model: add PendingFutureValue constructor
[model-checker.git] / model.cc
1 #include <stdio.h>
2 #include <algorithm>
3 #include <mutex>
4 #include <new>
5
6 #include "model.h"
7 #include "action.h"
8 #include "nodestack.h"
9 #include "schedule.h"
10 #include "snapshot-interface.h"
11 #include "common.h"
12 #include "clockvector.h"
13 #include "cyclegraph.h"
14 #include "promise.h"
15 #include "datarace.h"
16 #include "threads-model.h"
17 #include "output.h"
18
19 #define INITIAL_THREAD_ID       0
20
21 ModelChecker *model;
22
23 struct bug_message {
24         bug_message(const char *str) {
25                 const char *fmt = "  [BUG] %s\n";
26                 msg = (char *)snapshot_malloc(strlen(fmt) + strlen(str));
27                 sprintf(msg, fmt, str);
28         }
29         ~bug_message() { if (msg) snapshot_free(msg); }
30
31         char *msg;
32         void print() { model_print("%s", msg); }
33
34         SNAPSHOTALLOC
35 };
36
37 /**
38  * Structure for holding small ModelChecker members that should be snapshotted
39  */
40 struct model_snapshot_members {
41         model_snapshot_members() :
42                 current_action(NULL),
43                 /* First thread created will have id INITIAL_THREAD_ID */
44                 next_thread_id(INITIAL_THREAD_ID),
45                 used_sequence_numbers(0),
46                 next_backtrack(NULL),
47                 bugs(),
48                 stats(),
49                 failed_promise(false),
50                 too_many_reads(false),
51                 bad_synchronization(false),
52                 asserted(false)
53         { }
54
55         ~model_snapshot_members() {
56                 for (unsigned int i = 0; i < bugs.size(); i++)
57                         delete bugs[i];
58                 bugs.clear();
59         }
60
61         ModelAction *current_action;
62         unsigned int next_thread_id;
63         modelclock_t used_sequence_numbers;
64         ModelAction *next_backtrack;
65         std::vector< bug_message *, SnapshotAlloc<bug_message *> > bugs;
66         struct execution_stats stats;
67         bool failed_promise;
68         bool too_many_reads;
69         /** @brief Incorrectly-ordered synchronization was made */
70         bool bad_synchronization;
71         bool asserted;
72
73         SNAPSHOTALLOC
74 };
75
76 /** @brief Constructor */
77 ModelChecker::ModelChecker(struct model_params params) :
78         /* Initialize default scheduler */
79         params(params),
80         scheduler(new Scheduler()),
81         diverge(NULL),
82         earliest_diverge(NULL),
83         action_trace(new action_list_t()),
84         thread_map(new HashTable<int, Thread *, int>()),
85         obj_map(new HashTable<const void *, action_list_t *, uintptr_t, 4>()),
86         lock_waiters_map(new HashTable<const void *, action_list_t *, uintptr_t, 4>()),
87         condvar_waiters_map(new HashTable<const void *, action_list_t *, uintptr_t, 4>()),
88         obj_thrd_map(new HashTable<void *, std::vector<action_list_t> *, uintptr_t, 4 >()),
89         promises(new std::vector< Promise *, SnapshotAlloc<Promise *> >()),
90         futurevalues(new std::vector< struct PendingFutureValue, SnapshotAlloc<struct PendingFutureValue> >()),
91         pending_rel_seqs(new std::vector< struct release_seq *, SnapshotAlloc<struct release_seq *> >()),
92         thrd_last_action(new std::vector< ModelAction *, SnapshotAlloc<ModelAction *> >(1)),
93         thrd_last_fence_release(new std::vector< ModelAction *, SnapshotAlloc<ModelAction *> >()),
94         node_stack(new NodeStack()),
95         priv(new struct model_snapshot_members()),
96         mo_graph(new CycleGraph())
97 {
98         /* Initialize a model-checker thread, for special ModelActions */
99         model_thread = new Thread(get_next_id());
100         thread_map->put(id_to_int(model_thread->get_id()), model_thread);
101 }
102
103 /** @brief Destructor */
104 ModelChecker::~ModelChecker()
105 {
106         for (unsigned int i = 0; i < get_num_threads(); i++)
107                 delete thread_map->get(i);
108         delete thread_map;
109
110         delete obj_thrd_map;
111         delete obj_map;
112         delete lock_waiters_map;
113         delete condvar_waiters_map;
114         delete action_trace;
115
116         for (unsigned int i = 0; i < promises->size(); i++)
117                 delete (*promises)[i];
118         delete promises;
119
120         delete pending_rel_seqs;
121
122         delete thrd_last_action;
123         delete thrd_last_fence_release;
124         delete node_stack;
125         delete scheduler;
126         delete mo_graph;
127         delete priv;
128 }
129
130 static action_list_t * get_safe_ptr_action(HashTable<const void *, action_list_t *, uintptr_t, 4> * hash, void * ptr)
131 {
132         action_list_t *tmp = hash->get(ptr);
133         if (tmp == NULL) {
134                 tmp = new action_list_t();
135                 hash->put(ptr, tmp);
136         }
137         return tmp;
138 }
139
140 static std::vector<action_list_t> * get_safe_ptr_vect_action(HashTable<void *, std::vector<action_list_t> *, uintptr_t, 4> * hash, void * ptr)
141 {
142         std::vector<action_list_t> *tmp = hash->get(ptr);
143         if (tmp == NULL) {
144                 tmp = new std::vector<action_list_t>();
145                 hash->put(ptr, tmp);
146         }
147         return tmp;
148 }
149
150 /**
151  * Restores user program to initial state and resets all model-checker data
152  * structures.
153  */
154 void ModelChecker::reset_to_initial_state()
155 {
156         DEBUG("+++ Resetting to initial state +++\n");
157         node_stack->reset_execution();
158
159         /* Print all model-checker output before rollback */
160         fflush(model_out);
161
162         snapshot_backtrack_before(0);
163 }
164
165 /** @return a thread ID for a new Thread */
166 thread_id_t ModelChecker::get_next_id()
167 {
168         return priv->next_thread_id++;
169 }
170
171 /** @return the number of user threads created during this execution */
172 unsigned int ModelChecker::get_num_threads() const
173 {
174         return priv->next_thread_id;
175 }
176
177 /**
178  * Must be called from user-thread context (e.g., through the global
179  * thread_current() interface)
180  *
181  * @return The currently executing Thread.
182  */
183 Thread * ModelChecker::get_current_thread() const
184 {
185         return scheduler->get_current_thread();
186 }
187
188 /** @return a sequence number for a new ModelAction */
189 modelclock_t ModelChecker::get_next_seq_num()
190 {
191         return ++priv->used_sequence_numbers;
192 }
193
194 Node * ModelChecker::get_curr_node() const
195 {
196         return node_stack->get_head();
197 }
198
199 /**
200  * @brief Choose the next thread to execute.
201  *
202  * This function chooses the next thread that should execute. It can force the
203  * adjacency of read/write portions of a RMW action, force THREAD_CREATE to be
204  * followed by a THREAD_START, or it can enforce execution replay/backtracking.
205  * The model-checker may have no preference regarding the next thread (i.e.,
206  * when exploring a new execution ordering), in which case this will return
207  * NULL.
208  * @param curr The current ModelAction. This action might guide the choice of
209  * next thread.
210  * @return The next thread to run. If the model-checker has no preference, NULL.
211  */
212 Thread * ModelChecker::get_next_thread(ModelAction *curr)
213 {
214         thread_id_t tid;
215
216         if (curr != NULL) {
217                 /* Do not split atomic actions. */
218                 if (curr->is_rmwr())
219                         return thread_current();
220                 else if (curr->get_type() == THREAD_CREATE)
221                         return curr->get_thread_operand();
222         }
223
224         /* Have we completed exploring the preselected path? */
225         if (diverge == NULL)
226                 return NULL;
227
228         /* Else, we are trying to replay an execution */
229         ModelAction *next = node_stack->get_next()->get_action();
230
231         if (next == diverge) {
232                 if (earliest_diverge == NULL || *diverge < *earliest_diverge)
233                         earliest_diverge = diverge;
234
235                 Node *nextnode = next->get_node();
236                 Node *prevnode = nextnode->get_parent();
237                 scheduler->update_sleep_set(prevnode);
238
239                 /* Reached divergence point */
240                 if (nextnode->increment_misc()) {
241                         /* The next node will try to satisfy a different misc_index values. */
242                         tid = next->get_tid();
243                         node_stack->pop_restofstack(2);
244                 } else if (nextnode->increment_promise()) {
245                         /* The next node will try to satisfy a different set of promises. */
246                         tid = next->get_tid();
247                         node_stack->pop_restofstack(2);
248                 } else if (nextnode->increment_read_from()) {
249                         /* The next node will read from a different value. */
250                         tid = next->get_tid();
251                         node_stack->pop_restofstack(2);
252                 } else if (nextnode->increment_future_value()) {
253                         /* The next node will try to read from a different future value. */
254                         tid = next->get_tid();
255                         node_stack->pop_restofstack(2);
256                 } else if (nextnode->increment_relseq_break()) {
257                         /* The next node will try to resolve a release sequence differently */
258                         tid = next->get_tid();
259                         node_stack->pop_restofstack(2);
260                 } else {
261                         ASSERT(prevnode);
262                         /* Make a different thread execute for next step */
263                         scheduler->add_sleep(get_thread(next->get_tid()));
264                         tid = prevnode->get_next_backtrack();
265                         /* Make sure the backtracked thread isn't sleeping. */
266                         node_stack->pop_restofstack(1);
267                         if (diverge == earliest_diverge) {
268                                 earliest_diverge = prevnode->get_action();
269                         }
270                 }
271                 /* The correct sleep set is in the parent node. */
272                 execute_sleep_set();
273
274                 DEBUG("*** Divergence point ***\n");
275
276                 diverge = NULL;
277         } else {
278                 tid = next->get_tid();
279         }
280         DEBUG("*** ModelChecker chose next thread = %d ***\n", id_to_int(tid));
281         ASSERT(tid != THREAD_ID_T_NONE);
282         return thread_map->get(id_to_int(tid));
283 }
284
285 /**
286  * We need to know what the next actions of all threads in the sleep
287  * set will be.  This method computes them and stores the actions at
288  * the corresponding thread object's pending action.
289  */
290
291 void ModelChecker::execute_sleep_set()
292 {
293         for (unsigned int i = 0; i < get_num_threads(); i++) {
294                 thread_id_t tid = int_to_id(i);
295                 Thread *thr = get_thread(tid);
296                 if (scheduler->is_sleep_set(thr) && thr->get_pending() == NULL) {
297                         thr->set_state(THREAD_RUNNING);
298                         scheduler->next_thread(thr);
299                         Thread::swap(&system_context, thr);
300                         priv->current_action->set_sleep_flag();
301                         thr->set_pending(priv->current_action);
302                 }
303         }
304 }
305
306 void ModelChecker::wake_up_sleeping_actions(ModelAction *curr)
307 {
308         for (unsigned int i = 0; i < get_num_threads(); i++) {
309                 Thread *thr = get_thread(int_to_id(i));
310                 if (scheduler->is_sleep_set(thr)) {
311                         ModelAction *pending_act = thr->get_pending();
312                         if ((!curr->is_rmwr()) && pending_act->could_synchronize_with(curr))
313                                 //Remove this thread from sleep set
314                                 scheduler->remove_sleep(thr);
315                 }
316         }
317 }
318
319 /** @brief Alert the model-checker that an incorrectly-ordered
320  * synchronization was made */
321 void ModelChecker::set_bad_synchronization()
322 {
323         priv->bad_synchronization = true;
324 }
325
326 bool ModelChecker::has_asserted() const
327 {
328         return priv->asserted;
329 }
330
331 void ModelChecker::set_assert()
332 {
333         priv->asserted = true;
334 }
335
336 /**
337  * Check if we are in a deadlock. Should only be called at the end of an
338  * execution, although it should not give false positives in the middle of an
339  * execution (there should be some ENABLED thread).
340  *
341  * @return True if program is in a deadlock; false otherwise
342  */
343 bool ModelChecker::is_deadlocked() const
344 {
345         bool blocking_threads = false;
346         for (unsigned int i = 0; i < get_num_threads(); i++) {
347                 thread_id_t tid = int_to_id(i);
348                 if (is_enabled(tid))
349                         return false;
350                 Thread *t = get_thread(tid);
351                 if (!t->is_model_thread() && t->get_pending())
352                         blocking_threads = true;
353         }
354         return blocking_threads;
355 }
356
357 /**
358  * Check if this is a complete execution. That is, have all thread completed
359  * execution (rather than exiting because sleep sets have forced a redundant
360  * execution).
361  *
362  * @return True if the execution is complete.
363  */
364 bool ModelChecker::is_complete_execution() const
365 {
366         for (unsigned int i = 0; i < get_num_threads(); i++)
367                 if (is_enabled(int_to_id(i)))
368                         return false;
369         return true;
370 }
371
372 /**
373  * @brief Assert a bug in the executing program.
