129f6c02a96b499ea352597a8780828c5dd05071
[model-checker.git] / model.cc
1 #include <stdio.h>
2 #include <algorithm>
3 #include <mutex>
4 #include <new>
5
6 #include "model.h"
7 #include "action.h"
8 #include "nodestack.h"
9 #include "schedule.h"
10 #include "snapshot-interface.h"
11 #include "common.h"
12 #include "clockvector.h"
13 #include "cyclegraph.h"
14 #include "promise.h"
15 #include "datarace.h"
16 #include "threads-model.h"
17 #include "output.h"
18
19 #define INITIAL_THREAD_ID       0
20
21 ModelChecker *model;
22
23 struct bug_message {
24         bug_message(const char *str) {
25                 const char *fmt = "  [BUG] %s\n";
26                 msg = (char *)snapshot_malloc(strlen(fmt) + strlen(str));
27                 sprintf(msg, fmt, str);
28         }
29         ~bug_message() { if (msg) snapshot_free(msg); }
30
31         char *msg;
32         void print() { model_print("%s", msg); }
33
34         SNAPSHOTALLOC
35 };
36
37 /**
38  * Structure for holding small ModelChecker members that should be snapshotted
39  */
40 struct model_snapshot_members {
41         model_snapshot_members() :
42                 /* First thread created will have id INITIAL_THREAD_ID */
43                 next_thread_id(INITIAL_THREAD_ID),
44                 used_sequence_numbers(0),
45                 next_backtrack(NULL),
46                 bugs(),
47                 stats(),
48                 failed_promise(false),
49                 too_many_reads(false),
50                 no_valid_reads(false),
51                 bad_synchronization(false),
52                 asserted(false)
53         { }
54
55         ~model_snapshot_members() {
56                 for (unsigned int i = 0; i < bugs.size(); i++)
57                         delete bugs[i];
58                 bugs.clear();
59         }
60
61         unsigned int next_thread_id;
62         modelclock_t used_sequence_numbers;
63         ModelAction *next_backtrack;
64         std::vector< bug_message *, SnapshotAlloc<bug_message *> > bugs;
65         struct execution_stats stats;
66         bool failed_promise;
67         bool too_many_reads;
68         bool no_valid_reads;
69         /** @brief Incorrectly-ordered synchronization was made */
70         bool bad_synchronization;
71         bool asserted;
72
73         SNAPSHOTALLOC
74 };
75
76 /** @brief Constructor */
77 ModelChecker::ModelChecker(struct model_params params) :
78         /* Initialize default scheduler */
79         params(params),
80         scheduler(new Scheduler()),
81         diverge(NULL),
82         earliest_diverge(NULL),
83         action_trace(new action_list_t()),
84         thread_map(new HashTable<int, Thread *, int>()),
85         obj_map(new HashTable<const void *, action_list_t *, uintptr_t, 4>()),
86         lock_waiters_map(new HashTable<const void *, action_list_t *, uintptr_t, 4>()),
87         condvar_waiters_map(new HashTable<const void *, action_list_t *, uintptr_t, 4>()),
88         obj_thrd_map(new HashTable<void *, std::vector<action_list_t> *, uintptr_t, 4 >()),
89         promises(new std::vector< Promise *, SnapshotAlloc<Promise *> >()),
90         futurevalues(new std::vector< struct PendingFutureValue, SnapshotAlloc<struct PendingFutureValue> >()),
91         pending_rel_seqs(new std::vector< struct release_seq *, SnapshotAlloc<struct release_seq *> >()),
92         thrd_last_action(new std::vector< ModelAction *, SnapshotAlloc<ModelAction *> >(1)),
93         thrd_last_fence_release(new std::vector< ModelAction *, SnapshotAlloc<ModelAction *> >()),
94         node_stack(new NodeStack()),
95         priv(new struct model_snapshot_members()),
96         mo_graph(new CycleGraph())
97 {
98         /* Initialize a model-checker thread, for special ModelActions */
99         model_thread = new Thread(get_next_id());
100         thread_map->put(id_to_int(model_thread->get_id()), model_thread);
101 }
102
103 /** @brief Destructor */
104 ModelChecker::~ModelChecker()
105 {
106         for (unsigned int i = 0; i < get_num_threads(); i++)
107                 delete thread_map->get(i);
108         delete thread_map;
109
110         delete obj_thrd_map;
111         delete obj_map;
112         delete lock_waiters_map;
113         delete condvar_waiters_map;
114         delete action_trace;
115
116         for (unsigned int i = 0; i < promises->size(); i++)
117                 delete (*promises)[i];
118         delete promises;
119
120         delete pending_rel_seqs;
121
122         delete thrd_last_action;
123         delete thrd_last_fence_release;
124         delete node_stack;
125         delete scheduler;
126         delete mo_graph;
127         delete priv;
128 }
129
130 static action_list_t * get_safe_ptr_action(HashTable<const void *, action_list_t *, uintptr_t, 4> * hash, void * ptr)
131 {
132         action_list_t *tmp = hash->get(ptr);
133         if (tmp == NULL) {
134                 tmp = new action_list_t();
135                 hash->put(ptr, tmp);
136         }
137         return tmp;
138 }
139
140 static std::vector<action_list_t> * get_safe_ptr_vect_action(HashTable<void *, std::vector<action_list_t> *, uintptr_t, 4> * hash, void * ptr)
141 {
142         std::vector<action_list_t> *tmp = hash->get(ptr);
143         if (tmp == NULL) {
144                 tmp = new std::vector<action_list_t>();
145                 hash->put(ptr, tmp);
146         }
147         return tmp;
148 }
149
150 /**
151  * Restores user program to initial state and resets all model-checker data
152  * structures.
153  */
154 void ModelChecker::reset_to_initial_state()
155 {
156         DEBUG("+++ Resetting to initial state +++\n");
157         node_stack->reset_execution();
158
159         /* Print all model-checker output before rollback */
160         fflush(model_out);
161
162         /**
163          * FIXME: if we utilize partial rollback, we will need to free only
164          * those pending actions which were NOT pending before the rollback
165          * point
166          */
167         for (unsigned int i = 0; i < get_num_threads(); i++)
168                 delete get_thread(int_to_id(i))->get_pending();
169
170         snapshot_backtrack_before(0);
171 }
172
173 /** @return a thread ID for a new Thread */
174 thread_id_t ModelChecker::get_next_id()
175 {
176         return priv->next_thread_id++;
177 }
178
179 /** @return the number of user threads created during this execution */
180 unsigned int ModelChecker::get_num_threads() const
181 {
182         return priv->next_thread_id;
183 }
184
185 /**
186  * Must be called from user-thread context (e.g., through the global
187  * thread_current() interface)
188  *
189  * @return The currently executing Thread.
190  */
191 Thread * ModelChecker::get_current_thread() const
192 {
193         return scheduler->get_current_thread();
194 }
195
196 /** @return a sequence number for a new ModelAction */
197 modelclock_t ModelChecker::get_next_seq_num()
198 {
199         return ++priv->used_sequence_numbers;
200 }
201
202 Node * ModelChecker::get_curr_node() const
203 {
204         return node_stack->get_head();
205 }
206
207 /**
208  * @brief Choose the next thread to execute.
209  *
210  * This function chooses the next thread that should execute. It can force the
211  * adjacency of read/write portions of a RMW action, force THREAD_CREATE to be
212  * followed by a THREAD_START, or it can enforce execution replay/backtracking.
213  * The model-checker may have no preference regarding the next thread (i.e.,
214  * when exploring a new execution ordering), in which case we defer to the
215  * scheduler.
216  *
217  * @param curr Optional: The current ModelAction. Only used if non-NULL and it
218  * might guide the choice of next thread (i.e., THREAD_CREATE should be
219  * followed by THREAD_START, or ATOMIC_RMWR followed by ATOMIC_{RMW,RMWC})
220  * @return The next chosen thread to run, if any exist. Or else if no threads
221  * remain to be executed, return NULL.
222  */
223 Thread * ModelChecker::get_next_thread(ModelAction *curr)
224 {
225         thread_id_t tid;
226
227         if (curr != NULL) {
228                 /* Do not split atomic actions. */
229                 if (curr->is_rmwr())
230                         return get_thread(curr);
231                 else if (curr->get_type() == THREAD_CREATE)
232                         return curr->get_thread_operand();
233         }
234
235         /*
236          * Have we completed exploring the preselected path? Then let the
237          * scheduler decide
238          */
239         if (diverge == NULL)
240                 return scheduler->select_next_thread();
241
242         /* Else, we are trying to replay an execution */
243         ModelAction *next = node_stack->get_next()->get_action();
244
245         if (next == diverge) {
246                 if (earliest_diverge == NULL || *diverge < *earliest_diverge)
247                         earliest_diverge = diverge;
248
249                 Node *nextnode = next->get_node();
250                 Node *prevnode = nextnode->get_parent();
251                 scheduler->update_sleep_set(prevnode);
252
253                 /* Reached divergence point */
254                 if (nextnode->increment_misc()) {
255                         /* The next node will try to satisfy a different misc_index values. */
256                         tid = next->get_tid();
257                         node_stack->pop_restofstack(2);
258                 } else if (nextnode->increment_promise()) {
259                         /* The next node will try to satisfy a different set of promises. */
260                         tid = next->get_tid();
261                         node_stack->pop_restofstack(2);
262                 } else if (nextnode->increment_read_from()) {
263                         /* The next node will read from a different value. */
264                         tid = next->get_tid();
265                         node_stack->pop_restofstack(2);
266                 } else if (nextnode->increment_relseq_break()) {
267                         /* The next node will try to resolve a release sequence differently */
268                         tid = next->get_tid();
269                         node_stack->pop_restofstack(2);
270                 } else {
271                         ASSERT(prevnode);
272                         /* Make a different thread execute for next step */
273                         scheduler->add_sleep(get_thread(next->get_tid()));
274                         tid = prevnode->get_next_backtrack();
275                         /* Make sure the backtracked thread isn't sleeping. */
276                         node_stack->pop_restofstack(1);
277                         if (diverge == earliest_diverge) {
278                                 earliest_diverge = prevnode->get_action();
279                         }
280                 }
281                 /* Start the round robin scheduler from this thread id */
282                 scheduler->set_scheduler_thread(tid);
283                 /* The correct sleep set is in the parent node. */
284                 execute_sleep_set();
285
286                 DEBUG("*** Divergence point ***\n");
287
288                 diverge = NULL;
289         } else {
290                 tid = next->get_tid();
291         }
292         DEBUG("*** ModelChecker chose next thread = %d ***\n", id_to_int(tid));
293         ASSERT(tid != THREAD_ID_T_NONE);
294         return thread_map->get(id_to_int(tid));
295 }
296
297 /**
298  * We need to know what the next actions of all threads in the sleep
299  * set will be.  This method computes them and stores the actions at
300  * the corresponding thread object's pending action.
301  */
302
303 void ModelChecker::execute_sleep_set()
304 {
305         for (unsigned int i = 0; i < get_num_threads(); i++) {
306                 thread_id_t tid = int_to_id(i);
307                 Thread *thr = get_thread(tid);
308                 if (scheduler->is_sleep_set(thr) && thr->get_pending()) {
309                         thr->get_pending()->set_sleep_flag();
310                 }
311         }
312 }
313
314 /**
315  * @brief Should the current action wake up a given thread?
316  *
317  * @param curr The current action
318  * @param thread The thread that we might wake up
319  * @return True, if we should wake up the sleeping thread; false otherwise
320  */
321 bool ModelChecker::should_wake_up(const ModelAction *curr, const Thread *thread) const
322 {
323         const ModelAction *asleep = thread->get_pending();
324         /* Don't allow partial RMW to wake anyone up */
325         if (curr->is_rmwr())
326                 return false;
327         /* Synchronizing actions may have been backtracked */
328         if (asleep->could_synchronize_with(curr))
329                 return true;
330         /* All acquire/release fences and fence-acquire/store-release */
331         if (asleep->is_fence() && asleep->is_acquire() && curr->is_release())
332                 return true;
333         /* Fence-release + store can awake load-acquire on the same location */
334         if (asleep->is_read() && asleep->is_acquire() && curr->same_var(asleep) && curr->is_write()) {
335                 ModelAction *fence_release = get_last_fence_release(curr->get_tid());
336                 if (fence_release && *(get_last_action(thread->get_id())) < *fence_release)
337                         return true;
338         }
339         return false;
340 }
341
342 void ModelChecker::wake_up_sleeping_actions(ModelAction *curr)
343 {
344         for (unsigned int i = 0; i < get_num_threads(); i++) {
345                 Thread *thr = get_thread(int_to_id(i));
346                 if (scheduler->is_sleep_set(thr)) {
347                         if (should_wake_up(curr, thr))
348                                 /* Remove this thread from sleep set */
349                                 scheduler->remove_sleep(thr);
350                 }
351         }
352 }
353
354 /** @brief Alert the model-checker that an incorrectly-ordered
355  * synchronization was made */
356 void ModelChecker::set_bad_synchronization()
357 {
358         priv->bad_synchronization = true;
359 }
360
361 /**
362  * Check whether the current trace has triggered an assertion which should halt
363  * its execution.
364  *
365  * @return True, if the execution should be aborted; false otherwise
366  */
367 bool ModelChecker::has_asserted() const
368 {
369         return priv->asserted;
370 }
371
372 /**
373  * Trigger a trace assertion which should cause this execution to be halted.
374  * This can be due to a detected bug or due to an infeasibility that should
375  * halt ASAP.
376  */
377 void ModelChecker::set_assert()
378 {
379         priv->asserted = true;
380 }
381
382 /**
383  * Check if we are in a deadlock. Should only be called at the end of an
384  * execution, although it should not give false positives in the middle of an
385  * execution (there should be some ENABLED thread).
386  *
387  * @return True if program is in a deadlock; false otherwise
388  */
389 bool ModelChecker::is_deadlocked() const
390 {
391         bool blocking_threads = false;
392         for (unsigned int i = 0; i < get_num_threads(); i++) {
393                 thread_id_t tid = int_to_id(i);
394                 if (is_enabled(tid))
395                         return false;
396                 Thread *t = get_thread(tid);
397                 if (!t->is_model_thread() && t->get_pending())
398                         blocking_threads = true;
399         }
400         return blocking_threads;
401 }
402
403 /**
404  * Check if this is a complete execution. That is, have all thread completed
405  * execution (rather than exiting because sleep sets have forced a redundant
406  * execution).
