Move TargetData to DataLayout.
[oota-llvm.git] / examples / Kaleidoscope / Chapter6 / toy.cpp
1 #include "llvm/DerivedTypes.h"
2 #include "llvm/ExecutionEngine/ExecutionEngine.h"
3 #include "llvm/ExecutionEngine/JIT.h"
4 #include "llvm/IRBuilder.h"
5 #include "llvm/LLVMContext.h"
6 #include "llvm/Module.h"
7 #include "llvm/PassManager.h"
8 #include "llvm/Analysis/Verifier.h"
9 #include "llvm/Analysis/Passes.h"
10 #include "llvm/DataLayout.h"
11 #include "llvm/Transforms/Scalar.h"
12 #include "llvm/Support/TargetSelect.h"
13 #include <cstdio>
14 #include <string>
15 #include <map>
16 #include <vector>
17 using namespace llvm;
18
19 //===----------------------------------------------------------------------===//
20 // Lexer
21 //===----------------------------------------------------------------------===//
22
23 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
24 // of these for known things.
25 enum Token {
26   tok_eof = -1,
27
28   // commands
29   tok_def = -2, tok_extern = -3,
30
31   // primary
32   tok_identifier = -4, tok_number = -5,
33   
34   // control
35   tok_if = -6, tok_then = -7, tok_else = -8,
36   tok_for = -9, tok_in = -10,
37   
38   // operators
39   tok_binary = -11, tok_unary = -12
40 };
41
42 static std::string IdentifierStr;  // Filled in if tok_identifier
43 static double NumVal;              // Filled in if tok_number
44
45 /// gettok - Return the next token from standard input.
46 static int gettok() {
47   static int LastChar = ' ';
48
49   // Skip any whitespace.
50   while (isspace(LastChar))
51     LastChar = getchar();
52
53   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
54     IdentifierStr = LastChar;
55     while (isalnum((LastChar = getchar())))
56       IdentifierStr += LastChar;
57
58     if (IdentifierStr == "def") return tok_def;
59     if (IdentifierStr == "extern") return tok_extern;
60     if (IdentifierStr == "if") return tok_if;
61     if (IdentifierStr == "then") return tok_then;
62     if (IdentifierStr == "else") return tok_else;
63     if (IdentifierStr == "for") return tok_for;
64     if (IdentifierStr == "in") return tok_in;
65     if (IdentifierStr == "binary") return tok_binary;
66     if (IdentifierStr == "unary") return tok_unary;
67     return tok_identifier;
68   }
69
70   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
71     std::string NumStr;
72     do {
73       NumStr += LastChar;
74       LastChar = getchar();
75     } while (isdigit(LastChar) || LastChar == '.');
76
77     NumVal = strtod(NumStr.c_str(), 0);
78     return tok_number;
79   }
80
81   if (LastChar == '#') {
82     // Comment until end of line.
83     do LastChar = getchar();
84     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
85     
86     if (LastChar != EOF)
87       return gettok();
88   }
89   
90   // Check for end of file.  Don't eat the EOF.
91   if (LastChar == EOF)
92     return tok_eof;
93
94   // Otherwise, just return the character as its ascii value.
95   int ThisChar = LastChar;
96   LastChar = getchar();
97   return ThisChar;
98 }
99
100 //===----------------------------------------------------------------------===//
101 // Abstract Syntax Tree (aka Parse Tree)
102 //===----------------------------------------------------------------------===//
103
104 /// ExprAST - Base class for all expression nodes.
105 class ExprAST {
106 public:
107   virtual ~ExprAST() {}
108   virtual Value *Codegen() = 0;
109 };
110
111 /// NumberExprAST - Expression class for numeric literals like "1.0".
112 class NumberExprAST : public ExprAST {
113   double Val;
114 public:
115   NumberExprAST(double val) : Val(val) {}
116   virtual Value *Codegen();
117 };
118
119 /// VariableExprAST - Expression class for referencing a variable, like "a".
120 class VariableExprAST : public ExprAST {
121   std::string Name;
122 public:
123   VariableExprAST(const std::string &name) : Name(name) {}
124   virtual Value *Codegen();
125 };
126
127 /// UnaryExprAST - Expression class for a unary operator.