374  *
375  * Use this function to assert any sort of bug in the user program. If the
376  * current trace is feasible (actually, a prefix of some feasible execution),
377  * then this execution will be aborted, printing the appropriate message. If
378  * the current trace is not yet feasible, the error message will be stashed and
379  * printed if the execution ever becomes feasible.
380  *
381  * @param msg Descriptive message for the bug (do not include newline char)
382  * @return True if bug is immediately-feasible
383  */
384 bool ModelChecker::assert_bug(const char *msg)
385 {
386         priv->bugs.push_back(new bug_message(msg));
387
388         if (isfeasibleprefix()) {
389                 set_assert();
390                 return true;
391         }
392         return false;
393 }
394
395 /**
396  * @brief Assert a bug in the executing program, asserted by a user thread
397  * @see ModelChecker::assert_bug
398  * @param msg Descriptive message for the bug (do not include newline char)
399  */
400 void ModelChecker::assert_user_bug(const char *msg)
401 {
402         /* If feasible bug, bail out now */
403         if (assert_bug(msg))
404                 switch_to_master(NULL);
405 }
406
407 /** @return True, if any bugs have been reported for this execution */
408 bool ModelChecker::have_bug_reports() const
409 {
410         return priv->bugs.size() != 0;
411 }
412
413 /** @brief Print bug report listing for this execution (if any bugs exist) */
414 void ModelChecker::print_bugs() const
415 {
416         if (have_bug_reports()) {
417                 model_print("Bug report: %zu bug%s detected\n",
418                                 priv->bugs.size(),
419                                 priv->bugs.size() > 1 ? "s" : "");
420                 for (unsigned int i = 0; i < priv->bugs.size(); i++)
421                         priv->bugs[i]->print();
422         }
423 }
424
425 /**
426  * @brief Record end-of-execution stats
427  *
428  * Must be run when exiting an execution. Records various stats.
429  * @see struct execution_stats
430  */
431 void ModelChecker::record_stats()
432 {
433         stats.num_total++;
434         if (!isfeasibleprefix())
435                 stats.num_infeasible++;
436         else if (have_bug_reports())
437                 stats.num_buggy_executions++;
438         else if (is_complete_execution())
439                 stats.num_complete++;
440         else
441                 stats.num_redundant++;
442 }
443
444 /** @brief Print execution stats */
445 void ModelChecker::print_stats() const
446 {
447         model_print("Number of complete, bug-free executions: %d\n", stats.num_complete);
448         model_print("Number of redundant executions: %d\n", stats.num_redundant);
449         model_print("Number of buggy executions: %d\n", stats.num_buggy_executions);
450         model_print("Number of infeasible executions: %d\n", stats.num_infeasible);
451         model_print("Total executions: %d\n", stats.num_total);
452         model_print("Total nodes created: %d\n", node_stack->get_total_nodes());
453 }
454
455 /**
456  * @brief End-of-exeuction print
457  * @param printbugs Should any existing bugs be printed?
458  */
459 void ModelChecker::print_execution(bool printbugs) const
460 {
461         print_program_output();
462
463         if (DBG_ENABLED() || params.verbose) {
464                 model_print("Earliest divergence point since last feasible execution:\n");
465                 if (earliest_diverge)
466                         earliest_diverge->print();
467                 else
468                         model_print("(Not set)\n");
469
470                 model_print("\n");
471                 print_stats();
472         }
473
474         /* Don't print invalid bugs */
475         if (printbugs)
476                 print_bugs();
477
478         model_print("\n");
479         print_summary();
480 }
481
482 /**
483  * Queries the model-checker for more executions to explore and, if one
484  * exists, resets the model-checker state to execute a new execution.
485  *
486  * @return If there are more executions to explore, return true. Otherwise,
487  * return false.
488  */
489 bool ModelChecker::next_execution()
490 {
491         DBG();
492         /* Is this execution a feasible execution that's worth bug-checking? */
493         bool complete = isfeasibleprefix() && (is_complete_execution() ||
494                         have_bug_reports());
495
496         /* End-of-execution bug checks */
497         if (complete) {
498                 if (is_deadlocked())
499                         assert_bug("Deadlock detected");
500
501                 checkDataRaces();
502         }
503
504         record_stats();
505
506         /* Output */
507         if (DBG_ENABLED() || params.verbose || (complete && have_bug_reports()))
508                 print_execution(complete);
509         else
510                 clear_program_output();
511
512         if (complete)
513                 earliest_diverge = NULL;
514
515         if ((diverge = get_next_backtrack()) == NULL)
516                 return false;
517
518         if (DBG_ENABLED()) {
519                 model_print("Next execution will diverge at:\n");
520                 diverge->print();
521         }
522
523         reset_to_initial_state();
524         return true;
525 }
526
527 ModelAction * ModelChecker::get_last_conflict(ModelAction *act)
528 {
529         switch (act->get_type()) {
530         case ATOMIC_FENCE:
531         case ATOMIC_READ:
532         case ATOMIC_WRITE:
533         case ATOMIC_RMW: {
534                 /* Optimization: relaxed operations don't need backtracking */
535                 if (act->is_relaxed())
536                         return NULL;
537                 /* linear search: from most recent to oldest */
538                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
539                 action_list_t::reverse_iterator rit;
540                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
541                         ModelAction *prev = *rit;
542                         if (prev->could_synchronize_with(act))
543                                 return prev;
544                 }
545                 break;
546         }
547         case ATOMIC_LOCK:
548         case ATOMIC_TRYLOCK: {
549                 /* linear search: from most recent to oldest */
550                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
551                 action_list_t::reverse_iterator rit;
552                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
553                         ModelAction *prev = *rit;
554                         if (act->is_conflicting_lock(prev))
555                                 return prev;
556                 }
557                 break;
558         }
559         case ATOMIC_UNLOCK: {
560                 /* linear search: from most recent to oldest */
561                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
562                 action_list_t::reverse_iterator rit;
563                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
564                         ModelAction *prev = *rit;
565                         if (!act->same_thread(prev) && prev->is_failed_trylock())
566                                 return prev;
567                 }
568                 break;
569         }
570         case ATOMIC_WAIT: {
571                 /* linear search: from most recent to oldest */
572                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
573                 action_list_t::reverse_iterator rit;
574                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
575                         ModelAction *prev = *rit;
576                         if (!act->same_thread(prev) && prev->is_failed_trylock())
577                                 return prev;
578                         if (!act->same_thread(prev) && prev->is_notify())
579                                 return prev;
580                 }
581                 break;
582         }
583
584         case ATOMIC_NOTIFY_ALL:
585         case ATOMIC_NOTIFY_ONE: {
586                 /* linear search: from most recent to oldest */
587                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
588                 action_list_t::reverse_iterator rit;
589                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
590                         ModelAction *prev = *rit;
591                         if (!act->same_thread(prev) && prev->is_wait())
592                                 return prev;
593                 }
594                 break;
595         }
596         default:
597                 break;
598         }
599         return NULL;
600 }
601
602 /** This method finds backtracking points where we should try to
603  * reorder the parameter ModelAction against.
604  *
605  * @param the ModelAction to find backtracking points for.
606  */
607 void ModelChecker::set_backtracking(ModelAction *act)
608 {
609         Thread *t = get_thread(act);
610         ModelAction *prev = get_last_conflict(act);
611         if (prev == NULL)
612                 return;
613
614         Node *node = prev->get_node()->get_parent();
615
616         int low_tid, high_tid;
617         if (node->is_enabled(t)) {
618                 low_tid = id_to_int(act->get_tid());
619                 high_tid = low_tid + 1;
620         } else {
621                 low_tid = 0;
622                 high_tid = get_num_threads();
623         }
624
625         for (int i = low_tid; i < high_tid; i++) {
626                 thread_id_t tid = int_to_id(i);
627
628                 /* Make sure this thread can be enabled here. */
629                 if (i >= node->get_num_threads())
630                         break;
631
632                 /* Don't backtrack into a point where the thread is disabled or sleeping. */
633                 if (node->enabled_status(tid) != THREAD_ENABLED)
634                         continue;
635
636                 /* Check if this has been explored already */
637                 if (node->has_been_explored(tid))
638                         continue;
639
640                 /* See if fairness allows */
641                 if (model->params.fairwindow != 0 && !node->has_priority(tid)) {
642                         bool unfair = false;
643                         for (int t = 0; t < node->get_num_threads(); t++) {
644                                 thread_id_t tother = int_to_id(t);
645                                 if (node->is_enabled(tother) && node->has_priority(tother)) {
646                                         unfair = true;
647                                         break;
648                                 }
649                         }
650                         if (unfair)
651                                 continue;
652                 }
653                 /* Cache the latest backtracking point */
654                 set_latest_backtrack(prev);
655
656                 /* If this is a new backtracking point, mark the tree */
657                 if (!node->set_backtrack(tid))
658                         continue;
659                 DEBUG("Setting backtrack: conflict = %d, instead tid = %d\n",
660                                         id_to_int(prev->get_tid()),
661                                         id_to_int(t->get_id()));
662                 if (DBG_ENABLED()) {
663                         prev->print();
664                         act->print();
665                 }
666         }
667 }
668
669 /**
670  * @brief Cache the a backtracking point as the "most recent", if eligible
671  *
672  * Note that this does not prepare the NodeStack for this backtracking
673  * operation, it only caches the action on a per-execution basis
674  *
675  * @param act The operation at which we should explore a different next action
676  * (i.e., backtracking point)
677  * @return True, if this action is now the most recent backtracking point;
678  * false otherwise
679  */
680 bool ModelChecker::set_latest_backtrack(ModelAction *act)
681 {
682         if (!priv->next_backtrack || *act > *priv->next_backtrack) {
683                 priv->next_backtrack = act;
684                 return true;
685         }
686         return false;
687 }
688
689 /**
690  * Returns last backtracking point. The model checker will explore a different
691  * path for this point in the next execution.
692  * @return The ModelAction at which the next execution should diverge.
693  */
694 ModelAction * ModelChecker::get_next_backtrack()
695 {
696         ModelAction *next = priv->next_backtrack;
697         priv->next_backtrack = NULL;
698         return next;
699 }
700
701 /**
702  * Processes a read or rmw model action.
703  * @param curr is the read model action to process.
704  * @param second_part_of_rmw is boolean that is true is this is the second action of a rmw.
705  * @return True if processing this read updates the mo_graph.
706  */
707 bool ModelChecker::process_read(ModelAction *curr, bool second_part_of_rmw)
708 {
709         uint64_t value = VALUE_NONE;
710         bool updated = false;
711         while (true) {
712                 const ModelAction *reads_from = curr->get_node()->get_read_from();
713                 if (reads_from != NULL) {
714                         mo_graph->startChanges();
715
716                         value = reads_from->get_value();
717                         bool r_status = false;
718
719                         if (!second_part_of_rmw) {
720                                 check_recency(curr, reads_from);
721                                 r_status = r_modification_order(curr, reads_from);
722                         }
723
724
725                         if (!second_part_of_rmw && is_infeasible() && (curr->get_node()->increment_read_from() || curr->get_node()->increment_future_value())) {
726                                 mo_graph->rollbackChanges();
727                                 priv->too_many_reads = false;
728                                 continue;
729                         }
730
731                         read_from(curr, reads_from);
732                         mo_graph->commitChanges();
733                         mo_check_promises(curr->get_tid(), reads_from);
734
735                         updated |= r_status;
736                 } else if (!second_part_of_rmw) {
737                         /* Read from future value */
738                         value = curr->get_node()->get_future_value();
739                         modelclock_t expiration = curr->get_node()->get_future_value_expiration();
740                         curr->set_read_from(NULL);
741                         Promise *valuepromise = new Promise(curr, value, expiration);
742                         promises->push_back(valuepromise);
743                 }
744                 get_thread(curr)->set_return_value(value);
745                 return updated;
746         }
747 }
748
749 /**
750  * Processes a lock, trylock, or unlock model action.  @param curr is
751  * the read model action to process.
752  *
753  * The try lock operation checks whether the lock is taken.  If not,
754  * it falls to the normal lock operation case.  If so, it returns
755  * fail.
756  *
757  * The lock operation has already been checked that it is enabled, so
758  * it just grabs the lock and synchronizes with the previous unlock.
759  *
760  * The unlock operation has to re-enable all of the threads that are
761  * waiting on the lock.
