Sort the #include lines of the examples/... tree.
[oota-llvm.git] / examples / Kaleidoscope / Chapter7 / toy.cpp
1 #include "llvm/Analysis/Passes.h"
2 #include "llvm/Analysis/Verifier.h"
3 #include "llvm/DataLayout.h"
4 #include "llvm/DerivedTypes.h"
5 #include "llvm/ExecutionEngine/ExecutionEngine.h"
6 #include "llvm/ExecutionEngine/JIT.h"
7 #include "llvm/IRBuilder.h"
8 #include "llvm/LLVMContext.h"
9 #include "llvm/Module.h"
10 #include "llvm/PassManager.h"
11 #include "llvm/Support/TargetSelect.h"
12 #include "llvm/Transforms/Scalar.h"
13 #include <cstdio>
14 #include <map>
15 #include <string>
16 #include <vector>
17 using namespace llvm;
18
19 //===----------------------------------------------------------------------===//
20 // Lexer
21 //===----------------------------------------------------------------------===//
22
23 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
24 // of these for known things.
25 enum Token {
26   tok_eof = -1,
27
28   // commands
29   tok_def = -2, tok_extern = -3,
30
31   // primary
32   tok_identifier = -4, tok_number = -5,
33   
34   // control
35   tok_if = -6, tok_then = -7, tok_else = -8,
36   tok_for = -9, tok_in = -10,
37   
38   // operators
39   tok_binary = -11, tok_unary = -12,
40   
41   // var definition
42   tok_var = -13
43 };
44
45 static std::string IdentifierStr;  // Filled in if tok_identifier
46 static double NumVal;              // Filled in if tok_number
47
48 /// gettok - Return the next token from standard input.
49 static int gettok() {
50   static int LastChar = ' ';
51
52   // Skip any whitespace.
53   while (isspace(LastChar))
54     LastChar = getchar();
55
56   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
57     IdentifierStr = LastChar;
58     while (isalnum((LastChar = getchar())))
59       IdentifierStr += LastChar;
60
61     if (IdentifierStr == "def") return tok_def;
62     if (IdentifierStr == "extern") return tok_extern;
63     if (IdentifierStr == "if") return tok_if;
64     if (IdentifierStr == "then") return tok_then;
65     if (IdentifierStr == "else") return tok_else;
66     if (IdentifierStr == "for") return tok_for;
67     if (IdentifierStr == "in") return tok_in;
68     if (IdentifierStr == "binary") return tok_binary;
69     if (IdentifierStr == "unary") return tok_unary;
70     if (IdentifierStr == "var") return tok_var;
71     return tok_identifier;
72   }
73
74   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
75     std::string NumStr;
76     do {
77       NumStr += LastChar;
78       LastChar = getchar();
79     } while (isdigit(LastChar) || LastChar == '.');
80
81     NumVal = strtod(NumStr.c_str(), 0);
82     return tok_number;
83   }
84
85   if (LastChar == '#') {
86     // Comment until end of line.
87     do LastChar = getchar();
88     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
89     
90     if (LastChar != EOF)
91       return gettok();
92   }
93   
94   // Check for end of file.  Don't eat the EOF.
95   if (LastChar == EOF)
96     return tok_eof;
97
98   // Otherwise, just return the character as its ascii value.
99   int ThisChar = LastChar;
100   LastChar = getchar();
101   return ThisChar;
102 }
103
104 //===----------------------------------------------------------------------===//
105 // Abstract Syntax Tree (aka Parse Tree)
106 //===----------------------------------------------------------------------===//
107
108 /// ExprAST - Base class for all expression nodes.
109 class ExprAST {
110 public:
111   virtual ~ExprAST() {}
112   virtual Value *Codegen() = 0;
113 };
114
115 /// NumberExprAST - Expression class for numeric literals like "1.0".
116 class NumberExprAST : public ExprAST {
117   double Val;
118 public:
119   NumberExprAST(double val) : Val(val) {}
120   virtual Value *Codegen();
121 };
122
123 /// VariableExprAST - Expression class for referencing a variable, like "a".
124 class VariableExprAST : public ExprAST {
125   std::string Name;
126 public:
127   VariableExprAST(const std::string &name) : Name(name) {}
128   const std::string &getName() const { return Name; }
129   virtual Value *Codegen();
130 };
131
132 /// UnaryExprAST - Expression class for a unary operator.