128 class UnaryExprAST : public ExprAST {
129   char Opcode;
130   ExprAST *Operand;
131 public:
132   UnaryExprAST(char opcode, ExprAST *operand) 
133     : Opcode(opcode), Operand(operand) {}
134   virtual Value *Codegen();
135 };
136
137 /// BinaryExprAST - Expression class for a binary operator.
138 class BinaryExprAST : public ExprAST {
139   char Op;
140   ExprAST *LHS, *RHS;
141 public:
142   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
143     : Op(op), LHS(lhs), RHS(rhs) {}
144   virtual Value *Codegen();
145 };
146
147 /// CallExprAST - Expression class for function calls.
148 class CallExprAST : public ExprAST {
149   std::string Callee;
150   std::vector<ExprAST*> Args;
151 public:
152   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
153     : Callee(callee), Args(args) {}
154   virtual Value *Codegen();
155 };
156
157 /// IfExprAST - Expression class for if/then/else.
158 class IfExprAST : public ExprAST {
159   ExprAST *Cond, *Then, *Else;
160 public:
161   IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
162   : Cond(cond), Then(then), Else(_else) {}
163   virtual Value *Codegen();
164 };
165
166 /// ForExprAST - Expression class for for/in.
167 class ForExprAST : public ExprAST {
168   std::string VarName;
169   ExprAST *Start, *End, *Step, *Body;
170 public:
171   ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
172              ExprAST *step, ExprAST *body)
173     : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
174   virtual Value *Codegen();
175 };
176
177 /// PrototypeAST - This class represents the "prototype" for a function,
178 /// which captures its name, and its argument names (thus implicitly the number
179 /// of arguments the function takes), as well as if it is an operator.
180 class PrototypeAST {
181   std::string Name;
182   std::vector<std::string> Args;
183   bool isOperator;
184   unsigned Precedence;  // Precedence if a binary op.
185 public:
186   PrototypeAST(const std::string &name, const std::vector<std::string> &args,
187                bool isoperator = false, unsigned prec = 0)
188   : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
189   
190   bool isUnaryOp() const { return isOperator && Args.size() == 1; }
191   bool isBinaryOp() const { return isOperator && Args.size() == 2; }
192   
193   char getOperatorName() const {
194     assert(isUnaryOp() || isBinaryOp());
195     return Name[Name.size()-1];
196   }
197   
198   unsigned getBinaryPrecedence() const { return Precedence; }
199   
200   Function *Codegen();
201 };
202
203 /// FunctionAST - This class represents a function definition itself.
204 class FunctionAST {
205   PrototypeAST *Proto;
206   ExprAST *Body;
207 public:
208   FunctionAST(PrototypeAST *proto, ExprAST *body)
209     : Proto(proto), Body(body) {}
210   
211   Function *Codegen();
212 };
213
214 //===----------------------------------------------------------------------===//
215 // Parser
216 //===----------------------------------------------------------------------===//
217
218 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
219 /// token the parser is looking at.  getNextToken reads another token from the
220 /// lexer and updates CurTok with its results.
221 static int CurTok;
222 static int getNextToken() {
223   return CurTok = gettok();
224 }
225
226 /// BinopPrecedence - This holds the precedence for each binary operator that is
227 /// defined.
228 static std::map<char, int> BinopPrecedence;
229
230 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
231 static int GetTokPrecedence() {
232   if (!isascii(CurTok))
233     return -1;
234   
235   // Make sure it's a declared binop.
236   int TokPrec = BinopPrecedence[CurTok];
237   if (TokPrec <= 0) return -1;
238   return TokPrec;
239 }
240
241 /// Error* - These are little helper functions for error handling.
242 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
243 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
244 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
245
246 static ExprAST *ParseExpression();
247
248 /// identifierexpr
249 ///   ::= identifier
250 ///   ::= identifier '(' expression* ')'
251 static ExprAST *ParseIdentifierExpr() {
252   std::string IdName = IdentifierStr;
253   
254   getNextToken();  // eat identifier.
255   
256   if (CurTok != '(') // Simple variable ref.
257     return new VariableExprAST(IdName);
258   
259   // Call.
260   getNextToken();  // eat (
261   std::vector<ExprAST*> Args;
262   if (CurTok != ')') {
263     while (1) {
264       ExprAST *Arg = ParseExpression();
265       if (!Arg) return 0;
266       Args.push_back(Arg);
267
268       if (CurTok == ')') break;
269
270       if (CurTok != ',')
271         return Error("Expected ')' or ',' in argument list");
272       getNextToken();
273     }
274   }
275
276   // Eat the ')'.