407  *
408  * @return True if the execution is complete.
409  */
410 bool ModelChecker::is_complete_execution() const
411 {
412         for (unsigned int i = 0; i < get_num_threads(); i++)
413                 if (is_enabled(int_to_id(i)))
414                         return false;
415         return true;
416 }
417
418 /**
419  * @brief Assert a bug in the executing program.
420  *
421  * Use this function to assert any sort of bug in the user program. If the
422  * current trace is feasible (actually, a prefix of some feasible execution),
423  * then this execution will be aborted, printing the appropriate message. If
424  * the current trace is not yet feasible, the error message will be stashed and
425  * printed if the execution ever becomes feasible.
426  *
427  * @param msg Descriptive message for the bug (do not include newline char)
428  * @return True if bug is immediately-feasible
429  */
430 bool ModelChecker::assert_bug(const char *msg)
431 {
432         priv->bugs.push_back(new bug_message(msg));
433
434         if (isfeasibleprefix()) {
435                 set_assert();
436                 return true;
437         }
438         return false;
439 }
440
441 /**
442  * @brief Assert a bug in the executing program, asserted by a user thread
443  * @see ModelChecker::assert_bug
444  * @param msg Descriptive message for the bug (do not include newline char)
445  */
446 void ModelChecker::assert_user_bug(const char *msg)
447 {
448         /* If feasible bug, bail out now */
449         if (assert_bug(msg))
450                 switch_to_master(NULL);
451 }
452
453 /** @return True, if any bugs have been reported for this execution */
454 bool ModelChecker::have_bug_reports() const
455 {
456         return priv->bugs.size() != 0;
457 }
458
459 /** @brief Print bug report listing for this execution (if any bugs exist) */
460 void ModelChecker::print_bugs() const
461 {
462         if (have_bug_reports()) {
463                 model_print("Bug report: %zu bug%s detected\n",
464                                 priv->bugs.size(),
465                                 priv->bugs.size() > 1 ? "s" : "");
466                 for (unsigned int i = 0; i < priv->bugs.size(); i++)
467                         priv->bugs[i]->print();
468         }
469 }
470
471 /**
472  * @brief Record end-of-execution stats
473  *
474  * Must be run when exiting an execution. Records various stats.
475  * @see struct execution_stats
476  */
477 void ModelChecker::record_stats()
478 {
479         stats.num_total++;
480         if (!isfeasibleprefix())
481                 stats.num_infeasible++;
482         else if (have_bug_reports())
483                 stats.num_buggy_executions++;
484         else if (is_complete_execution())
485                 stats.num_complete++;
486         else {
487                 stats.num_redundant++;
488
489                 /**
490                  * @todo We can violate this ASSERT() when fairness/sleep sets
491                  * conflict to cause an execution to terminate, e.g. with:
492                  * Scheduler: [0: disabled][1: disabled][2: sleep][3: current, enabled]
493                  */
494                 //ASSERT(scheduler->all_threads_sleeping());
495         }
496 }
497
498 /** @brief Print execution stats */
499 void ModelChecker::print_stats() const
500 {
501         model_print("Number of complete, bug-free executions: %d\n", stats.num_complete);
502         model_print("Number of redundant executions: %d\n", stats.num_redundant);
503         model_print("Number of buggy executions: %d\n", stats.num_buggy_executions);
504         model_print("Number of infeasible executions: %d\n", stats.num_infeasible);
505         model_print("Total executions: %d\n", stats.num_total);
506         model_print("Total nodes created: %d\n", node_stack->get_total_nodes());
507 }
508
509 /**
510  * @brief End-of-exeuction print
511  * @param printbugs Should any existing bugs be printed?
512  */
513 void ModelChecker::print_execution(bool printbugs) const
514 {
515         print_program_output();
516
517         if (DBG_ENABLED() || params.verbose) {
518                 model_print("Earliest divergence point since last feasible execution:\n");
519                 if (earliest_diverge)
520                         earliest_diverge->print();
521                 else
522                         model_print("(Not set)\n");
523
524                 model_print("\n");
525                 print_stats();
526         }
527
528         /* Don't print invalid bugs */
529         if (printbugs)
530                 print_bugs();
531
532         model_print("\n");
533         print_summary();
534 }
535
536 /**
537  * Queries the model-checker for more executions to explore and, if one
538  * exists, resets the model-checker state to execute a new execution.
539  *
540  * @return If there are more executions to explore, return true. Otherwise,
541  * return false.
542  */
543 bool ModelChecker::next_execution()
544 {
545         DBG();
546         /* Is this execution a feasible execution that's worth bug-checking? */
547         bool complete = isfeasibleprefix() && (is_complete_execution() ||
548                         have_bug_reports());
549
550         /* End-of-execution bug checks */
551         if (complete) {
552                 if (is_deadlocked())
553                         assert_bug("Deadlock detected");
554
555                 checkDataRaces();
556         }
557
558         record_stats();
559
560         /* Output */
561         if (DBG_ENABLED() || params.verbose || (complete && have_bug_reports()))
562                 print_execution(complete);
563         else
564                 clear_program_output();
565
566         if (complete)
567                 earliest_diverge = NULL;
568
569         if ((diverge = get_next_backtrack()) == NULL)
570                 return false;
571
572         if (DBG_ENABLED()) {
573                 model_print("Next execution will diverge at:\n");
574                 diverge->print();
575         }
576
577         reset_to_initial_state();
578         return true;
579 }
580
581 /**
582  * @brief Find the last fence-related backtracking conflict for a ModelAction
583  *
584  * This function performs the search for the most recent conflicting action
585  * against which we should perform backtracking, as affected by fence
586  * operations. This includes pairs of potentially-synchronizing actions which
587  * occur due to fence-acquire or fence-release, and hence should be explored in
588  * the opposite execution order.
589  *
590  * @param act The current action
591  * @return The most recent action which conflicts with act due to fences
592  */
593 ModelAction * ModelChecker::get_last_fence_conflict(ModelAction *act) const
594 {
595         /* Only perform release/acquire fence backtracking for stores */
596         if (!act->is_write())
597                 return NULL;
598
599         /* Find a fence-release (or, act is a release) */
600         ModelAction *last_release;
601         if (act->is_release())
602                 last_release = act;
603         else
604                 last_release = get_last_fence_release(act->get_tid());
605         if (!last_release)
606                 return NULL;
607
608         /* Skip past the release */
609         action_list_t *list = action_trace;
610         action_list_t::reverse_iterator rit;
611         for (rit = list->rbegin(); rit != list->rend(); rit++)
612                 if (*rit == last_release)
613                         break;
614         ASSERT(rit != list->rend());
615
616         /* Find a prior:
617          *   load-acquire
618          * or
619          *   load --sb-> fence-acquire */
620         std::vector< ModelAction *, ModelAlloc<ModelAction *> > acquire_fences(get_num_threads(), NULL);
621         std::vector< ModelAction *, ModelAlloc<ModelAction *> > prior_loads(get_num_threads(), NULL);
622         bool found_acquire_fences = false;
623         for ( ; rit != list->rend(); rit++) {
624                 ModelAction *prev = *rit;
625                 if (act->same_thread(prev))
626                         continue;
627
628                 int tid = id_to_int(prev->get_tid());
629
630                 if (prev->is_read() && act->same_var(prev)) {
631                         if (prev->is_acquire()) {
632                                 /* Found most recent load-acquire, don't need
633                                  * to search for more fences */
634                                 if (!found_acquire_fences)
635                                         return NULL;
636                         } else {
637                                 prior_loads[tid] = prev;
638                         }
639                 }
640                 if (prev->is_acquire() && prev->is_fence() && !acquire_fences[tid]) {
641                         found_acquire_fences = true;
642                         acquire_fences[tid] = prev;
643                 }
644         }
645
646         ModelAction *latest_backtrack = NULL;
647         for (unsigned int i = 0; i < acquire_fences.size(); i++)
648                 if (acquire_fences[i] && prior_loads[i])
649                         if (!latest_backtrack || *latest_backtrack < *acquire_fences[i])
650                                 latest_backtrack = acquire_fences[i];
651         return latest_backtrack;
652 }
653
654 /**
655  * @brief Find the last backtracking conflict for a ModelAction
656  *
657  * This function performs the search for the most recent conflicting action
658  * against which we should perform backtracking. This primary includes pairs of
659  * synchronizing actions which should be explored in the opposite execution
660  * order.
661  *
662  * @param act The current action
663  * @return The most recent action which conflicts with act
664  */
665 ModelAction * ModelChecker::get_last_conflict(ModelAction *act) const
666 {
667         switch (act->get_type()) {
668         /* case ATOMIC_FENCE: fences don't directly cause backtracking */
669         case ATOMIC_READ:
670         case ATOMIC_WRITE:
671         case ATOMIC_RMW: {
672                 ModelAction *ret = NULL;
673
674                 /* linear search: from most recent to oldest */
675                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
676                 action_list_t::reverse_iterator rit;
677                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
678                         ModelAction *prev = *rit;
679                         if (prev->could_synchronize_with(act)) {
680                                 ret = prev;
681                                 break;
682                         }
683                 }
684
685                 ModelAction *ret2 = get_last_fence_conflict(act);
686                 if (!ret2)
687                         return ret;
688                 if (!ret)
689                         return ret2;
690                 if (*ret < *ret2)
691                         return ret2;
692                 return ret;
693         }
694         case ATOMIC_LOCK:
695         case ATOMIC_TRYLOCK: {
696                 /* linear search: from most recent to oldest */
697                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
698                 action_list_t::reverse_iterator rit;
699                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
700                         ModelAction *prev = *rit;
701                         if (act->is_conflicting_lock(prev))
702                                 return prev;
703                 }
704                 break;
705         }
706         case ATOMIC_UNLOCK: {
707                 /* linear search: from most recent to oldest */
708                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
709                 action_list_t::reverse_iterator rit;
710                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
711                         ModelAction *prev = *rit;
712                         if (!act->same_thread(prev) && prev->is_failed_trylock())
713                                 return prev;
714                 }
715                 break;
716         }
717         case ATOMIC_WAIT: {
718                 /* linear search: from most recent to oldest */
719                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
720                 action_list_t::reverse_iterator rit;
721                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
722                         ModelAction *prev = *rit;
723                         if (!act->same_thread(prev) && prev->is_failed_trylock())
724                                 return prev;
725                         if (!act->same_thread(prev) && prev->is_notify())
726                                 return prev;
727                 }
728                 break;
729         }
730
731         case ATOMIC_NOTIFY_ALL:
732         case ATOMIC_NOTIFY_ONE: {
733                 /* linear search: from most recent to oldest */
734                 action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
735                 action_list_t::reverse_iterator rit;
736                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
737                         ModelAction *prev = *rit;
738                         if (!act->same_thread(prev) && prev->is_wait())
739                                 return prev;
740                 }
741                 break;
742         }
743         default:
744                 break;
745         }
746         return NULL;
747 }
748
749 /** This method finds backtracking points where we should try to
750  * reorder the parameter ModelAction against.
751  *
752  * @param the ModelAction to find backtracking points for.
753  */
754 void ModelChecker::set_backtracking(ModelAction *act)
755 {
756         Thread *t = get_thread(act);
757         ModelAction *prev = get_last_conflict(act);
758         if (prev == NULL)
759                 return;
760
761         Node *node = prev->get_node()->get_parent();
762
763         int low_tid, high_tid;
764         if (node->enabled_status(t->get_id()) == THREAD_ENABLED) {
765                 low_tid = id_to_int(act->get_tid());
766                 high_tid = low_tid + 1;
767         } else {
768                 low_tid = 0;
769                 high_tid = get_num_threads();
770         }
771
772         for (int i = low_tid; i < high_tid; i++) {
773                 thread_id_t tid = int_to_id(i);
774
775                 /* Make sure this thread can be enabled here. */
776                 if (i >= node->get_num_threads())
777                         break;
778
779                 /* Don't backtrack into a point where the thread is disabled or sleeping. */
780                 if (node->enabled_status(tid) != THREAD_ENABLED)
781                         continue;
782
783                 /* Check if this has been explored already */
784                 if (node->has_been_explored(tid))
785                         continue;
786
787                 /* See if fairness allows */
788                 if (model->params.fairwindow != 0 && !node->has_priority(tid)) {
789                         bool unfair = false;
790                         for (int t = 0; t < node->get_num_threads(); t++) {
791                                 thread_id_t tother = int_to_id(t);
792                                 if (node->is_enabled(tother) && node->has_priority(tother)) {
793                                         unfair = true;
794                                         break;
795                                 }
796                         }
797                         if (unfair)
798                                 continue;
799                 }
800                 /* Cache the latest backtracking point */
801                 set_latest_backtrack(prev);
802
803                 /* If this is a new backtracking point, mark the tree */
804                 if (!node->set_backtrack(tid))
805                         continue;
806                 DEBUG("Setting backtrack: conflict = %d, instead tid = %d\n",
807                                         id_to_int(prev->get_tid()),
808                                         id_to_int(t->get_id()));
809                 if (DBG_ENABLED()) {
810                         prev->print();
811                         act->print();
812                 }
813         }
814 }
815
816 /**
817  * @brief Cache the a backtracking point as the "most recent", if eligible
818  *
819  * Note that this does not prepare the NodeStack for this backtracking
820  * operation, it only caches the action on a per-execution basis
821  *
822  * @param act The operation at which we should explore a different next action
823  * (i.e., backtracking point)
824  * @return True, if this action is now the most recent backtracking point;
825  * false otherwise
826  */
827 bool ModelChecker::set_latest_backtrack(ModelAction *act)
828 {
829         if (!priv->next_backtrack || *act > *priv->next_backtrack) {
830                 priv->next_backtrack = act;
831                 return true;
832         }
833         return false;
834 }
835
836 /**
837  * Returns last backtracking point. The model checker will explore a different
838  * path for this point in the next execution.
839  * @return The ModelAction at which the next execution should diverge.
840  */
841 ModelAction * ModelChecker::get_next_backtrack()
842 {
843         ModelAction *next = priv->next_backtrack;
844         priv->next_backtrack = NULL;
845         return next;
846 }
847
848 /**
849  * Processes a read model action.