762  *
763  * @return True if synchronization was updated; false otherwise
764  */
765 bool ModelChecker::process_mutex(ModelAction *curr)
766 {
767         std::mutex *mutex = NULL;
768         struct std::mutex_state *state = NULL;
769
770         if (curr->is_trylock() || curr->is_lock() || curr->is_unlock()) {
771                 mutex = (std::mutex *)curr->get_location();
772                 state = mutex->get_state();
773         } else if (curr->is_wait()) {
774                 mutex = (std::mutex *)curr->get_value();
775                 state = mutex->get_state();
776         }
777
778         switch (curr->get_type()) {
779         case ATOMIC_TRYLOCK: {
780                 bool success = !state->islocked;
781                 curr->set_try_lock(success);
782                 if (!success) {
783                         get_thread(curr)->set_return_value(0);
784                         break;
785                 }
786                 get_thread(curr)->set_return_value(1);
787         }
788                 //otherwise fall into the lock case
789         case ATOMIC_LOCK: {
790                 if (curr->get_cv()->getClock(state->alloc_tid) <= state->alloc_clock)
791                         assert_bug("Lock access before initialization");
792                 state->islocked = true;
793                 ModelAction *unlock = get_last_unlock(curr);
794                 //synchronize with the previous unlock statement
795                 if (unlock != NULL) {
796                         curr->synchronize_with(unlock);
797                         return true;
798                 }
799                 break;
800         }
801         case ATOMIC_UNLOCK: {
802                 //unlock the lock
803                 state->islocked = false;
804                 //wake up the other threads
805                 action_list_t *waiters = get_safe_ptr_action(lock_waiters_map, curr->get_location());
806                 //activate all the waiting threads
807                 for (action_list_t::iterator rit = waiters->begin(); rit != waiters->end(); rit++) {
808                         scheduler->wake(get_thread(*rit));
809                 }
810                 waiters->clear();
811                 break;
812         }
813         case ATOMIC_WAIT: {
814                 //unlock the lock
815                 state->islocked = false;
816                 //wake up the other threads
817                 action_list_t *waiters = get_safe_ptr_action(lock_waiters_map, (void *) curr->get_value());
818                 //activate all the waiting threads
819                 for (action_list_t::iterator rit = waiters->begin(); rit != waiters->end(); rit++) {
820                         scheduler->wake(get_thread(*rit));
821                 }
822                 waiters->clear();
823                 //check whether we should go to sleep or not...simulate spurious failures
824                 if (curr->get_node()->get_misc() == 0) {
825                         get_safe_ptr_action(condvar_waiters_map, curr->get_location())->push_back(curr);
826                         //disable us
827                         scheduler->sleep(get_thread(curr));
828                 }
829                 break;
830         }
831         case ATOMIC_NOTIFY_ALL: {
832                 action_list_t *waiters = get_safe_ptr_action(condvar_waiters_map, curr->get_location());
833                 //activate all the waiting threads
834                 for (action_list_t::iterator rit = waiters->begin(); rit != waiters->end(); rit++) {
835                         scheduler->wake(get_thread(*rit));
836                 }
837                 waiters->clear();
838                 break;
839         }
840         case ATOMIC_NOTIFY_ONE: {
841                 action_list_t *waiters = get_safe_ptr_action(condvar_waiters_map, curr->get_location());
842                 int wakeupthread = curr->get_node()->get_misc();
843                 action_list_t::iterator it = waiters->begin();
844                 advance(it, wakeupthread);
845                 scheduler->wake(get_thread(*it));
846                 waiters->erase(it);
847                 break;
848         }
849
850         default:
851                 ASSERT(0);
852         }
853         return false;
854 }
855
856 /**
857  * Process a write ModelAction
858  * @param curr The ModelAction to process
859  * @return True if the mo_graph was updated or promises were resolved
860  */
861 bool ModelChecker::process_write(ModelAction *curr)
862 {
863         bool updated_mod_order = w_modification_order(curr);
864         bool updated_promises = resolve_promises(curr);
865
866         if (promises->size() == 0) {
867                 for (unsigned int i = 0; i < futurevalues->size(); i++) {
868                         struct PendingFutureValue pfv = (*futurevalues)[i];
869                         //Do more ambitious checks now that mo is more complete
870                         if (mo_may_allow(pfv.writer, pfv.act) &&
871                                         pfv.act->get_node()->add_future_value(pfv.writer->get_value(), pfv.writer->get_seq_number() + params.maxfuturedelay))
872                                 set_latest_backtrack(pfv.act);
873                 }
874                 futurevalues->clear();
875         }
876
877         mo_graph->commitChanges();
878         mo_check_promises(curr->get_tid(), curr);
879
880         get_thread(curr)->set_return_value(VALUE_NONE);
881         return updated_mod_order || updated_promises;
882 }
883
884 /**
885  * Process a fence ModelAction
886  * @param curr The ModelAction to process
887  * @return True if synchronization was updated
888  */
889 bool ModelChecker::process_fence(ModelAction *curr)
890 {
891         /*
892          * fence-relaxed: no-op
893          * fence-release: only log the occurence (not in this function), for
894          *   use in later synchronization
895          * fence-acquire (this function): search for hypothetical release
896          *   sequences
897          */
898         bool updated = false;
899         if (curr->is_acquire()) {
900                 action_list_t *list = action_trace;
901                 action_list_t::reverse_iterator rit;
902                 /* Find X : is_read(X) && X --sb-> curr */
903                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
904                         ModelAction *act = *rit;
905                         if (act == curr)
906                                 continue;
907                         if (act->get_tid() != curr->get_tid())
908                                 continue;
909                         /* Stop at the beginning of the thread */
910                         if (act->is_thread_start())
911                                 break;
912                         /* Stop once we reach a prior fence-acquire */
913                         if (act->is_fence() && act->is_acquire())
914                                 break;
915                         if (!act->is_read())
916                                 continue;
917                         /* read-acquire will find its own release sequences */
918                         if (act->is_acquire())
919                                 continue;
920
921                         /* Establish hypothetical release sequences */
922                         rel_heads_list_t release_heads;
923                         get_release_seq_heads(curr, act, &release_heads);
924                         for (unsigned int i = 0; i < release_heads.size(); i++)
925                                 if (!curr->synchronize_with(release_heads[i]))
926                                         set_bad_synchronization();
927                         if (release_heads.size() != 0)
928                                 updated = true;
929                 }
930         }
931         return updated;
932 }
933
934 /**
935  * @brief Process the current action for thread-related activity
936  *
937  * Performs current-action processing for a THREAD_* ModelAction. Proccesses
938  * may include setting Thread status, completing THREAD_FINISH/THREAD_JOIN
939  * synchronization, etc.  This function is a no-op for non-THREAD actions
940  * (e.g., ATOMIC_{READ,WRITE,RMW,LOCK}, etc.)
941  *
942  * @param curr The current action
943  * @return True if synchronization was updated or a thread completed
944  */
945 bool ModelChecker::process_thread_action(ModelAction *curr)
946 {
947         bool updated = false;
948
949         switch (curr->get_type()) {
950         case THREAD_CREATE: {
951                 Thread *th = curr->get_thread_operand();
952                 th->set_creation(curr);
953                 break;
954         }
955         case THREAD_JOIN: {
956                 Thread *blocking = curr->get_thread_operand();
957                 ModelAction *act = get_last_action(blocking->get_id());
958                 curr->synchronize_with(act);
959                 updated = true; /* trigger rel-seq checks */
960                 break;
961         }
962         case THREAD_FINISH: {
963                 Thread *th = get_thread(curr);
964                 while (!th->wait_list_empty()) {
965                         ModelAction *act = th->pop_wait_list();
966                         scheduler->wake(get_thread(act));
967                 }
968                 th->complete();
969                 updated = true; /* trigger rel-seq checks */
970                 break;
971         }
972         case THREAD_START: {
973                 check_promises(curr->get_tid(), NULL, curr->get_cv());
974                 break;
975         }
976         default:
977                 break;
978         }
979
980         return updated;
981 }
982
983 /**
984  * @brief Process the current action for release sequence fixup activity
985  *
986  * Performs model-checker release sequence fixups for the current action,
987  * forcing a single pending release sequence to break (with a given, potential
988  * "loose" write) or to complete (i.e., synchronize). If a pending release
989  * sequence forms a complete release sequence, then we must perform the fixup
990  * synchronization, mo_graph additions, etc.
991  *
992  * @param curr The current action; must be a release sequence fixup action
993  * @param work_queue The work queue to which to add work items as they are
994  * generated
995  */
996 void ModelChecker::process_relseq_fixup(ModelAction *curr, work_queue_t *work_queue)
997 {
998         const ModelAction *write = curr->get_node()->get_relseq_break();
999         struct release_seq *sequence = pending_rel_seqs->back();
1000         pending_rel_seqs->pop_back();
1001         ASSERT(sequence);
1002         ModelAction *acquire = sequence->acquire;
1003         const ModelAction *rf = sequence->rf;
1004         const ModelAction *release = sequence->release;
1005         ASSERT(acquire);
1006         ASSERT(release);
1007         ASSERT(rf);
1008         ASSERT(release->same_thread(rf));
1009
1010         if (write == NULL) {
1011                 /**
1012                  * @todo Forcing a synchronization requires that we set
1013                  * modification order constraints. For instance, we can't allow
1014                  * a fixup sequence in which two separate read-acquire
1015                  * operations read from the same sequence, where the first one
1016                  * synchronizes and the other doesn't. Essentially, we can't
1017                  * allow any writes to insert themselves between 'release' and
1018                  * 'rf'
1019                  */
1020
1021                 /* Must synchronize */
1022                 if (!acquire->synchronize_with(release)) {
1023                         set_bad_synchronization();
1024                         return;
1025                 }
1026                 /* Re-check all pending release sequences */
1027                 work_queue->push_back(CheckRelSeqWorkEntry(NULL));
1028                 /* Re-check act for mo_graph edges */
1029                 work_queue->push_back(MOEdgeWorkEntry(acquire));
1030
1031                 /* propagate synchronization to later actions */
1032                 action_list_t::reverse_iterator rit = action_trace->rbegin();
1033                 for (; (*rit) != acquire; rit++) {
1034                         ModelAction *propagate = *rit;
1035                         if (acquire->happens_before(propagate)) {
1036                                 propagate->synchronize_with(acquire);
1037                                 /* Re-check 'propagate' for mo_graph edges */
1038                                 work_queue->push_back(MOEdgeWorkEntry(propagate));
1039                         }
1040                 }
1041         } else {
1042                 /* Break release sequence with new edges:
1043                  *   release --mo--> write --mo--> rf */
1044                 mo_graph->addEdge(release, write);
1045                 mo_graph->addEdge(write, rf);
1046         }
1047
1048         /* See if we have realized a data race */
1049         checkDataRaces();
1050 }
1051
1052 /**
1053  * Initialize the current action by performing one or more of the following
1054  * actions, as appropriate: merging RMWR and RMWC/RMW actions, stepping forward
1055  * in the NodeStack, manipulating backtracking sets, allocating and
1056  * initializing clock vectors, and computing the promises to fulfill.
1057  *
1058  * @param curr The current action, as passed from the user context; may be
1059  * freed/invalidated after the execution of this function, with a different
1060  * action "returned" its place (pass-by-reference)
1061  * @return True if curr is a newly-explored action; false otherwise
1062  */
1063 bool ModelChecker::initialize_curr_action(ModelAction **curr)
1064 {
1065         ModelAction *newcurr;
1066
1067         if ((*curr)->is_rmwc() || (*curr)->is_rmw()) {
1068                 newcurr = process_rmw(*curr);
1069                 delete *curr;
1070
1071                 if (newcurr->is_rmw())
1072                         compute_promises(newcurr);
1073
1074                 *curr = newcurr;
1075                 return false;
1076         }
1077
1078         (*curr)->set_seq_number(get_next_seq_num());
1079
1080         newcurr = node_stack->explore_action(*curr, scheduler->get_enabled_array());
1081         if (newcurr) {
1082                 /* First restore type and order in case of RMW operation */
1083                 if ((*curr)->is_rmwr())
1084                         newcurr->copy_typeandorder(*curr);
1085
1086                 ASSERT((*curr)->get_location() == newcurr->get_location());
1087                 newcurr->copy_from_new(*curr);
1088
1089                 /* Discard duplicate ModelAction; use action from NodeStack */
1090                 delete *curr;
1091
1092                 /* Always compute new clock vector */
1093                 newcurr->create_cv(get_parent_action(newcurr->get_tid()));
1094
1095                 *curr = newcurr;
1096                 return false; /* Action was explored previously */
1097         } else {
1098                 newcurr = *curr;
1099
1100                 /* Always compute new clock vector */
1101                 newcurr->create_cv(get_parent_action(newcurr->get_tid()));
1102
1103                 /* Assign most recent release fence */
1104                 newcurr->set_last_fence_release(get_last_fence_release(newcurr->get_tid()));
1105
1106                 /*
1107                  * Perform one-time actions when pushing new ModelAction onto
1108                  * NodeStack
1109                  */
1110                 if (newcurr->is_write())
1111                         compute_promises(newcurr);
1112                 else if (newcurr->is_relseq_fixup())
1113                         compute_relseq_breakwrites(newcurr);
1114                 else if (newcurr->is_wait())
1115                         newcurr->get_node()->set_misc_max(2);
1116                 else if (newcurr->is_notify_one()) {
1117                         newcurr->get_node()->set_misc_max(get_safe_ptr_action(condvar_waiters_map, newcurr->get_location())->size());
1118                 }
1119                 return true; /* This was a new ModelAction */
1120         }
1121 }
1122
1123 /**
1124  * @brief Establish reads-from relation between two actions
1125  *
1126  * Perform basic operations involved with establishing a concrete rf relation,
1127  * including setting the ModelAction data and checking for release sequences.
