58ab6f3990ef66856523d24c9aea5e7c598ffa7f
[oota-llvm.git] / examples / Kaleidoscope / Chapter5 / toy.cpp
1 #include "llvm/DerivedTypes.h"
2 #include "llvm/ExecutionEngine/ExecutionEngine.h"
3 #include "llvm/ExecutionEngine/JIT.h"
4 #include "llvm/LLVMContext.h"
5 #include "llvm/Module.h"
6 #include "llvm/PassManager.h"
7 #include "llvm/Analysis/Verifier.h"
8 #include "llvm/Analysis/Passes.h"
9 #include "llvm/Target/TargetData.h"
10 #include "llvm/Target/TargetSelect.h"
11 #include "llvm/Transforms/Scalar.h"
12 #include "llvm/Support/IRBuilder.h"
13 #include <cstdio>
14 #include <string>
15 #include <map>
16 #include <vector>
17 using namespace llvm;
18
19 //===----------------------------------------------------------------------===//
20 // Lexer
21 //===----------------------------------------------------------------------===//
22
23 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
24 // of these for known things.
25 enum Token {
26   tok_eof = -1,
27
28   // commands
29   tok_def = -2, tok_extern = -3,
30
31   // primary
32   tok_identifier = -4, tok_number = -5,
33   
34   // control
35   tok_if = -6, tok_then = -7, tok_else = -8,
36   tok_for = -9, tok_in = -10
37 };
38
39 static std::string IdentifierStr;  // Filled in if tok_identifier
40 static double NumVal;              // Filled in if tok_number
41
42 /// gettok - Return the next token from standard input.
43 static int gettok() {
44   static int LastChar = ' ';
45
46   // Skip any whitespace.
47   while (isspace(LastChar))
48     LastChar = getchar();
49
50   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
51     IdentifierStr = LastChar;
52     while (isalnum((LastChar = getchar())))
53       IdentifierStr += LastChar;
54
55     if (IdentifierStr == "def") return tok_def;
56     if (IdentifierStr == "extern") return tok_extern;
57     if (IdentifierStr == "if") return tok_if;
58     if (IdentifierStr == "then") return tok_then;
59     if (IdentifierStr == "else") return tok_else;
60     if (IdentifierStr == "for") return tok_for;
61     if (IdentifierStr == "in") return tok_in;
62     return tok_identifier;
63   }
64
65   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
66     std::string NumStr;
67     do {
68       NumStr += LastChar;
69       LastChar = getchar();
70     } while (isdigit(LastChar) || LastChar == '.');
71
72     NumVal = strtod(NumStr.c_str(), 0);
73     return tok_number;
74   }
75
76   if (LastChar == '#') {
77     // Comment until end of line.
78     do LastChar = getchar();
79     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
80     
81     if (LastChar != EOF)
82       return gettok();
83   }
84   
85   // Check for end of file.  Don't eat the EOF.
86   if (LastChar == EOF)
87     return tok_eof;
88
89   // Otherwise, just return the character as its ascii value.
90   int ThisChar = LastChar;
91   LastChar = getchar();
92   return ThisChar;
93 }
94
95 //===----------------------------------------------------------------------===//
96 // Abstract Syntax Tree (aka Parse Tree)
97 //===----------------------------------------------------------------------===//
98
99 /// ExprAST - Base class for all expression nodes.
100 class ExprAST {
101 public:
102   virtual ~ExprAST() {}
103   virtual Value *Codegen() = 0;
104 };
105
106 /// NumberExprAST - Expression class for numeric literals like "1.0".
107 class NumberExprAST : public ExprAST {
108   double Val;
109 public:
110   NumberExprAST(double val) : Val(val) {}
111   virtual Value *Codegen();
112 };
113
114 /// VariableExprAST - Expression class for referencing a variable, like "a".
115 class VariableExprAST : public ExprAST {
116   std::string Name;
117 public:
118   VariableExprAST(const std::string &name) : Name(name) {}
119   virtual Value *Codegen();
120 };
121
122 /// BinaryExprAST - Expression class for a binary operator.
123 class BinaryExprAST : public ExprAST {
124   char Op;
125   ExprAST *LHS, *RHS;
126 public:
127   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
128     : Op(op), LHS(lhs), RHS(rhs) {}
129   virtual Value *Codegen();
130 };
131
132 /// CallExprAST - Expression class for function calls.