133 class UnaryExprAST : public ExprAST {
134   char Opcode;
135   ExprAST *Operand;
136 public:
137   UnaryExprAST(char opcode, ExprAST *operand) 
138     : Opcode(opcode), Operand(operand) {}
139   virtual Value *Codegen();
140 };
141
142 /// BinaryExprAST - Expression class for a binary operator.
143 class BinaryExprAST : public ExprAST {
144   char Op;
145   ExprAST *LHS, *RHS;
146 public:
147   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
148     : Op(op), LHS(lhs), RHS(rhs) {}
149   virtual Value *Codegen();
150 };
151
152 /// CallExprAST - Expression class for function calls.
153 class CallExprAST : public ExprAST {
154   std::string Callee;
155   std::vector<ExprAST*> Args;
156 public:
157   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
158     : Callee(callee), Args(args) {}
159   virtual Value *Codegen();
160 };
161
162 /// IfExprAST - Expression class for if/then/else.
163 class IfExprAST : public ExprAST {
164   ExprAST *Cond, *Then, *Else;
165 public:
166   IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
167   : Cond(cond), Then(then), Else(_else) {}
168   virtual Value *Codegen();
169 };
170
171 /// ForExprAST - Expression class for for/in.
172 class ForExprAST : public ExprAST {
173   std::string VarName;
174   ExprAST *Start, *End, *Step, *Body;
175 public:
176   ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
177              ExprAST *step, ExprAST *body)
178     : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
179   virtual Value *Codegen();
180 };
181
182 /// VarExprAST - Expression class for var/in
183 class VarExprAST : public ExprAST {
184   std::vector<std::pair<std::string, ExprAST*> > VarNames;
185   ExprAST *Body;
186 public:
187   VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
188              ExprAST *body)
189   : VarNames(varnames), Body(body) {}
190   
191   virtual Value *Codegen();
192 };
193
194 /// PrototypeAST - This class represents the "prototype" for a function,
195 /// which captures its argument names as well as if it is an operator.
196 class PrototypeAST {
197   std::string Name;
198   std::vector<std::string> Args;
199   bool isOperator;
200   unsigned Precedence;  // Precedence if a binary op.
201 public:
202   PrototypeAST(const std::string &name, const std::vector<std::string> &args,
203                bool isoperator = false, unsigned prec = 0)
204   : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
205   
206   bool isUnaryOp() const { return isOperator && Args.size() == 1; }
207   bool isBinaryOp() const { return isOperator && Args.size() == 2; }
208   
209   char getOperatorName() const {
210     assert(isUnaryOp() || isBinaryOp());
211     return Name[Name.size()-1];
212   }
213   
214   unsigned getBinaryPrecedence() const { return Precedence; }
215   
216   Function *Codegen();
217   
218   void CreateArgumentAllocas(Function *F);
219 };
220
221 /// FunctionAST - This class represents a function definition itself.
222 class FunctionAST {
223   PrototypeAST *Proto;
224   ExprAST *Body;
225 public:
226   FunctionAST(PrototypeAST *proto, ExprAST *body)
227     : Proto(proto), Body(body) {}
228   
229   Function *Codegen();
230 };
231
232 //===----------------------------------------------------------------------===//
233 // Parser
234 //===----------------------------------------------------------------------===//
235
236 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
237 /// token the parser is looking at.  getNextToken reads another token from the
238 /// lexer and updates CurTok with its results.
239 static int CurTok;
240 static int getNextToken() {
241   return CurTok = gettok();
242 }
243
244 /// BinopPrecedence - This holds the precedence for each binary operator that is
245 /// defined.
246 static std::map<char, int> BinopPrecedence;
247
248 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
249 static int GetTokPrecedence() {
250   if (!isascii(CurTok))
251     return -1;
252   
253   // Make sure it's a declared binop.
254   int TokPrec = BinopPrecedence[CurTok];
255   if (TokPrec <= 0) return -1;
256   return TokPrec;
257 }
258
259 /// Error* - These are little helper functions for error handling.
260 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
261 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
262 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
263
264 static ExprAST *ParseExpression();
265
266 /// identifierexpr
267 ///   ::= identifier
268 ///   ::= identifier '(' expression* ')'
269 static ExprAST *ParseIdentifierExpr() {
270   std::string IdName = IdentifierStr;
271   
272   getNextToken();  // eat identifier.
273   
274   if (CurTok != '(') // Simple variable ref.
275     return new VariableExprAST(IdName);
276   
277   // Call.