1128  *
1129  * @param act The action that is reading (must be a read)
1130  * @param rf The action from which we are reading (must be a write)
1131  *
1132  * @return True if this read established synchronization
1133  */
1134 bool ModelChecker::read_from(ModelAction *act, const ModelAction *rf)
1135 {
1136         act->set_read_from(rf);
1137         if (rf != NULL && act->is_acquire()) {
1138                 rel_heads_list_t release_heads;
1139                 get_release_seq_heads(act, act, &release_heads);
1140                 int num_heads = release_heads.size();
1141                 for (unsigned int i = 0; i < release_heads.size(); i++)
1142                         if (!act->synchronize_with(release_heads[i])) {
1143                                 set_bad_synchronization();
1144                                 num_heads--;
1145                         }
1146                 return num_heads > 0;
1147         }
1148         return false;
1149 }
1150
1151 /**
1152  * @brief Check whether a model action is enabled.
1153  *
1154  * Checks whether a lock or join operation would be successful (i.e., is the
1155  * lock already locked, or is the joined thread already complete). If not, put
1156  * the action in a waiter list.
1157  *
1158  * @param curr is the ModelAction to check whether it is enabled.
1159  * @return a bool that indicates whether the action is enabled.
1160  */
1161 bool ModelChecker::check_action_enabled(ModelAction *curr) {
1162         if (curr->is_lock()) {
1163                 std::mutex *lock = (std::mutex *)curr->get_location();
1164                 struct std::mutex_state *state = lock->get_state();
1165                 if (state->islocked) {
1166                         //Stick the action in the appropriate waiting queue
1167                         get_safe_ptr_action(lock_waiters_map, curr->get_location())->push_back(curr);
1168                         return false;
1169                 }
1170         } else if (curr->get_type() == THREAD_JOIN) {
1171                 Thread *blocking = (Thread *)curr->get_location();
1172                 if (!blocking->is_complete()) {
1173                         blocking->push_wait_list(curr);
1174                         return false;
1175                 }
1176         }
1177
1178         return true;
1179 }
1180
1181 /**
1182  * Stores the ModelAction for the current thread action.  Call this
1183  * immediately before switching from user- to system-context to pass
1184  * data between them.
1185  * @param act The ModelAction created by the user-thread action
1186  */
1187 void ModelChecker::set_current_action(ModelAction *act) {
1188         priv->current_action = act;
1189 }
1190
1191 /**
1192  * This is the heart of the model checker routine. It performs model-checking
1193  * actions corresponding to a given "current action." Among other processes, it
1194  * calculates reads-from relationships, updates synchronization clock vectors,
1195  * forms a memory_order constraints graph, and handles replay/backtrack
1196  * execution when running permutations of previously-observed executions.
1197  *
1198  * @param curr The current action to process
1199  * @return The ModelAction that is actually executed; may be different than
1200  * curr; may be NULL, if the current action is not enabled to run
1201  */
1202 ModelAction * ModelChecker::check_current_action(ModelAction *curr)
1203 {
1204         ASSERT(curr);
1205         bool second_part_of_rmw = curr->is_rmwc() || curr->is_rmw();
1206
1207         if (!check_action_enabled(curr)) {
1208                 /* Make the execution look like we chose to run this action
1209                  * much later, when a lock/join can succeed */
1210                 get_thread(curr)->set_pending(curr);
1211                 scheduler->sleep(get_thread(curr));
1212                 return NULL;
1213         }
1214
1215         bool newly_explored = initialize_curr_action(&curr);
1216
1217         DBG();
1218         if (DBG_ENABLED())
1219                 curr->print();
1220
1221         wake_up_sleeping_actions(curr);
1222
1223         /* Add the action to lists before any other model-checking tasks */
1224         if (!second_part_of_rmw)
1225                 add_action_to_lists(curr);
1226
1227         /* Build may_read_from set for newly-created actions */
1228         if (newly_explored && curr->is_read())
1229                 build_reads_from_past(curr);
1230
1231         /* Initialize work_queue with the "current action" work */
1232         work_queue_t work_queue(1, CheckCurrWorkEntry(curr));
1233         while (!work_queue.empty() && !has_asserted()) {
1234                 WorkQueueEntry work = work_queue.front();
1235                 work_queue.pop_front();
1236
1237                 switch (work.type) {
1238                 case WORK_CHECK_CURR_ACTION: {
1239                         ModelAction *act = work.action;
1240                         bool update = false; /* update this location's release seq's */
1241                         bool update_all = false; /* update all release seq's */
1242
1243                         if (process_thread_action(curr))
1244                                 update_all = true;
1245
1246                         if (act->is_read() && process_read(act, second_part_of_rmw))
1247                                 update = true;
1248
1249                         if (act->is_write() && process_write(act))
1250                                 update = true;
1251
1252                         if (act->is_fence() && process_fence(act))
1253                                 update_all = true;
1254
1255                         if (act->is_mutex_op() && process_mutex(act))
1256                                 update_all = true;
1257
1258                         if (act->is_relseq_fixup())
1259                                 process_relseq_fixup(curr, &work_queue);
1260
1261                         if (update_all)
1262                                 work_queue.push_back(CheckRelSeqWorkEntry(NULL));
1263                         else if (update)
1264                                 work_queue.push_back(CheckRelSeqWorkEntry(act->get_location()));
1265                         break;
1266                 }
1267                 case WORK_CHECK_RELEASE_SEQ:
1268                         resolve_release_sequences(work.location, &work_queue);
1269                         break;
1270                 case WORK_CHECK_MO_EDGES: {
1271                         /** @todo Complete verification of work_queue */
1272                         ModelAction *act = work.action;
1273                         bool updated = false;
1274
1275                         if (act->is_read()) {
1276                                 const ModelAction *rf = act->get_reads_from();
1277                                 if (rf != NULL && r_modification_order(act, rf))
1278                                         updated = true;
1279                         }
1280                         if (act->is_write()) {
1281                                 if (w_modification_order(act))
1282                                         updated = true;
1283                         }
1284                         mo_graph->commitChanges();
1285
1286                         if (updated)
1287                                 work_queue.push_back(CheckRelSeqWorkEntry(act->get_location()));
1288                         break;
1289                 }
1290                 default:
1291                         ASSERT(false);
1292                         break;
1293                 }
1294         }
1295
1296         check_curr_backtracking(curr);
1297         set_backtracking(curr);
1298         return curr;
1299 }
1300
1301 void ModelChecker::check_curr_backtracking(ModelAction *curr)
1302 {
1303         Node *currnode = curr->get_node();
1304         Node *parnode = currnode->get_parent();
1305
1306         if ((parnode && !parnode->backtrack_empty()) ||
1307                          !currnode->misc_empty() ||
1308                          !currnode->read_from_empty() ||
1309                          !currnode->future_value_empty() ||
1310                          !currnode->promise_empty() ||
1311                          !currnode->relseq_break_empty()) {
1312                 set_latest_backtrack(curr);
1313         }
1314 }
1315
1316 bool ModelChecker::promises_expired() const
1317 {
1318         for (unsigned int i = 0; i < promises->size(); i++) {
1319                 Promise *promise = (*promises)[i];
1320                 if (promise->get_expiration() < priv->used_sequence_numbers)
1321                         return true;
1322         }
1323         return false;
1324 }
1325
1326 /**
1327  * This is the strongest feasibility check available.
1328  * @return whether the current trace (partial or complete) must be a prefix of
1329  * a feasible trace.
1330  */
1331 bool ModelChecker::isfeasibleprefix() const
1332 {
1333         return pending_rel_seqs->size() == 0 && is_feasible_prefix_ignore_relseq();
1334 }
1335
1336 /**
1337  * Returns whether the current completed trace is feasible, except for pending
1338  * release sequences.
1339  */
1340 bool ModelChecker::is_feasible_prefix_ignore_relseq() const
1341 {
1342         if (DBG_ENABLED() && promises->size() != 0)
1343                 DEBUG("Infeasible: unrevolved promises\n");
1344
1345         return !is_infeasible() && promises->size() == 0;
1346 }
1347
1348 /**
1349  * Check if the current partial trace is infeasible. Does not check any
1350  * end-of-execution flags, which might rule out the execution. Thus, this is
1351  * useful only for ruling an execution as infeasible.
1352  * @return whether the current partial trace is infeasible.
1353  */
1354 bool ModelChecker::is_infeasible() const
1355 {
1356         if (DBG_ENABLED() && mo_graph->checkForRMWViolation())
1357                 DEBUG("Infeasible: RMW violation\n");
1358
1359         return mo_graph->checkForRMWViolation() || is_infeasible_ignoreRMW();
1360 }
1361
1362 /**
1363  * Check If the current partial trace is infeasible, while ignoring
1364  * infeasibility related to 2 RMW's reading from the same store. It does not
1365  * check end-of-execution feasibility.
1366  * @see ModelChecker::is_infeasible
1367  * @return whether the current partial trace is infeasible, ignoring multiple
1368  * RMWs reading from the same store.
1369  * */
1370 bool ModelChecker::is_infeasible_ignoreRMW() const
1371 {
1372         if (DBG_ENABLED()) {
1373                 if (mo_graph->checkForCycles())
1374                         DEBUG("Infeasible: modification order cycles\n");
1375                 if (priv->failed_promise)
1376                         DEBUG("Infeasible: failed promise\n");
1377                 if (priv->too_many_reads)
1378                         DEBUG("Infeasible: too many reads\n");
1379                 if (priv->bad_synchronization)
1380                         DEBUG("Infeasible: bad synchronization ordering\n");
1381                 if (promises_expired())
1382                         DEBUG("Infeasible: promises expired\n");
1383         }
1384         return mo_graph->checkForCycles() || priv->failed_promise ||
1385                 priv->too_many_reads || priv->bad_synchronization ||
1386                 promises_expired();
1387 }
1388
1389 /** Close out a RMWR by converting previous RMWR into a RMW or READ. */
1390 ModelAction * ModelChecker::process_rmw(ModelAction *act) {
1391         ModelAction *lastread = get_last_action(act->get_tid());
1392         lastread->process_rmw(act);
1393         if (act->is_rmw() && lastread->get_reads_from() != NULL) {
1394                 mo_graph->addRMWEdge(lastread->get_reads_from(), lastread);
1395                 mo_graph->commitChanges();
1396         }
1397         return lastread;
1398 }
1399
1400 /**
1401  * Checks whether a thread has read from the same write for too many times
1402  * without seeing the effects of a later write.
1403  *
1404  * Basic idea:
1405  * 1) there must a different write that we could read from that would satisfy the modification order,
1406  * 2) we must have read from the same value in excess of maxreads times, and
1407  * 3) that other write must have been in the reads_from set for maxreads times.
1408  *
1409  * If so, we decide that the execution is no longer feasible.
1410  */
1411 void ModelChecker::check_recency(ModelAction *curr, const ModelAction *rf)
1412 {
1413         if (params.maxreads != 0) {
1414                 if (curr->get_node()->get_read_from_size() <= 1)
1415                         return;
1416                 //Must make sure that execution is currently feasible...  We could
1417                 //accidentally clear by rolling back
1418                 if (is_infeasible())
1419                         return;
1420                 std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1421                 int tid = id_to_int(curr->get_tid());
1422
1423                 /* Skip checks */
1424                 if ((int)thrd_lists->size() <= tid)
1425                         return;
1426                 action_list_t *list = &(*thrd_lists)[tid];
1427
1428                 action_list_t::reverse_iterator rit = list->rbegin();
1429                 /* Skip past curr */
1430                 for (; (*rit) != curr; rit++)
1431                         ;
1432                 /* go past curr now */
1433                 rit++;
1434
1435                 action_list_t::reverse_iterator ritcopy = rit;
1436                 //See if we have enough reads from the same value
1437                 int count = 0;
1438                 for (; count < params.maxreads; rit++, count++) {
1439                         if (rit == list->rend())
1440                                 return;
1441                         ModelAction *act = *rit;
1442                         if (!act->is_read())
1443                                 return;
1444
1445                         if (act->get_reads_from() != rf)
1446                                 return;
1447                         if (act->get_node()->get_read_from_size() <= 1)
1448                                 return;
1449                 }
1450                 for (int i = 0; i < curr->get_node()->get_read_from_size(); i++) {
1451                         /* Get write */
1452                         const ModelAction *write = curr->get_node()->get_read_from_at(i);
1453
1454                         /* Need a different write */
1455                         if (write == rf)
1456                                 continue;
1457
1458                         /* Test to see whether this is a feasible write to read from */
1459                         mo_graph->startChanges();
1460                         r_modification_order(curr, write);
1461                         bool feasiblereadfrom = !is_infeasible();
1462                         mo_graph->rollbackChanges();
1463
1464                         if (!feasiblereadfrom)
1465                                 continue;
1466                         rit = ritcopy;
1467
1468                         bool feasiblewrite = true;
1469                         //new we need to see if this write works for everyone
1470
1471                         for (int loop = count; loop > 0; loop--, rit++) {
1472                                 ModelAction *act = *rit;
1473                                 bool foundvalue = false;
1474                                 for (int j = 0; j < act->get_node()->get_read_from_size(); j++) {
1475                                         if (act->get_node()->get_read_from_at(j) == write) {
1476                                                 foundvalue = true;
1477                                                 break;
1478                                         }
1479                                 }
1480                                 if (!foundvalue) {
1481                                         feasiblewrite = false;
1482                                         break;
1483                                 }
1484                         }
1485                         if (feasiblewrite) {
1486                                 priv->too_many_reads = true;
1487                                 return;
1488                         }
1489                 }
1490         }
1491 }
1492
1493 /**
1494  * Updates the mo_graph with the constraints imposed from the current
1495  * read.