277   getNextToken();
278   
279   return new CallExprAST(IdName, Args);
280 }
281
282 /// numberexpr ::= number
283 static ExprAST *ParseNumberExpr() {
284   ExprAST *Result = new NumberExprAST(NumVal);
285   getNextToken(); // consume the number
286   return Result;
287 }
288
289 /// parenexpr ::= '(' expression ')'
290 static ExprAST *ParseParenExpr() {
291   getNextToken();  // eat (.
292   ExprAST *V = ParseExpression();
293   if (!V) return 0;
294   
295   if (CurTok != ')')
296     return Error("expected ')'");
297   getNextToken();  // eat ).
298   return V;
299 }
300
301 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
302 static ExprAST *ParseIfExpr() {
303   getNextToken();  // eat the if.
304   
305   // condition.
306   ExprAST *Cond = ParseExpression();
307   if (!Cond) return 0;
308   
309   if (CurTok != tok_then)
310     return Error("expected then");
311   getNextToken();  // eat the then
312   
313   ExprAST *Then = ParseExpression();
314   if (Then == 0) return 0;
315   
316   if (CurTok != tok_else)
317     return Error("expected else");
318   
319   getNextToken();
320   
321   ExprAST *Else = ParseExpression();
322   if (!Else) return 0;
323   
324   return new IfExprAST(Cond, Then, Else);
325 }
326
327 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
328 static ExprAST *ParseForExpr() {
329   getNextToken();  // eat the for.
330
331   if (CurTok != tok_identifier)
332     return Error("expected identifier after for");
333   
334   std::string IdName = IdentifierStr;
335   getNextToken();  // eat identifier.
336   
337   if (CurTok != '=')
338     return Error("expected '=' after for");
339   getNextToken();  // eat '='.
340   
341   
342   ExprAST *Start = ParseExpression();
343   if (Start == 0) return 0;
344   if (CurTok != ',')
345     return Error("expected ',' after for start value");
346   getNextToken();
347   
348   ExprAST *End = ParseExpression();
349   if (End == 0) return 0;
350   
351   // The step value is optional.
352   ExprAST *Step = 0;
353   if (CurTok == ',') {
354     getNextToken();
355     Step = ParseExpression();
356     if (Step == 0) return 0;
357   }
358   
359   if (CurTok != tok_in)
360     return Error("expected 'in' after for");
361   getNextToken();  // eat 'in'.
362   
363   ExprAST *Body = ParseExpression();
364   if (Body == 0) return 0;
365
366   return new ForExprAST(IdName, Start, End, Step, Body);
367 }
368
369 /// primary
370 ///   ::= identifierexpr
371 ///   ::= numberexpr
372 ///   ::= parenexpr
373 ///   ::= ifexpr
374 ///   ::= forexpr
375 static ExprAST *ParsePrimary() {
376   switch (CurTok) {
377   default: return Error("unknown token when expecting an expression");
378   case tok_identifier: return ParseIdentifierExpr();
379   case tok_number:     return ParseNumberExpr();
380   case '(':            return ParseParenExpr();
381   case tok_if:         return ParseIfExpr();
382   case tok_for:        return ParseForExpr();
383   }
384 }
385
386 /// unary
387 ///   ::= primary
388 ///   ::= '!' unary
389 static ExprAST *ParseUnary() {
390   // If the current token is not an operator, it must be a primary expr.
391   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
392     return ParsePrimary();
393   
394   // If this is a unary operator, read it.
395   int Opc = CurTok;
396   getNextToken();
397   if (ExprAST *Operand = ParseUnary())
398     return new UnaryExprAST(Opc, Operand);
399   return 0;
400 }
401
402 /// binoprhs
403 ///   ::= ('+' unary)*
404 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
405   // If this is a binop, find its precedence.
406   while (1) {
407     int TokPrec = GetTokPrecedence();
408     
409     // If this is a binop that binds at least as tightly as the current binop,
410     // consume it, otherwise we are done.
411     if (TokPrec < ExprPrec)
412       return LHS;
413     
414     // Okay, we know this is a binop.
415     int BinOp = CurTok;
416     getNextToken();  // eat binop
417     
418     // Parse the unary expression after the binary operator.