278   getNextToken();  // eat (
279   std::vector<ExprAST*> Args;
280   if (CurTok != ')') {
281     while (1) {
282       ExprAST *Arg = ParseExpression();
283       if (!Arg) return 0;
284       Args.push_back(Arg);
285
286       if (CurTok == ')') break;
287
288       if (CurTok != ',')
289         return Error("Expected ')' or ',' in argument list");
290       getNextToken();
291     }
292   }
293
294   // Eat the ')'.
295   getNextToken();
296   
297   return new CallExprAST(IdName, Args);
298 }
299
300 /// numberexpr ::= number
301 static ExprAST *ParseNumberExpr() {
302   ExprAST *Result = new NumberExprAST(NumVal);
303   getNextToken(); // consume the number
304   return Result;
305 }
306
307 /// parenexpr ::= '(' expression ')'
308 static ExprAST *ParseParenExpr() {
309   getNextToken();  // eat (.
310   ExprAST *V = ParseExpression();
311   if (!V) return 0;
312   
313   if (CurTok != ')')
314     return Error("expected ')'");
315   getNextToken();  // eat ).
316   return V;
317 }
318
319 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
320 static ExprAST *ParseIfExpr() {
321   getNextToken();  // eat the if.
322   
323   // condition.
324   ExprAST *Cond = ParseExpression();
325   if (!Cond) return 0;
326   
327   if (CurTok != tok_then)
328     return Error("expected then");
329   getNextToken();  // eat the then
330   
331   ExprAST *Then = ParseExpression();
332   if (Then == 0) return 0;
333   
334   if (CurTok != tok_else)
335     return Error("expected else");
336   
337   getNextToken();
338   
339   ExprAST *Else = ParseExpression();
340   if (!Else) return 0;
341   
342   return new IfExprAST(Cond, Then, Else);
343 }
344
345 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
346 static ExprAST *ParseForExpr() {
347   getNextToken();  // eat the for.
348
349   if (CurTok != tok_identifier)
350     return Error("expected identifier after for");
351   
352   std::string IdName = IdentifierStr;
353   getNextToken();  // eat identifier.
354   
355   if (CurTok != '=')
356     return Error("expected '=' after for");
357   getNextToken();  // eat '='.
358   
359   
360   ExprAST *Start = ParseExpression();
361   if (Start == 0) return 0;
362   if (CurTok != ',')
363     return Error("expected ',' after for start value");
364   getNextToken();
365   
366   ExprAST *End = ParseExpression();
367   if (End == 0) return 0;
368   
369   // The step value is optional.
370   ExprAST *Step = 0;
371   if (CurTok == ',') {
372     getNextToken();
373     Step = ParseExpression();
374     if (Step == 0) return 0;
375   }
376   
377   if (CurTok != tok_in)
378     return Error("expected 'in' after for");
379   getNextToken();  // eat 'in'.
380   
381   ExprAST *Body = ParseExpression();
382   if (Body == 0) return 0;
383
384   return new ForExprAST(IdName, Start, End, Step, Body);
385 }
386
387 /// varexpr ::= 'var' identifier ('=' expression)? 
388 //                    (',' identifier ('=' expression)?)* 'in' expression
389 static ExprAST *ParseVarExpr() {
390   getNextToken();  // eat the var.
391
392   std::vector<std::pair<std::string, ExprAST*> > VarNames;
393
394   // At least one variable name is required.
395   if (CurTok != tok_identifier)
396     return Error("expected identifier after var");
397   
398   while (1) {
399     std::string Name = IdentifierStr;
400     getNextToken();  // eat identifier.
401
402     // Read the optional initializer.
403     ExprAST *Init = 0;
404     if (CurTok == '=') {
405       getNextToken(); // eat the '='.
406       
407       Init = ParseExpression();
408       if (Init == 0) return 0;
409     }
410     
411     VarNames.push_back(std::make_pair(Name, Init));
412     
413     // End of var list, exit loop.
414     if (CurTok != ',') break;
415     getNextToken(); // eat the ','.
416     
417     if (CurTok != tok_identifier)
418       return Error("expected identifier list after var");
419   }
420   
421   // At this point, we have to have 'in'.
422   if (CurTok != tok_in)
423     return Error("expected 'in' keyword after 'var'");
424   getNextToken();  // eat 'in'.