850  * @param curr is the read model action to process.
851  * @return True if processing this read updates the mo_graph.
852  */
853 bool ModelChecker::process_read(ModelAction *curr)
854 {
855         Node *node = curr->get_node();
856         uint64_t value = VALUE_NONE;
857         bool updated = false;
858         while (true) {
859                 switch (node->get_read_from_status()) {
860                 case READ_FROM_PAST: {
861                         const ModelAction *rf = node->get_read_from_past();
862                         ASSERT(rf);
863
864                         mo_graph->startChanges();
865                         value = rf->get_value();
866                         check_recency(curr, rf);
867                         bool r_status = r_modification_order(curr, rf);
868
869                         if (is_infeasible() && node->increment_read_from()) {
870                                 mo_graph->rollbackChanges();
871                                 priv->too_many_reads = false;
872                                 continue;
873                         }
874
875                         read_from(curr, rf);
876                         mo_graph->commitChanges();
877                         mo_check_promises(curr, true);
878
879                         updated |= r_status;
880                         break;
881                 }
882                 case READ_FROM_PROMISE: {
883                         Promise *promise = curr->get_node()->get_read_from_promise();
884                         promise->add_reader(curr);
885                         value = promise->get_value();
886                         curr->set_read_from_promise(promise);
887                         mo_graph->startChanges();
888                         updated = r_modification_order(curr, promise);
889                         mo_graph->commitChanges();
890                         break;
891                 }
892                 case READ_FROM_FUTURE: {
893                         /* Read from future value */
894                         struct future_value fv = node->get_future_value();
895                         Promise *promise = new Promise(curr, fv);
896                         value = fv.value;
897                         curr->set_read_from_promise(promise);
898                         promises->push_back(promise);
899                         mo_graph->startChanges();
900                         updated = r_modification_order(curr, promise);
901                         mo_graph->commitChanges();
902                         break;
903                 }
904                 default:
905                         ASSERT(false);
906                 }
907                 get_thread(curr)->set_return_value(value);
908                 return updated;
909         }
910 }
911
912 /**
913  * Processes a lock, trylock, or unlock model action.  @param curr is
914  * the read model action to process.
915  *
916  * The try lock operation checks whether the lock is taken.  If not,
917  * it falls to the normal lock operation case.  If so, it returns
918  * fail.
919  *
920  * The lock operation has already been checked that it is enabled, so
921  * it just grabs the lock and synchronizes with the previous unlock.
922  *
923  * The unlock operation has to re-enable all of the threads that are
924  * waiting on the lock.
925  *
926  * @return True if synchronization was updated; false otherwise
927  */
928 bool ModelChecker::process_mutex(ModelAction *curr)
929 {
930         std::mutex *mutex = NULL;
931         struct std::mutex_state *state = NULL;
932
933         if (curr->is_trylock() || curr->is_lock() || curr->is_unlock()) {
934                 mutex = (std::mutex *)curr->get_location();
935                 state = mutex->get_state();
936         } else if (curr->is_wait()) {
937                 mutex = (std::mutex *)curr->get_value();
938                 state = mutex->get_state();
939         }
940
941         switch (curr->get_type()) {
942         case ATOMIC_TRYLOCK: {
943                 bool success = !state->islocked;
944                 curr->set_try_lock(success);
945                 if (!success) {
946                         get_thread(curr)->set_return_value(0);
947                         break;
948                 }
949                 get_thread(curr)->set_return_value(1);
950         }
951                 //otherwise fall into the lock case
952         case ATOMIC_LOCK: {
953                 if (curr->get_cv()->getClock(state->alloc_tid) <= state->alloc_clock)
954                         assert_bug("Lock access before initialization");
955                 state->islocked = true;
956                 ModelAction *unlock = get_last_unlock(curr);
957                 //synchronize with the previous unlock statement
958                 if (unlock != NULL) {
959                         curr->synchronize_with(unlock);
960                         return true;
961                 }
962                 break;
963         }
964         case ATOMIC_UNLOCK: {
965                 //unlock the lock
966                 state->islocked = false;
967                 //wake up the other threads
968                 action_list_t *waiters = get_safe_ptr_action(lock_waiters_map, curr->get_location());
969                 //activate all the waiting threads
970                 for (action_list_t::iterator rit = waiters->begin(); rit != waiters->end(); rit++) {
971                         scheduler->wake(get_thread(*rit));
972                 }
973                 waiters->clear();
974                 break;
975         }
976         case ATOMIC_WAIT: {
977                 //unlock the lock
978                 state->islocked = false;
979                 //wake up the other threads
980                 action_list_t *waiters = get_safe_ptr_action(lock_waiters_map, (void *) curr->get_value());
981                 //activate all the waiting threads
982                 for (action_list_t::iterator rit = waiters->begin(); rit != waiters->end(); rit++) {
983                         scheduler->wake(get_thread(*rit));
984                 }
985                 waiters->clear();
986                 //check whether we should go to sleep or not...simulate spurious failures
987                 if (curr->get_node()->get_misc() == 0) {
988                         get_safe_ptr_action(condvar_waiters_map, curr->get_location())->push_back(curr);
989                         //disable us
990                         scheduler->sleep(get_thread(curr));
991                 }
992                 break;
993         }
994         case ATOMIC_NOTIFY_ALL: {
995                 action_list_t *waiters = get_safe_ptr_action(condvar_waiters_map, curr->get_location());
996                 //activate all the waiting threads
997                 for (action_list_t::iterator rit = waiters->begin(); rit != waiters->end(); rit++) {
998                         scheduler->wake(get_thread(*rit));
999                 }
1000                 waiters->clear();
1001                 break;
1002         }
1003         case ATOMIC_NOTIFY_ONE: {
1004                 action_list_t *waiters = get_safe_ptr_action(condvar_waiters_map, curr->get_location());
1005                 int wakeupthread = curr->get_node()->get_misc();
1006                 action_list_t::iterator it = waiters->begin();
1007                 advance(it, wakeupthread);
1008                 scheduler->wake(get_thread(*it));
1009                 waiters->erase(it);
1010                 break;
1011         }
1012
1013         default:
1014                 ASSERT(0);
1015         }
1016         return false;
1017 }
1018
1019 void ModelChecker::add_future_value(const ModelAction *writer, ModelAction *reader)
1020 {
1021         /* Do more ambitious checks now that mo is more complete */
1022         if (mo_may_allow(writer, reader)) {
1023                 Node *node = reader->get_node();
1024
1025                 /* Find an ancestor thread which exists at the time of the reader */
1026                 Thread *write_thread = get_thread(writer);
1027                 while (id_to_int(write_thread->get_id()) >= node->get_num_threads())
1028                         write_thread = write_thread->get_parent();
1029
1030                 struct future_value fv = {
1031                         writer->get_write_value(),
1032                         writer->get_seq_number() + params.maxfuturedelay,
1033                         write_thread->get_id(),
1034                 };
1035                 if (node->add_future_value(fv))
1036                         set_latest_backtrack(reader);
1037         }
1038 }
1039
1040 /**
1041  * Process a write ModelAction
1042  * @param curr The ModelAction to process
1043  * @return True if the mo_graph was updated or promises were resolved
1044  */
1045 bool ModelChecker::process_write(ModelAction *curr)
1046 {
1047         /* Readers to which we may send our future value */
1048         std::vector< ModelAction *, ModelAlloc<ModelAction *> > send_fv;
1049
1050         bool updated_mod_order = w_modification_order(curr, &send_fv);
1051         int promise_idx = get_promise_to_resolve(curr);
1052         const ModelAction *earliest_promise_reader;
1053         bool updated_promises = false;
1054
1055         if (promise_idx >= 0) {
1056                 earliest_promise_reader = (*promises)[promise_idx]->get_reader(0);
1057                 updated_promises = resolve_promise(curr, promise_idx);
1058         } else
1059                 earliest_promise_reader = NULL;
1060
1061         /* Don't send future values to reads after the Promise we resolve */
1062         for (unsigned int i = 0; i < send_fv.size(); i++) {
1063                 ModelAction *read = send_fv[i];
1064                 if (!earliest_promise_reader || *read < *earliest_promise_reader)
1065                         futurevalues->push_back(PendingFutureValue(curr, read));
1066         }
1067
1068         if (promises->size() == 0) {
1069                 for (unsigned int i = 0; i < futurevalues->size(); i++) {
1070                         struct PendingFutureValue pfv = (*futurevalues)[i];
1071                         add_future_value(pfv.writer, pfv.act);
1072                 }
1073                 futurevalues->clear();
1074         }
1075
1076         mo_graph->commitChanges();
1077         mo_check_promises(curr, false);
1078
1079         get_thread(curr)->set_return_value(VALUE_NONE);
1080         return updated_mod_order || updated_promises;
1081 }
1082
1083 /**
1084  * Process a fence ModelAction
1085  * @param curr The ModelAction to process
1086  * @return True if synchronization was updated
1087  */
1088 bool ModelChecker::process_fence(ModelAction *curr)
1089 {
1090         /*
1091          * fence-relaxed: no-op
1092          * fence-release: only log the occurence (not in this function), for
1093          *   use in later synchronization
1094          * fence-acquire (this function): search for hypothetical release
1095          *   sequences
1096          */
1097         bool updated = false;
1098         if (curr->is_acquire()) {
1099                 action_list_t *list = action_trace;
1100                 action_list_t::reverse_iterator rit;
1101                 /* Find X : is_read(X) && X --sb-> curr */
1102                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1103                         ModelAction *act = *rit;
1104                         if (act == curr)
1105                                 continue;
1106                         if (act->get_tid() != curr->get_tid())
1107                                 continue;
1108                         /* Stop at the beginning of the thread */
1109                         if (act->is_thread_start())
1110                                 break;
1111                         /* Stop once we reach a prior fence-acquire */
1112                         if (act->is_fence() && act->is_acquire())
1113                                 break;
1114                         if (!act->is_read())
1115                                 continue;
1116                         /* read-acquire will find its own release sequences */
1117                         if (act->is_acquire())
1118                                 continue;
1119
1120                         /* Establish hypothetical release sequences */
1121                         rel_heads_list_t release_heads;
1122                         get_release_seq_heads(curr, act, &release_heads);
1123                         for (unsigned int i = 0; i < release_heads.size(); i++)
1124                                 if (!curr->synchronize_with(release_heads[i]))
1125                                         set_bad_synchronization();
1126                         if (release_heads.size() != 0)
1127                                 updated = true;
1128                 }
1129         }
1130         return updated;
1131 }
1132
1133 /**
1134  * @brief Process the current action for thread-related activity
1135  *
1136  * Performs current-action processing for a THREAD_* ModelAction. Proccesses
1137  * may include setting Thread status, completing THREAD_FINISH/THREAD_JOIN
1138  * synchronization, etc.  This function is a no-op for non-THREAD actions
1139  * (e.g., ATOMIC_{READ,WRITE,RMW,LOCK}, etc.)
1140  *
1141  * @param curr The current action
1142  * @return True if synchronization was updated or a thread completed
1143  */
1144 bool ModelChecker::process_thread_action(ModelAction *curr)
1145 {
1146         bool updated = false;
1147
1148         switch (curr->get_type()) {
1149         case THREAD_CREATE: {
1150                 thrd_t *thrd = (thrd_t *)curr->get_location();
1151                 struct thread_params *params = (struct thread_params *)curr->get_value();
1152                 Thread *th = new Thread(thrd, params->func, params->arg, get_thread(curr));
1153                 add_thread(th);
1154                 th->set_creation(curr);
1155                 /* Promises can be satisfied by children */
1156                 for (unsigned int i = 0; i < promises->size(); i++) {
1157                         Promise *promise = (*promises)[i];
1158                         if (promise->thread_is_available(curr->get_tid()))
1159                                 promise->add_thread(th->get_id());
1160                 }
1161                 break;
1162         }
1163         case THREAD_JOIN: {
1164                 Thread *blocking = curr->get_thread_operand();
1165                 ModelAction *act = get_last_action(blocking->get_id());
1166                 curr->synchronize_with(act);
1167                 updated = true; /* trigger rel-seq checks */
1168                 break;
1169         }
1170         case THREAD_FINISH: {
1171                 Thread *th = get_thread(curr);
1172                 while (!th->wait_list_empty()) {
1173                         ModelAction *act = th->pop_wait_list();
1174                         scheduler->wake(get_thread(act));
1175                 }
1176                 th->complete();
1177                 /* Completed thread can't satisfy promises */
1178                 for (unsigned int i = 0; i < promises->size(); i++) {
1179                         Promise *promise = (*promises)[i];
1180                         if (promise->thread_is_available(th->get_id()))
1181                                 if (promise->eliminate_thread(th->get_id()))
1182                                         priv->failed_promise = true;
1183                 }
1184                 updated = true; /* trigger rel-seq checks */
1185                 break;
1186         }
1187         case THREAD_START: {
1188                 check_promises(curr->get_tid(), NULL, curr->get_cv());
1189                 break;
1190         }
1191         default:
1192                 break;
1193         }
1194
1195         return updated;
1196 }
1197
1198 /**
1199  * @brief Process the current action for release sequence fixup activity
1200  *
1201  * Performs model-checker release sequence fixups for the current action,
1202  * forcing a single pending release sequence to break (with a given, potential
1203  * "loose" write) or to complete (i.e., synchronize). If a pending release
1204  * sequence forms a complete release sequence, then we must perform the fixup
1205  * synchronization, mo_graph additions, etc.