419     ExprAST *RHS = ParseUnary();
420     if (!RHS) return 0;
421     
422     // If BinOp binds less tightly with RHS than the operator after RHS, let
423     // the pending operator take RHS as its LHS.
424     int NextPrec = GetTokPrecedence();
425     if (TokPrec < NextPrec) {
426       RHS = ParseBinOpRHS(TokPrec+1, RHS);
427       if (RHS == 0) return 0;
428     }
429     
430     // Merge LHS/RHS.
431     LHS = new BinaryExprAST(BinOp, LHS, RHS);
432   }
433 }
434
435 /// expression
436 ///   ::= unary binoprhs
437 ///
438 static ExprAST *ParseExpression() {
439   ExprAST *LHS = ParseUnary();
440   if (!LHS) return 0;
441   
442   return ParseBinOpRHS(0, LHS);
443 }
444
445 /// prototype
446 ///   ::= id '(' id* ')'
447 ///   ::= binary LETTER number? (id, id)
448 ///   ::= unary LETTER (id)
449 static PrototypeAST *ParsePrototype() {
450   std::string FnName;
451   
452   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
453   unsigned BinaryPrecedence = 30;
454   
455   switch (CurTok) {
456   default:
457     return ErrorP("Expected function name in prototype");
458   case tok_identifier:
459     FnName = IdentifierStr;
460     Kind = 0;
461     getNextToken();
462     break;
463   case tok_unary:
464     getNextToken();
465     if (!isascii(CurTok))
466       return ErrorP("Expected unary operator");
467     FnName = "unary";
468     FnName += (char)CurTok;
469     Kind = 1;
470     getNextToken();
471     break;
472   case tok_binary:
473     getNextToken();
474     if (!isascii(CurTok))
475       return ErrorP("Expected binary operator");
476     FnName = "binary";
477     FnName += (char)CurTok;
478     Kind = 2;
479     getNextToken();
480     
481     // Read the precedence if present.
482     if (CurTok == tok_number) {
483       if (NumVal < 1 || NumVal > 100)
484         return ErrorP("Invalid precedecnce: must be 1..100");
485       BinaryPrecedence = (unsigned)NumVal;
486       getNextToken();
487     }
488     break;
489   }
490   
491   if (CurTok != '(')
492     return ErrorP("Expected '(' in prototype");
493   
494   std::vector<std::string> ArgNames;
495   while (getNextToken() == tok_identifier)
496     ArgNames.push_back(IdentifierStr);
497   if (CurTok != ')')
498     return ErrorP("Expected ')' in prototype");
499   
500   // success.
501   getNextToken();  // eat ')'.
502   
503   // Verify right number of names for operator.
504   if (Kind && ArgNames.size() != Kind)
505     return ErrorP("Invalid number of operands for operator");
506   
507   return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
508 }
509
510 /// definition ::= 'def' prototype expression
511 static FunctionAST *ParseDefinition() {
512   getNextToken();  // eat def.
513   PrototypeAST *Proto = ParsePrototype();
514   if (Proto == 0) return 0;
515
516   if (ExprAST *E = ParseExpression())
517     return new FunctionAST(Proto, E);
518   return 0;
519 }
520
521 /// toplevelexpr ::= expression
522 static FunctionAST *ParseTopLevelExpr() {
523   if (ExprAST *E = ParseExpression()) {
524     // Make an anonymous proto.
525     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
526     return new FunctionAST(Proto, E);
527   }
528   return 0;
529 }
530
531 /// external ::= 'extern' prototype
532 static PrototypeAST *ParseExtern() {
533   getNextToken();  // eat extern.
534   return ParsePrototype();
535 }
536
537 //===----------------------------------------------------------------------===//
538 // Code Generation
539 //===----------------------------------------------------------------------===//
540
541 static Module *TheModule;
542 static IRBuilder<> Builder(getGlobalContext());
543 static std::map<std::string, Value*> NamedValues;
544 static FunctionPassManager *TheFPM;
545
546 Value *ErrorV(const char *Str) { Error(Str); return 0; }
547
548 Value *NumberExprAST::Codegen() {
549   return ConstantFP::get(getGlobalContext(), APFloat(Val));
550 }
551
552 Value *VariableExprAST::Codegen() {
553   // Look this variable up in the function.