1496  *
1497  * Basic idea is the following: Go through each other thread and find
1498  * the lastest action that happened before our read.  Two cases:
1499  *
1500  * (1) The action is a write => that write must either occur before
1501  * the write we read from or be the write we read from.
1502  *
1503  * (2) The action is a read => the write that that action read from
1504  * must occur before the write we read from or be the same write.
1505  *
1506  * @param curr The current action. Must be a read.
1507  * @param rf The action that curr reads from. Must be a write.
1508  * @return True if modification order edges were added; false otherwise
1509  */
1510 bool ModelChecker::r_modification_order(ModelAction *curr, const ModelAction *rf)
1511 {
1512         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1513         unsigned int i;
1514         bool added = false;
1515         ASSERT(curr->is_read());
1516
1517         /* Last SC fence in the current thread */
1518         ModelAction *last_sc_fence_local = get_last_seq_cst_fence(curr->get_tid(), NULL);
1519
1520         /* Iterate over all threads */
1521         for (i = 0; i < thrd_lists->size(); i++) {
1522                 /* Last SC fence in thread i */
1523                 ModelAction *last_sc_fence_thread_local = NULL;
1524                 if (int_to_id((int)i) != curr->get_tid())
1525                         last_sc_fence_thread_local = get_last_seq_cst_fence(int_to_id(i), NULL);
1526
1527                 /* Last SC fence in thread i, before last SC fence in current thread */
1528                 ModelAction *last_sc_fence_thread_before = NULL;
1529                 if (last_sc_fence_local)
1530                         last_sc_fence_thread_before = get_last_seq_cst_fence(int_to_id(i), last_sc_fence_local);
1531
1532                 /* Iterate over actions in thread, starting from most recent */
1533                 action_list_t *list = &(*thrd_lists)[i];
1534                 action_list_t::reverse_iterator rit;
1535                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1536                         ModelAction *act = *rit;
1537
1538                         if (act->is_write() && act != rf && act != curr) {
1539                                 /* C++, Section 29.3 statement 5 */
1540                                 if (curr->is_seqcst() && last_sc_fence_thread_local &&
1541                                                 *act < *last_sc_fence_thread_local) {
1542                                         mo_graph->addEdge(act, rf);
1543                                         added = true;
1544                                         break;
1545                                 }
1546                                 /* C++, Section 29.3 statement 4 */
1547                                 else if (act->is_seqcst() && last_sc_fence_local &&
1548                                                 *act < *last_sc_fence_local) {
1549                                         mo_graph->addEdge(act, rf);
1550                                         added = true;
1551                                         break;
1552                                 }
1553                                 /* C++, Section 29.3 statement 6 */
1554                                 else if (last_sc_fence_thread_before &&
1555                                                 *act < *last_sc_fence_thread_before) {
1556                                         mo_graph->addEdge(act, rf);
1557                                         added = true;
1558                                         break;
1559                                 }
1560                         }
1561
1562                         /*
1563                          * Include at most one act per-thread that "happens
1564                          * before" curr. Don't consider reflexively.
1565                          */
1566                         if (act->happens_before(curr) && act != curr) {
1567                                 if (act->is_write()) {
1568                                         if (rf != act) {
1569                                                 mo_graph->addEdge(act, rf);
1570                                                 added = true;
1571                                         }
1572                                 } else {
1573                                         const ModelAction *prevreadfrom = act->get_reads_from();
1574                                         //if the previous read is unresolved, keep going...
1575                                         if (prevreadfrom == NULL)
1576                                                 continue;
1577
1578                                         if (rf != prevreadfrom) {
1579                                                 mo_graph->addEdge(prevreadfrom, rf);
1580                                                 added = true;
1581                                         }
1582                                 }
1583                                 break;
1584                         }
1585                 }
1586         }
1587
1588         return added;
1589 }
1590
1591 /** This method fixes up the modification order when we resolve a
1592  *  promises.  The basic problem is that actions that occur after the
1593  *  read curr could not property add items to the modification order
1594  *  for our read.
1595  *
1596  *  So for each thread, we find the earliest item that happens after
1597  *  the read curr.  This is the item we have to fix up with additional
1598  *  constraints.  If that action is write, we add a MO edge between
1599  *  the Action rf and that action.  If the action is a read, we add a
1600  *  MO edge between the Action rf, and whatever the read accessed.
1601  *
1602  * @param curr is the read ModelAction that we are fixing up MO edges for.
1603  * @param rf is the write ModelAction that curr reads from.
1604  *
1605  */
1606 void ModelChecker::post_r_modification_order(ModelAction *curr, const ModelAction *rf)
1607 {
1608         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1609         unsigned int i;
1610         ASSERT(curr->is_read());
1611
1612         /* Iterate over all threads */
1613         for (i = 0; i < thrd_lists->size(); i++) {
1614                 /* Iterate over actions in thread, starting from most recent */
1615                 action_list_t *list = &(*thrd_lists)[i];
1616                 action_list_t::reverse_iterator rit;
1617                 ModelAction *lastact = NULL;
1618
1619                 /* Find last action that happens after curr that is either not curr or a rmw */
1620                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1621                         ModelAction *act = *rit;
1622                         if (curr->happens_before(act) && (curr != act || curr->is_rmw())) {
1623                                 lastact = act;
1624                         } else
1625                                 break;
1626                 }
1627
1628                         /* Include at most one act per-thread that "happens before" curr */
1629                 if (lastact != NULL) {
1630                         if (lastact == curr) {
1631                                 //Case 1: The resolved read is a RMW, and we need to make sure
1632                                 //that the write portion of the RMW mod order after rf
1633
1634                                 mo_graph->addEdge(rf, lastact);
1635                         } else if (lastact->is_read()) {
1636                                 //Case 2: The resolved read is a normal read and the next
1637                                 //operation is a read, and we need to make sure the value read
1638                                 //is mod ordered after rf
1639
1640                                 const ModelAction *postreadfrom = lastact->get_reads_from();
1641                                 if (postreadfrom != NULL && rf != postreadfrom)
1642                                         mo_graph->addEdge(rf, postreadfrom);
1643                         } else {
1644                                 //Case 3: The resolved read is a normal read and the next
1645                                 //operation is a write, and we need to make sure that the
1646                                 //write is mod ordered after rf
1647                                 if (lastact != rf)
1648                                         mo_graph->addEdge(rf, lastact);
1649                         }
1650                         break;
1651                 }
1652         }
1653 }
1654
1655 /**
1656  * Updates the mo_graph with the constraints imposed from the current write.
1657  *
1658  * Basic idea is the following: Go through each other thread and find
1659  * the lastest action that happened before our write.  Two cases:
1660  *
1661  * (1) The action is a write => that write must occur before
1662  * the current write
1663  *
1664  * (2) The action is a read => the write that that action read from
1665  * must occur before the current write.
1666  *
1667  * This method also handles two other issues:
1668  *
1669  * (I) Sequential Consistency: Making sure that if the current write is
1670  * seq_cst, that it occurs after the previous seq_cst write.
1671  *
1672  * (II) Sending the write back to non-synchronizing reads.
1673  *
1674  * @param curr The current action. Must be a write.
1675  * @return True if modification order edges were added; false otherwise
1676  */
1677 bool ModelChecker::w_modification_order(ModelAction *curr)
1678 {
1679         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1680         unsigned int i;
1681         bool added = false;
1682         ASSERT(curr->is_write());
1683
1684         if (curr->is_seqcst()) {
1685                 /* We have to at least see the last sequentially consistent write,
1686                          so we are initialized. */
1687                 ModelAction *last_seq_cst = get_last_seq_cst_write(curr);
1688                 if (last_seq_cst != NULL) {
1689                         mo_graph->addEdge(last_seq_cst, curr);
1690                         added = true;
1691                 }
1692         }
1693
1694         /* Last SC fence in the current thread */
1695         ModelAction *last_sc_fence_local = get_last_seq_cst_fence(curr->get_tid(), NULL);
1696
1697         /* Iterate over all threads */
1698         for (i = 0; i < thrd_lists->size(); i++) {
1699                 /* Last SC fence in thread i, before last SC fence in current thread */
1700                 ModelAction *last_sc_fence_thread_before = NULL;
1701                 if (last_sc_fence_local && int_to_id((int)i) != curr->get_tid())
1702                         last_sc_fence_thread_before = get_last_seq_cst_fence(int_to_id(i), last_sc_fence_local);
1703
1704                 /* Iterate over actions in thread, starting from most recent */
1705                 action_list_t *list = &(*thrd_lists)[i];
1706                 action_list_t::reverse_iterator rit;
1707                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1708                         ModelAction *act = *rit;
1709                         if (act == curr) {
1710                                 /*
1711                                  * 1) If RMW and it actually read from something, then we
1712                                  * already have all relevant edges, so just skip to next
1713                                  * thread.
1714                                  *
1715                                  * 2) If RMW and it didn't read from anything, we should
1716                                  * whatever edge we can get to speed up convergence.
1717                                  *
1718                                  * 3) If normal write, we need to look at earlier actions, so
1719                                  * continue processing list.
1720                                  */
1721                                 if (curr->is_rmw()) {
1722                                         if (curr->get_reads_from() != NULL)
1723                                                 break;
1724                                         else
1725                                                 continue;
1726                                 } else
1727                                         continue;
1728                         }
1729
1730                         /* C++, Section 29.3 statement 7 */
1731                         if (last_sc_fence_thread_before && act->is_write() &&
1732                                         *act < *last_sc_fence_thread_before) {
1733                                 mo_graph->addEdge(act, curr);
1734                                 added = true;
1735                                 break;
1736                         }
1737
1738                         /*
1739                          * Include at most one act per-thread that "happens
1740                          * before" curr
1741                          */
1742                         if (act->happens_before(curr)) {
1743                                 /*
1744                                  * Note: if act is RMW, just add edge:
1745                                  *   act --mo--> curr
1746                                  * The following edge should be handled elsewhere:
1747                                  *   readfrom(act) --mo--> act
1748                                  */
1749                                 if (act->is_write())
1750                                         mo_graph->addEdge(act, curr);
1751                                 else if (act->is_read()) {
1752                                         //if previous read accessed a null, just keep going
1753                                         if (act->get_reads_from() == NULL)
1754                                                 continue;
1755                                         mo_graph->addEdge(act->get_reads_from(), curr);
1756                                 }
1757                                 added = true;
1758                                 break;
1759                         } else if (act->is_read() && !act->could_synchronize_with(curr) &&
1760                                                      !act->same_thread(curr)) {
1761                                 /* We have an action that:
1762                                    (1) did not happen before us
1763                                    (2) is a read and we are a write
1764                                    (3) cannot synchronize with us
1765                                    (4) is in a different thread
1766                                    =>
1767                                    that read could potentially read from our write.  Note that
1768                                    these checks are overly conservative at this point, we'll
1769                                    do more checks before actually removing the
1770                                    pendingfuturevalue.
1771
1772                                  */
1773                                 if (thin_air_constraint_may_allow(curr, act)) {
1774                                         if (!is_infeasible() ||
1775                                                         (curr->is_rmw() && act->is_rmw() && curr->get_reads_from() == act->get_reads_from() && !is_infeasible_ignoreRMW())) {
1776                                                 futurevalues->push_back(PendingFutureValue(curr, act));
1777                                         }
1778                                 }
1779                         }
1780                 }
1781         }
1782
1783         return added;
1784 }
1785
1786 /** Arbitrary reads from the future are not allowed.  Section 29.3
1787  * part 9 places some constraints.  This method checks one result of constraint
1788  * constraint.  Others require compiler support. */
1789 bool ModelChecker::thin_air_constraint_may_allow(const ModelAction *writer, const ModelAction *reader)
1790 {
1791         if (!writer->is_rmw())
1792                 return true;
1793
1794         if (!reader->is_rmw())
1795                 return true;
1796
1797         for (const ModelAction *search = writer->get_reads_from(); search != NULL; search = search->get_reads_from()) {
1798                 if (search == reader)
1799                         return false;
1800                 if (search->get_tid() == reader->get_tid() &&
1801                                 search->happens_before(reader))
1802                         break;
1803         }
1804
1805         return true;
1806 }
1807
1808 /**
1809  * Arbitrary reads from the future are not allowed. Section 29.3 part 9 places
1810  * some constraints. This method checks one the following constraint (others
1811  * require compiler support):
1812  *
1813  *   If X --hb-> Y --mo-> Z, then X should not read from Z.