133 class CallExprAST : public ExprAST {
134   std::string Callee;
135   std::vector<ExprAST*> Args;
136 public:
137   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
138     : Callee(callee), Args(args) {}
139   virtual Value *Codegen();
140 };
141
142 /// IfExprAST - Expression class for if/then/else.
143 class IfExprAST : public ExprAST {
144   ExprAST *Cond, *Then, *Else;
145 public:
146   IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
147   : Cond(cond), Then(then), Else(_else) {}
148   virtual Value *Codegen();
149 };
150
151 /// ForExprAST - Expression class for for/in.
152 class ForExprAST : public ExprAST {
153   std::string VarName;
154   ExprAST *Start, *End, *Step, *Body;
155 public:
156   ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
157              ExprAST *step, ExprAST *body)
158     : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
159   virtual Value *Codegen();
160 };
161
162 /// PrototypeAST - This class represents the "prototype" for a function,
163 /// which captures its name, and its argument names (thus implicitly the number
164 /// of arguments the function takes).
165 class PrototypeAST {
166   std::string Name;
167   std::vector<std::string> Args;
168 public:
169   PrototypeAST(const std::string &name, const std::vector<std::string> &args)
170     : Name(name), Args(args) {}
171   
172   Function *Codegen();
173 };
174
175 /// FunctionAST - This class represents a function definition itself.
176 class FunctionAST {
177   PrototypeAST *Proto;
178   ExprAST *Body;
179 public:
180   FunctionAST(PrototypeAST *proto, ExprAST *body)
181     : Proto(proto), Body(body) {}
182   
183   Function *Codegen();
184 };
185
186 //===----------------------------------------------------------------------===//
187 // Parser
188 //===----------------------------------------------------------------------===//
189
190 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
191 /// token the parser is looking at.  getNextToken reads another token from the
192 /// lexer and updates CurTok with its results.
193 static int CurTok;
194 static int getNextToken() {
195   return CurTok = gettok();
196 }
197
198 /// BinopPrecedence - This holds the precedence for each binary operator that is
199 /// defined.
200 static std::map<char, int> BinopPrecedence;
201
202 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
203 static int GetTokPrecedence() {
204   if (!isascii(CurTok))
205     return -1;
206   
207   // Make sure it's a declared binop.
208   int TokPrec = BinopPrecedence[CurTok];
209   if (TokPrec <= 0) return -1;
210   return TokPrec;
211 }
212
213 /// Error* - These are little helper functions for error handling.
214 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
215 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
216 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
217
218 static ExprAST *ParseExpression();
219
220 /// identifierexpr
221 ///   ::= identifier
222 ///   ::= identifier '(' expression* ')'
223 static ExprAST *ParseIdentifierExpr() {
224   std::string IdName = IdentifierStr;
225   
226   getNextToken();  // eat identifier.
227   
228   if (CurTok != '(') // Simple variable ref.
229     return new VariableExprAST(IdName);
230   
231   // Call.
232   getNextToken();  // eat (
233   std::vector<ExprAST*> Args;
234   if (CurTok != ')') {
235     while (1) {
236       ExprAST *Arg = ParseExpression();
237       if (!Arg) return 0;
238       Args.push_back(Arg);
239
240       if (CurTok == ')') break;
241
242       if (CurTok != ',')
243         return Error("Expected ')' or ',' in argument list");
244       getNextToken();
245     }
246   }
247
248   // Eat the ')'.
249   getNextToken();
250   
251   return new CallExprAST(IdName, Args);
252 }
253
254 /// numberexpr ::= number
255 static ExprAST *ParseNumberExpr() {
256   ExprAST *Result = new NumberExprAST(NumVal);
257   getNextToken(); // consume the number
258   return Result;
259 }
260
261 /// parenexpr ::= '(' expression ')'
262 static ExprAST *ParseParenExpr() {
263   getNextToken();  // eat (.
264   ExprAST *V = ParseExpression();
265   if (!V) return 0;
266   
267   if (CurTok != ')')
268     return Error("expected ')'");
269   getNextToken();  // eat ).
270   return V;
271 }
272
273 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
274 static ExprAST *ParseIfExpr() {
275   getNextToken();  // eat the if.
276   
277   // condition.
278   ExprAST *Cond = ParseExpression();
279   if (!Cond) return 0;
280   
281   if (CurTok != tok_then)
282     return Error("expected then");
283   getNextToken();  // eat the then
284   
285   ExprAST *Then = ParseExpression();
286   if (Then == 0) return 0;
287   
288   if (CurTok != tok_else)
289     return Error("expected else");
290   
291   getNextToken();
292   
293   ExprAST *Else = ParseExpression();
294   if (!Else) return 0;
295   
296   return new IfExprAST(Cond, Then, Else);
297 }
298
299 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
300 static ExprAST *ParseForExpr() {
301   getNextToken();  // eat the for.
