");
688   
689   Value *Ops[] = { L, R };
690   return Builder.CreateCall(F, Ops, "binop");
691 }
692
693 Value *CallExprAST::Codegen() {
694   // Look up the name in the global module table.
695   Function *CalleeF = TheModule->getFunction(Callee);
696   if (CalleeF == 0)
697     return ErrorV("Unknown function referenced");
698   
699   // If argument mismatch error.
700   if (CalleeF->arg_size() != Args.size())
701     return ErrorV("Incorrect # arguments passed");
702
703   std::vector<Value*> ArgsV;
704   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
705     ArgsV.push_back(Args[i]->Codegen());
706     if (ArgsV.back() == 0) return 0;
707   }
708   
709   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
710 }
711
712 Value *IfExprAST::Codegen() {
713   Value *CondV = Cond->Codegen();
714   if (CondV == 0) return 0;
715   
716   // Convert condition to a bool by comparing equal to 0.0.
717   CondV = Builder.CreateFCmpONE(CondV, 
718                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
719                                 "ifcond");
720   
721   Function *TheFunction = Builder.GetInsertBlock()->getParent();
722   
723   // Create blocks for the then and else cases.  Insert the 'then' block at the
724   // end of the function.
725   BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
726   BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
727   BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
728   
729   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
730   
731   // Emit then value.
732   Builder.SetInsertPoint(ThenBB);
733   
734   Value *ThenV = Then->Codegen();
735   if (ThenV == 0) return 0;
736   
737   Builder.CreateBr(MergeBB);
738   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
739   ThenBB = Builder.GetInsertBlock();
740   
741   // Emit else block.
742   TheFunction->getBasicBlockList().push_back(ElseBB);
743   Builder.SetInsertPoint(ElseBB);
744   
745   Value *ElseV = Else->Codegen();
746   if (ElseV == 0) return 0;
747   
748   Builder.CreateBr(MergeBB);
749   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
750   ElseBB = Builder.GetInsertBlock();
751   
752   // Emit merge block.
753   TheFunction->getBasicBlockList().push_back(MergeBB);
754   Builder.SetInsertPoint(MergeBB);
755   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
756                                   "iftmp");
757   
758   PN->addIncoming(ThenV, ThenBB);
759   PN->addIncoming(ElseV, ElseBB);
760   return PN;
761 }
762
763 Value *ForExprAST::Codegen() {
764   // Output this as:
765   //   var = alloca double
766   //   ...
767   //   start = startexpr
768   //   store start -> var
769   //   goto loop
770   // loop: 
771   //   ...
772   //   bodyexpr
773   //   ...
774   // loopend:
775   //   step = stepexpr
776   //   endcond = endexpr
777   //
778   //   curvar = load var
779   //   nextvar = curvar + step
780   //   store nextvar -> var
781   //   br endcond, loop, endloop
782   // outloop:
783   
784   Function *TheFunction = Builder.GetInsertBlock()->getParent();
785
786   // Create an alloca for the variable in the entry block.
787   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
788   
789   // Emit the start code first, without 'variable' in scope.
790   Value *StartVal = Start->Codegen();
791   if (StartVal == 0) return 0;
792   
793   // Store the value into the alloca.
794   Builder.CreateStore(StartVal, Alloca);
795   
796   // Make the new basic block for the loop header, inserting after current
797   // block.
798   BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
799   
800   // Insert an explicit fall through from the current block to the LoopBB.
801   Builder.CreateBr(LoopBB);
802
803   // Start insertion in LoopBB.
804   Builder.SetInsertPoint(LoopBB);
805   
806   // Within the loop, the variable is defined equal to the PHI node.  If it
807   // shadows an existing variable, we have to restore it, so save it now.
808   AllocaInst *OldVal = NamedValues[VarName];
809   NamedValues[VarName] = Alloca;
810   
811   // Emit the body of the loop.  This, like any other expr, can change the
812   // current BB.  Note that we ignore the value computed by the body, but don't
813   // allow an error.
814   if (Body->Codegen() == 0)
815     return 0;
816   
817   // Emit the step value.
818   Value *StepVal;
819   if (Step) {
820     StepVal = Step->Codegen();
821     if (StepVal == 0) return 0;
822   } else {
823     // If not specified, use 1.0.
824     StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
825   }
826   
827   // Compute the end condition.
828   Value *EndCond = End->Codegen();
829   if (EndCond == 0) return EndCond;
830   
831   // Reload, increment, and restore the alloca.  This handles the case where
832   // the body of the loop mutates the variable.
833   Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
834   Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
835   Builder.CreateStore(NextVar, Alloca);
836   
837   // Convert condition to a bool by comparing equal to 0.0.
838   EndCond = Builder.CreateFCmpONE(EndCond, 
839                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
840                                   "loopcond");
841   
842   // Create the "after loop" block and insert it.
843   BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
844   
845   // Insert the conditional branch into the end of LoopEndBB.