425   
426   ExprAST *Body = ParseExpression();
427   if (Body == 0) return 0;
428   
429   return new VarExprAST(VarNames, Body);
430 }
431
432 /// primary
433 ///   ::= identifierexpr
434 ///   ::= numberexpr
435 ///   ::= parenexpr
436 ///   ::= ifexpr
437 ///   ::= forexpr
438 ///   ::= varexpr
439 static ExprAST *ParsePrimary() {
440   switch (CurTok) {
441   default: return Error("unknown token when expecting an expression");
442   case tok_identifier: return ParseIdentifierExpr();
443   case tok_number:     return ParseNumberExpr();
444   case '(':            return ParseParenExpr();
445   case tok_if:         return ParseIfExpr();
446   case tok_for:        return ParseForExpr();
447   case tok_var:        return ParseVarExpr();
448   }
449 }
450
451 /// unary
452 ///   ::= primary
453 ///   ::= '!' unary
454 static ExprAST *ParseUnary() {
455   // If the current token is not an operator, it must be a primary expr.
456   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
457     return ParsePrimary();
458   
459   // If this is a unary operator, read it.
460   int Opc = CurTok;
461   getNextToken();
462   if (ExprAST *Operand = ParseUnary())
463     return new UnaryExprAST(Opc, Operand);
464   return 0;
465 }
466
467 /// binoprhs
468 ///   ::= ('+' unary)*
469 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
470   // If this is a binop, find its precedence.
471   while (1) {
472     int TokPrec = GetTokPrecedence();
473     
474     // If this is a binop that binds at least as tightly as the current binop,
475     // consume it, otherwise we are done.
476     if (TokPrec < ExprPrec)
477       return LHS;
478     
479     // Okay, we know this is a binop.
480     int BinOp = CurTok;
481     getNextToken();  // eat binop
482     
483     // Parse the unary expression after the binary operator.
484     ExprAST *RHS = ParseUnary();
485     if (!RHS) return 0;
486     
487     // If BinOp binds less tightly with RHS than the operator after RHS, let
488     // the pending operator take RHS as its LHS.
489     int NextPrec = GetTokPrecedence();
490     if (TokPrec < NextPrec) {
491       RHS = ParseBinOpRHS(TokPrec+1, RHS);
492       if (RHS == 0) return 0;
493     }
494     
495     // Merge LHS/RHS.
496     LHS = new BinaryExprAST(BinOp, LHS, RHS);
497   }
498 }
499
500 /// expression
501 ///   ::= unary binoprhs
502 ///
503 static ExprAST *ParseExpression() {
504   ExprAST *LHS = ParseUnary();
505   if (!LHS) return 0;
506   
507   return ParseBinOpRHS(0, LHS);
508 }
509
510 /// prototype
511 ///   ::= id '(' id* ')'
512 ///   ::= binary LETTER number? (id, id)
513 ///   ::= unary LETTER (id)
514 static PrototypeAST *ParsePrototype() {
515   std::string FnName;
516   
517   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
518   unsigned BinaryPrecedence = 30;
519   
520   switch (CurTok) {
521   default:
522     return ErrorP("Expected function name in prototype");
523   case tok_identifier:
524     FnName = IdentifierStr;
525     Kind = 0;
526     getNextToken();
527     break;
528   case tok_unary:
529     getNextToken();
530     if (!isascii(CurTok))
531       return ErrorP("Expected unary operator");
532     FnName = "unary";
533     FnName += (char)CurTok;
534     Kind = 1;
535     getNextToken();
536     break;
537   case tok_binary:
538     getNextToken();
539     if (!isascii(CurTok))
540       return ErrorP("Expected binary operator");
541     FnName = "binary";
542     FnName += (char)CurTok;
543     Kind = 2;
544     getNextToken();
545     
546     // Read the precedence if present.
547     if (CurTok == tok_number) {
548       if (NumVal < 1 || NumVal > 100)
549         return ErrorP("Invalid precedecnce: must be 1..100");
550       BinaryPrecedence = (unsigned)NumVal;
551       getNextToken();
552     }
553     break;
554   }
555   
556   if (CurTok != '(')
557     return ErrorP("Expected '(' in prototype");
558   
559   std::vector<std::string> ArgNames;
560   while (getNextToken() == tok_identifier)
561     ArgNames.push_back(IdentifierStr);
562   if (CurTok != ')')
563     return ErrorP("Expected ')' in prototype");
564   
565   // success.
566   getNextToken();  // eat ')'.
567   
568   // Verify right number of names for operator.
569   if (Kind && ArgNames.size() != Kind)
570     return ErrorP("Invalid number of operands for operator");
571   
572   return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
573 }
574
575 /// definition ::= 'def' prototype expression
576 static FunctionAST *ParseDefinition() {
577   getNextToken();  // eat def.