554   Value *V = NamedValues[Name];
555   return V ? V : ErrorV("Unknown variable name");
556 }
557
558 Value *UnaryExprAST::Codegen() {
559   Value *OperandV = Operand->Codegen();
560   if (OperandV == 0) return 0;
561   
562   Function *F = TheModule->getFunction(std::string("unary")+Opcode);
563   if (F == 0)
564     return ErrorV("Unknown unary operator");
565   
566   return Builder.CreateCall(F, OperandV, "unop");
567 }
568
569 Value *BinaryExprAST::Codegen() {
570   Value *L = LHS->Codegen();
571   Value *R = RHS->Codegen();
572   if (L == 0 || R == 0) return 0;
573   
574   switch (Op) {
575   case '+': return Builder.CreateFAdd(L, R, "addtmp");
576   case '-': return Builder.CreateFSub(L, R, "subtmp");
577   case '*': return Builder.CreateFMul(L, R, "multmp");
578   case '<':
579     L = Builder.CreateFCmpULT(L, R, "cmptmp");
580     // Convert bool 0/1 to double 0.0 or 1.0
581     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
582                                 "booltmp");
583   default: break;
584   }
585   
586   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
587   // a call to it.
588   Function *F = TheModule->getFunction(std::string("binary")+Op);
589   assert(F && "binary operator not found!");
590   
591   Value *Ops[] = { L, R };
592   return Builder.CreateCall(F, Ops, "binop");
593 }
594
595 Value *CallExprAST::Codegen() {
596   // Look up the name in the global module table.
597   Function *CalleeF = TheModule->getFunction(Callee);
598   if (CalleeF == 0)
599     return ErrorV("Unknown function referenced");
600   
601   // If argument mismatch error.
602   if (CalleeF->arg_size() != Args.size())
603     return ErrorV("Incorrect # arguments passed");
604
605   std::vector<Value*> ArgsV;
606   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
607     ArgsV.push_back(Args[i]->Codegen());
608     if (ArgsV.back() == 0) return 0;
609   }
610   
611   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
612 }
613
614 Value *IfExprAST::Codegen() {
615   Value *CondV = Cond->Codegen();
616   if (CondV == 0) return 0;
617   
618   // Convert condition to a bool by comparing equal to 0.0.
619   CondV = Builder.CreateFCmpONE(CondV, 
620                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
621                                 "ifcond");
622   
623   Function *TheFunction = Builder.GetInsertBlock()->getParent();
624   
625   // Create blocks for the then and else cases.  Insert the 'then' block at the
626   // end of the function.
627   BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
628   BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
629   BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
630   
631   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
632   
633   // Emit then value.
634   Builder.SetInsertPoint(ThenBB);
635   
636   Value *ThenV = Then->Codegen();
637   if (ThenV == 0) return 0;
638   
639   Builder.CreateBr(MergeBB);
640   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
641   ThenBB = Builder.GetInsertBlock();
642   
643   // Emit else block.
644   TheFunction->getBasicBlockList().push_back(ElseBB);
645   Builder.SetInsertPoint(ElseBB);
646   
647   Value *ElseV = Else->Codegen();
648   if (ElseV == 0) return 0;
649   
650   Builder.CreateBr(MergeBB);
651   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
652   ElseBB = Builder.GetInsertBlock();
653   
654   // Emit merge block.
655   TheFunction->getBasicBlockList().push_back(MergeBB);
656   Builder.SetInsertPoint(MergeBB);
657   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
658                                   "iftmp");
659   
660   PN->addIncoming(ThenV, ThenBB);
661   PN->addIncoming(ElseV, ElseBB);
662   return PN;
663 }
664
665 Value *ForExprAST::Codegen() {
666   // Output this as:
667   //   ...
668   //   start = startexpr
669   //   goto loop
670   // loop: 
671   //   variable = phi [start, loopheader], [nextvariable, loopend]
672   //   ...
673   //   bodyexpr
674   //   ...
675   // loopend:
676   //   step = stepexpr
677   //   nextvariable = variable + step
678   //   endcond = endexpr
679   //   br endcond, loop, endloop
680   // outloop:
681   
682   // Emit the start code first, without 'variable' in scope.
683   Value *StartVal = Start->Codegen();
684   if (StartVal == 0) return 0;
685   
686   // Make the new basic block for the loop header, inserting after current
687   // block.
688   Function *TheFunction = Builder.GetInsertBlock()->getParent();
689   BasicBlock *PreheaderBB = Builder.GetInsertBlock();
690   BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
691   
692   // Insert an explicit fall through from the current block to the LoopBB.