1206  *
1207  * @param curr The current action; must be a release sequence fixup action
1208  * @param work_queue The work queue to which to add work items as they are
1209  * generated
1210  */
1211 void ModelChecker::process_relseq_fixup(ModelAction *curr, work_queue_t *work_queue)
1212 {
1213         const ModelAction *write = curr->get_node()->get_relseq_break();
1214         struct release_seq *sequence = pending_rel_seqs->back();
1215         pending_rel_seqs->pop_back();
1216         ASSERT(sequence);
1217         ModelAction *acquire = sequence->acquire;
1218         const ModelAction *rf = sequence->rf;
1219         const ModelAction *release = sequence->release;
1220         ASSERT(acquire);
1221         ASSERT(release);
1222         ASSERT(rf);
1223         ASSERT(release->same_thread(rf));
1224
1225         if (write == NULL) {
1226                 /**
1227                  * @todo Forcing a synchronization requires that we set
1228                  * modification order constraints. For instance, we can't allow
1229                  * a fixup sequence in which two separate read-acquire
1230                  * operations read from the same sequence, where the first one
1231                  * synchronizes and the other doesn't. Essentially, we can't
1232                  * allow any writes to insert themselves between 'release' and
1233                  * 'rf'
1234                  */
1235
1236                 /* Must synchronize */
1237                 if (!acquire->synchronize_with(release)) {
1238                         set_bad_synchronization();
1239                         return;
1240                 }
1241                 /* Re-check all pending release sequences */
1242                 work_queue->push_back(CheckRelSeqWorkEntry(NULL));
1243                 /* Re-check act for mo_graph edges */
1244                 work_queue->push_back(MOEdgeWorkEntry(acquire));
1245
1246                 /* propagate synchronization to later actions */
1247                 action_list_t::reverse_iterator rit = action_trace->rbegin();
1248                 for (; (*rit) != acquire; rit++) {
1249                         ModelAction *propagate = *rit;
1250                         if (acquire->happens_before(propagate)) {
1251                                 propagate->synchronize_with(acquire);
1252                                 /* Re-check 'propagate' for mo_graph edges */
1253                                 work_queue->push_back(MOEdgeWorkEntry(propagate));
1254                         }
1255                 }
1256         } else {
1257                 /* Break release sequence with new edges:
1258                  *   release --mo--> write --mo--> rf */
1259                 mo_graph->addEdge(release, write);
1260                 mo_graph->addEdge(write, rf);
1261         }
1262
1263         /* See if we have realized a data race */
1264         checkDataRaces();
1265 }
1266
1267 /**
1268  * Initialize the current action by performing one or more of the following
1269  * actions, as appropriate: merging RMWR and RMWC/RMW actions, stepping forward
1270  * in the NodeStack, manipulating backtracking sets, allocating and
1271  * initializing clock vectors, and computing the promises to fulfill.
1272  *
1273  * @param curr The current action, as passed from the user context; may be
1274  * freed/invalidated after the execution of this function, with a different
1275  * action "returned" its place (pass-by-reference)
1276  * @return True if curr is a newly-explored action; false otherwise
1277  */
1278 bool ModelChecker::initialize_curr_action(ModelAction **curr)
1279 {
1280         ModelAction *newcurr;
1281
1282         if ((*curr)->is_rmwc() || (*curr)->is_rmw()) {
1283                 newcurr = process_rmw(*curr);
1284                 delete *curr;
1285
1286                 if (newcurr->is_rmw())
1287                         compute_promises(newcurr);
1288
1289                 *curr = newcurr;
1290                 return false;
1291         }
1292
1293         (*curr)->set_seq_number(get_next_seq_num());
1294
1295         newcurr = node_stack->explore_action(*curr, scheduler->get_enabled_array());
1296         if (newcurr) {
1297                 /* First restore type and order in case of RMW operation */
1298                 if ((*curr)->is_rmwr())
1299                         newcurr->copy_typeandorder(*curr);
1300
1301                 ASSERT((*curr)->get_location() == newcurr->get_location());
1302                 newcurr->copy_from_new(*curr);
1303
1304                 /* Discard duplicate ModelAction; use action from NodeStack */
1305                 delete *curr;
1306
1307                 /* Always compute new clock vector */
1308                 newcurr->create_cv(get_parent_action(newcurr->get_tid()));
1309
1310                 *curr = newcurr;
1311                 return false; /* Action was explored previously */
1312         } else {
1313                 newcurr = *curr;
1314
1315                 /* Always compute new clock vector */
1316                 newcurr->create_cv(get_parent_action(newcurr->get_tid()));
1317
1318                 /* Assign most recent release fence */
1319                 newcurr->set_last_fence_release(get_last_fence_release(newcurr->get_tid()));
1320
1321                 /*
1322                  * Perform one-time actions when pushing new ModelAction onto
1323                  * NodeStack
1324                  */
1325                 if (newcurr->is_write())
1326                         compute_promises(newcurr);
1327                 else if (newcurr->is_relseq_fixup())
1328                         compute_relseq_breakwrites(newcurr);
1329                 else if (newcurr->is_wait())
1330                         newcurr->get_node()->set_misc_max(2);
1331                 else if (newcurr->is_notify_one()) {
1332                         newcurr->get_node()->set_misc_max(get_safe_ptr_action(condvar_waiters_map, newcurr->get_location())->size());
1333                 }
1334                 return true; /* This was a new ModelAction */
1335         }
1336 }
1337
1338 /**
1339  * @brief Establish reads-from relation between two actions
1340  *
1341  * Perform basic operations involved with establishing a concrete rf relation,
1342  * including setting the ModelAction data and checking for release sequences.
1343  *
1344  * @param act The action that is reading (must be a read)
1345  * @param rf The action from which we are reading (must be a write)
1346  *
1347  * @return True if this read established synchronization
1348  */
1349 bool ModelChecker::read_from(ModelAction *act, const ModelAction *rf)
1350 {
1351         ASSERT(rf);
1352         act->set_read_from(rf);
1353         if (act->is_acquire()) {
1354                 rel_heads_list_t release_heads;
1355                 get_release_seq_heads(act, act, &release_heads);
1356                 int num_heads = release_heads.size();
1357                 for (unsigned int i = 0; i < release_heads.size(); i++)
1358                         if (!act->synchronize_with(release_heads[i])) {
1359                                 set_bad_synchronization();
1360                                 num_heads--;
1361                         }
1362                 return num_heads > 0;
1363         }
1364         return false;
1365 }
1366
1367 /**
1368  * Check promises and eliminate potentially-satisfying threads when a thread is
1369  * blocked (e.g., join, lock). A thread which is waiting on another thread can
1370  * no longer satisfy a promise generated from that thread.
1371  *
1372  * @param blocker The thread on which a thread is waiting
1373  * @param waiting The waiting thread
1374  */
1375 void ModelChecker::thread_blocking_check_promises(Thread *blocker, Thread *waiting)
1376 {
1377         for (unsigned int i = 0; i < promises->size(); i++) {
1378                 Promise *promise = (*promises)[i];
1379                 if (!promise->thread_is_available(waiting->get_id()))
1380                         continue;
1381                 for (unsigned int j = 0; j < promise->get_num_readers(); j++) {
1382                         ModelAction *reader = promise->get_reader(j);
1383                         if (reader->get_tid() != blocker->get_id())
1384                                 continue;
1385                         if (promise->eliminate_thread(waiting->get_id())) {
1386                                 /* Promise has failed */
1387                                 priv->failed_promise = true;
1388                         } else {
1389                                 /* Only eliminate the 'waiting' thread once */
1390                                 return;
1391                         }
1392                 }
1393         }
1394 }
1395
1396 /**
1397  * @brief Check whether a model action is enabled.
1398  *
1399  * Checks whether a lock or join operation would be successful (i.e., is the
1400  * lock already locked, or is the joined thread already complete). If not, put
1401  * the action in a waiter list.
1402  *
1403  * @param curr is the ModelAction to check whether it is enabled.
1404  * @return a bool that indicates whether the action is enabled.
1405  */
1406 bool ModelChecker::check_action_enabled(ModelAction *curr) {
1407         if (curr->is_lock()) {
1408                 std::mutex *lock = (std::mutex *)curr->get_location();
1409                 struct std::mutex_state *state = lock->get_state();
1410                 if (state->islocked) {
1411                         //Stick the action in the appropriate waiting queue
1412                         get_safe_ptr_action(lock_waiters_map, curr->get_location())->push_back(curr);
1413                         return false;
1414                 }
1415         } else if (curr->get_type() == THREAD_JOIN) {
1416                 Thread *blocking = (Thread *)curr->get_location();
1417                 if (!blocking->is_complete()) {
1418                         blocking->push_wait_list(curr);
1419                         thread_blocking_check_promises(blocking, get_thread(curr));
1420                         return false;
1421                 }
1422         }
1423
1424         return true;
1425 }
1426
1427 /**
1428  * This is the heart of the model checker routine. It performs model-checking
1429  * actions corresponding to a given "current action." Among other processes, it
1430  * calculates reads-from relationships, updates synchronization clock vectors,
1431  * forms a memory_order constraints graph, and handles replay/backtrack
1432  * execution when running permutations of previously-observed executions.
1433  *
1434  * @param curr The current action to process
1435  * @return The ModelAction that is actually executed; may be different than
1436  * curr; may be NULL, if the current action is not enabled to run
1437  */
1438 ModelAction * ModelChecker::check_current_action(ModelAction *curr)
1439 {
1440         ASSERT(curr);
1441         bool second_part_of_rmw = curr->is_rmwc() || curr->is_rmw();
1442
1443         if (!check_action_enabled(curr)) {
1444                 /* Make the execution look like we chose to run this action
1445                  * much later, when a lock/join can succeed */
1446                 get_thread(curr)->set_pending(curr);
1447                 scheduler->sleep(get_thread(curr));
1448                 return NULL;
1449         }
1450
1451         bool newly_explored = initialize_curr_action(&curr);
1452
1453         DBG();
1454         if (DBG_ENABLED())
1455                 curr->print();
1456
1457         wake_up_sleeping_actions(curr);
1458
1459         /* Add the action to lists before any other model-checking tasks */
1460         if (!second_part_of_rmw)
1461                 add_action_to_lists(curr);
1462
1463         /* Build may_read_from set for newly-created actions */
1464         if (newly_explored && curr->is_read())
1465                 build_may_read_from(curr);
1466
1467         /* Initialize work_queue with the "current action" work */
1468         work_queue_t work_queue(1, CheckCurrWorkEntry(curr));
1469         while (!work_queue.empty() && !has_asserted()) {
1470                 WorkQueueEntry work = work_queue.front();
1471                 work_queue.pop_front();
1472
1473                 switch (work.type) {
1474                 case WORK_CHECK_CURR_ACTION: {
1475                         ModelAction *act = work.action;
1476                         bool update = false; /* update this location's release seq's */
1477                         bool update_all = false; /* update all release seq's */
1478
1479                         if (process_thread_action(curr))
1480                                 update_all = true;
1481
1482                         if (act->is_read() && !second_part_of_rmw && process_read(act))
1483                                 update = true;
1484
1485                         if (act->is_write() && process_write(act))
1486                                 update = true;
1487
1488                         if (act->is_fence() && process_fence(act))
1489                                 update_all = true;
1490
1491                         if (act->is_mutex_op() && process_mutex(act))
1492                                 update_all = true;
1493
1494                         if (act->is_relseq_fixup())
1495                                 process_relseq_fixup(curr, &work_queue);
1496
1497                         if (update_all)
1498                                 work_queue.push_back(CheckRelSeqWorkEntry(NULL));
1499                         else if (update)
1500                                 work_queue.push_back(CheckRelSeqWorkEntry(act->get_location()));
1501                         break;
1502                 }
1503                 case WORK_CHECK_RELEASE_SEQ:
1504                         resolve_release_sequences(work.location, &work_queue);
1505                         break;
1506                 case WORK_CHECK_MO_EDGES: {
1507                         /** @todo Complete verification of work_queue */
1508                         ModelAction *act = work.action;
1509                         bool updated = false;
1510
1511                         if (act->is_read()) {
1512                                 const ModelAction *rf = act->get_reads_from();
1513                                 const Promise *promise = act->get_reads_from_promise();
1514                                 if (rf) {
1515                                         if (r_modification_order(act, rf))
1516                                                 updated = true;
1517                                 } else if (promise) {
1518                                         if (r_modification_order(act, promise))
1519                                                 updated = true;
1520                                 }
1521                         }
1522                         if (act->is_write()) {
1523                                 if (w_modification_order(act, NULL))
1524                                         updated = true;
1525                         }
1526                         mo_graph->commitChanges();
1527
1528                         if (updated)
1529                                 work_queue.push_back(CheckRelSeqWorkEntry(act->get_location()));
1530                         break;
1531                 }
1532                 default:
1533                         ASSERT(false);
1534                         break;
1535                 }
1536         }
1537
1538         check_curr_backtracking(curr);
1539         set_backtracking(curr);
1540         return curr;
1541 }
1542
1543 void ModelChecker::check_curr_backtracking(ModelAction *curr)
1544 {
1545         Node *currnode = curr->get_node();
1546         Node *parnode = currnode->get_parent();
1547
1548         if ((parnode && !parnode->backtrack_empty()) ||
1549                          !currnode->misc_empty() ||
1550                          !currnode->read_from_empty() ||
1551                          !currnode->promise_empty() ||
1552                          !currnode->relseq_break_empty()) {
1553                 set_latest_backtrack(curr);
1554         }
1555 }
1556
1557 bool ModelChecker::promises_expired() const
1558 {
1559         for (unsigned int i = 0; i < promises->size(); i++) {
1560                 Promise *promise = (*promises)[i];
1561                 if (promise->get_expiration() < priv->used_sequence_numbers)
1562                         return true;
1563         }
1564         return false;
1565 }
1566
1567 /**
1568  * This is the strongest feasibility check available.
1569  * @return whether the current trace (partial or complete) must be a prefix of
1570  * a feasible trace.
1571  */
1572 bool ModelChecker::isfeasibleprefix() const
1573 {
1574         return pending_rel_seqs->size() == 0 && is_feasible_prefix_ignore_relseq();
1575 }
1576
1577 /**
1578  * Print disagnostic information about an infeasible execution
1579  * @param prefix A string to prefix the output with; if NULL, then a default
1580  * message prefix will be provided
1581  */
1582 void ModelChecker::print_infeasibility(const char *prefix) const
1583 {
1584         char buf[100];
1585         char *ptr = buf;
1586         if (mo_graph->checkForCycles())
1587                 ptr += sprintf(ptr, "[mo cycle]");
1588         if (priv->failed_promise)
1589                 ptr += sprintf(ptr, "[failed promise]");
1590         if (priv->too_many_reads)
1591                 ptr += sprintf(ptr, "[too many reads]");
1592         if (priv->no_valid_reads)
1593                 ptr += sprintf(ptr, "[no valid reads-from]");
1594         if (priv->bad_synchronization)
1595                 ptr += sprintf(ptr, "[bad sw ordering]");
1596         if (promises_expired())
1597                 ptr += sprintf(ptr, "[promise expired]");
1598         if (promises->size() != 0)
1599                 ptr += sprintf(ptr, "[unresolved promise]");
1600         if (ptr != buf)
1601                 model_print("%s: %s\n", prefix ? prefix : "Infeasible", buf);
1602 }
1603
1604 /**
1605  * Returns whether the current completed trace is feasible, except for pending
1606  * release sequences.