1814  */
1815 bool ModelChecker::mo_may_allow(const ModelAction *writer, const ModelAction *reader)
1816 {
1817         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, reader->get_location());
1818         unsigned int i;
1819         /* Iterate over all threads */
1820         for (i = 0; i < thrd_lists->size(); i++) {
1821                 const ModelAction *write_after_read = NULL;
1822
1823                 /* Iterate over actions in thread, starting from most recent */
1824                 action_list_t *list = &(*thrd_lists)[i];
1825                 action_list_t::reverse_iterator rit;
1826                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1827                         ModelAction *act = *rit;
1828
1829                         /* Don't disallow due to act == reader */
1830                         if (!reader->happens_before(act) || reader == act)
1831                                 break;
1832                         else if (act->is_write())
1833                                 write_after_read = act;
1834                         else if (act->is_read() && act->get_reads_from() != NULL)
1835                                 write_after_read = act->get_reads_from();
1836                 }
1837
1838                 if (write_after_read && write_after_read != writer && mo_graph->checkReachable(write_after_read, writer))
1839                         return false;
1840         }
1841         return true;
1842 }
1843
1844 /**
1845  * Finds the head(s) of the release sequence(s) containing a given ModelAction.
1846  * The ModelAction under consideration is expected to be taking part in
1847  * release/acquire synchronization as an object of the "reads from" relation.
1848  * Note that this can only provide release sequence support for RMW chains
1849  * which do not read from the future, as those actions cannot be traced until
1850  * their "promise" is fulfilled. Similarly, we may not even establish the
1851  * presence of a release sequence with certainty, as some modification order
1852  * constraints may be decided further in the future. Thus, this function
1853  * "returns" two pieces of data: a pass-by-reference vector of @a release_heads
1854  * and a boolean representing certainty.
1855  *
1856  * @param rf The action that might be part of a release sequence. Must be a
1857  * write.
1858  * @param release_heads A pass-by-reference style return parameter. After
1859  * execution of this function, release_heads will contain the heads of all the
1860  * relevant release sequences, if any exists with certainty
1861  * @param pending A pass-by-reference style return parameter which is only used
1862  * when returning false (i.e., uncertain). Returns most information regarding
1863  * an uncertain release sequence, including any write operations that might
1864  * break the sequence.
1865  * @return true, if the ModelChecker is certain that release_heads is complete;
1866  * false otherwise
1867  */
1868 bool ModelChecker::release_seq_heads(const ModelAction *rf,
1869                 rel_heads_list_t *release_heads,
1870                 struct release_seq *pending) const
1871 {
1872         /* Only check for release sequences if there are no cycles */
1873         if (mo_graph->checkForCycles())
1874                 return false;
1875
1876         while (rf) {
1877                 ASSERT(rf->is_write());
1878
1879                 if (rf->is_release())
1880                         release_heads->push_back(rf);
1881                 else if (rf->get_last_fence_release())
1882                         release_heads->push_back(rf->get_last_fence_release());
1883                 if (!rf->is_rmw())
1884                         break; /* End of RMW chain */
1885
1886                 /** @todo Need to be smarter here...  In the linux lock
1887                  * example, this will run to the beginning of the program for
1888                  * every acquire. */
1889                 /** @todo The way to be smarter here is to keep going until 1
1890                  * thread has a release preceded by an acquire and you've seen
1891                  *       both. */
1892
1893                 /* acq_rel RMW is a sufficient stopping condition */
1894                 if (rf->is_acquire() && rf->is_release())
1895                         return true; /* complete */
1896
1897                 rf = rf->get_reads_from();
1898         };
1899         if (!rf) {
1900                 /* read from future: need to settle this later */
1901                 pending->rf = NULL;
1902                 return false; /* incomplete */
1903         }
1904
1905         if (rf->is_release())
1906                 return true; /* complete */
1907
1908         /* else relaxed write
1909          * - check for fence-release in the same thread (29.8, stmt. 3)
1910          * - check modification order for contiguous subsequence
1911          *   -> rf must be same thread as release */
1912
1913         const ModelAction *fence_release = rf->get_last_fence_release();
1914         /* Synchronize with a fence-release unconditionally; we don't need to
1915          * find any more "contiguous subsequence..." for it */
1916         if (fence_release)
1917                 release_heads->push_back(fence_release);
1918
1919         int tid = id_to_int(rf->get_tid());
1920         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, rf->get_location());
1921         action_list_t *list = &(*thrd_lists)[tid];
1922         action_list_t::const_reverse_iterator rit;
1923
1924         /* Find rf in the thread list */
1925         rit = std::find(list->rbegin(), list->rend(), rf);
1926         ASSERT(rit != list->rend());
1927
1928         /* Find the last {write,fence}-release */
1929         for (; rit != list->rend(); rit++) {
1930                 if (fence_release && *(*rit) < *fence_release)
1931                         break;
1932                 if ((*rit)->is_release())
1933                         break;
1934         }
1935         if (rit == list->rend()) {
1936                 /* No write-release in this thread */
1937                 return true; /* complete */
1938         } else if (fence_release && *(*rit) < *fence_release) {
1939                 /* The fence-release is more recent (and so, "stronger") than
1940                  * the most recent write-release */
1941                 return true; /* complete */
1942         } /* else, need to establish contiguous release sequence */
1943         ModelAction *release = *rit;
1944
1945         ASSERT(rf->same_thread(release));
1946
1947         pending->writes.clear();
1948
1949         bool certain = true;
1950         for (unsigned int i = 0; i < thrd_lists->size(); i++) {
1951                 if (id_to_int(rf->get_tid()) == (int)i)
1952                         continue;
1953                 list = &(*thrd_lists)[i];
1954
1955                 /* Can we ensure no future writes from this thread may break
1956                  * the release seq? */
1957                 bool future_ordered = false;
1958
1959                 ModelAction *last = get_last_action(int_to_id(i));
1960                 Thread *th = get_thread(int_to_id(i));
1961                 if ((last && rf->happens_before(last)) ||
1962                                 !is_enabled(th) ||
1963                                 th->is_complete())
1964                         future_ordered = true;
1965
1966                 ASSERT(!th->is_model_thread() || future_ordered);
1967
1968                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1969                         const ModelAction *act = *rit;
1970                         /* Reach synchronization -> this thread is complete */
1971                         if (act->happens_before(release))
1972                                 break;
1973                         if (rf->happens_before(act)) {
1974                                 future_ordered = true;
1975                                 continue;
1976                         }
1977
1978                         /* Only non-RMW writes can break release sequences */
1979                         if (!act->is_write() || act->is_rmw())
1980                                 continue;
1981
1982                         /* Check modification order */
1983                         if (mo_graph->checkReachable(rf, act)) {
1984                                 /* rf --mo--> act */
1985                                 future_ordered = true;
1986                                 continue;
1987                         }
1988                         if (mo_graph->checkReachable(act, release))
1989                                 /* act --mo--> release */
1990                                 break;
1991                         if (mo_graph->checkReachable(release, act) &&
1992                                       mo_graph->checkReachable(act, rf)) {
1993                                 /* release --mo-> act --mo--> rf */
1994                                 return true; /* complete */
1995                         }
1996                         /* act may break release sequence */
1997                         pending->writes.push_back(act);
1998                         certain = false;
1999                 }
2000                 if (!future_ordered)
2001                         certain = false; /* This thread is uncertain */
2002         }
2003
2004         if (certain) {
2005                 release_heads->push_back(release);
2006                 pending->writes.clear();
2007         } else {
2008                 pending->release = release;
2009                 pending->rf = rf;
2010         }
2011         return certain;
2012 }
2013
2014 /**
2015  * An interface for getting the release sequence head(s) with which a
2016  * given ModelAction must synchronize. This function only returns a non-empty
2017  * result when it can locate a release sequence head with certainty. Otherwise,
2018  * it may mark the internal state of the ModelChecker so that it will handle
2019  * the release sequence at a later time, causing @a acquire to update its
2020  * synchronization at some later point in execution.
2021  *
2022  * @param acquire The 'acquire' action that may synchronize with a release
2023  * sequence
2024  * @param read The read action that may read from a release sequence; this may
2025  * be the same as acquire, or else an earlier action in the same thread (i.e.,
2026  * when 'acquire' is a fence-acquire)
2027  * @param release_heads A pass-by-reference return parameter. Will be filled
2028  * with the head(s) of the release sequence(s), if they exists with certainty.
2029  * @see ModelChecker::release_seq_heads
2030  */
2031 void ModelChecker::get_release_seq_heads(ModelAction *acquire,
2032                 ModelAction *read, rel_heads_list_t *release_heads)
2033 {
2034         const ModelAction *rf = read->get_reads_from();
2035         struct release_seq *sequence = (struct release_seq *)snapshot_calloc(1, sizeof(struct release_seq));
2036         sequence->acquire = acquire;
2037         sequence->read = read;
2038
2039         if (!release_seq_heads(rf, release_heads, sequence)) {
2040                 /* add act to 'lazy checking' list */
2041                 pending_rel_seqs->push_back(sequence);
2042         } else {
2043                 snapshot_free(sequence);
2044         }
2045 }
2046
2047 /**
2048  * Attempt to resolve all stashed operations that might synchronize with a
2049  * release sequence for a given location. This implements the "lazy" portion of
2050  * determining whether or not a release sequence was contiguous, since not all
2051  * modification order information is present at the time an action occurs.
2052  *
2053  * @param location The location/object that should be checked for release
2054  * sequence resolutions. A NULL value means to check all locations.
2055  * @param work_queue The work queue to which to add work items as they are
2056  * generated
2057  * @return True if any updates occurred (new synchronization, new mo_graph
2058  * edges)
2059  */
2060 bool ModelChecker::resolve_release_sequences(void *location, work_queue_t *work_queue)
2061 {
2062         bool updated = false;
2063         std::vector< struct release_seq *, SnapshotAlloc<struct release_seq *> >::iterator it = pending_rel_seqs->begin();
2064         while (it != pending_rel_seqs->end()) {
2065                 struct release_seq *pending = *it;
2066                 ModelAction *acquire = pending->acquire;
2067                 const ModelAction *read = pending->read;
2068
2069                 /* Only resolve sequences on the given location, if provided */
2070                 if (location && read->get_location() != location) {
2071                         it++;
2072                         continue;
2073                 }
2074
2075                 const ModelAction *rf = read->get_reads_from();
2076                 rel_heads_list_t release_heads;
2077                 bool complete;
2078                 complete = release_seq_heads(rf, &release_heads, pending);
2079                 for (unsigned int i = 0; i < release_heads.size(); i++) {
2080                         if (!acquire->has_synchronized_with(release_heads[i])) {
2081                                 if (acquire->synchronize_with(release_heads[i]))
2082                                         updated = true;
2083                                 else
2084                                         set_bad_synchronization();
2085                         }
2086                 }
2087
2088                 if (updated) {
2089                         /* Re-check all pending release sequences */
2090                         work_queue->push_back(CheckRelSeqWorkEntry(NULL));
2091                         /* Re-check read-acquire for mo_graph edges */
2092                         if (acquire->is_read())
2093                                 work_queue->push_back(MOEdgeWorkEntry(acquire));
2094
2095                         /* propagate synchronization to later actions */
2096                         action_list_t::reverse_iterator rit = action_trace->rbegin();
2097                         for (; (*rit) != acquire; rit++) {
2098                                 ModelAction *propagate = *rit;
2099                                 if (acquire->happens_before(propagate)) {
2100                                         propagate->synchronize_with(acquire);
2101                                         /* Re-check 'propagate' for mo_graph edges */
2102                                         work_queue->push_back(MOEdgeWorkEntry(propagate));
2103                                 }
2104                         }
2105                 }
2106                 if (complete) {
2107                         it = pending_rel_seqs->erase(it);
2108                         snapshot_free(pending);
2109                 } else {
2110                         it++;
2111                 }
2112         }
2113
2114         // If we resolved promises or data races, see if we have realized a data race.
2115         checkDataRaces();
2116
2117         return updated;
2118 }
2119
2120 /**
2121  * Performs various bookkeeping operations for the current ModelAction. For
2122  * instance, adds action to the per-object, per-thread action vector and to the
2123  * action trace list of all thread actions.
2124  *
2125  * @param act is the ModelAction to add.