846   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
847   
848   // Any new code will be inserted in AfterBB.
849   Builder.SetInsertPoint(AfterBB);
850   
851   // Restore the unshadowed variable.
852   if (OldVal)
853     NamedValues[VarName] = OldVal;
854   else
855     NamedValues.erase(VarName);
856
857   
858   // for expr always returns 0.0.
859   return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
860 }
861
862 Value *VarExprAST::Codegen() {
863   std::vector<AllocaInst *> OldBindings;
864   
865   Function *TheFunction = Builder.GetInsertBlock()->getParent();
866
867   // Register all variables and emit their initializer.
868   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
869     const std::string &VarName = VarNames[i].first;
870     ExprAST *Init = VarNames[i].second;
871     
872     // Emit the initializer before adding the variable to scope, this prevents
873     // the initializer from referencing the variable itself, and permits stuff
874     // like this:
875     //  var a = 1 in
876     //    var a = a in ...   # refers to outer 'a'.
877     Value *InitVal;
878     if (Init) {
879       InitVal = Init->Codegen();
880       if (InitVal == 0) return 0;
881     } else { // If not specified, use 0.0.
882       InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
883     }
884     
885     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
886     Builder.CreateStore(InitVal, Alloca);
887
888     // Remember the old variable binding so that we can restore the binding when
889     // we unrecurse.
890     OldBindings.push_back(NamedValues[VarName]);
891     
892     // Remember this binding.
893     NamedValues[VarName] = Alloca;
894   }
895   
896   // Codegen the body, now that all vars are in scope.
897   Value *BodyVal = Body->Codegen();
898   if (BodyVal == 0) return 0;
899   
900   // Pop all our variables from scope.
901   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
902     NamedValues[VarNames[i].first] = OldBindings[i];
903
904   // Return the body computation.
905   return BodyVal;
906 }
907
908 Function *PrototypeAST::Codegen() {
909   // Make the function type:  double(double,double) etc.
910   std::vector<Type*> Doubles(Args.size(), 
911                              Type::getDoubleTy(getGlobalContext()));
912   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
913                                        Doubles, false);
914   
915   Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
916   
917   // If F conflicted, there was already something named 'Name'.  If it has a
918   // body, don't allow redefinition or reextern.
919   if (F->getName() != Name) {
920     // Delete the one we just made and get the existing one.
921     F->eraseFromParent();
922     F = TheModule->getFunction(Name);
923     
924     // If F already has a body, reject this.
925     if (!F->empty()) {
926       ErrorF("redefinition of function");
927       return 0;
928     }
929     
930     // If F took a different number of args, reject.
931     if (F->arg_size() != Args.size()) {
932       ErrorF("redefinition of function with different # args");
933       return 0;
934     }
935   }
936   
937   // Set names for all arguments.
938   unsigned Idx = 0;
939   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
940        ++AI, ++Idx)
941     AI->setName(Args[Idx]);
942     
943   return F;
944 }
945
946 /// CreateArgumentAllocas - Create an alloca for each argument and register the
947 /// argument in the symbol table so that references to it will succeed.
948 void PrototypeAST::CreateArgumentAllocas(Function *F) {
949   Function::arg_iterator AI = F->arg_begin();
950   for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
951     // Create an alloca for this variable.
952     AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
953
954     // Store the initial value into the alloca.
955     Builder.CreateStore(AI, Alloca);
956
957     // Add arguments to variable symbol table.
958     NamedValues[Args[Idx]] = Alloca;
959   }
960 }
961
962 Function *FunctionAST::Codegen() {
963   NamedValues.clear();
964   
965   Function *TheFunction = Proto->Codegen();
966   if (TheFunction == 0)
967     return 0;
968   
969   // If this is an operator, install it.
970   if (Proto->isBinaryOp())
971     BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
972   
973   // Create a new basic block to start insertion into.
974   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
975   Builder.SetInsertPoint(BB);
976   
977   // Add all arguments to the symbol table and create their allocas.
978   Proto->CreateArgumentAllocas(TheFunction);
979
980   if (Value *RetVal = Body->Codegen()) {
981     // Finish off the function.
982     Builder.CreateRet(RetVal);
983
984     // Validate the generated code, checking for consistency.
985     verifyFunction(*TheFunction);
986
987     // Optimize the function.
988     TheFPM->run(*TheFunction);
989     
990     return TheFunction;
991   }
992   
993   // Error reading body, remove function.
994   TheFunction->eraseFromParent();
995
996   if (Proto->isBinaryOp())
997     BinopPrecedence.erase(Proto->getOperatorName());
998   return 0;
999 }
1000
1001 //===----------------------------------------------------------------------===//
1002 // Top-Level parsing and JIT Driver
1003 //===----------------------------------------------------------------------===//
1004
1005 static ExecutionEngine *TheExecutionEngine;
1006
1007 static void HandleDefinition() {
1008   if (FunctionAST *F = ParseDefinition()) {
1009     if (Function *LF = F->Codegen()) {
1010       fprintf(stderr, "Read function definition:");
1011       LF->dump();
1012     }
1013   } else {
1014     // Skip token for error recovery.