1607  */
1608 bool ModelChecker::is_feasible_prefix_ignore_relseq() const
1609 {
1610         return !is_infeasible() && promises->size() == 0;
1611 }
1612
1613 /**
1614  * Check if the current partial trace is infeasible. Does not check any
1615  * end-of-execution flags, which might rule out the execution. Thus, this is
1616  * useful only for ruling an execution as infeasible.
1617  * @return whether the current partial trace is infeasible.
1618  */
1619 bool ModelChecker::is_infeasible() const
1620 {
1621         return mo_graph->checkForCycles() ||
1622                 priv->no_valid_reads ||
1623                 priv->failed_promise ||
1624                 priv->too_many_reads ||
1625                 priv->bad_synchronization ||
1626                 promises_expired();
1627 }
1628
1629 /** Close out a RMWR by converting previous RMWR into a RMW or READ. */
1630 ModelAction * ModelChecker::process_rmw(ModelAction *act) {
1631         ModelAction *lastread = get_last_action(act->get_tid());
1632         lastread->process_rmw(act);
1633         if (act->is_rmw()) {
1634                 if (lastread->get_reads_from())
1635                         mo_graph->addRMWEdge(lastread->get_reads_from(), lastread);
1636                 else
1637                         mo_graph->addRMWEdge(lastread->get_reads_from_promise(), lastread);
1638                 mo_graph->commitChanges();
1639         }
1640         return lastread;
1641 }
1642
1643 /**
1644  * Checks whether a thread has read from the same write for too many times
1645  * without seeing the effects of a later write.
1646  *
1647  * Basic idea:
1648  * 1) there must a different write that we could read from that would satisfy the modification order,
1649  * 2) we must have read from the same value in excess of maxreads times, and
1650  * 3) that other write must have been in the reads_from set for maxreads times.
1651  *
1652  * If so, we decide that the execution is no longer feasible.
1653  */
1654 void ModelChecker::check_recency(ModelAction *curr, const ModelAction *rf)
1655 {
1656         if (params.maxreads != 0) {
1657                 if (curr->get_node()->get_read_from_past_size() <= 1)
1658                         return;
1659                 //Must make sure that execution is currently feasible...  We could
1660                 //accidentally clear by rolling back
1661                 if (is_infeasible())
1662                         return;
1663                 std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1664                 int tid = id_to_int(curr->get_tid());
1665
1666                 /* Skip checks */
1667                 if ((int)thrd_lists->size() <= tid)
1668                         return;
1669                 action_list_t *list = &(*thrd_lists)[tid];
1670
1671                 action_list_t::reverse_iterator rit = list->rbegin();
1672                 /* Skip past curr */
1673                 for (; (*rit) != curr; rit++)
1674                         ;
1675                 /* go past curr now */
1676                 rit++;
1677
1678                 action_list_t::reverse_iterator ritcopy = rit;
1679                 //See if we have enough reads from the same value
1680                 int count = 0;
1681                 for (; count < params.maxreads; rit++, count++) {
1682                         if (rit == list->rend())
1683                                 return;
1684                         ModelAction *act = *rit;
1685                         if (!act->is_read())
1686                                 return;
1687
1688                         if (act->get_reads_from() != rf)
1689                                 return;
1690                         if (act->get_node()->get_read_from_past_size() <= 1)
1691                                 return;
1692                 }
1693                 for (int i = 0; i < curr->get_node()->get_read_from_past_size(); i++) {
1694                         /* Get write */
1695                         const ModelAction *write = curr->get_node()->get_read_from_past(i);
1696
1697                         /* Need a different write */
1698                         if (write == rf)
1699                                 continue;
1700
1701                         /* Test to see whether this is a feasible write to read from */
1702                         /** NOTE: all members of read-from set should be
1703                          *  feasible, so we no longer check it here **/
1704
1705                         rit = ritcopy;
1706
1707                         bool feasiblewrite = true;
1708                         //new we need to see if this write works for everyone
1709
1710                         for (int loop = count; loop > 0; loop--, rit++) {
1711                                 ModelAction *act = *rit;
1712                                 bool foundvalue = false;
1713                                 for (int j = 0; j < act->get_node()->get_read_from_past_size(); j++) {
1714                                         if (act->get_node()->get_read_from_past(j) == write) {
1715                                                 foundvalue = true;
1716                                                 break;
1717                                         }
1718                                 }
1719                                 if (!foundvalue) {
1720                                         feasiblewrite = false;
1721                                         break;
1722                                 }
1723                         }
1724                         if (feasiblewrite) {
1725                                 priv->too_many_reads = true;
1726                                 return;
1727                         }
1728                 }
1729         }
1730 }
1731
1732 /**
1733  * Updates the mo_graph with the constraints imposed from the current
1734  * read.
1735  *
1736  * Basic idea is the following: Go through each other thread and find
1737  * the last action that happened before our read.  Two cases:
1738  *
1739  * (1) The action is a write => that write must either occur before
1740  * the write we read from or be the write we read from.
1741  *
1742  * (2) The action is a read => the write that that action read from
1743  * must occur before the write we read from or be the same write.
1744  *
1745  * @param curr The current action. Must be a read.
1746  * @param rf The ModelAction or Promise that curr reads from. Must be a write.
1747  * @return True if modification order edges were added; false otherwise
1748  */
1749 template <typename rf_type>
1750 bool ModelChecker::r_modification_order(ModelAction *curr, const rf_type *rf)
1751 {
1752         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1753         unsigned int i;
1754         bool added = false;
1755         ASSERT(curr->is_read());
1756
1757         /* Last SC fence in the current thread */
1758         ModelAction *last_sc_fence_local = get_last_seq_cst_fence(curr->get_tid(), NULL);
1759
1760         /* Iterate over all threads */
1761         for (i = 0; i < thrd_lists->size(); i++) {
1762                 /* Last SC fence in thread i */
1763                 ModelAction *last_sc_fence_thread_local = NULL;
1764                 if (int_to_id((int)i) != curr->get_tid())
1765                         last_sc_fence_thread_local = get_last_seq_cst_fence(int_to_id(i), NULL);
1766
1767                 /* Last SC fence in thread i, before last SC fence in current thread */
1768                 ModelAction *last_sc_fence_thread_before = NULL;
1769                 if (last_sc_fence_local)
1770                         last_sc_fence_thread_before = get_last_seq_cst_fence(int_to_id(i), last_sc_fence_local);
1771
1772                 /* Iterate over actions in thread, starting from most recent */
1773                 action_list_t *list = &(*thrd_lists)[i];
1774                 action_list_t::reverse_iterator rit;
1775                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1776                         ModelAction *act = *rit;
1777
1778                         if (act->is_write() && !act->equals(rf) && act != curr) {
1779                                 /* C++, Section 29.3 statement 5 */
1780                                 if (curr->is_seqcst() && last_sc_fence_thread_local &&
1781                                                 *act < *last_sc_fence_thread_local) {
1782                                         added = mo_graph->addEdge(act, rf) || added;
1783                                         break;
1784                                 }
1785                                 /* C++, Section 29.3 statement 4 */
1786                                 else if (act->is_seqcst() && last_sc_fence_local &&
1787                                                 *act < *last_sc_fence_local) {
1788                                         added = mo_graph->addEdge(act, rf) || added;
1789                                         break;
1790                                 }
1791                                 /* C++, Section 29.3 statement 6 */
1792                                 else if (last_sc_fence_thread_before &&
1793                                                 *act < *last_sc_fence_thread_before) {
1794                                         added = mo_graph->addEdge(act, rf) || added;
1795                                         break;
1796                                 }
1797                         }
1798
1799                         /*
1800                          * Include at most one act per-thread that "happens
1801                          * before" curr. Don't consider reflexively.
1802                          */
1803                         if (act->happens_before(curr) && act != curr) {
1804                                 if (act->is_write()) {
1805                                         if (!act->equals(rf)) {
1806                                                 added = mo_graph->addEdge(act, rf) || added;
1807                                         }
1808                                 } else {
1809                                         const ModelAction *prevrf = act->get_reads_from();
1810                                         const Promise *prevrf_promise = act->get_reads_from_promise();
1811                                         if (prevrf) {
1812                                                 if (!prevrf->equals(rf))
1813                                                         added = mo_graph->addEdge(prevrf, rf) || added;
1814                                         } else if (!prevrf_promise->equals(rf)) {
1815                                                 added = mo_graph->addEdge(prevrf_promise, rf) || added;
1816                                         }
1817                                 }
1818                                 break;
1819                         }
1820                 }
1821         }
1822
1823         /*
1824          * All compatible, thread-exclusive promises must be ordered after any
1825          * concrete loads from the same thread
1826          */
1827         for (unsigned int i = 0; i < promises->size(); i++)
1828                 if ((*promises)[i]->is_compatible_exclusive(curr))
1829                         added = mo_graph->addEdge(rf, (*promises)[i]) || added;
1830
1831         return added;
1832 }
1833
1834 /**
1835  * Updates the mo_graph with the constraints imposed from the current write.
1836  *
1837  * Basic idea is the following: Go through each other thread and find
1838  * the lastest action that happened before our write.  Two cases:
1839  *
1840  * (1) The action is a write => that write must occur before
1841  * the current write
1842  *
1843  * (2) The action is a read => the write that that action read from
1844  * must occur before the current write.
1845  *
1846  * This method also handles two other issues:
1847  *
1848  * (I) Sequential Consistency: Making sure that if the current write is
1849  * seq_cst, that it occurs after the previous seq_cst write.
1850  *
1851  * (II) Sending the write back to non-synchronizing reads.
1852  *
1853  * @param curr The current action. Must be a write.
1854  * @param send_fv A vector for stashing reads to which we may pass our future
1855  * value. If NULL, then don't record any future values.
1856  * @return True if modification order edges were added; false otherwise
1857  */
1858 bool ModelChecker::w_modification_order(ModelAction *curr, std::vector< ModelAction *, ModelAlloc<ModelAction *> > *send_fv)
1859 {
1860         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
1861         unsigned int i;
1862         bool added = false;
1863         ASSERT(curr->is_write());
1864
1865         if (curr->is_seqcst()) {
1866                 /* We have to at least see the last sequentially consistent write,
1867                          so we are initialized. */
1868                 ModelAction *last_seq_cst = get_last_seq_cst_write(curr);
1869                 if (last_seq_cst != NULL) {
1870                         added = mo_graph->addEdge(last_seq_cst, curr) || added;
1871                 }
1872         }
1873
1874         /* Last SC fence in the current thread */
1875         ModelAction *last_sc_fence_local = get_last_seq_cst_fence(curr->get_tid(), NULL);
1876
1877         /* Iterate over all threads */
1878         for (i = 0; i < thrd_lists->size(); i++) {
1879                 /* Last SC fence in thread i, before last SC fence in current thread */
1880                 ModelAction *last_sc_fence_thread_before = NULL;
1881                 if (last_sc_fence_local && int_to_id((int)i) != curr->get_tid())
1882                         last_sc_fence_thread_before = get_last_seq_cst_fence(int_to_id(i), last_sc_fence_local);
1883
1884                 /* Iterate over actions in thread, starting from most recent */
1885                 action_list_t *list = &(*thrd_lists)[i];
1886                 action_list_t::reverse_iterator rit;
1887                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
1888                         ModelAction *act = *rit;
1889                         if (act == curr) {
1890                                 /*
1891                                  * 1) If RMW and it actually read from something, then we
1892                                  * already have all relevant edges, so just skip to next
1893                                  * thread.
1894                                  *
1895                                  * 2) If RMW and it didn't read from anything, we should
1896                                  * whatever edge we can get to speed up convergence.
1897                                  *
1898                                  * 3) If normal write, we need to look at earlier actions, so
1899                                  * continue processing list.
1900                                  */
1901                                 if (curr->is_rmw()) {
1902                                         if (curr->get_reads_from() != NULL)
1903                                                 break;
1904                                         else
1905                                                 continue;
1906                                 } else
1907                                         continue;
1908                         }
1909
1910                         /* C++, Section 29.3 statement 7 */
1911                         if (last_sc_fence_thread_before && act->is_write() &&
1912                                         *act < *last_sc_fence_thread_before) {
1913                                 added = mo_graph->addEdge(act, curr) || added;
1914                                 break;
1915                         }
1916
1917                         /*
1918                          * Include at most one act per-thread that "happens
1919                          * before" curr
1920                          */
1921                         if (act->happens_before(curr)) {
1922                                 /*
1923                                  * Note: if act is RMW, just add edge:
1924                                  *   act --mo--> curr
1925                                  * The following edge should be handled elsewhere:
1926                                  *   readfrom(act) --mo--> act
1927                                  */
1928                                 if (act->is_write())
1929                                         added = mo_graph->addEdge(act, curr) || added;
1930                                 else if (act->is_read()) {
1931                                         //if previous read accessed a null, just keep going
1932                                         if (act->get_reads_from() == NULL)
1933                                                 continue;
1934                                         added = mo_graph->addEdge(act->get_reads_from(), curr) || added;
1935                                 }
1936                                 break;
1937                         } else if (act->is_read() && !act->could_synchronize_with(curr) &&
1938                                                      !act->same_thread(curr)) {
1939                                 /* We have an action that:
1940                                    (1) did not happen before us
1941                                    (2) is a read and we are a write
1942                                    (3) cannot synchronize with us
1943                                    (4) is in a different thread
1944                                    =>
1945                                    that read could potentially read from our write.  Note that
1946                                    these checks are overly conservative at this point, we'll
1947                                    do more checks before actually removing the
1948                                    pendingfuturevalue.