578   PrototypeAST *Proto = ParsePrototype();
579   if (Proto == 0) return 0;
580
581   if (ExprAST *E = ParseExpression())
582     return new FunctionAST(Proto, E);
583   return 0;
584 }
585
586 /// toplevelexpr ::= expression
587 static FunctionAST *ParseTopLevelExpr() {
588   if (ExprAST *E = ParseExpression()) {
589     // Make an anonymous proto.
590     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
591     return new FunctionAST(Proto, E);
592   }
593   return 0;
594 }
595
596 /// external ::= 'extern' prototype
597 static PrototypeAST *ParseExtern() {
598   getNextToken();  // eat extern.
599   return ParsePrototype();
600 }
601
602 //===----------------------------------------------------------------------===//
603 // Code Generation
604 //===----------------------------------------------------------------------===//
605
606 static Module *TheModule;
607 static IRBuilder<> Builder(getGlobalContext());
608 static std::map<std::string, AllocaInst*> NamedValues;
609 static FunctionPassManager *TheFPM;
610
611 Value *ErrorV(const char *Str) { Error(Str); return 0; }
612
613 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
614 /// the function.  This is used for mutable variables etc.
615 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
616                                           const std::string &VarName) {
617   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
618                  TheFunction->getEntryBlock().begin());
619   return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
620                            VarName.c_str());
621 }
622
623 Value *NumberExprAST::Codegen() {
624   return ConstantFP::get(getGlobalContext(), APFloat(Val));
625 }
626
627 Value *VariableExprAST::Codegen() {
628   // Look this variable up in the function.
629   Value *V = NamedValues[Name];
630   if (V == 0) return ErrorV("Unknown variable name");
631
632   // Load the value.
633   return Builder.CreateLoad(V, Name.c_str());
634 }
635
636 Value *UnaryExprAST::Codegen() {
637   Value *OperandV = Operand->Codegen();
638   if (OperandV == 0) return 0;
639   
640   Function *F = TheModule->getFunction(std::string("unary")+Opcode);
641   if (F == 0)
642     return ErrorV("Unknown unary operator");
643   
644   return Builder.CreateCall(F, OperandV, "unop");
645 }
646
647 Value *BinaryExprAST::Codegen() {
648   // Special case '=' because we don't want to emit the LHS as an expression.
649   if (Op == '=') {
650     // Assignment requires the LHS to be an identifier.
651     VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS);
652     if (!LHSE)
653       return ErrorV("destination of '=' must be a variable");
654     // Codegen the RHS.
655     Value *Val = RHS->Codegen();
656     if (Val == 0) return 0;
657
658     // Look up the name.
659     Value *Variable = NamedValues[LHSE->getName()];
660     if (Variable == 0) return ErrorV("Unknown variable name");
661
662     Builder.CreateStore(Val, Variable);
663     return Val;
664   }
665   
666   Value *L = LHS->Codegen();
667   Value *R = RHS->Codegen();
668   if (L == 0 || R == 0) return 0;
669   
670   switch (Op) {
671   case '+': return Builder.CreateFAdd(L, R, "addtmp");
672   case '-': return Builder.CreateFSub(L, R, "subtmp");
673   case '*': return Builder.CreateFMul(L, R, "multmp");    
674   case '<':
675     L = Builder.CreateFCmpULT(L, R, "cmptmp");
676     // Convert bool 0/1 to double 0.0 or 1.0
677     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
678                                 "booltmp");
679   default: break;
680   }
681   
682   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
683   // a call to it.
684   Function *F = TheModule->getFunction(std::string("binary")+Op);
685   assert(F && "binary operator not found!");
686   
687   Value *Ops[] = { L, R };
688   return Builder.CreateCall(F, Ops, "binop");
689 }
690
691 Value *CallExprAST::Codegen() {
692   // Look up the name in the global module table.
693   Function *CalleeF = TheModule->getFunction(Callee);
694   if (CalleeF == 0)
695     return ErrorV("Unknown function referenced");
696   
697   // If argument mismatch error.
698   if (CalleeF->arg_size() != Args.size())
699     return ErrorV("Incorrect # arguments passed");
700
701   std::vector<Value*> ArgsV;
702   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
703     ArgsV.push_back(Args[i]->Codegen());
704     if (ArgsV.back() == 0) return 0;
705   }
706   
707   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
708 }
709
710 Value *IfExprAST::Codegen() {
711   Value *CondV = Cond->Codegen();
712   if (CondV == 0) return 0;
713   
714   // Convert condition to a bool by comparing equal to 0.0.