302
303   if (CurTok != tok_identifier)
304     return Error("expected identifier after for");
305   
306   std::string IdName = IdentifierStr;
307   getNextToken();  // eat identifier.
308   
309   if (CurTok != '=')
310     return Error("expected '=' after for");
311   getNextToken();  // eat '='.
312   
313   
314   ExprAST *Start = ParseExpression();
315   if (Start == 0) return 0;
316   if (CurTok != ',')
317     return Error("expected ',' after for start value");
318   getNextToken();
319   
320   ExprAST *End = ParseExpression();
321   if (End == 0) return 0;
322   
323   // The step value is optional.
324   ExprAST *Step = 0;
325   if (CurTok == ',') {
326     getNextToken();
327     Step = ParseExpression();
328     if (Step == 0) return 0;
329   }
330   
331   if (CurTok != tok_in)
332     return Error("expected 'in' after for");
333   getNextToken();  // eat 'in'.
334   
335   ExprAST *Body = ParseExpression();
336   if (Body == 0) return 0;
337
338   return new ForExprAST(IdName, Start, End, Step, Body);
339 }
340
341 /// primary
342 ///   ::= identifierexpr
343 ///   ::= numberexpr
344 ///   ::= parenexpr
345 ///   ::= ifexpr
346 ///   ::= forexpr
347 static ExprAST *ParsePrimary() {
348   switch (CurTok) {
349   default: return Error("unknown token when expecting an expression");
350   case tok_identifier: return ParseIdentifierExpr();
351   case tok_number:     return ParseNumberExpr();
352   case '(':            return ParseParenExpr();
353   case tok_if:         return ParseIfExpr();
354   case tok_for:        return ParseForExpr();
355   }
356 }
357
358 /// binoprhs
359 ///   ::= ('+' primary)*
360 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
361   // If this is a binop, find its precedence.
362   while (1) {
363     int TokPrec = GetTokPrecedence();
364     
365     // If this is a binop that binds at least as tightly as the current binop,
366     // consume it, otherwise we are done.
367     if (TokPrec < ExprPrec)
368       return LHS;
369     
370     // Okay, we know this is a binop.
371     int BinOp = CurTok;
372     getNextToken();  // eat binop
373     
374     // Parse the primary expression after the binary operator.
375     ExprAST *RHS = ParsePrimary();
376     if (!RHS) return 0;
377     
378     // If BinOp binds less tightly with RHS than the operator after RHS, let
379     // the pending operator take RHS as its LHS.
380     int NextPrec = GetTokPrecedence();
381     if (TokPrec < NextPrec) {
382       RHS = ParseBinOpRHS(TokPrec+1, RHS);
383       if (RHS == 0) return 0;
384     }
385     
386     // Merge LHS/RHS.
387     LHS = new BinaryExprAST(BinOp, LHS, RHS);
388   }
389 }
390
391 /// expression
392 ///   ::= primary binoprhs
393 ///
394 static ExprAST *ParseExpression() {
395   ExprAST *LHS = ParsePrimary();
396   if (!LHS) return 0;
397   
398   return ParseBinOpRHS(0, LHS);
399 }
400
401 /// prototype
402 ///   ::= id '(' id* ')'
403 static PrototypeAST *ParsePrototype() {
404   if (CurTok != tok_identifier)
405     return ErrorP("Expected function name in prototype");
406
407   std::string FnName = IdentifierStr;
408   getNextToken();
409   
410   if (CurTok != '(')
411     return ErrorP("Expected '(' in prototype");
412   
413   std::vector<std::string> ArgNames;
414   while (getNextToken() == tok_identifier)
415     ArgNames.push_back(IdentifierStr);
416   if (CurTok != ')')
417     return ErrorP("Expected ')' in prototype");
418   
419   // success.
420   getNextToken();  // eat ')'.
421   
422   return new PrototypeAST(FnName, ArgNames);
423 }
424
425 /// definition ::= 'def' prototype expression
426 static FunctionAST *ParseDefinition() {
427   getNextToken();  // eat def.