1949
1950                                  */
1951                                 if (send_fv && thin_air_constraint_may_allow(curr, act)) {
1952                                         if (!is_infeasible())
1953                                                 send_fv->push_back(act);
1954                                         else if (curr->is_rmw() && act->is_rmw() && curr->get_reads_from() && curr->get_reads_from() == act->get_reads_from())
1955                                                 add_future_value(curr, act);
1956                                 }
1957                         }
1958                 }
1959         }
1960
1961         /*
1962          * All compatible, thread-exclusive promises must be ordered after any
1963          * concrete stores to the same thread, or else they can be merged with
1964          * this store later
1965          */
1966         for (unsigned int i = 0; i < promises->size(); i++)
1967                 if ((*promises)[i]->is_compatible_exclusive(curr))
1968                         added = mo_graph->addEdge(curr, (*promises)[i]) || added;
1969
1970         return added;
1971 }
1972
1973 /** Arbitrary reads from the future are not allowed.  Section 29.3
1974  * part 9 places some constraints.  This method checks one result of constraint
1975  * constraint.  Others require compiler support. */
1976 bool ModelChecker::thin_air_constraint_may_allow(const ModelAction *writer, const ModelAction *reader)
1977 {
1978         if (!writer->is_rmw())
1979                 return true;
1980
1981         if (!reader->is_rmw())
1982                 return true;
1983
1984         for (const ModelAction *search = writer->get_reads_from(); search != NULL; search = search->get_reads_from()) {
1985                 if (search == reader)
1986                         return false;
1987                 if (search->get_tid() == reader->get_tid() &&
1988                                 search->happens_before(reader))
1989                         break;
1990         }
1991
1992         return true;
1993 }
1994
1995 /**
1996  * Arbitrary reads from the future are not allowed. Section 29.3 part 9 places
1997  * some constraints. This method checks one the following constraint (others
1998  * require compiler support):
1999  *
2000  *   If X --hb-> Y --mo-> Z, then X should not read from Z.
2001  */
2002 bool ModelChecker::mo_may_allow(const ModelAction *writer, const ModelAction *reader)
2003 {
2004         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, reader->get_location());
2005         unsigned int i;
2006         /* Iterate over all threads */
2007         for (i = 0; i < thrd_lists->size(); i++) {
2008                 const ModelAction *write_after_read = NULL;
2009
2010                 /* Iterate over actions in thread, starting from most recent */
2011                 action_list_t *list = &(*thrd_lists)[i];
2012                 action_list_t::reverse_iterator rit;
2013                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
2014                         ModelAction *act = *rit;
2015
2016                         /* Don't disallow due to act == reader */
2017                         if (!reader->happens_before(act) || reader == act)
2018                                 break;
2019                         else if (act->is_write())
2020                                 write_after_read = act;
2021                         else if (act->is_read() && act->get_reads_from() != NULL)
2022                                 write_after_read = act->get_reads_from();
2023                 }
2024
2025                 if (write_after_read && write_after_read != writer && mo_graph->checkReachable(write_after_read, writer))
2026                         return false;
2027         }
2028         return true;
2029 }
2030
2031 /**
2032  * Finds the head(s) of the release sequence(s) containing a given ModelAction.
2033  * The ModelAction under consideration is expected to be taking part in
2034  * release/acquire synchronization as an object of the "reads from" relation.
2035  * Note that this can only provide release sequence support for RMW chains
2036  * which do not read from the future, as those actions cannot be traced until
2037  * their "promise" is fulfilled. Similarly, we may not even establish the
2038  * presence of a release sequence with certainty, as some modification order
2039  * constraints may be decided further in the future. Thus, this function
2040  * "returns" two pieces of data: a pass-by-reference vector of @a release_heads
2041  * and a boolean representing certainty.
2042  *
2043  * @param rf The action that might be part of a release sequence. Must be a
2044  * write.
2045  * @param release_heads A pass-by-reference style return parameter. After
2046  * execution of this function, release_heads will contain the heads of all the
2047  * relevant release sequences, if any exists with certainty
2048  * @param pending A pass-by-reference style return parameter which is only used
2049  * when returning false (i.e., uncertain). Returns most information regarding
2050  * an uncertain release sequence, including any write operations that might
2051  * break the sequence.
2052  * @return true, if the ModelChecker is certain that release_heads is complete;
2053  * false otherwise
2054  */
2055 bool ModelChecker::release_seq_heads(const ModelAction *rf,
2056                 rel_heads_list_t *release_heads,
2057                 struct release_seq *pending) const
2058 {
2059         /* Only check for release sequences if there are no cycles */
2060         if (mo_graph->checkForCycles())
2061                 return false;
2062
2063         for ( ; rf != NULL; rf = rf->get_reads_from()) {
2064                 ASSERT(rf->is_write());
2065
2066                 if (rf->is_release())
2067                         release_heads->push_back(rf);
2068                 else if (rf->get_last_fence_release())
2069                         release_heads->push_back(rf->get_last_fence_release());
2070                 if (!rf->is_rmw())
2071                         break; /* End of RMW chain */
2072
2073                 /** @todo Need to be smarter here...  In the linux lock
2074                  * example, this will run to the beginning of the program for
2075                  * every acquire. */
2076                 /** @todo The way to be smarter here is to keep going until 1
2077                  * thread has a release preceded by an acquire and you've seen
2078                  *       both. */
2079
2080                 /* acq_rel RMW is a sufficient stopping condition */
2081                 if (rf->is_acquire() && rf->is_release())
2082                         return true; /* complete */
2083         };
2084         if (!rf) {
2085                 /* read from future: need to settle this later */
2086                 pending->rf = NULL;
2087                 return false; /* incomplete */
2088         }
2089
2090         if (rf->is_release())
2091                 return true; /* complete */
2092
2093         /* else relaxed write
2094          * - check for fence-release in the same thread (29.8, stmt. 3)
2095          * - check modification order for contiguous subsequence
2096          *   -> rf must be same thread as release */
2097
2098         const ModelAction *fence_release = rf->get_last_fence_release();
2099         /* Synchronize with a fence-release unconditionally; we don't need to
2100          * find any more "contiguous subsequence..." for it */
2101         if (fence_release)
2102                 release_heads->push_back(fence_release);
2103
2104         int tid = id_to_int(rf->get_tid());
2105         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, rf->get_location());
2106         action_list_t *list = &(*thrd_lists)[tid];
2107         action_list_t::const_reverse_iterator rit;
2108
2109         /* Find rf in the thread list */
2110         rit = std::find(list->rbegin(), list->rend(), rf);
2111         ASSERT(rit != list->rend());
2112
2113         /* Find the last {write,fence}-release */
2114         for (; rit != list->rend(); rit++) {
2115                 if (fence_release && *(*rit) < *fence_release)
2116                         break;
2117                 if ((*rit)->is_release())
2118                         break;
2119         }
2120         if (rit == list->rend()) {
2121                 /* No write-release in this thread */
2122                 return true; /* complete */
2123         } else if (fence_release && *(*rit) < *fence_release) {
2124                 /* The fence-release is more recent (and so, "stronger") than
2125                  * the most recent write-release */
2126                 return true; /* complete */
2127         } /* else, need to establish contiguous release sequence */
2128         ModelAction *release = *rit;
2129
2130         ASSERT(rf->same_thread(release));
2131
2132         pending->writes.clear();
2133
2134         bool certain = true;
2135         for (unsigned int i = 0; i < thrd_lists->size(); i++) {
2136                 if (id_to_int(rf->get_tid()) == (int)i)
2137                         continue;
2138                 list = &(*thrd_lists)[i];
2139
2140                 /* Can we ensure no future writes from this thread may break
2141                  * the release seq? */
2142                 bool future_ordered = false;
2143
2144                 ModelAction *last = get_last_action(int_to_id(i));
2145                 Thread *th = get_thread(int_to_id(i));
2146                 if ((last && rf->happens_before(last)) ||
2147                                 !is_enabled(th) ||
2148                                 th->is_complete())
2149                         future_ordered = true;
2150
2151                 ASSERT(!th->is_model_thread() || future_ordered);
2152
2153                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
2154                         const ModelAction *act = *rit;
2155                         /* Reach synchronization -> this thread is complete */
2156                         if (act->happens_before(release))
2157                                 break;
2158                         if (rf->happens_before(act)) {
2159                                 future_ordered = true;
2160                                 continue;
2161                         }
2162
2163                         /* Only non-RMW writes can break release sequences */
2164                         if (!act->is_write() || act->is_rmw())
2165                                 continue;
2166
2167                         /* Check modification order */
2168                         if (mo_graph->checkReachable(rf, act)) {
2169                                 /* rf --mo--> act */
2170                                 future_ordered = true;
2171                                 continue;
2172                         }
2173                         if (mo_graph->checkReachable(act, release))
2174                                 /* act --mo--> release */
2175                                 break;
2176                         if (mo_graph->checkReachable(release, act) &&
2177                                       mo_graph->checkReachable(act, rf)) {
2178                                 /* release --mo-> act --mo--> rf */
2179                                 return true; /* complete */
2180                         }
2181                         /* act may break release sequence */
2182                         pending->writes.push_back(act);
2183                         certain = false;
2184                 }
2185                 if (!future_ordered)
2186                         certain = false; /* This thread is uncertain */
2187         }
2188
2189         if (certain) {
2190                 release_heads->push_back(release);
2191                 pending->writes.clear();
2192         } else {
2193                 pending->release = release;
2194                 pending->rf = rf;
2195         }
2196         return certain;
2197 }
2198
2199 /**
2200  * An interface for getting the release sequence head(s) with which a
2201  * given ModelAction must synchronize. This function only returns a non-empty
2202  * result when it can locate a release sequence head with certainty. Otherwise,
2203  * it may mark the internal state of the ModelChecker so that it will handle
2204  * the release sequence at a later time, causing @a acquire to update its
2205  * synchronization at some later point in execution.
2206  *
2207  * @param acquire The 'acquire' action that may synchronize with a release
2208  * sequence
2209  * @param read The read action that may read from a release sequence; this may
2210  * be the same as acquire, or else an earlier action in the same thread (i.e.,
2211  * when 'acquire' is a fence-acquire)
2212  * @param release_heads A pass-by-reference return parameter. Will be filled
2213  * with the head(s) of the release sequence(s), if they exists with certainty.
2214  * @see ModelChecker::release_seq_heads
2215  */
2216 void ModelChecker::get_release_seq_heads(ModelAction *acquire,
2217                 ModelAction *read, rel_heads_list_t *release_heads)
2218 {
2219         const ModelAction *rf = read->get_reads_from();
2220         struct release_seq *sequence = (struct release_seq *)snapshot_calloc(1, sizeof(struct release_seq));
2221         sequence->acquire = acquire;
2222         sequence->read = read;
2223
2224         if (!release_seq_heads(rf, release_heads, sequence)) {
2225                 /* add act to 'lazy checking' list */
2226                 pending_rel_seqs->push_back(sequence);
2227         } else {
2228                 snapshot_free(sequence);
2229         }
2230 }
2231
2232 /**
2233  * Attempt to resolve all stashed operations that might synchronize with a
2234  * release sequence for a given location. This implements the "lazy" portion of
2235  * determining whether or not a release sequence was contiguous, since not all
2236  * modification order information is present at the time an action occurs.
2237  *
2238  * @param location The location/object that should be checked for release
2239  * sequence resolutions. A NULL value means to check all locations.
2240  * @param work_queue The work queue to which to add work items as they are
2241  * generated
2242  * @return True if any updates occurred (new synchronization, new mo_graph
2243  * edges)
2244  */
2245 bool ModelChecker::resolve_release_sequences(void *location, work_queue_t *work_queue)
2246 {
2247         bool updated = false;
2248         std::vector< struct release_seq *, SnapshotAlloc<struct release_seq *> >::iterator it = pending_rel_seqs->begin();
2249         while (it != pending_rel_seqs->end()) {
2250                 struct release_seq *pending = *it;
2251                 ModelAction *acquire = pending->acquire;
2252                 const ModelAction *read = pending->read;
2253
2254                 /* Only resolve sequences on the given location, if provided */
2255                 if (location && read->get_location() != location) {
2256                         it++;
2257                         continue;
2258                 }
2259
2260                 const ModelAction *rf = read->get_reads_from();
2261                 rel_heads_list_t release_heads;
2262                 bool complete;
2263                 complete = release_seq_heads(rf, &release_heads, pending);
2264                 for (unsigned int i = 0; i < release_heads.size(); i++) {
2265                         if (!acquire->has_synchronized_with(release_heads[i])) {
2266                                 if (acquire->synchronize_with(release_heads[i]))
2267                                         updated = true;
2268                                 else
2269                                         set_bad_synchronization();
2270                         }
2271                 }
2272
2273                 if (updated) {
2274                         /* Re-check all pending release sequences */
2275                         work_queue->push_back(CheckRelSeqWorkEntry(NULL));
2276                         /* Re-check read-acquire for mo_graph edges */
2277                         if (acquire->is_read())
2278                                 work_queue->push_back(MOEdgeWorkEntry(acquire));
2279
2280                         /* propagate synchronization to later actions */
2281                         action_list_t::reverse_iterator rit = action_trace->rbegin();
2282                         for (; (*rit) != acquire; rit++) {
2283                                 ModelAction *propagate = *rit;
2284                                 if (acquire->happens_before(propagate)) {
2285                                         propagate->synchronize_with(acquire);
2286                                         /* Re-check 'propagate' for mo_graph edges */
2287                                         work_queue->push_back(MOEdgeWorkEntry(propagate));
2288                                 }
2289                         }
2290                 }
2291                 if (complete) {
2292                         it = pending_rel_seqs->erase(it);
2293                         snapshot_free(pending);
2294                 } else {
2295                         it++;
2296                 }
2297         }
2298
2299         // If we resolved promises or data races, see if we have realized a data race.
2300         checkDataRaces();
2301
2302         return updated;
2303 }
2304
2305 /**
2306  * Performs various bookkeeping operations for the current ModelAction. For
2307  * instance, adds action to the per-object, per-thread action vector and to the
2308  * action trace list of all thread actions.
2309  *
2310  * @param act is the ModelAction to add.