715   CondV = Builder.CreateFCmpONE(CondV, 
716                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
717                                 "ifcond");
718   
719   Function *TheFunction = Builder.GetInsertBlock()->getParent();
720   
721   // Create blocks for the then and else cases.  Insert the 'then' block at the
722   // end of the function.
723   BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
724   BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
725   BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
726   
727   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
728   
729   // Emit then value.
730   Builder.SetInsertPoint(ThenBB);
731   
732   Value *ThenV = Then->Codegen();
733   if (ThenV == 0) return 0;
734   
735   Builder.CreateBr(MergeBB);
736   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
737   ThenBB = Builder.GetInsertBlock();
738   
739   // Emit else block.
740   TheFunction->getBasicBlockList().push_back(ElseBB);
741   Builder.SetInsertPoint(ElseBB);
742   
743   Value *ElseV = Else->Codegen();
744   if (ElseV == 0) return 0;
745   
746   Builder.CreateBr(MergeBB);
747   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
748   ElseBB = Builder.GetInsertBlock();
749   
750   // Emit merge block.
751   TheFunction->getBasicBlockList().push_back(MergeBB);
752   Builder.SetInsertPoint(MergeBB);
753   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
754                                   "iftmp");
755   
756   PN->addIncoming(ThenV, ThenBB);
757   PN->addIncoming(ElseV, ElseBB);
758   return PN;
759 }
760
761 Value *ForExprAST::Codegen() {
762   // Output this as:
763   //   var = alloca double
764   //   ...
765   //   start = startexpr
766   //   store start -> var
767   //   goto loop
768   // loop: 
769   //   ...
770   //   bodyexpr
771   //   ...
772   // loopend:
773   //   step = stepexpr
774   //   endcond = endexpr
775   //
776   //   curvar = load var
777   //   nextvar = curvar + step
778   //   store nextvar -> var
779   //   br endcond, loop, endloop
780   // outloop:
781   
782   Function *TheFunction = Builder.GetInsertBlock()->getParent();
783
784   // Create an alloca for the variable in the entry block.
785   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
786   
787   // Emit the start code first, without 'variable' in scope.
788   Value *StartVal = Start->Codegen();
789   if (StartVal == 0) return 0;
790   
791   // Store the value into the alloca.
792   Builder.CreateStore(StartVal, Alloca);
793   
794   // Make the new basic block for the loop header, inserting after current
795   // block.
796   BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
797   
798   // Insert an explicit fall through from the current block to the LoopBB.
799   Builder.CreateBr(LoopBB);
800
801   // Start insertion in LoopBB.
802   Builder.SetInsertPoint(LoopBB);
803   
804   // Within the loop, the variable is defined equal to the PHI node.  If it
805   // shadows an existing variable, we have to restore it, so save it now.
806   AllocaInst *OldVal = NamedValues[VarName];
807   NamedValues[VarName] = Alloca;
808   
809   // Emit the body of the loop.  This, like any other expr, can change the
810   // current BB.  Note that we ignore the value computed by the body, but don't
811   // allow an error.
812   if (Body->Codegen() == 0)
813     return 0;
814   
815   // Emit the step value.
816   Value *StepVal;
817   if (Step) {
818     StepVal = Step->Codegen();
819     if (StepVal == 0) return 0;
820   } else {
821     // If not specified, use 1.0.
822     StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
823   }
824   
825   // Compute the end condition.
826   Value *EndCond = End->Codegen();
827   if (EndCond == 0) return EndCond;
828   
829   // Reload, increment, and restore the alloca.  This handles the case where
830   // the body of the loop mutates the variable.
831   Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
832   Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
833   Builder.CreateStore(NextVar, Alloca);
834   
835   // Convert condition to a bool by comparing equal to 0.0.
836   EndCond = Builder.CreateFCmpONE(EndCond, 
837                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
838                                   "loopcond");
839   
840   // Create the "after loop" block and insert it.
841   BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
842   
843   // Insert the conditional branch into the end of LoopEndBB.
844   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
845   
846   // Any new code will be inserted in AfterBB.
847   Builder.SetInsertPoint(AfterBB);
848   
849   // Restore the unshadowed variable.
850   if (OldVal)
851     NamedValues[VarName] = OldVal;
852   else
853     NamedValues.erase(VarName);
854
855   
856   // for expr always returns 0.0.
857   return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
858 }
859
860 Value *VarExprAST::Codegen() {
861   std::vector<AllocaInst *> OldBindings;
862   
863   Function *TheFunction = Builder.GetInsertBlock()->getParent();
864
865   // Register all variables and emit their initializer.