693   Builder.CreateBr(LoopBB);
694
695   // Start insertion in LoopBB.
696   Builder.SetInsertPoint(LoopBB);
697   
698   // Start the PHI node with an entry for Start.
699   PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str());
700   Variable->addIncoming(StartVal, PreheaderBB);
701   
702   // Within the loop, the variable is defined equal to the PHI node.  If it
703   // shadows an existing variable, we have to restore it, so save it now.
704   Value *OldVal = NamedValues[VarName];
705   NamedValues[VarName] = Variable;
706   
707   // Emit the body of the loop.  This, like any other expr, can change the
708   // current BB.  Note that we ignore the value computed by the body, but don't
709   // allow an error.
710   if (Body->Codegen() == 0)
711     return 0;
712   
713   // Emit the step value.
714   Value *StepVal;
715   if (Step) {
716     StepVal = Step->Codegen();
717     if (StepVal == 0) return 0;
718   } else {
719     // If not specified, use 1.0.
720     StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
721   }
722   
723   Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");
724
725   // Compute the end condition.
726   Value *EndCond = End->Codegen();
727   if (EndCond == 0) return EndCond;
728   
729   // Convert condition to a bool by comparing equal to 0.0.
730   EndCond = Builder.CreateFCmpONE(EndCond, 
731                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
732                                   "loopcond");
733   
734   // Create the "after loop" block and insert it.
735   BasicBlock *LoopEndBB = Builder.GetInsertBlock();
736   BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
737   
738   // Insert the conditional branch into the end of LoopEndBB.
739   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
740   
741   // Any new code will be inserted in AfterBB.
742   Builder.SetInsertPoint(AfterBB);
743   
744   // Add a new entry to the PHI node for the backedge.
745   Variable->addIncoming(NextVar, LoopEndBB);
746   
747   // Restore the unshadowed variable.
748   if (OldVal)
749     NamedValues[VarName] = OldVal;
750   else
751     NamedValues.erase(VarName);
752
753   
754   // for expr always returns 0.0.
755   return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
756 }
757
758 Function *PrototypeAST::Codegen() {
759   // Make the function type:  double(double,double) etc.
760   std::vector<Type*> Doubles(Args.size(),
761                              Type::getDoubleTy(getGlobalContext()));
762   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
763                                        Doubles, false);
764   
765   Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
766   
767   // If F conflicted, there was already something named 'Name'.  If it has a
768   // body, don't allow redefinition or reextern.
769   if (F->getName() != Name) {
770     // Delete the one we just made and get the existing one.
771     F->eraseFromParent();
772     F = TheModule->getFunction(Name);
773     
774     // If F already has a body, reject this.
775     if (!F->empty()) {
776       ErrorF("redefinition of function");
777       return 0;
778     }
779     
780     // If F took a different number of args, reject.
781     if (F->arg_size() != Args.size()) {
782       ErrorF("redefinition of function with different # args");
783       return 0;
784     }
785   }
786   
787   // Set names for all arguments.
788   unsigned Idx = 0;
789   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
790        ++AI, ++Idx) {
791     AI->setName(Args[Idx]);
792     
793     // Add arguments to variable symbol table.
794     NamedValues[Args[Idx]] = AI;
795   }
796   
797   return F;
798 }
799
800 Function *FunctionAST::Codegen() {
801   NamedValues.clear();
802   
803   Function *TheFunction = Proto->Codegen();
804   if (TheFunction == 0)
805     return 0;
806   
807   // If this is an operator, install it.
808   if (Proto->isBinaryOp())
809     BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
810   
811   // Create a new basic block to start insertion into.
812   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
813   Builder.SetInsertPoint(BB);
814   
815   if (Value *RetVal = Body->Codegen()) {
816     // Finish off the function.
817     Builder.CreateRet(RetVal);
818
819     // Validate the generated code, checking for consistency.
820     verifyFunction(*TheFunction);
821
822     // Optimize the function.
823     TheFPM->run(*TheFunction);
824     
825     return TheFunction;
826   }
827   
828   // Error reading body, remove function.