2126  */
2127 void ModelChecker::add_action_to_lists(ModelAction *act)
2128 {
2129         int tid = id_to_int(act->get_tid());
2130         ModelAction *uninit = NULL;
2131         int uninit_id = -1;
2132         action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
2133         if (list->empty() && act->is_atomic_var()) {
2134                 uninit = new_uninitialized_action(act->get_location());
2135                 uninit_id = id_to_int(uninit->get_tid());
2136                 list->push_back(uninit);
2137         }
2138         list->push_back(act);
2139
2140         action_trace->push_back(act);
2141         if (uninit)
2142                 action_trace->push_front(uninit);
2143
2144         std::vector<action_list_t> *vec = get_safe_ptr_vect_action(obj_thrd_map, act->get_location());
2145         if (tid >= (int)vec->size())
2146                 vec->resize(priv->next_thread_id);
2147         (*vec)[tid].push_back(act);
2148         if (uninit)
2149                 (*vec)[uninit_id].push_front(uninit);
2150
2151         if ((int)thrd_last_action->size() <= tid)
2152                 thrd_last_action->resize(get_num_threads());
2153         (*thrd_last_action)[tid] = act;
2154         if (uninit)
2155                 (*thrd_last_action)[uninit_id] = uninit;
2156
2157         if (act->is_fence() && act->is_release()) {
2158                 if ((int)thrd_last_fence_release->size() <= tid)
2159                         thrd_last_fence_release->resize(get_num_threads());
2160                 (*thrd_last_fence_release)[tid] = act;
2161         }
2162
2163         if (act->is_wait()) {
2164                 void *mutex_loc = (void *) act->get_value();
2165                 get_safe_ptr_action(obj_map, mutex_loc)->push_back(act);
2166
2167                 std::vector<action_list_t> *vec = get_safe_ptr_vect_action(obj_thrd_map, mutex_loc);
2168                 if (tid >= (int)vec->size())
2169                         vec->resize(priv->next_thread_id);
2170                 (*vec)[tid].push_back(act);
2171         }
2172 }
2173
2174 /**
2175  * @brief Get the last action performed by a particular Thread
2176  * @param tid The thread ID of the Thread in question
2177  * @return The last action in the thread
2178  */
2179 ModelAction * ModelChecker::get_last_action(thread_id_t tid) const
2180 {
2181         int threadid = id_to_int(tid);
2182         if (threadid < (int)thrd_last_action->size())
2183                 return (*thrd_last_action)[id_to_int(tid)];
2184         else
2185                 return NULL;
2186 }
2187
2188 /**
2189  * @brief Get the last fence release performed by a particular Thread
2190  * @param tid The thread ID of the Thread in question
2191  * @return The last fence release in the thread, if one exists; NULL otherwise
2192  */
2193 ModelAction * ModelChecker::get_last_fence_release(thread_id_t tid) const
2194 {
2195         int threadid = id_to_int(tid);
2196         if (threadid < (int)thrd_last_fence_release->size())
2197                 return (*thrd_last_fence_release)[id_to_int(tid)];
2198         else
2199                 return NULL;
2200 }
2201
2202 /**
2203  * Gets the last memory_order_seq_cst write (in the total global sequence)
2204  * performed on a particular object (i.e., memory location), not including the
2205  * current action.
2206  * @param curr The current ModelAction; also denotes the object location to
2207  * check
2208  * @return The last seq_cst write
2209  */
2210 ModelAction * ModelChecker::get_last_seq_cst_write(ModelAction *curr) const
2211 {
2212         void *location = curr->get_location();
2213         action_list_t *list = get_safe_ptr_action(obj_map, location);
2214         /* Find: max({i in dom(S) | seq_cst(t_i) && isWrite(t_i) && samevar(t_i, t)}) */
2215         action_list_t::reverse_iterator rit;
2216         for (rit = list->rbegin(); rit != list->rend(); rit++)
2217                 if ((*rit)->is_write() && (*rit)->is_seqcst() && (*rit) != curr)
2218                         return *rit;
2219         return NULL;
2220 }
2221
2222 /**
2223  * Gets the last memory_order_seq_cst fence (in the total global sequence)
2224  * performed in a particular thread, prior to a particular fence.
2225  * @param tid The ID of the thread to check
2226  * @param before_fence The fence from which to begin the search; if NULL, then
2227  * search for the most recent fence in the thread.
2228  * @return The last prior seq_cst fence in the thread, if exists; otherwise, NULL
2229  */
2230 ModelAction * ModelChecker::get_last_seq_cst_fence(thread_id_t tid, const ModelAction *before_fence) const
2231 {
2232         /* All fences should have NULL location */
2233         action_list_t *list = get_safe_ptr_action(obj_map, NULL);
2234         action_list_t::reverse_iterator rit = list->rbegin();
2235
2236         if (before_fence) {
2237                 for (; rit != list->rend(); rit++)
2238                         if (*rit == before_fence)
2239                                 break;
2240
2241                 ASSERT(*rit == before_fence);
2242                 rit++;
2243         }
2244
2245         for (; rit != list->rend(); rit++)
2246                 if ((*rit)->is_fence() && (tid == (*rit)->get_tid()) && (*rit)->is_seqcst())
2247                         return *rit;
2248         return NULL;
2249 }
2250
2251 /**
2252  * Gets the last unlock operation performed on a particular mutex (i.e., memory
2253  * location). This function identifies the mutex according to the current
2254  * action, which is presumed to perform on the same mutex.
2255  * @param curr The current ModelAction; also denotes the object location to
2256  * check
2257  * @return The last unlock operation
2258  */
2259 ModelAction * ModelChecker::get_last_unlock(ModelAction *curr) const
2260 {
2261         void *location = curr->get_location();
2262         action_list_t *list = get_safe_ptr_action(obj_map, location);
2263         /* Find: max({i in dom(S) | isUnlock(t_i) && samevar(t_i, t)}) */
2264         action_list_t::reverse_iterator rit;
2265         for (rit = list->rbegin(); rit != list->rend(); rit++)
2266                 if ((*rit)->is_unlock() || (*rit)->is_wait())
2267                         return *rit;
2268         return NULL;
2269 }
2270
2271 ModelAction * ModelChecker::get_parent_action(thread_id_t tid) const
2272 {
2273         ModelAction *parent = get_last_action(tid);
2274         if (!parent)
2275                 parent = get_thread(tid)->get_creation();
2276         return parent;
2277 }
2278
2279 /**
2280  * Returns the clock vector for a given thread.
2281  * @param tid The thread whose clock vector we want
2282  * @return Desired clock vector
2283  */
2284 ClockVector * ModelChecker::get_cv(thread_id_t tid) const
2285 {
2286         return get_parent_action(tid)->get_cv();
2287 }
2288
2289 /**
2290  * Resolve a set of Promises with a current write. The set is provided in the
2291  * Node corresponding to @a write.
2292  * @param write The ModelAction that is fulfilling Promises
2293  * @return True if promises were resolved; false otherwise
2294  */
2295 bool ModelChecker::resolve_promises(ModelAction *write)
2296 {
2297         bool resolved = false;
2298         std::vector< thread_id_t, ModelAlloc<thread_id_t> > threads_to_check;
2299
2300         for (unsigned int i = 0, promise_index = 0; promise_index < promises->size(); i++) {
2301                 Promise *promise = (*promises)[promise_index];
2302                 if (write->get_node()->get_promise(i)) {
2303                         ModelAction *read = promise->get_action();
2304                         if (read->is_rmw()) {
2305                                 mo_graph->addRMWEdge(write, read);
2306                         }
2307                         read_from(read, write);
2308                         //First fix up the modification order for actions that happened
2309                         //before the read
2310                         r_modification_order(read, write);
2311                         //Next fix up the modification order for actions that happened
2312                         //after the read.
2313                         post_r_modification_order(read, write);
2314                         //Make sure the promise's value matches the write's value
2315                         ASSERT(promise->get_value() == write->get_value());
2316                         delete(promise);
2317
2318                         promises->erase(promises->begin() + promise_index);
2319                         threads_to_check.push_back(read->get_tid());
2320
2321                         resolved = true;
2322                 } else
2323                         promise_index++;
2324         }
2325
2326         //Check whether reading these writes has made threads unable to
2327         //resolve promises
2328
2329         for (unsigned int i = 0; i < threads_to_check.size(); i++)
2330                 mo_check_promises(threads_to_check[i], write);
2331
2332         return resolved;
2333 }
2334
2335 /**
2336  * Compute the set of promises that could potentially be satisfied by this
2337  * action. Note that the set computation actually appears in the Node, not in
2338  * ModelChecker.
2339  * @param curr The ModelAction that may satisfy promises
2340  */
2341 void ModelChecker::compute_promises(ModelAction *curr)
2342 {
2343         for (unsigned int i = 0; i < promises->size(); i++) {
2344                 Promise *promise = (*promises)[i];
2345                 const ModelAction *act = promise->get_action();
2346                 if (!act->happens_before(curr) &&
2347                                 act->is_read() &&
2348                                 !act->could_synchronize_with(curr) &&
2349                                 !act->same_thread(curr) &&
2350                                 act->get_location() == curr->get_location() &&
2351                                 promise->get_value() == curr->get_value()) {
2352                         curr->get_node()->set_promise(i, act->is_rmw());
2353                 }
2354         }
2355 }
2356
2357 /** Checks promises in response to change in ClockVector Threads. */
2358 void ModelChecker::check_promises(thread_id_t tid, ClockVector *old_cv, ClockVector *merge_cv)
2359 {
2360         for (unsigned int i = 0; i < promises->size(); i++) {
2361                 Promise *promise = (*promises)[i];
2362                 const ModelAction *act = promise->get_action();
2363                 if ((old_cv == NULL || !old_cv->synchronized_since(act)) &&
2364                                 merge_cv->synchronized_since(act)) {
2365                         if (promise->increment_threads(tid)) {
2366                                 //Promise has failed
2367                                 priv->failed_promise = true;
2368                                 return;
2369                         }
2370                 }
2371         }
2372 }
2373
2374 void ModelChecker::check_promises_thread_disabled() {
2375         for (unsigned int i = 0; i < promises->size(); i++) {
2376                 Promise *promise = (*promises)[i];
2377                 if (promise->check_promise()) {
2378                         priv->failed_promise = true;
2379                         return;
2380                 }
2381         }
2382 }
2383
2384 /** Checks promises in response to addition to modification order for threads.
2385  * Definitions:
2386  * pthread is the thread that performed the read that created the promise
2387  *
2388  * pread is the read that created the promise
2389  *
2390  * pwrite is either the first write to same location as pread by
2391  * pthread that is sequenced after pread or the value read by the
2392  * first read to the same lcoation as pread by pthread that is
2393  * sequenced after pread..
2394  *
2395  *      1. If tid=pthread, then we check what other threads are reachable
2396  * through the mode order starting with pwrite.  Those threads cannot
2397  * perform a write that will resolve the promise due to modification
2398  * order constraints.
2399  *
2400  * 2. If the tid is not pthread, we check whether pwrite can reach the
2401  * action write through the modification order.  If so, that thread
2402  * cannot perform a future write that will resolve the promise due to
2403  * modificatin order constraints.
2404  *
2405  *      @param tid The thread that either read from the model action
2406  *      write, or actually did the model action write.
2407  *
2408  *      @param write The ModelAction representing the relevant write.
2409  */
2410 void ModelChecker::mo_check_promises(thread_id_t tid, const ModelAction *write)
2411 {
2412         void *location = write->get_location();
2413         for (unsigned int i = 0; i < promises->size(); i++) {
2414                 Promise *promise = (*promises)[i];
2415                 const ModelAction *act = promise->get_action();
2416
2417                 //Is this promise on the same location?
2418                 if (act->get_location() != location)
2419                         continue;
2420
2421                 //same thread as the promise
2422                 if (act->get_tid() == tid) {
2423
2424                         //do we have a pwrite for the promise, if not, set it
2425                         if (promise->get_write() == NULL) {
2426                                 promise->set_write(write);
2427                                 //The pwrite cannot happen before the promise
2428                                 if (write->happens_before(act) && (write != act)) {
2429                                         priv->failed_promise = true;
2430                                         return;
2431                                 }
2432                         }
2433                         if (mo_graph->checkPromise(write, promise)) {
2434                                 priv->failed_promise = true;
2435                                 return;
2436                         }
2437                 }
2438
2439                 //Don't do any lookups twice for the same thread
2440                 if (promise->has_sync_thread(tid))
2441                         continue;
2442
2443                 if (promise->get_write() && mo_graph->checkReachable(promise->get_write(), write)) {
2444                         if (promise->increment_threads(tid)) {
2445                                 priv->failed_promise = true;
2446                                 return;
2447                         }
2448                 }
2449         }
2450 }
2451
2452 /**
2453  * Compute the set of writes that may break the current pending release
2454  * sequence. This information is extracted from previou release sequence
2455  * calculations.
2456  *
2457  * @param curr The current ModelAction. Must be a release sequence fixup
2458  * action.