866   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
867     const std::string &VarName = VarNames[i].first;
868     ExprAST *Init = VarNames[i].second;
869     
870     // Emit the initializer before adding the variable to scope, this prevents
871     // the initializer from referencing the variable itself, and permits stuff
872     // like this:
873     //  var a = 1 in
874     //    var a = a in ...   # refers to outer 'a'.
875     Value *InitVal;
876     if (Init) {
877       InitVal = Init->Codegen();
878       if (InitVal == 0) return 0;
879     } else { // If not specified, use 0.0.
880       InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
881     }
882     
883     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
884     Builder.CreateStore(InitVal, Alloca);
885
886     // Remember the old variable binding so that we can restore the binding when
887     // we unrecurse.
888     OldBindings.push_back(NamedValues[VarName]);
889     
890     // Remember this binding.
891     NamedValues[VarName] = Alloca;
892   }
893   
894   // Codegen the body, now that all vars are in scope.
895   Value *BodyVal = Body->Codegen();
896   if (BodyVal == 0) return 0;
897   
898   // Pop all our variables from scope.
899   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
900     NamedValues[VarNames[i].first] = OldBindings[i];
901
902   // Return the body computation.
903   return BodyVal;
904 }
905
906 Function *PrototypeAST::Codegen() {
907   // Make the function type:  double(double,double) etc.
908   std::vector<Type*> Doubles(Args.size(), 
909                              Type::getDoubleTy(getGlobalContext()));
910   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
911                                        Doubles, false);
912   
913   Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
914   
915   // If F conflicted, there was already something named 'Name'.  If it has a
916   // body, don't allow redefinition or reextern.
917   if (F->getName() != Name) {
918     // Delete the one we just made and get the existing one.
919     F->eraseFromParent();
920     F = TheModule->getFunction(Name);
921     
922     // If F already has a body, reject this.
923     if (!F->empty()) {
924       ErrorF("redefinition of function");
925       return 0;
926     }
927     
928     // If F took a different number of args, reject.
929     if (F->arg_size() != Args.size()) {
930       ErrorF("redefinition of function with different # args");
931       return 0;
932     }
933   }
934   
935   // Set names for all arguments.
936   unsigned Idx = 0;
937   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
938        ++AI, ++Idx)
939     AI->setName(Args[Idx]);
940     
941   return F;
942 }
943
944 /// CreateArgumentAllocas - Create an alloca for each argument and register the
945 /// argument in the symbol table so that references to it will succeed.
946 void PrototypeAST::CreateArgumentAllocas(Function *F) {
947   Function::arg_iterator AI = F->arg_begin();
948   for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
949     // Create an alloca for this variable.
950     AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
951
952     // Store the initial value into the alloca.
953     Builder.CreateStore(AI, Alloca);
954
955     // Add arguments to variable symbol table.
956     NamedValues[Args[Idx]] = Alloca;
957   }
958 }
959
960 Function *FunctionAST::Codegen() {
961   NamedValues.clear();
962   
963   Function *TheFunction = Proto->Codegen();
964   if (TheFunction == 0)
965     return 0;
966   
967   // If this is an operator, install it.
968   if (Proto->isBinaryOp())
969     BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
970   
971   // Create a new basic block to start insertion into.
972   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
973   Builder.SetInsertPoint(BB);
974   
975   // Add all arguments to the symbol table and create their allocas.
976   Proto->CreateArgumentAllocas(TheFunction);
977
978   if (Value *RetVal = Body->Codegen()) {
979     // Finish off the function.
980     Builder.CreateRet(RetVal);
981
982     // Validate the generated code, checking for consistency.
983     verifyFunction(*TheFunction);
984
985     // Optimize the function.
986     TheFPM->run(*TheFunction);
987     
988     return TheFunction;
989   }
990   
991   // Error reading body, remove function.
992   TheFunction->eraseFromParent();
993
994   if (Proto->isBinaryOp())
995     BinopPrecedence.erase(Proto->getOperatorName());
996   return 0;
997 }
998
999 //===----------------------------------------------------------------------===//
1000 // Top-Level parsing and JIT Driver
1001 //===----------------------------------------------------------------------===//
1002
1003 static ExecutionEngine *TheExecutionEngine;
1004
1005 static void HandleDefinition() {
1006   if (FunctionAST *F = ParseDefinition()) {
1007     if (Function *LF = F->Codegen()) {
1008       fprintf(stderr, "Read function definition:");
1009       LF->dump();
1010     }
1011   } else {
1012     // Skip token for error recovery.