428   PrototypeAST *Proto = ParsePrototype();
429   if (Proto == 0) return 0;
430
431   if (ExprAST *E = ParseExpression())
432     return new FunctionAST(Proto, E);
433   return 0;
434 }
435
436 /// toplevelexpr ::= expression
437 static FunctionAST *ParseTopLevelExpr() {
438   if (ExprAST *E = ParseExpression()) {
439     // Make an anonymous proto.
440     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
441     return new FunctionAST(Proto, E);
442   }
443   return 0;
444 }
445
446 /// external ::= 'extern' prototype
447 static PrototypeAST *ParseExtern() {
448   getNextToken();  // eat extern.
449   return ParsePrototype();
450 }
451
452 //===----------------------------------------------------------------------===//
453 // Code Generation
454 //===----------------------------------------------------------------------===//
455
456 static Module *TheModule;
457 static IRBuilder<> Builder(getGlobalContext());
458 static std::map<std::string, Value*> NamedValues;
459 static FunctionPassManager *TheFPM;
460
461 Value *ErrorV(const char *Str) { Error(Str); return 0; }
462
463 Value *NumberExprAST::Codegen() {
464   return ConstantFP::get(getGlobalContext(), APFloat(Val));
465 }
466
467 Value *VariableExprAST::Codegen() {
468   // Look this variable up in the function.
469   Value *V = NamedValues[Name];
470   return V ? V : ErrorV("Unknown variable name");
471 }
472
473 Value *BinaryExprAST::Codegen() {
474   Value *L = LHS->Codegen();
475   Value *R = RHS->Codegen();
476   if (L == 0 || R == 0) return 0;
477   
478   switch (Op) {
479   case '+': return Builder.CreateFAdd(L, R, "addtmp");
480   case '-': return Builder.CreateFSub(L, R, "subtmp");
481   case '*': return Builder.CreateFMul(L, R, "multmp");
482   case '<':
483     L = Builder.CreateFCmpULT(L, R, "cmptmp");
484     // Convert bool 0/1 to double 0.0 or 1.0
485     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
486                                 "booltmp");
487   default: return ErrorV("invalid binary operator");
488   }
489 }
490
491 Value *CallExprAST::Codegen() {
492   // Look up the name in the global module table.
493   Function *CalleeF = TheModule->getFunction(Callee);
494   if (CalleeF == 0)
495     return ErrorV("Unknown function referenced");
496   
497   // If argument mismatch error.
498   if (CalleeF->arg_size() != Args.size())
499     return ErrorV("Incorrect # arguments passed");
500
501   std::vector<Value*> ArgsV;
502   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
503     ArgsV.push_back(Args[i]->Codegen());
504     if (ArgsV.back() == 0) return 0;
505   }
506   
507   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
508 }
509
510 Value *IfExprAST::Codegen() {
511   Value *CondV = Cond->Codegen();
512   if (CondV == 0) return 0;
513   
514   // Convert condition to a bool by comparing equal to 0.0.
515   CondV = Builder.CreateFCmpONE(CondV, 
516                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
517                                 "ifcond");
518   
519   Function *TheFunction = Builder.GetInsertBlock()->getParent();
520   
521   // Create blocks for the then and else cases.  Insert the 'then' block at the
522   // end of the function.
523   BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
524   BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
525   BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
526   
527   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
528   
529   // Emit then value.
530   Builder.SetInsertPoint(ThenBB);
531   
532   Value *ThenV = Then->Codegen();
533   if (ThenV == 0) return 0;
534   
535   Builder.CreateBr(MergeBB);
536   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
537   ThenBB = Builder.GetInsertBlock();
538   
539   // Emit else block.
540   TheFunction->getBasicBlockList().push_back(ElseBB);
541   Builder.SetInsertPoint(ElseBB);
542   
543   Value *ElseV = Else->Codegen();
544   if (ElseV == 0) return 0;
545   
546   Builder.CreateBr(MergeBB);
547   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
548   ElseBB = Builder.GetInsertBlock();
549   
550   // Emit merge block.
551   TheFunction->getBasicBlockList().push_back(MergeBB);
552   Builder.SetInsertPoint(MergeBB);
553   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
554                                   "iftmp");
555   
556   PN->addIncoming(ThenV, ThenBB);
557   PN->addIncoming(ElseV, ElseBB);
558   return PN;
559 }
560
561 Value *ForExprAST::Codegen() {
562   // Output this as:
563   //   ...
564   //   start = startexpr
565   //   goto loop
566   // loop: 
567   //   variable = phi [start, loopheader], [nextvariable, loopend]
568   //   ...
569   //   bodyexpr
570   //   ...