2459  */
2460 void ModelChecker::compute_relseq_breakwrites(ModelAction *curr)
2461 {
2462         if (pending_rel_seqs->empty())
2463                 return;
2464
2465         struct release_seq *pending = pending_rel_seqs->back();
2466         for (unsigned int i = 0; i < pending->writes.size(); i++) {
2467                 const ModelAction *write = pending->writes[i];
2468                 curr->get_node()->add_relseq_break(write);
2469         }
2470
2471         /* NULL means don't break the sequence; just synchronize */
2472         curr->get_node()->add_relseq_break(NULL);
2473 }
2474
2475 /**
2476  * Build up an initial set of all past writes that this 'read' action may read
2477  * from. This set is determined by the clock vector's "happens before"
2478  * relationship.
2479  * @param curr is the current ModelAction that we are exploring; it must be a
2480  * 'read' operation.
2481  */
2482 void ModelChecker::build_reads_from_past(ModelAction *curr)
2483 {
2484         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
2485         unsigned int i;
2486         ASSERT(curr->is_read());
2487
2488         ModelAction *last_sc_write = NULL;
2489
2490         if (curr->is_seqcst())
2491                 last_sc_write = get_last_seq_cst_write(curr);
2492
2493         /* Iterate over all threads */
2494         for (i = 0; i < thrd_lists->size(); i++) {
2495                 /* Iterate over actions in thread, starting from most recent */
2496                 action_list_t *list = &(*thrd_lists)[i];
2497                 action_list_t::reverse_iterator rit;
2498                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
2499                         ModelAction *act = *rit;
2500
2501                         /* Only consider 'write' actions */
2502                         if (!act->is_write() || act == curr)
2503                                 continue;
2504
2505                         /* Don't consider more than one seq_cst write if we are a seq_cst read. */
2506                         bool allow_read = true;
2507
2508                         if (curr->is_seqcst() && (act->is_seqcst() || (last_sc_write != NULL && act->happens_before(last_sc_write))) && act != last_sc_write)
2509                                 allow_read = false;
2510                         else if (curr->get_sleep_flag() && !curr->is_seqcst() && !sleep_can_read_from(curr, act))
2511                                 allow_read = false;
2512
2513                         if (allow_read)
2514                                 curr->get_node()->add_read_from(act);
2515
2516                         /* Include at most one act per-thread that "happens before" curr */
2517                         if (act->happens_before(curr))
2518                                 break;
2519                 }
2520         }
2521
2522         if (DBG_ENABLED()) {
2523                 model_print("Reached read action:\n");
2524                 curr->print();
2525                 model_print("Printing may_read_from\n");
2526                 curr->get_node()->print_may_read_from();
2527                 model_print("End printing may_read_from\n");
2528         }
2529 }
2530
2531 bool ModelChecker::sleep_can_read_from(ModelAction *curr, const ModelAction *write)
2532 {
2533         while (true) {
2534                 /* UNINIT actions don't have a Node, and they never sleep */
2535                 if (write->is_uninitialized())
2536                         return true;
2537                 Node *prevnode = write->get_node()->get_parent();
2538
2539                 bool thread_sleep = prevnode->enabled_status(curr->get_tid()) == THREAD_SLEEP_SET;
2540                 if (write->is_release() && thread_sleep)
2541                         return true;
2542                 if (!write->is_rmw()) {
2543                         return false;
2544                 }
2545                 if (write->get_reads_from() == NULL)
2546                         return true;
2547                 write = write->get_reads_from();
2548         }
2549 }
2550
2551 /**
2552  * @brief Create a new action representing an uninitialized atomic
2553  * @param location The memory location of the atomic object
2554  * @return A pointer to a new ModelAction
2555  */
2556 ModelAction * ModelChecker::new_uninitialized_action(void *location) const
2557 {
2558         ModelAction *act = (ModelAction *)snapshot_malloc(sizeof(class ModelAction));
2559         act = new (act) ModelAction(ATOMIC_UNINIT, std::memory_order_relaxed, location, 0, model_thread);
2560         act->create_cv(NULL);
2561         return act;
2562 }
2563
2564 static void print_list(action_list_t *list, int exec_num = -1)
2565 {
2566         action_list_t::iterator it;
2567
2568         model_print("---------------------------------------------------------------------\n");
2569         if (exec_num >= 0)
2570                 model_print("Execution %d:\n", exec_num);
2571
2572         unsigned int hash = 0;
2573
2574         for (it = list->begin(); it != list->end(); it++) {
2575                 (*it)->print();
2576                 hash = hash^(hash<<3)^((*it)->hash());
2577         }
2578         model_print("HASH %u\n", hash);
2579         model_print("---------------------------------------------------------------------\n");
2580 }
2581
2582 #if SUPPORT_MOD_ORDER_DUMP
2583 void ModelChecker::dumpGraph(char *filename) const
2584 {
2585         char buffer[200];
2586         sprintf(buffer, "%s.dot", filename);
2587         FILE *file = fopen(buffer, "w");
2588         fprintf(file, "digraph %s {\n", filename);
2589         mo_graph->dumpNodes(file);
2590         ModelAction **thread_array = (ModelAction **)model_calloc(1, sizeof(ModelAction *) * get_num_threads());
2591
2592         for (action_list_t::iterator it = action_trace->begin(); it != action_trace->end(); it++) {
2593                 ModelAction *action = *it;
2594                 if (action->is_read()) {
2595                         fprintf(file, "N%u [label=\"%u, T%u\"];\n", action->get_seq_number(), action->get_seq_number(), action->get_tid());
2596                         if (action->get_reads_from() != NULL)
2597                                 fprintf(file, "N%u -> N%u[label=\"rf\", color=red];\n", action->get_seq_number(), action->get_reads_from()->get_seq_number());
2598                 }
2599                 if (thread_array[action->get_tid()] != NULL) {
2600                         fprintf(file, "N%u -> N%u[label=\"sb\", color=blue];\n", thread_array[action->get_tid()]->get_seq_number(), action->get_seq_number());
2601                 }
2602
2603                 thread_array[action->get_tid()] = action;
2604         }
2605         fprintf(file, "}\n");
2606         model_free(thread_array);
2607         fclose(file);
2608 }
2609 #endif
2610
2611 /** @brief Prints an execution trace summary. */
2612 void ModelChecker::print_summary() const
2613 {
2614 #if SUPPORT_MOD_ORDER_DUMP
2615         scheduler->print();
2616         char buffername[100];
2617         sprintf(buffername, "exec%04u", stats.num_total);
2618         mo_graph->dumpGraphToFile(buffername);
2619         sprintf(buffername, "graph%04u", stats.num_total);
2620         dumpGraph(buffername);
2621 #endif
2622
2623         if (!isfeasibleprefix())
2624                 model_print("INFEASIBLE EXECUTION!\n");
2625         print_list(action_trace, stats.num_total);
2626         model_print("\n");
2627 }
2628
2629 /**
2630  * Add a Thread to the system for the first time. Should only be called once
2631  * per thread.
2632  * @param t The Thread to add
2633  */
2634 void ModelChecker::add_thread(Thread *t)
2635 {
2636         thread_map->put(id_to_int(t->get_id()), t);
2637         scheduler->add_thread(t);
2638 }
2639
2640 /**
2641  * Removes a thread from the scheduler.
2642  * @param the thread to remove.
2643  */
2644 void ModelChecker::remove_thread(Thread *t)
2645 {
2646         scheduler->remove_thread(t);
2647 }
2648
2649 /**
2650  * @brief Get a Thread reference by its ID
2651  * @param tid The Thread's ID
2652  * @return A Thread reference
2653  */
2654 Thread * ModelChecker::get_thread(thread_id_t tid) const
2655 {
2656         return thread_map->get(id_to_int(tid));
2657 }
2658
2659 /**
2660  * @brief Get a reference to the Thread in which a ModelAction was executed
2661  * @param act The ModelAction
2662  * @return A Thread reference
2663  */
2664 Thread * ModelChecker::get_thread(ModelAction *act) const
2665 {
2666         return get_thread(act->get_tid());
2667 }
2668
2669 /**
2670  * @brief Check if a Thread is currently enabled
2671  * @param t The Thread to check
2672  * @return True if the Thread is currently enabled
2673  */
2674 bool ModelChecker::is_enabled(Thread *t) const
2675 {
2676         return scheduler->is_enabled(t);
2677 }
2678
2679 /**
2680  * @brief Check if a Thread is currently enabled
2681  * @param tid The ID of the Thread to check
2682  * @return True if the Thread is currently enabled
2683  */
2684 bool ModelChecker::is_enabled(thread_id_t tid) const
2685 {
2686         return scheduler->is_enabled(tid);
2687 }
2688
2689 /**
2690  * Switch from a user-context to the "master thread" context (a.k.a. system
2691  * context). This switch is made with the intention of exploring a particular
2692  * model-checking action (described by a ModelAction object). Must be called
2693  * from a user-thread context.
2694  *
2695  * @param act The current action that will be explored. May be NULL only if
2696  * trace is exiting via an assertion (see ModelChecker::set_assert and
2697  * ModelChecker::has_asserted).
2698  * @return Return the value returned by the current action
2699  */
2700 uint64_t ModelChecker::switch_to_master(ModelAction *act)
2701 {
2702         DBG();
2703         Thread *old = thread_current();
2704         set_current_action(act);
2705         old->set_state(THREAD_READY);
2706         if (Thread::swap(old, &system_context) < 0) {
2707                 perror("swap threads");
2708                 exit(EXIT_FAILURE);
2709         }
2710         return old->get_return_value();
2711 }
2712
2713 /**
2714  * Takes the next step in the execution, if possible.
2715  * @param curr The current step to take
2716  * @return Returns true (success) if a step was taken and false otherwise.
2717  */
2718 bool ModelChecker::take_step(ModelAction *curr)
2719 {
2720         if (has_asserted())
2721                 return false;
2722
2723         Thread *curr_thrd = get_thread(curr);
2724         ASSERT(curr_thrd->get_state() == THREAD_READY);
2725
2726         curr = check_current_action(curr);
2727
2728         /* Infeasible -> don't take any more steps */
2729         if (is_infeasible())
2730                 return false;
2731         else if (isfeasibleprefix() && have_bug_reports()) {
2732                 set_assert();
2733                 return false;
2734         }
2735
2736         if (params.bound != 0)
2737                 if (priv->used_sequence_numbers > params.bound)
2738                         return false;
2739
2740         if (curr_thrd->is_blocked() || curr_thrd->is_complete())
2741                 scheduler->remove_thread(curr_thrd);
2742
2743         Thread *next_thrd = get_next_thread(curr);
2744         next_thrd = scheduler->next_thread(next_thrd);
2745
2746         DEBUG("(%d, %d)\n", curr_thrd ? id_to_int(curr_thrd->get_id()) : -1,
2747                         next_thrd ? id_to_int(next_thrd->get_id()) : -1);
2748
2749         /*
2750          * Launch end-of-execution release sequence fixups only when there are:
2751          *
2752          * (1) no more user threads to run (or when execution replay chooses
2753          *     the 'model_thread')
2754          * (2) pending release sequences
2755          * (3) pending assertions (i.e., data races)
2756          * (4) no pending promises
2757          */
2758         if (!pending_rel_seqs->empty() && (!next_thrd || next_thrd->is_model_thread()) &&
2759                         is_feasible_prefix_ignore_relseq() && !unrealizedraces.empty()) {
2760                 model_print("*** WARNING: release sequence fixup action (%zu pending release seuqences) ***\n",
2761                                 pending_rel_seqs->size());
2762                 ModelAction *fixup = new ModelAction(MODEL_FIXUP_RELSEQ,
2763                                 std::memory_order_seq_cst, NULL, VALUE_NONE,
2764                                 model_thread);
2765                 set_current_action(fixup);
2766                 return true;
2767         }
2768
2769         /* next_thrd == NULL -> don't take any more steps */
2770         if (!next_thrd)
2771                 return false;
2772
2773         next_thrd->set_state(THREAD_RUNNING);
2774
2775         if (next_thrd->get_pending() != NULL) {
2776                 /* restart a pending action */
2777                 set_current_action(next_thrd->get_pending());
2778                 next_thrd->set_pending(NULL);
2779                 next_thrd->set_state(THREAD_READY);
2780                 return true;
2781         }
2782
2783         /* Return false only if swap fails with an error */
2784         return (Thread::swap(&system_context, next_thrd) == 0);
2785 }
2786
2787 /** Wrapper to run the user's main function, with appropriate arguments */
2788 void user_main_wrapper(void *)
2789 {
2790         user_main(model->params.argc, model->params.argv);
2791 }
2792
2793 /** @brief Run ModelChecker for the user program */
2794 void ModelChecker::run()
2795 {
2796         do {
2797                 thrd_t user_thread;
2798                 Thread *t = new Thread(&user_thread, &user_main_wrapper, NULL);
2799
2800                 add_thread(t);
2801
2802                 /* Run user thread up to its first action */
2803                 scheduler->next_thread(t);
2804                 Thread::swap(&system_context, t);
2805
2806                 /* Wait for all threads to complete */
2807                 while (take_step(priv->current_action));
2808         } while (next_execution());
2809
2810         print_stats();
2811 }