1013     getNextToken();
1014   }
1015 }
1016
1017 static void HandleExtern() {
1018   if (PrototypeAST *P = ParseExtern()) {
1019     if (Function *F = P->Codegen()) {
1020       fprintf(stderr, "Read extern: ");
1021       F->dump();
1022     }
1023   } else {
1024     // Skip token for error recovery.
1025     getNextToken();
1026   }
1027 }
1028
1029 static void HandleTopLevelExpression() {
1030   // Evaluate a top-level expression into an anonymous function.
1031   if (FunctionAST *F = ParseTopLevelExpr()) {
1032     if (Function *LF = F->Codegen()) {
1033       // JIT the function, returning a function pointer.
1034       void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
1035       
1036       // Cast it to the right type (takes no arguments, returns a double) so we
1037       // can call it as a native function.
1038       double (*FP)() = (double (*)())(intptr_t)FPtr;
1039       fprintf(stderr, "Evaluated to %f\n", FP());
1040     }
1041   } else {
1042     // Skip token for error recovery.
1043     getNextToken();
1044   }
1045 }
1046
1047 /// top ::= definition | external | expression | ';'
1048 static void MainLoop() {
1049   while (1) {
1050     fprintf(stderr, "ready> ");
1051     switch (CurTok) {
1052     case tok_eof:    return;
1053     case ';':        getNextToken(); break;  // ignore top-level semicolons.
1054     case tok_def:    HandleDefinition(); break;
1055     case tok_extern: HandleExtern(); break;
1056     default:         HandleTopLevelExpression(); break;
1057     }
1058   }
1059 }
1060
1061 //===----------------------------------------------------------------------===//
1062 // "Library" functions that can be "extern'd" from user code.
1063 //===----------------------------------------------------------------------===//
1064
1065 /// putchard - putchar that takes a double and returns 0.
1066 extern "C" 
1067 double putchard(double X) {
1068   putchar((char)X);
1069   return 0;
1070 }
1071
1072 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1073 extern "C" 
1074 double printd(double X) {
1075   printf("%f\n", X);
1076   return 0;
1077 }
1078
1079 //===----------------------------------------------------------------------===//
1080 // Main driver code.
1081 //===----------------------------------------------------------------------===//
1082
1083 int main() {
1084   InitializeNativeTarget();
1085   LLVMContext &Context = getGlobalContext();
1086
1087   // Install standard binary operators.
1088   // 1 is lowest precedence.
1089   BinopPrecedence['='] = 2;
1090   BinopPrecedence['<'] = 10;
1091   BinopPrecedence['+'] = 20;
1092   BinopPrecedence['-'] = 20;
1093   BinopPrecedence['*'] = 40;  // highest.
1094
1095   // Prime the first token.
1096   fprintf(stderr, "ready> ");
1097   getNextToken();
1098
1099   // Make the module, which holds all the code.
1100   TheModule = new Module("my cool jit", Context);
1101
1102   // Create the JIT.  This takes ownership of the module.
1103   std::string ErrStr;
1104   TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
1105   if (!TheExecutionEngine) {
1106     fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
1107     exit(1);
1108   }
1109
1110   FunctionPassManager OurFPM(TheModule);
1111
1112   // Set up the optimizer pipeline.  Start with registering info about how the
1113   // target lays out data structures.
1114   OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
1115   // Provide basic AliasAnalysis support for GVN.
1116   OurFPM.add(createBasicAliasAnalysisPass());
1117   // Promote allocas to registers.
1118   OurFPM.add(createPromoteMemoryToRegisterPass());
1119   // Do simple "peephole" optimizations and bit-twiddling optzns.
1120   OurFPM.add(createInstructionCombiningPass());
1121   // Reassociate expressions.
1122   OurFPM.add(createReassociatePass());
1123   // Eliminate Common SubExpressions.
1124   OurFPM.add(createGVNPass());
1125   // Simplify the control flow graph (deleting unreachable blocks, etc).
1126   OurFPM.add(createCFGSimplificationPass());
1127
1128   OurFPM.doInitialization();
1129
1130   // Set the global so the code gen can use this.
1131   TheFPM = &OurFPM;
1132
1133   // Run the main "interpreter loop" now.
1134   MainLoop();
1135
1136   TheFPM = 0;
1137
1138   // Print out all of the generated code.
1139   TheModule->dump();
1140
1141   return 0;
1142 }