571   // loopend:
572   //   step = stepexpr
573   //   nextvariable = variable + step
574   //   endcond = endexpr
575   //   br endcond, loop, endloop
576   // outloop:
577   
578   // Emit the start code first, without 'variable' in scope.
579   Value *StartVal = Start->Codegen();
580   if (StartVal == 0) return 0;
581   
582   // Make the new basic block for the loop header, inserting after current
583   // block.
584   Function *TheFunction = Builder.GetInsertBlock()->getParent();
585   BasicBlock *PreheaderBB = Builder.GetInsertBlock();
586   BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
587   
588   // Insert an explicit fall through from the current block to the LoopBB.
589   Builder.CreateBr(LoopBB);
590
591   // Start insertion in LoopBB.
592   Builder.SetInsertPoint(LoopBB);
593   
594   // Start the PHI node with an entry for Start.
595   PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str());
596   Variable->addIncoming(StartVal, PreheaderBB);
597   
598   // Within the loop, the variable is defined equal to the PHI node.  If it
599   // shadows an existing variable, we have to restore it, so save it now.
600   Value *OldVal = NamedValues[VarName];
601   NamedValues[VarName] = Variable;
602   
603   // Emit the body of the loop.  This, like any other expr, can change the
604   // current BB.  Note that we ignore the value computed by the body, but don't
605   // allow an error.
606   if (Body->Codegen() == 0)
607     return 0;
608   
609   // Emit the step value.
610   Value *StepVal;
611   if (Step) {
612     StepVal = Step->Codegen();
613     if (StepVal == 0) return 0;
614   } else {
615     // If not specified, use 1.0.
616     StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
617   }
618   
619   Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");
620
621   // Compute the end condition.
622   Value *EndCond = End->Codegen();
623   if (EndCond == 0) return EndCond;
624   
625   // Convert condition to a bool by comparing equal to 0.0.
626   EndCond = Builder.CreateFCmpONE(EndCond, 
627                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
628                                   "loopcond");
629   
630   // Create the "after loop" block and insert it.
631   BasicBlock *LoopEndBB = Builder.GetInsertBlock();
632   BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
633   
634   // Insert the conditional branch into the end of LoopEndBB.
635   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
636   
637   // Any new code will be inserted in AfterBB.
638   Builder.SetInsertPoint(AfterBB);
639   
640   // Add a new entry to the PHI node for the backedge.
641   Variable->addIncoming(NextVar, LoopEndBB);
642   
643   // Restore the unshadowed variable.
644   if (OldVal)
645     NamedValues[VarName] = OldVal;
646   else
647     NamedValues.erase(VarName);
648
649   
650   // for expr always returns 0.0.
651   return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
652 }
653
654 Function *PrototypeAST::Codegen() {
655   // Make the function type:  double(double,double) etc.
656   std::vector<Type*> Doubles(Args.size(),
657                              Type::getDoubleTy(getGlobalContext()));
658   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
659                                        Doubles, false);
660   
661   Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
662   
663   // If F conflicted, there was already something named 'Name'.  If it has a
664   // body, don't allow redefinition or reextern.
665   if (F->getName() != Name) {
666     // Delete the one we just made and get the existing one.
667     F->eraseFromParent();
668     F = TheModule->getFunction(Name);
669     
670     // If F already has a body, reject this.
671     if (!F->empty()) {
672       ErrorF("redefinition of function");
673       return 0;
674     }
675     
676     // If F took a different number of args, reject.
677     if (F->arg_size() != Args.size()) {
678       ErrorF("redefinition of function with different # args");
679       return 0;
680     }
681   }
682   
683   // Set names for all arguments.
684   unsigned Idx = 0;
685   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
686        ++AI, ++Idx) {
687     AI->setName(Args[Idx]);
688     
689     // Add arguments to variable symbol table.
690     NamedValues[Args[Idx]] = AI;
691   }
692   
693   return F;
694 }
695
696 Function *FunctionAST::Codegen() {
697   NamedValues.clear();
698   
699   Function *TheFunction = Proto->Codegen();
700   if (TheFunction == 0)
701     return 0;
702   
703   // Create a new basic block to start insertion into.
704   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
705   Builder.SetInsertPoint(BB);
706   
707   if (Value *RetVal = Body->Codegen()) {
708     // Finish off the function.
709     Builder.CreateRet(RetVal);
710
711     // Validate the generated code, checking for consistency.
712     verifyFunction(*TheFunction);
713
714     // Optimize the function.