2311  */
2312 void ModelChecker::add_action_to_lists(ModelAction *act)
2313 {
2314         int tid = id_to_int(act->get_tid());
2315         ModelAction *uninit = NULL;
2316         int uninit_id = -1;
2317         action_list_t *list = get_safe_ptr_action(obj_map, act->get_location());
2318         if (list->empty() && act->is_atomic_var()) {
2319                 uninit = new_uninitialized_action(act->get_location());
2320                 uninit_id = id_to_int(uninit->get_tid());
2321                 list->push_back(uninit);
2322         }
2323         list->push_back(act);
2324
2325         action_trace->push_back(act);
2326         if (uninit)
2327                 action_trace->push_front(uninit);
2328
2329         std::vector<action_list_t> *vec = get_safe_ptr_vect_action(obj_thrd_map, act->get_location());
2330         if (tid >= (int)vec->size())
2331                 vec->resize(priv->next_thread_id);
2332         (*vec)[tid].push_back(act);
2333         if (uninit)
2334                 (*vec)[uninit_id].push_front(uninit);
2335
2336         if ((int)thrd_last_action->size() <= tid)
2337                 thrd_last_action->resize(get_num_threads());
2338         (*thrd_last_action)[tid] = act;
2339         if (uninit)
2340                 (*thrd_last_action)[uninit_id] = uninit;
2341
2342         if (act->is_fence() && act->is_release()) {
2343                 if ((int)thrd_last_fence_release->size() <= tid)
2344                         thrd_last_fence_release->resize(get_num_threads());
2345                 (*thrd_last_fence_release)[tid] = act;
2346         }
2347
2348         if (act->is_wait()) {
2349                 void *mutex_loc = (void *) act->get_value();
2350                 get_safe_ptr_action(obj_map, mutex_loc)->push_back(act);
2351
2352                 std::vector<action_list_t> *vec = get_safe_ptr_vect_action(obj_thrd_map, mutex_loc);
2353                 if (tid >= (int)vec->size())
2354                         vec->resize(priv->next_thread_id);
2355                 (*vec)[tid].push_back(act);
2356         }
2357 }
2358
2359 /**
2360  * @brief Get the last action performed by a particular Thread
2361  * @param tid The thread ID of the Thread in question
2362  * @return The last action in the thread
2363  */
2364 ModelAction * ModelChecker::get_last_action(thread_id_t tid) const
2365 {
2366         int threadid = id_to_int(tid);
2367         if (threadid < (int)thrd_last_action->size())
2368                 return (*thrd_last_action)[id_to_int(tid)];
2369         else
2370                 return NULL;
2371 }
2372
2373 /**
2374  * @brief Get the last fence release performed by a particular Thread
2375  * @param tid The thread ID of the Thread in question
2376  * @return The last fence release in the thread, if one exists; NULL otherwise
2377  */
2378 ModelAction * ModelChecker::get_last_fence_release(thread_id_t tid) const
2379 {
2380         int threadid = id_to_int(tid);
2381         if (threadid < (int)thrd_last_fence_release->size())
2382                 return (*thrd_last_fence_release)[id_to_int(tid)];
2383         else
2384                 return NULL;
2385 }
2386
2387 /**
2388  * Gets the last memory_order_seq_cst write (in the total global sequence)
2389  * performed on a particular object (i.e., memory location), not including the
2390  * current action.
2391  * @param curr The current ModelAction; also denotes the object location to
2392  * check
2393  * @return The last seq_cst write
2394  */
2395 ModelAction * ModelChecker::get_last_seq_cst_write(ModelAction *curr) const
2396 {
2397         void *location = curr->get_location();
2398         action_list_t *list = get_safe_ptr_action(obj_map, location);
2399         /* Find: max({i in dom(S) | seq_cst(t_i) && isWrite(t_i) && samevar(t_i, t)}) */
2400         action_list_t::reverse_iterator rit;
2401         for (rit = list->rbegin(); rit != list->rend(); rit++)
2402                 if ((*rit)->is_write() && (*rit)->is_seqcst() && (*rit) != curr)
2403                         return *rit;
2404         return NULL;
2405 }
2406
2407 /**
2408  * Gets the last memory_order_seq_cst fence (in the total global sequence)
2409  * performed in a particular thread, prior to a particular fence.
2410  * @param tid The ID of the thread to check
2411  * @param before_fence The fence from which to begin the search; if NULL, then
2412  * search for the most recent fence in the thread.
2413  * @return The last prior seq_cst fence in the thread, if exists; otherwise, NULL
2414  */
2415 ModelAction * ModelChecker::get_last_seq_cst_fence(thread_id_t tid, const ModelAction *before_fence) const
2416 {
2417         /* All fences should have NULL location */
2418         action_list_t *list = get_safe_ptr_action(obj_map, NULL);
2419         action_list_t::reverse_iterator rit = list->rbegin();
2420
2421         if (before_fence) {
2422                 for (; rit != list->rend(); rit++)
2423                         if (*rit == before_fence)
2424                                 break;
2425
2426                 ASSERT(*rit == before_fence);
2427                 rit++;
2428         }
2429
2430         for (; rit != list->rend(); rit++)
2431                 if ((*rit)->is_fence() && (tid == (*rit)->get_tid()) && (*rit)->is_seqcst())
2432                         return *rit;
2433         return NULL;
2434 }
2435
2436 /**
2437  * Gets the last unlock operation performed on a particular mutex (i.e., memory
2438  * location). This function identifies the mutex according to the current
2439  * action, which is presumed to perform on the same mutex.
2440  * @param curr The current ModelAction; also denotes the object location to
2441  * check
2442  * @return The last unlock operation
2443  */
2444 ModelAction * ModelChecker::get_last_unlock(ModelAction *curr) const
2445 {
2446         void *location = curr->get_location();
2447         action_list_t *list = get_safe_ptr_action(obj_map, location);
2448         /* Find: max({i in dom(S) | isUnlock(t_i) && samevar(t_i, t)}) */
2449         action_list_t::reverse_iterator rit;
2450         for (rit = list->rbegin(); rit != list->rend(); rit++)
2451                 if ((*rit)->is_unlock() || (*rit)->is_wait())
2452                         return *rit;
2453         return NULL;
2454 }
2455
2456 ModelAction * ModelChecker::get_parent_action(thread_id_t tid) const
2457 {
2458         ModelAction *parent = get_last_action(tid);
2459         if (!parent)
2460                 parent = get_thread(tid)->get_creation();
2461         return parent;
2462 }
2463
2464 /**
2465  * Returns the clock vector for a given thread.
2466  * @param tid The thread whose clock vector we want
2467  * @return Desired clock vector
2468  */
2469 ClockVector * ModelChecker::get_cv(thread_id_t tid) const
2470 {
2471         return get_parent_action(tid)->get_cv();
2472 }
2473
2474 /**
2475  * @brief Find the promise, if any to resolve for the current action
2476  * @param curr The current ModelAction. Should be a write.
2477  * @return The (non-negative) index for the Promise to resolve, if any;
2478  * otherwise -1
2479  */
2480 int ModelChecker::get_promise_to_resolve(const ModelAction *curr) const
2481 {
2482         for (unsigned int i = 0; i < promises->size(); i++)
2483                 if (curr->get_node()->get_promise(i))
2484                         return i;
2485         return -1;
2486 }
2487
2488 /**
2489  * Resolve a Promise with a current write.
2490  * @param write The ModelAction that is fulfilling Promises
2491  * @param promise_idx The index corresponding to the promise
2492  * @return True if the Promise was successfully resolved; false otherwise
2493  */
2494 bool ModelChecker::resolve_promise(ModelAction *write, unsigned int promise_idx)
2495 {
2496         std::vector< ModelAction *, ModelAlloc<ModelAction *> > actions_to_check;
2497         promise_list_t mustResolve;
2498         Promise *promise = (*promises)[promise_idx];
2499
2500         for (unsigned int i = 0; i < promise->get_num_readers(); i++) {
2501                 ModelAction *read = promise->get_reader(i);
2502                 read_from(read, write);
2503                 actions_to_check.push_back(read);
2504         }
2505         /* Make sure the promise's value matches the write's value */
2506         ASSERT(promise->is_compatible(write) && promise->same_value(write));
2507         mo_graph->resolvePromise(promise, write, &mustResolve);
2508
2509         promises->erase(promises->begin() + promise_idx);
2510
2511         /** @todo simplify the 'mustResolve' stuff */
2512         ASSERT(mustResolve.size() <= 1);
2513
2514         if (!mustResolve.empty() && mustResolve[0] != promise)
2515                 priv->failed_promise = true;
2516         delete promise;
2517
2518         //Check whether reading these writes has made threads unable to
2519         //resolve promises
2520
2521         for (unsigned int i = 0; i < actions_to_check.size(); i++) {
2522                 ModelAction *read = actions_to_check[i];
2523                 mo_check_promises(read, true);
2524         }
2525
2526         return true;
2527 }
2528
2529 /**
2530  * Compute the set of promises that could potentially be satisfied by this
2531  * action. Note that the set computation actually appears in the Node, not in
2532  * ModelChecker.
2533  * @param curr The ModelAction that may satisfy promises
2534  */
2535 void ModelChecker::compute_promises(ModelAction *curr)
2536 {
2537         for (unsigned int i = 0; i < promises->size(); i++) {
2538                 Promise *promise = (*promises)[i];
2539                 if (!promise->is_compatible(curr) || !promise->same_value(curr))
2540                         continue;
2541
2542                 bool satisfy = true;
2543                 for (unsigned int j = 0; j < promise->get_num_readers(); j++) {
2544                         const ModelAction *act = promise->get_reader(j);
2545                         if (act->happens_before(curr) ||
2546                                         act->could_synchronize_with(curr)) {
2547                                 satisfy = false;
2548                                 break;
2549                         }
2550                 }
2551                 if (satisfy)
2552                         curr->get_node()->set_promise(i);
2553         }
2554 }
2555
2556 /** Checks promises in response to change in ClockVector Threads. */
2557 void ModelChecker::check_promises(thread_id_t tid, ClockVector *old_cv, ClockVector *merge_cv)
2558 {
2559         for (unsigned int i = 0; i < promises->size(); i++) {
2560                 Promise *promise = (*promises)[i];
2561                 if (!promise->thread_is_available(tid))
2562                         continue;
2563                 for (unsigned int j = 0; j < promise->get_num_readers(); j++) {
2564                         const ModelAction *act = promise->get_reader(j);
2565                         if ((!old_cv || !old_cv->synchronized_since(act)) &&
2566                                         merge_cv->synchronized_since(act)) {
2567                                 if (promise->eliminate_thread(tid)) {
2568                                         /* Promise has failed */
2569                                         priv->failed_promise = true;
2570                                         return;
2571                                 }
2572                         }
2573                 }
2574         }
2575 }
2576
2577 void ModelChecker::check_promises_thread_disabled()
2578 {
2579         for (unsigned int i = 0; i < promises->size(); i++) {
2580                 Promise *promise = (*promises)[i];
2581                 if (promise->has_failed()) {
2582                         priv->failed_promise = true;
2583                         return;
2584                 }
2585         }
2586 }
2587
2588 /**
2589  * @brief Checks promises in response to addition to modification order for
2590  * threads.
2591  *
2592  * We test whether threads are still available for satisfying promises after an
2593  * addition to our modification order constraints. Those that are unavailable
2594  * are "eliminated". Once all threads are eliminated from satisfying a promise,
2595  * that promise has failed.
2596  *
2597  * @param act The ModelAction which updated the modification order
2598  * @param is_read_check Should be true if act is a read and we must check for
2599  * updates to the store from which it read (there is a distinction here for
2600  * RMW's, which are both a load and a store)
2601  */
2602 void ModelChecker::mo_check_promises(const ModelAction *act, bool is_read_check)
2603 {
2604         const ModelAction *write = is_read_check ? act->get_reads_from() : act;
2605
2606         for (unsigned int i = 0; i < promises->size(); i++) {
2607                 Promise *promise = (*promises)[i];
2608
2609                 // Is this promise on the same location?
2610                 if (!promise->same_location(write))
2611                         continue;
2612
2613                 for (unsigned int j = 0; j < promise->get_num_readers(); j++) {
2614                         const ModelAction *pread = promise->get_reader(j);
2615                         if (!pread->happens_before(act))
2616                                continue;
2617                         if (mo_graph->checkPromise(write, promise)) {
2618                                 priv->failed_promise = true;
2619                                 return;
2620                         }
2621                         break;
2622                 }
2623
2624                 // Don't do any lookups twice for the same thread
2625                 if (!promise->thread_is_available(act->get_tid()))
2626                         continue;
2627
2628                 if (mo_graph->checkReachable(promise, write)) {
2629                         if (mo_graph->checkPromise(write, promise)) {
2630                                 priv->failed_promise = true;
2631                                 return;
2632                         }
2633                 }
2634         }
2635 }
2636
2637 /**
2638  * Compute the set of writes that may break the current pending release
2639  * sequence. This information is extracted from previou release sequence
2640  * calculations.
2641  *
2642  * @param curr The current ModelAction. Must be a release sequence fixup
2643  * action.
2644  */
2645 void ModelChecker::compute_relseq_breakwrites(ModelAction *curr)
2646 {
2647         if (pending_rel_seqs->empty())
2648                 return;
2649
2650         struct release_seq *pending = pending_rel_seqs->back();
2651         for (unsigned int i = 0; i < pending->writes.size(); i++) {
2652                 const ModelAction *write = pending->writes[i];
2653                 curr->get_node()->add_relseq_break(write);
2654         }
2655
2656         /* NULL means don't break the sequence; just synchronize */
2657         curr->get_node()->add_relseq_break(NULL);
2658 }
2659
2660 /**
2661  * Build up an initial set of all past writes that this 'read' action may read
2662  * from, as well as any previously-observed future values that must still be valid.
2663  *
2664  * @param curr is the current ModelAction that we are exploring; it must be a
2665  * 'read' operation.