829   TheFunction->eraseFromParent();
830
831   if (Proto->isBinaryOp())
832     BinopPrecedence.erase(Proto->getOperatorName());
833   return 0;
834 }
835
836 //===----------------------------------------------------------------------===//
837 // Top-Level parsing and JIT Driver
838 //===----------------------------------------------------------------------===//
839
840 static ExecutionEngine *TheExecutionEngine;
841
842 static void HandleDefinition() {
843   if (FunctionAST *F = ParseDefinition()) {
844     if (Function *LF = F->Codegen()) {
845       fprintf(stderr, "Read function definition:");
846       LF->dump();
847     }
848   } else {
849     // Skip token for error recovery.
850     getNextToken();
851   }
852 }
853
854 static void HandleExtern() {
855   if (PrototypeAST *P = ParseExtern()) {
856     if (Function *F = P->Codegen()) {
857       fprintf(stderr, "Read extern: ");
858       F->dump();
859     }
860   } else {
861     // Skip token for error recovery.
862     getNextToken();
863   }
864 }
865
866 static void HandleTopLevelExpression() {
867   // Evaluate a top-level expression into an anonymous function.
868   if (FunctionAST *F = ParseTopLevelExpr()) {
869     if (Function *LF = F->Codegen()) {
870       // JIT the function, returning a function pointer.
871       void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
872       
873       // Cast it to the right type (takes no arguments, returns a double) so we
874       // can call it as a native function.
875       double (*FP)() = (double (*)())(intptr_t)FPtr;
876       fprintf(stderr, "Evaluated to %f\n", FP());
877     }
878   } else {
879     // Skip token for error recovery.
880     getNextToken();
881   }
882 }
883
884 /// top ::= definition | external | expression | ';'
885 static void MainLoop() {
886   while (1) {
887     fprintf(stderr, "ready> ");
888     switch (CurTok) {
889     case tok_eof:    return;
890     case ';':        getNextToken(); break;  // ignore top-level semicolons.
891     case tok_def:    HandleDefinition(); break;
892     case tok_extern: HandleExtern(); break;
893     default:         HandleTopLevelExpression(); break;
894     }
895   }
896 }
897
898 //===----------------------------------------------------------------------===//
899 // "Library" functions that can be "extern'd" from user code.
900 //===----------------------------------------------------------------------===//
901
902 /// putchard - putchar that takes a double and returns 0.
903 extern "C" 
904 double putchard(double X) {
905   putchar((char)X);
906   return 0;
907 }
908
909 /// printd - printf that takes a double prints it as "%f\n", returning 0.
910 extern "C" 
911 double printd(double X) {
912   printf("%f\n", X);
913   return 0;
914 }
915
916 //===----------------------------------------------------------------------===//
917 // Main driver code.
918 //===----------------------------------------------------------------------===//
919
920 int main() {
921   InitializeNativeTarget();
922   LLVMContext &Context = getGlobalContext();
923
924   // Install standard binary operators.
925   // 1 is lowest precedence.
926   BinopPrecedence['<'] = 10;
927   BinopPrecedence['+'] = 20;
928   BinopPrecedence['-'] = 20;
929   BinopPrecedence['*'] = 40;  // highest.
930
931   // Prime the first token.
932   fprintf(stderr, "ready> ");
933   getNextToken();
934
935   // Make the module, which holds all the code.
936   TheModule = new Module("my cool jit", Context);
937
938   // Create the JIT.  This takes ownership of the module.
939   std::string ErrStr;
940   TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
941   if (!TheExecutionEngine) {
942     fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
943     exit(1);
944   }
945
946   FunctionPassManager OurFPM(TheModule);
947
948   // Set up the optimizer pipeline.  Start with registering info about how the
949   // target lays out data structures.
950   OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
951   // Provide basic AliasAnalysis support for GVN.
952   OurFPM.add(createBasicAliasAnalysisPass());
953   // Do simple "peephole" optimizations and bit-twiddling optzns.
954   OurFPM.add(createInstructionCombiningPass());
955   // Reassociate expressions.
956   OurFPM.add(createReassociatePass());
957   // Eliminate Common SubExpressions.
958   OurFPM.add(createGVNPass());
959   // Simplify the control flow graph (deleting unreachable blocks, etc).
960   OurFPM.add(createCFGSimplificationPass());
961
962   OurFPM.doInitialization();
963
964   // Set the global so the code gen can use this.
965   TheFPM = &OurFPM;
966
967   // Run the main "interpreter loop" now.
968   MainLoop();
969
970   TheFPM = 0;
971
972   // Print out all of the generated code.
973   TheModule->dump();
974
975   return 0;
976 }