715     TheFPM->run(*TheFunction);
716     
717     return TheFunction;
718   }
719   
720   // Error reading body, remove function.
721   TheFunction->eraseFromParent();
722   return 0;
723 }
724
725 //===----------------------------------------------------------------------===//
726 // Top-Level parsing and JIT Driver
727 //===----------------------------------------------------------------------===//
728
729 static ExecutionEngine *TheExecutionEngine;
730
731 static void HandleDefinition() {
732   if (FunctionAST *F = ParseDefinition()) {
733     if (Function *LF = F->Codegen()) {
734       fprintf(stderr, "Read function definition:");
735       LF->dump();
736     }
737   } else {
738     // Skip token for error recovery.
739     getNextToken();
740   }
741 }
742
743 static void HandleExtern() {
744   if (PrototypeAST *P = ParseExtern()) {
745     if (Function *F = P->Codegen()) {
746       fprintf(stderr, "Read extern: ");
747       F->dump();
748     }
749   } else {
750     // Skip token for error recovery.
751     getNextToken();
752   }
753 }
754
755 static void HandleTopLevelExpression() {
756   // Evaluate a top-level expression into an anonymous function.
757   if (FunctionAST *F = ParseTopLevelExpr()) {
758     if (Function *LF = F->Codegen()) {
759       // JIT the function, returning a function pointer.
760       void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
761       
762       // Cast it to the right type (takes no arguments, returns a double) so we
763       // can call it as a native function.
764       double (*FP)() = (double (*)())(intptr_t)FPtr;
765       fprintf(stderr, "Evaluated to %f\n", FP());
766     }
767   } else {
768     // Skip token for error recovery.
769     getNextToken();
770   }
771 }
772
773 /// top ::= definition | external | expression | ';'
774 static void MainLoop() {
775   while (1) {
776     fprintf(stderr, "ready> ");
777     switch (CurTok) {
778     case tok_eof:    return;
779     case ';':        getNextToken(); break;  // ignore top-level semicolons.
780     case tok_def:    HandleDefinition(); break;
781     case tok_extern: HandleExtern(); break;
782     default:         HandleTopLevelExpression(); break;
783     }
784   }
785 }
786
787 //===----------------------------------------------------------------------===//
788 // "Library" functions that can be "extern'd" from user code.
789 //===----------------------------------------------------------------------===//
790
791 /// putchard - putchar that takes a double and returns 0.
792 extern "C" 
793 double putchard(double X) {
794   putchar((char)X);
795   return 0;
796 }
797
798 //===----------------------------------------------------------------------===//
799 // Main driver code.
800 //===----------------------------------------------------------------------===//
801
802 int main() {
803   InitializeNativeTarget();
804   LLVMContext &Context = getGlobalContext();
805
806   // Install standard binary operators.
807   // 1 is lowest precedence.
808   BinopPrecedence['<'] = 10;
809   BinopPrecedence['+'] = 20;
810   BinopPrecedence['-'] = 20;
811   BinopPrecedence['*'] = 40;  // highest.
812
813   // Prime the first token.
814   fprintf(stderr, "ready> ");
815   getNextToken();
816
817   // Make the module, which holds all the code.
818   TheModule = new Module("my cool jit", Context);
819
820   // Create the JIT.  This takes ownership of the module.
821   std::string ErrStr;
822   TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
823   if (!TheExecutionEngine) {
824     fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
825     exit(1);
826   }
827
828   FunctionPassManager OurFPM(TheModule);
829
830   // Set up the optimizer pipeline.  Start with registering info about how the
831   // target lays out data structures.
832   OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
833   // Provide basic AliasAnalysis support for GVN.
834   OurFPM.add(createBasicAliasAnalysisPass());
835   // Do simple "peephole" optimizations and bit-twiddling optzns.
836   OurFPM.add(createInstructionCombiningPass());
837   // Reassociate expressions.
838   OurFPM.add(createReassociatePass());
839   // Eliminate Common SubExpressions.
840   OurFPM.add(createGVNPass());
841   // Simplify the control flow graph (deleting unreachable blocks, etc).
842   OurFPM.add(createCFGSimplificationPass());
843
844   OurFPM.doInitialization();
845
846   // Set the global so the code gen can use this.
847   TheFPM = &OurFPM;
848
849   // Run the main "interpreter loop" now.
850   MainLoop();
851
852   TheFPM = 0;
853
854   // Print out all of the generated code.
855   TheModule->dump();
856
857   return 0;
858 }