2666  */
2667 void ModelChecker::build_may_read_from(ModelAction *curr)
2668 {
2669         std::vector<action_list_t> *thrd_lists = get_safe_ptr_vect_action(obj_thrd_map, curr->get_location());
2670         unsigned int i;
2671         ASSERT(curr->is_read());
2672
2673         ModelAction *last_sc_write = NULL;
2674
2675         if (curr->is_seqcst())
2676                 last_sc_write = get_last_seq_cst_write(curr);
2677
2678         /* Iterate over all threads */
2679         for (i = 0; i < thrd_lists->size(); i++) {
2680                 /* Iterate over actions in thread, starting from most recent */
2681                 action_list_t *list = &(*thrd_lists)[i];
2682                 action_list_t::reverse_iterator rit;
2683                 for (rit = list->rbegin(); rit != list->rend(); rit++) {
2684                         ModelAction *act = *rit;
2685
2686                         /* Only consider 'write' actions */
2687                         if (!act->is_write() || act == curr)
2688                                 continue;
2689
2690                         /* Don't consider more than one seq_cst write if we are a seq_cst read. */
2691                         bool allow_read = true;
2692
2693                         if (curr->is_seqcst() && (act->is_seqcst() || (last_sc_write != NULL && act->happens_before(last_sc_write))) && act != last_sc_write)
2694                                 allow_read = false;
2695                         else if (curr->get_sleep_flag() && !curr->is_seqcst() && !sleep_can_read_from(curr, act))
2696                                 allow_read = false;
2697
2698                         if (allow_read) {
2699                                 /* Only add feasible reads */
2700                                 mo_graph->startChanges();
2701                                 r_modification_order(curr, act);
2702                                 if (!is_infeasible())
2703                                         curr->get_node()->add_read_from_past(act);
2704                                 mo_graph->rollbackChanges();
2705                         }
2706
2707                         /* Include at most one act per-thread that "happens before" curr */
2708                         if (act->happens_before(curr))
2709                                 break;
2710                 }
2711         }
2712
2713         /* Inherit existing, promised future values */
2714         for (i = 0; i < promises->size(); i++) {
2715                 const Promise *promise = (*promises)[i];
2716                 const ModelAction *promise_read = promise->get_reader(0);
2717                 if (promise_read->same_var(curr)) {
2718                         /* Only add feasible future-values */
2719                         mo_graph->startChanges();
2720                         r_modification_order(curr, promise);
2721                         if (!is_infeasible())
2722                                 curr->get_node()->add_read_from_promise(promise_read);
2723                         mo_graph->rollbackChanges();
2724                 }
2725         }
2726
2727         /* We may find no valid may-read-from only if the execution is doomed */
2728         if (!curr->get_node()->read_from_size()) {
2729                 priv->no_valid_reads = true;
2730                 set_assert();
2731         }
2732
2733         if (DBG_ENABLED()) {
2734                 model_print("Reached read action:\n");
2735                 curr->print();
2736                 model_print("Printing read_from_past\n");
2737                 curr->get_node()->print_read_from_past();
2738                 model_print("End printing read_from_past\n");
2739         }
2740 }
2741
2742 bool ModelChecker::sleep_can_read_from(ModelAction *curr, const ModelAction *write)
2743 {
2744         for ( ; write != NULL; write = write->get_reads_from()) {
2745                 /* UNINIT actions don't have a Node, and they never sleep */
2746                 if (write->is_uninitialized())
2747                         return true;
2748                 Node *prevnode = write->get_node()->get_parent();
2749
2750                 bool thread_sleep = prevnode->enabled_status(curr->get_tid()) == THREAD_SLEEP_SET;
2751                 if (write->is_release() && thread_sleep)
2752                         return true;
2753                 if (!write->is_rmw())
2754                         return false;
2755         }
2756         return true;
2757 }
2758
2759 /**
2760  * @brief Create a new action representing an uninitialized atomic
2761  * @param location The memory location of the atomic object
2762  * @return A pointer to a new ModelAction
2763  */
2764 ModelAction * ModelChecker::new_uninitialized_action(void *location) const
2765 {
2766         ModelAction *act = (ModelAction *)snapshot_malloc(sizeof(class ModelAction));
2767         act = new (act) ModelAction(ATOMIC_UNINIT, std::memory_order_relaxed, location, 0, model_thread);
2768         act->create_cv(NULL);
2769         return act;
2770 }
2771
2772 static void print_list(action_list_t *list)
2773 {
2774         action_list_t::iterator it;
2775
2776         model_print("---------------------------------------------------------------------\n");
2777
2778         unsigned int hash = 0;
2779
2780         for (it = list->begin(); it != list->end(); it++) {
2781                 (*it)->print();
2782                 hash = hash^(hash<<3)^((*it)->hash());
2783         }
2784         model_print("HASH %u\n", hash);
2785         model_print("---------------------------------------------------------------------\n");
2786 }
2787
2788 #if SUPPORT_MOD_ORDER_DUMP
2789 void ModelChecker::dumpGraph(char *filename) const
2790 {
2791         char buffer[200];
2792         sprintf(buffer, "%s.dot", filename);
2793         FILE *file = fopen(buffer, "w");
2794         fprintf(file, "digraph %s {\n", filename);
2795         mo_graph->dumpNodes(file);
2796         ModelAction **thread_array = (ModelAction **)model_calloc(1, sizeof(ModelAction *) * get_num_threads());
2797
2798         for (action_list_t::iterator it = action_trace->begin(); it != action_trace->end(); it++) {
2799                 ModelAction *act = *it;
2800                 if (act->is_read()) {
2801                         mo_graph->dot_print_node(file, act);
2802                         if (act->get_reads_from())
2803                                 mo_graph->dot_print_edge(file,
2804                                                 act->get_reads_from(),
2805                                                 act,
2806                                                 "label=\"rf\", color=red, weight=2");
2807                         else
2808                                 mo_graph->dot_print_edge(file,
2809                                                 act->get_reads_from_promise(),
2810                                                 act,
2811                                                 "label=\"rf\", color=red");
2812                 }
2813                 if (thread_array[act->get_tid()]) {
2814                         mo_graph->dot_print_edge(file,
2815                                         thread_array[id_to_int(act->get_tid())],
2816                                         act,
2817                                         "label=\"sb\", color=blue, weight=400");
2818                 }
2819
2820                 thread_array[act->get_tid()] = act;
2821         }
2822         fprintf(file, "}\n");
2823         model_free(thread_array);
2824         fclose(file);
2825 }
2826 #endif
2827
2828 /** @brief Prints an execution trace summary. */
2829 void ModelChecker::print_summary() const
2830 {
2831 #if SUPPORT_MOD_ORDER_DUMP
2832         char buffername[100];
2833         sprintf(buffername, "exec%04u", stats.num_total);
2834         mo_graph->dumpGraphToFile(buffername);
2835         sprintf(buffername, "graph%04u", stats.num_total);
2836         dumpGraph(buffername);
2837 #endif
2838
2839         model_print("Execution %d:", stats.num_total);
2840         if (isfeasibleprefix()) {
2841                 if (scheduler->all_threads_sleeping())
2842                         model_print(" SLEEP-SET REDUNDANT");
2843                 model_print("\n");
2844         } else
2845                 print_infeasibility(" INFEASIBLE");
2846         print_list(action_trace);
2847         model_print("\n");
2848 }
2849
2850 /**
2851  * Add a Thread to the system for the first time. Should only be called once
2852  * per thread.
2853  * @param t The Thread to add
2854  */
2855 void ModelChecker::add_thread(Thread *t)
2856 {
2857         thread_map->put(id_to_int(t->get_id()), t);
2858         scheduler->add_thread(t);
2859 }
2860
2861 /**
2862  * Removes a thread from the scheduler.
2863  * @param the thread to remove.
2864  */
2865 void ModelChecker::remove_thread(Thread *t)
2866 {
2867         scheduler->remove_thread(t);
2868 }
2869
2870 /**
2871  * @brief Get a Thread reference by its ID
2872  * @param tid The Thread's ID
2873  * @return A Thread reference
2874  */
2875 Thread * ModelChecker::get_thread(thread_id_t tid) const
2876 {
2877         return thread_map->get(id_to_int(tid));
2878 }
2879
2880 /**
2881  * @brief Get a reference to the Thread in which a ModelAction was executed
2882  * @param act The ModelAction
2883  * @return A Thread reference
2884  */
2885 Thread * ModelChecker::get_thread(const ModelAction *act) const
2886 {
2887         return get_thread(act->get_tid());
2888 }
2889
2890 /**
2891  * @brief Get a Promise's "promise number"
2892  *
2893  * A "promise number" is an index number that is unique to a promise, valid
2894  * only for a specific snapshot of an execution trace. Promises may come and go
2895  * as they are generated an resolved, so an index only retains meaning for the
2896  * current snapshot.
2897  *
2898  * @param promise The Promise to check
2899  * @return The promise index, if the promise still is valid; otherwise -1
2900  */
2901 int ModelChecker::get_promise_number(const Promise *promise) const
2902 {
2903         for (unsigned int i = 0; i < promises->size(); i++)
2904                 if ((*promises)[i] == promise)
2905                         return i;
2906         /* Not found */
2907         return -1;
2908 }
2909
2910 /**
2911  * @brief Check if a Thread is currently enabled
2912  * @param t The Thread to check
2913  * @return True if the Thread is currently enabled
2914  */
2915 bool ModelChecker::is_enabled(Thread *t) const
2916 {
2917         return scheduler->is_enabled(t);
2918 }
2919
2920 /**
2921  * @brief Check if a Thread is currently enabled
2922  * @param tid The ID of the Thread to check
2923  * @return True if the Thread is currently enabled
2924  */
2925 bool ModelChecker::is_enabled(thread_id_t tid) const
2926 {
2927         return scheduler->is_enabled(tid);
2928 }
2929
2930 /**
2931  * Switch from a model-checker context to a user-thread context. This is the
2932  * complement of ModelChecker::switch_to_master and must be called from the
2933  * model-checker context
2934  *
2935  * @param thread The user-thread to switch to
2936  */
2937 void ModelChecker::switch_from_master(Thread *thread)
2938 {
2939         scheduler->set_current_thread(thread);
2940         Thread::swap(&system_context, thread);
2941 }
2942
2943 /**
2944  * Switch from a user-context to the "master thread" context (a.k.a. system
2945  * context). This switch is made with the intention of exploring a particular
2946  * model-checking action (described by a ModelAction object). Must be called
2947  * from a user-thread context.
2948  *
2949  * @param act The current action that will be explored. May be NULL only if
2950  * trace is exiting via an assertion (see ModelChecker::set_assert and
2951  * ModelChecker::has_asserted).
2952  * @return Return the value returned by the current action
2953  */
2954 uint64_t ModelChecker::switch_to_master(ModelAction *act)
2955 {
2956         DBG();
2957         Thread *old = thread_current();
2958         ASSERT(!old->get_pending());
2959         old->set_pending(act);
2960         if (Thread::swap(old, &system_context) < 0) {
2961                 perror("swap threads");
2962                 exit(EXIT_FAILURE);
2963         }
2964         return old->get_return_value();
2965 }
2966
2967 /**
2968  * Takes the next step in the execution, if possible.
2969  * @param curr The current step to take
2970  * @return Returns the next Thread to run, if any; NULL if this execution
2971  * should terminate
2972  */
2973 Thread * ModelChecker::take_step(ModelAction *curr)
2974 {
2975         Thread *curr_thrd = get_thread(curr);
2976         ASSERT(curr_thrd->get_state() == THREAD_READY);
2977
2978         curr = check_current_action(curr);
2979
2980         /* Infeasible -> don't take any more steps */
2981         if (is_infeasible())
2982                 return NULL;
2983         else if (isfeasibleprefix() && have_bug_reports()) {
2984                 set_assert();
2985                 return NULL;
2986         }
2987
2988         if (params.bound != 0 && priv->used_sequence_numbers > params.bound)
2989                 return NULL;
2990
2991         if (curr_thrd->is_blocked() || curr_thrd->is_complete())
2992                 scheduler->remove_thread(curr_thrd);
2993
2994         Thread *next_thrd = get_next_thread(curr);
2995
2996         DEBUG("(%d, %d)\n", curr_thrd ? id_to_int(curr_thrd->get_id()) : -1,
2997                         next_thrd ? id_to_int(next_thrd->get_id()) : -1);
2998
2999         return next_thrd;
3000 }
3001
3002 /** Wrapper to run the user's main function, with appropriate arguments */
3003 void user_main_wrapper(void *)
3004 {
3005         user_main(model->params.argc, model->params.argv);
3006 }
3007
3008 /** @brief Run ModelChecker for the user program */
3009 void ModelChecker::run()
3010 {
3011         do {
3012                 thrd_t user_thread;
3013                 Thread *t = new Thread(&user_thread, &user_main_wrapper, NULL, NULL);
3014                 add_thread(t);
3015
3016                 do {
3017                         /*
3018                          * Stash next pending action(s) for thread(s). There
3019                          * should only need to stash one thread's action--the
3020                          * thread which just took a step--plus the first step
3021                          * for any newly-created thread
3022                          */
3023                         for (unsigned int i = 0; i < get_num_threads(); i++) {
3024                                 thread_id_t tid = int_to_id(i);
3025                                 Thread *thr = get_thread(tid);
3026                                 if (!thr->is_model_thread() && !thr->is_complete() && !thr->get_pending()) {
3027                                         switch_from_master(thr);
3028                                 }
3029                         }
3030
3031                         /* Catch assertions from prior take_step or from
3032                          * between-ModelAction bugs (e.g., data races) */
3033                         if (has_asserted())
3034                                 break;
3035
3036                         /* Consume the next action for a Thread */
3037                         ModelAction *curr = t->get_pending();
3038                         t->set_pending(NULL);
3039                         t = take_step(curr);
3040                 } while (t && !t->is_model_thread());
3041
3042                 /*
3043                  * Launch end-of-execution release sequence fixups only when
3044                  * the execution is otherwise feasible AND there are:
3045                  *
3046                  * (1) pending release sequences
3047                  * (2) pending assertions that could be invalidated by a change
3048                  * in clock vectors (i.e., data races)
3049                  * (3) no pending promises
3050                  */
3051                 while (!pending_rel_seqs->empty() &&
3052                                 is_feasible_prefix_ignore_relseq() &&
3053                                 !unrealizedraces.empty()) {
3054                         model_print("*** WARNING: release sequence fixup action "
3055                                         "(%zu pending release seuqence(s)) ***\n",
3056                                         pending_rel_seqs->size());
3057                         ModelAction *fixup = new ModelAction(MODEL_FIXUP_RELSEQ,
3058                                         std::memory_order_seq_cst, NULL, VALUE_NONE,
3059                                         model_thread);
3060                         take_step(fixup);
3061                 };
3062         } while (next_execution());
3063
3064         model_print("******* Model-checking complete: *******\n");
3065         print_stats();
3066 }