1015     getNextToken();
1016   }
1017 }
1018
1019 static void HandleExtern() {
1020   if (PrototypeAST *P = ParseExtern()) {
1021     if (Function *F = P->Codegen()) {
1022       fprintf(stderr, "Read extern: ");
1023       F->dump();
1024     }
1025   } else {
1026     // Skip token for error recovery.
1027     getNextToken();
1028   }
1029 }
1030
1031 static void HandleTopLevelExpression() {
1032   // Evaluate a top-level expression into an anonymous function.
1033   if (FunctionAST *F = ParseTopLevelExpr()) {
1034     if (Function *LF = F->Codegen()) {
1035       // JIT the function, returning a function pointer.
1036       void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
1037       
1038       // Cast it to the right type (takes no arguments, returns a double) so we
1039       // can call it as a native function.
1040       double (*FP)() = (double (*)())(intptr_t)FPtr;
1041       fprintf(stderr, "Evaluated to %f\n", FP());
1042     }
1043   } else {
1044     // Skip token for error recovery.
1045     getNextToken();
1046   }
1047 }
1048
1049 /// top ::= definition | external | expression | ';'
1050 static void MainLoop() {
1051   while (1) {
1052     fprintf(stderr, "ready> ");
1053     switch (CurTok) {
1054     case tok_eof:    return;
1055     case ';':        getNextToken(); break;  // ignore top-level semicolons.
1056     case tok_def:    HandleDefinition(); break;
1057     case tok_extern: HandleExtern(); break;
1058     default:         HandleTopLevelExpression(); break;
1059     }
1060   }
1061 }
1062
1063 //===----------------------------------------------------------------------===//
1064 // "Library" functions that can be "extern'd" from user code.
1065 //===----------------------------------------------------------------------===//
1066
1067 /// putchard - putchar that takes a double and returns 0.
1068 extern "C" 
1069 double putchard(double X) {
1070   putchar((char)X);
1071   return 0;
1072 }
1073
1074 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1075 extern "C" 
1076 double printd(double X) {
1077   printf("%f\n", X);
1078   return 0;
1079 }
1080
1081 //===----------------------------------------------------------------------===//
1082 // Main driver code.
1083 //===----------------------------------------------------------------------===//
1084
1085 int main() {
1086   InitializeNativeTarget();
1087   LLVMContext &Context = getGlobalContext();
1088
1089   // Install standard binary operators.
1090   // 1 is lowest precedence.
1091   BinopPrecedence['='] = 2;
1092   BinopPrecedence['<'] = 10;
1093   BinopPrecedence['+'] = 20;
1094   BinopPrecedence['-'] = 20;
1095   BinopPrecedence['*'] = 40;  // highest.
1096
1097   // Prime the first token.
1098   fprintf(stderr, "ready> ");
1099   getNextToken();
1100
1101   // Make the module, which holds all the code.
1102   std::unique_ptr<Module> Owner = make_unique<Module>("my cool jit", Context);
1103   TheModule = Owner.get();
1104
1105   // Create the JIT.  This takes ownership of the module.
1106   std::string ErrStr;
1107   TheExecutionEngine =
1108       EngineBuilder(std::move(Owner)).setErrorStr(&ErrStr).create();
1109   if (!TheExecutionEngine) {
1110     fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
1111     exit(1);
1112   }
1113
1114   FunctionPassManager OurFPM(TheModule);
1115
1116   // Set up the optimizer pipeline.  Start with registering info about how the
1117   // target lays out data structures.
1118   TheModule->setDataLayout(TheExecutionEngine->getDataLayout());
1119   OurFPM.add(new DataLayoutPass(TheModule));
1120   // Provide basic AliasAnalysis support for GVN.
1121   OurFPM.add(createBasicAliasAnalysisPass());
1122   // Promote allocas to registers.
1123   OurFPM.add(createPromoteMemoryToRegisterPass());
1124   // Do simple "peephole" optimizations and bit-twiddling optzns.
1125   OurFPM.add(createInstructionCombiningPass());
1126   // Reassociate expressions.
1127   OurFPM.add(createReassociatePass());
1128   // Eliminate Common SubExpressions.
1129   OurFPM.add(createGVNPass());
1130   // Simplify the control flow graph (deleting unreachable blocks, etc).
1131   OurFPM.add(createCFGSimplificationPass());
1132
1133   OurFPM.doInitialization();
1134
1135   // Set the global so the code gen can use this.
1136   TheFPM = &OurFPM;
1137
1138   // Run the main "interpreter loop" now.
1139   MainLoop();
1140
1141   TheFPM = 0;
1142
1143   // Print out all of the generated code.
1144   TheModule->dump();
1145
1146   return 0;
1147 }